2.2等腰三角形教案
八年级等腰三角形数学教案【优秀6篇】
八年级等腰三角形数学教案【优秀6篇】作为一名专为他人授业解惑的人民教师,总归要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
来参考自己需要的教案吧!小编为您精心收集了6篇《八年级等腰三角形数学教案》,如果能帮助到您,小编将不胜荣幸。
等腰三角形篇一9.3章等腰三角形教案(一)、温故知新,激发情趣:1、轴对称图形的有关概念,什么样的三角形叫做等腰三角形?2、指出等腰三角形的腰、底边、顶角、底角。
(首先教师提问了解前置知识掌握情况,学生动脑思考、口答。
)(二) 、构设悬念,创设情境:3、一般三角形有哪些特征?(三条边、三个内角、高、中线、角平分线)4、等腰三角形除具有一般三角形的特征外,还有那些特殊特征?(把问题3作为教学的出发点,激发学生的学习兴趣。
问题4给学生留下悬念。
)(三)、目标导向,自然引入:本节课我们一起研究——9.3 等腰三角形(板书课题) 9.3 等腰三角形(了解本节课的学习内容)(四)、设问质疑,探究尝试:结合问题4请同学们拿出准备好的不同规格的等腰三角形,与教师一起演示(模型)等腰三角形是轴对称图形的实验,引导学生观察实验现象。
[问题]通过观察,你发现了什么结论?(让学生由实验或演示指出各自的发现,并加以引导,用规范的数学语言进行逐条归纳,最后得出等腰三角形的特征)[结论]等腰三角形的两个底角相等。
(板书学生发现的结论)等腰三角形特征1:等腰三角形的两个底角相等在△ ABC中,△AB=AC()△△B=△C()[方法]可由学生从多种途径思考,纵横联想所学知识方法,为命题的证明打下基础。
例1:已知:在△ABC中,AB=AC,△B=80°,求△C和△A的度数。
〔学生思考,教师分析,板书〕练习思考:课本P84 练习2(等腰三角形的底角可以是直角或钝角吗?为什么?)〔继续观察实验纸片图形〕(以下内容学生可能在前面实验中就会提出)[问题]纸片中的等腰三角形的对称轴可能是我们以前学习过的什么线?(通过设问、质疑、小组讨论,归纳总结,培养学生概括数学问题的能力)[引导学生观察]折痕AD是等腰三角形的对称轴,AD可能还是等腰三角形的什么线?[学生发现]AD是等腰三角形的顶角平分线、底边中线、底边上的高。
2.2等腰三角形-浙教版八年级数学上册教案
2.2 等腰三角形-浙教版八年级数学上册教案一、教学目标1.综合应用“等腰三角形顶角、底角和底边”的性质,判断三角形相等、求出角、线段的长度。
2.认识等腰三角形的定义以及性质。
3.能够运用等腰三角形的性质解决实际问题。
二、教学重难点1.等腰三角形的定义及性质。
2.等腰三角形的判断。
3.运用等腰三角形的性质解决实际问题。
三、教学过程1. 概念导入(1)引导学生想象直角三角形两条腰相等时的情况,引出等腰三角形的概念。
(2)介绍等腰三角形的定义:“有两个相等的角和相等的两条边的三角形”。
1.展示等腰三角形的几个例子,引导学生掌握等腰三角形的特点。
(例如:鼓励学生提供不同类型的等腰三角形)2.复习是否等边三角形也是等腰三角形。
2. 等腰三角形的性质(1)引导学生发现等腰三角形的顶角是相等的。
(2)通过演示,让学生明白相等的角是指顶角。
(3)通过画图,说明相邻的底角是外角。
1.引导学生发现等腰三角形的底边是相等的。
2.让学生自己摸索得出等腰三角形的定理,“等腰三角形两边比第三边长,两角比第三角小;两边比第三边短,两角比第三角大”3. 判断等腰三角形的方法1.设计一些练习题,让学生拿起直尺和圆规来判断是否为等腰三角形。
2.让学生在纸上练习画出各种三角形,并粘贴到课件上进行讲解。
3.每一组可以选一个同学来展示他们画出来的等腰三角形。
4. 运用等腰三角形求解实际问题1.设计实际问题练习题,如“如何快速地证明两根细棍子相等”、“如果有两根相等的绳子,怎样快速地将其中一根分成三段”2.让学生自行发现问题的解法,并进行讨论。
四、作业布置1.课堂上为学生讲解求解实际问题的方法。
2.布置三道数量简单的题目作为课堂作业,让学生掌握等腰三角形的性质和判断等腰三角形的方法。
3.确认作业完成情况。
五、教学反思本课时以让学生探索的方式来学习等腰三角形及其性质,让学生通过实际操作来加深对等腰三角形的认识和掌握其性质。
在实践中,学生更容易记住概念和性质,并且能够更深入的理解和应用知识点。
等腰三角形教案设计5篇
等腰三角形教案设计5篇等腰三角形教案设计5篇本节内容的重点是三角形三边关系定理及推论.这个定理与推论不仅给出了三角形的三边之间的大小关系,更重要的是提供了判断三条线段能否组成三角形的标准;下面是小编给大家整理的等腰三角形判定教案5篇,希望大家能有所收获!等腰三角形教案1一、教学目标:1.使学生掌握等腰三角形的判定定理及其推论;2.掌握等腰三角形判定定理的运用;3.通过例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;4.通过自主学习的发展体验获取数学知识的感受;5.通过知识的纵横迁移感受数学的辩证特征.二、教学重点:等腰三角形的判定定理三、教学难点性质与判定的区别四、教学流程1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。
(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”).由学生说出已知、求证,使学生进一步熟悉文字转化为数学语言的方法.已知:如图,△ABC中,∠B=∠C.求证:AB=AC.教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以AB、AC为对应边的全等三角形.因为已知∠B=∠C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从A点引起.再让学生回想等腰三角形中常添的辅助线,学生可找出作∠BAC的平分线AD或作BC边上的高AD等证三角形全等的不同方法,从而推出AB=AC.注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形.(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2.推论1:三个角都相等的三角形是等边三角形. 推论2:有一个角等于60°的等腰三角形是等边三角形.要让学生自己推证这两条推论.小结:证明三角形是等腰三角形的方法:①等腰三角形定义;②等腰三角形判定定理.证明三角形是等边三角形的方法:①等边三角形定义;②推论1;③推论2.3.应用举例例1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性①它与相邻的内角互补;②它等于与它不相邻的两个内角的和.要证AB=AC,可先证明∠B=∠C,因为已知∠1=∠2,所以可以设法找出∠B、∠C与∠1、∠2的关系.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证:AB=AC.证明:(略)由学生板演即可.补充例题:(投影展示)1.已知:如图,AB=AD,∠B=∠D.求证:CB=CD.分析:解具体问题时要突出边角转换环节,要证CB=CD,需构造一个以 CB、CD 为腰的等腰三角形,连结BD,需证∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可证∠ABD=∠ADB,从而证得∠CDB=∠CBD,推出CB=CD.证明:连结BD,在中,(已知)(等边对等角)(已知)即(等角对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2.已知,在中,的平分线与的外角平分线交于D,过D作DE//BC交AC与F,交AB于E,求证:EF=BE-CF. 分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF即可证明结论.证明: DE//BC(已知),BE=DE,同理DF=CF. EF=DE-DF EF=BE-CF 小结:(1)等腰三角形判定定理及推论.(2)等腰三角形和等边三角形的证法.七.练习教材 P.75中1、2、3.八.作业教材 P.83 中 1.1)、2)、3);2、3、4、5.五、板书设计等腰三角形教案2§12.3.1.2 等腰三角形判定教学目标(一)教学知识点探索等腰三角形的判定定理.(二)能力训练要求通过探索等腰三角形的判定定理及其例题的学习,提高学生的逻辑思维能力及分析问题解决问题的能力;(三)情感与价值观要求通过对等腰三角形的判定定理的探索,让学生体会探索学习的乐趣,并通过等腰三角形的判定定理的简单应用,加深对定理的理解.从而培养学生利用已有知识解决实际问题的能力.教学重点等腰三角形的判定定理的探索和应用。
初中数学等腰三角形的性质教案(通用10篇)
初中数学等腰三角形的性质教案(通用10篇)初中数学等腰三角形的性质教案篇1一、教材分析1、教材的地位和作用等腰三角形是最常见的图形,由于它具有一些特殊性质,因而在生活中被广泛应用。
等腰三角形的性质,特别是它的两个底角相等的性质,可以实现一个三角形中边相等与角相等之间的转化,也是今后论证两角相等的重要依据之一。
等腰三角形沿底边上的高对折完全重合是今后论证两条线段相等及线段垂直的重要依据。
同时通过这节课的学习还可培养学生的动手、动脑、动口、合作交流等能力,加强学生对直觉、猜想、演绎、类比、归纳、转化等数学思想、方法的领会掌握,培养学生的探究能力和创新精神。
2、教材重组《数学新课程标准》要求教师要创造性地使用教材,积极开发,利用各种教学资源,为学生提供丰富多彩的学习素材,所以我制作了学生非常熟悉和感兴趣的电视转播塔、房屋人字架等课件,让学生观察寻找出其熟悉的几何图形,然后动手作出这个图形,并裁下来,动手折叠,发现规律。
如此把教材内容还原成生动活泼的思维创造活动,促使学生在教师指导下生动活泼地、主动地、富有个性地学习。
3、学习目标根据《数学新课程标准》对学生在知识与技能、数学思考以及情感与态度等方面的要求,我把本节课的学习目标确定为:知识目标:了解等腰三角形和等边三角形有关概念,探索并掌握等腰三角形和等边三角形性质,能应用性质进行计算和解决生产、生活中的有关问题。
情感目标:通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质。
4、教学重、难点:重点:等腰三角形性质的探索与应用。
难点:等腰三角形性质的探索及证明。
5、突破难点策略:通过创设启发性强、学生感兴趣、有利于自主学习和探索的问题情境,让学生在活动丰富、思维积极的状态下进行探究学习,组织合作学习,引导合作过程,使学生朝着有利于知识建构的方向发展。
二、学情分析刚进入二年级的学生,观察、操作、猜测能力较强,但演绎推理、归纳和数学意识的应用能力较弱,缺乏思维的广泛性、敏捷性、紧凑性和灵活性,自主探究和合作学习的能力需要在课堂教学中进一步加强和引导。
2.2 等腰三角形八年级上册数学浙教版
[解析] ①若底边长为 ,则腰长为 .因为 ,所以能组成三角形,符合题意.②若腰长为 ,则底边长为 .因为 ,所以能组成三角形,符合题意.综上,腰长是 或 .
等边三角形是特殊的等腰三角形
知识点2 等腰、等边三角形的轴对称性 重点
轴对称性
对称轴的条数
等腰三角形
等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴.
1条(只有两腰相等)
等边三角形
等边三角形是轴对称图形,每个内角的平分线所在的直线都是它的对称轴.
3条
典例2 [2022·嘉兴期末] 如图,在 中, , 是 的平分线,点 在 上,且 .若 的面积为 ,则 的面积是( )
A. B. C. D.
D
[解析] , 是 的平分线, 所在的直线是 的对称轴, , .由轴对称图形的性质可知, . , .
本节知识归纳
中考常考考点
难度
常考题型
考点:等腰三角形的边长或周长的计算,主要考查利用分类讨论思想求等腰三角形的边长或周长.
选择题、填空题
考点 等腰三角形的周长的计算
典例3 [2021·青海中考] 已知 , 是等腰三角形的两边长,且 , 满足 ,则此等腰三角形的周长为( )A. B. 或学习目标
1.了解等腰、等边三角形的概念.
2.掌握等腰三角形的轴对称性.
3.会运用等腰三角形的概念和轴对称性解决简单的几何问题.
定义
图示
等腰三角形
有两边相等的三角形叫做等腰三角形.
腰
相等的两条边叫做腰.
D
[解析] 因为 , , ,所以 解得 若 为底边长,则三角形的三边长分别为2, , ,因为 ,所以能组成三角形,此时三角形的周长为 .若 为底边长,则三角形的三边长分别为2, , ,因为 ,所以能组成三角形,此时三角形的周长为 .综上,等腰三角形的周长为 或8.
等腰三角形的教学设计(合集3篇)
等腰三角形的教学设计(合集3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如计划总结、合同协议、管理制度、演讲致辞、心得体会、条据书信、好词好句、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as plan summaries, contract agreements, management systems, speeches, insights, evidence letters, good words and sentences, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!等腰三角形的教学设计(合集3篇)等腰三角形的教学设计(1)教材分析:《等腰三角形》是冀教版八年级数学上册第十七章第一节内容。
八年级《等腰三角形》数学教案4篇
八年级《等腰三角形》数学教案4篇教案,也称课时计划,教师经过备课,以课时为单位设计的具体教学方案,教案是上课的重要依据,通常包括:班级、学科、课题、上课时间、课的类型、教学方法、教学目的、教学内容、课的进程和时间分配等。
以下是我为大家整理的,感谢您的欣赏。
八年级《等腰三角形》数学教案1教学目标(一)教学知识点1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点.2.探索并掌握等腰三角形的性质.(三)情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.教学重点1.等腰三角形的概念及性质.2.等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本P138探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在ABC中,AB=AC,作底边BC的中线AD,因为所以BAD≌CAD(SSS).所以∠B=∠C.[生乙]如右图,在ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以BAD≌CAD.所以BD=CD,∠BDA=∠CDA=∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:ABC各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出ABC的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.(课件演示)[例]因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本P141练习1、2、3.练习1.如下图,在下列等腰三角形中,分别求出它们的底角的度数.答案:(1)72°(2)30°2.如右图,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD.3.如右图,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本P138~P140,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.课后作业(一)课本P147─1、3、4、8题.(二)1.预习课本P141~P143.2.预习提纲:等腰三角形的判定.Ⅵ.活动与探究如右图,在ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质.结果:证明:延长CD交AB的延长线于P,如右图,在ADP 和ADC中ADP≌ADC.∠P=∠ACD.又DE∥AP,∠4=∠P.∠4=∠ACD.DE=EC.同理可证:AE=DE.AE=CE.板书设计§14.3.1.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1.等边对等角2.三线合一三、例题分析四、随堂练习五、课时小结六、课后作业八年级《等腰三角形》数学教案2一、教材的地位和作用现实生活中,等腰三角形的应用比比皆是.所以,利用“轴对称”的知识,进一步研究等腰三角形的特殊性质,不仅是现实生活的需要,而且从思想方法和知识储备上,为今后研究“四边形”和“圆”的性质打下坚实的基础.性质“等腰三角形的两个底角相等”是几何论证过程中,证明“两个角相等”的重要方法之一.“等腰三角形底边上的三条重要线段重合”的性质是今后证明“两条线段相等”“两条直线互相垂直”“两个角相等”等结论的重要理论依据.教学重点:1. 让学生主动经历思考和探索的过程.2. 掌握等腰三角形性质及其应用.教学难点:等腰三角形性质的理解和探究过程.二、学情分析本年级的学生已经研究过一般三角形的性质,积累了一定的经验,动手能力强,善于与同伴交流,这就为本节课的学习做好了知识、能力、情感方面的准备.不同层次的学生因为基础不同,在学习中必然会出现相异构想,这也将是我在教学过程中着重关注的一点.三、目标分析知识与技能1.了解等腰三角形的有关概念和掌握等腰三角形的性质2. 了解等边三角形的概念并探索其性质3. 运用等腰三角形的性质解决问题过程与方法1.通过观察等腰三角形的对称性,发展学生的形象思维.2.探索等腰三角形的性质时,经历了观察、动手实践、猜想、验证等数学过程,积累数学活动经验,发展了学生的归纳推理,类比迁移的能力. 在与他人交流的过程中,能运用数学语言合乎逻辑的进行讨论和质疑,提高了数学语言表达能力.情感态度价值观:1.通过情境创设,使学生感受到等腰三角形就在自己的身边,从而使学生认识到学习等腰三角形的必要性.2.通过等腰三角形的性质的归纳,使学生认识到科学结论的发现,是一个不断完善的过程,培养学生坚强的意志品质.3.通过小组合作,发展学生互帮互助的精神,体验合作学习中的乐趣和成就感.四、教法分析根据学生已有的认知,采取了激疑引趣——猜想探究——应用体验——建构延伸的教学模式,并利用多媒体辅助教学.教学过程教学过程设计意图同学们,我们在七年级已研究了一般三角形的性质,今天我们一起来探究特殊的三角形:等腰三角形.等腰三角形的定义有两条边相等的三角形叫做等腰三角形.等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角.腰和底边的夹角叫做底角.提出问题:生活中有哪些现象让你联想到等腰三角形?首先让学生明确:本学段的几何图形都是按一般的到特殊的顺序研究的.通过学生描述等腰三角形在生活中的应用,让学生感受到数学就在我们身边,以及研究等腰三角形的必要性.剪纸游戏你能利用手中的这个矩形纸片剪出一个等腰三角形吗? 注意安全呦!学情分析:大部分学生会有自己的想法,根据轴对称图形的性质,利用对折纸片,再“剪一刀”就是就得到了两条“腰”;可能还有的同学会利用正方形的折法,获得特殊的等腰直角三角形;可能还有同学先画图,再依线条剪得.在这个过程中,注重落实三维目标.让学生在获取新知的过程中更好的认识自我,建立自信.我不失时机的对学生给予鼓励和表扬,使活动更加深入,课堂充满愉悦和温馨.知其然,更重要的是知其所以然.因此,我力求让学生关注剪法的理性思考.我设计了问题:你是如何想到的? 为的是剖析学生的思维过程:“折叠”就是为了得到“对称轴”,“剪一刀”就是就得到了两条“腰”,由“重合”保证了“等腰”.这样就建立了“操作”与“证明”的中间桥梁.从实际操作中得到证明的方法,也为发现“三线合一”做了铺垫.提出问题:等腰三角形还有什么性质?请提出你的猜想,验证你的猜想?并填写在学案上.合作小组活动规则:1、有主记录员记录小组的结论;2、定出小组的主发言人(其它同学可作补充);3、小组探究出的结论是什么?4、说明你们小组所获得结论的理由.等腰三角形的性质:性质一:等腰三角形的两个底角相等(简称“等边对等角”).性质二:等腰三角形顶角的平分线、底边上的中线、底边上的高重合(简称“三线合一”).学情分析:这个环节是本节课的重点,也是教学难点.尽管在教学过程中,因为学生的相异构想,数学猜想的初始叙述不准确,甚至不正确,但我不会立即去纠正他们,而是让同学们不断地质疑﹑辨析、研讨和归纳,逐渐完善结论.让他们真正经历数学知识的形成过程,真正的体现以人为本的教学理念,努力创设和谐的教育教学的生态环境.通过设置恰当的动手实践活动,引导学生经历观察、动手实践、猜想、验证等数学探究活动,这种探究的学习过程,恰恰是研究几何图形性质的一般规律和方法.(1)在此环节中,我的教学要充分把握好“四让”:能让学生观察的,尽量让学生观察;能让学生思考的,尽量让学生思考;能让学生表达的,尽量让学生表达;能让学生作结论的,尽量让学生作结论.这种教学方式,把学习的过程真正还给学生,不怕学生说不好,不怕学生出问题,其实学生说不好的地方、学生出问题的地方都正是我们应该教的地方,是教学的切入点、着眼点、增长点.(2)教师在这个过程中,充分听取和参与学生的小组讨论,对有困难的学生,及时指导.巩固知识1.等腰三角形顶角为70°,它的另外两个内角的度数分别为________;2.等腰三角形一个角为70°,它的另外两个内角的度数分别为_____;3.等腰三角形一个角为100°,它的另外两个内角的度数分别为_____.内化知识1.如图1,在△ABC中,AB=AC,AD⊥BC,∠BAC=120°你能求出∠BAD的度数吗?知识迁移等边三角形有什么特殊的性质?简单地叙述理由.等边三角形的性质定理:等边三角形的各角都相等,并且每一个角都等于60°.拓展延伸如图2,在△ABC中,AB=AC,点D,E在BC上,AD=AE,你能说明BD=EC?由于学生之间存在知识基础、经验和能力的差异,我为学生提供了层次分明的反馈练习.将练习从易到难,从简到繁,以适应不同阶段、不同层次的学生的需要.让学生拾阶而上,逐步掌握知识,使学困生达到简单运用水平,中等生达到综合运用水平,优等生达到创建水平.畅谈收获总结活动情况,重在肯定与鼓励.引导学生从本课学习中所得到的新知识,运用的数学思想方法,新旧知识的联系等方面进行反思,提高学生自主建构知识网络、分析解决问题的能力.帮助学生梳理知识,回顾探究过程中所用到的从特殊到一般的数学方法,启发学生更深层次的思考,为学生的下一步学习做好铺垫.反思过程不仅是学生学习过程的继续,更重要的是一种提高和发展自己的过程.基础性作业:P65 习题1、2、3、4八年级《等腰三角形》数学教案3教学目标:【知识与技能】1、理解并掌握等腰三角形的性质。
八年级数学上册 2.2 等腰三角形的性质教案(1)
等腰三角形的性质一、教学目标一、把握等腰三角形“等边对等角”、“三线合一”的重要性质。
二、会应用等腰三角形的性质,解决相关问题。
3、培育学生的计算和推理能力。
二、教学重点和难点教学重点:等腰三角形的有关性质。
教学难点:等腰三角形性质的灵活运用。
三、教学进程(一) 创设情境,引出课题提问:一、什么样的三角形叫等腰三角形?二、生活中哪些物体具有等腰三角形的形象?3、动手做一做:画一个等腰三角形ABC,每一个人的等腰三角形的大小和形状能够不一样,将所画的等腰三角形剪下并对折,让两腰AB、AC重叠在一路,折痕为AD. 你能发觉什么现象吗?(二) 师生互动,教学新课一、学生动手操作,进行观看、讨论,然后教师在台上演示,总结结论:⑴等腰三角形是轴对称图形,折痕所在的直线为对称轴。
⑵∠B=∠C,等腰三角形的两个底角相等。
也就是说,在同一个三角形中,等边对等角。
⑶因为BD=CD,因此AD是底边的中线。
⑷因为∠BAD=∠CAD,因此AD是顶角平分线。
⑸因为∠AD B=ADC=90º,因此AD是底边上的高即:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,简称“三线合一”。
然后试探:任意一个等腰三角形的底角平分线、腰上的中线和高,看看它们是不是重合?二、巩固练习:(1)等腰三角形的顶角必然是锐角。
(2)等腰三角形的底角可能是锐角或直角、钝角都能够。
(3)等腰三角形的顶角平分线必然垂直底边。
(4)等腰三角形的角平分线、高线和中线的总数一共能画出9条。
(5)等腰三角形底边上的中线必然垂直于底边。
3、例题分析:例1 如图,在△ABC中,AB=AC, ∠A=50°,求∠B, ∠C的度数. (先由学生讨论,然后教师分析总结.)AB C例2 已知线段a,h(如图),用直尺和圆规作等腰三角形ABC,使底边BC=a,BC边上的高为h.ha—————————(四) 梳理知识,总结收成(学生回答,教师总结)一、等边对等角:等腰三角形的两个底角相等。
等腰三角形性质教学设计(共5篇)
等腰三角形性质教学设计(共5篇)第1篇:等腰三角形性质教学设计等腰三角形的性质教学设计一、教学目标(一)、知识目标1、了解等腰三角形的两底角相等,底边上的高、中线及顶角平分线三线合一的性质,并能运用它们进行相关的论证和计算。
2、理解等腰三角形和等边三角形性质定理之间的联系。
(2)、能力目标1、培养学生“转化”的数学思要及应用意识,初步了解作辅助线的规律及“分类讨论”的思要。
2、培养学生进行独立思考,提高了独立解决问题的能力。
(三)、德育目标通过本节课教学,激发学生探索在实际生活中和数学相关的现实问题,使学生认识到数学源于实践应用于实践的辩证唯物主义观点,培养学生学习数学的兴趣。
二、教学重难点1、教学着重:等腰三角形的性质定理及其证明。
2、教学难点:问题的证明及等腰三角形中常用添辅助线的方法。
三、教学用具三角板、圆规、投影胶片、投影仪、计算机等。
四、教学过程课的导入:(一)、三角形按边怎样分类?(三角形、不等边三角形、等腰三角形、腰和底不相等的等腰三角形、等边三角形) (二)、什么叫等腰三角形?指出等腰三角形的腰、底、顶角、底角.有两边相等的三角形叫等腰三角形.(三)、一般三角形有那些性质?(两边之和大于第三边.三次内角的和等于180°).(四)、图片展示等腰三角形在日常生活中的实例。
新课讲解(一)、动手实验,发现结论请学生折叠事先准备好的等腰三角形,观察除两腰相等外,它的两次底角还有什么关系?(二)、(电脑或几何画板演示)结论:折叠等腰三角形或改变等腰三角形的腰长后,两底角之间依旧坚持相等关系。
(三)、证明结论,得出性质1、性质定理的证明。
(1)学生找出文字命题的题设、结论、画图,换成符号语言。
(2)引导学生寻找辅助线、如何添加辅助线。
(3)电脑显示证明过程。
(4)说明“等边对等角”的作用。
2、推论1的证明。
(1)进一步启发学生得到“等腰三角形三线合一”的性质。
(2)说明这条性质的作用,总结等腰三角形中常用辅助线的添加方法。
(精品教案)等腰三角形讲课稿范文(通用5篇)
(精品教案)等腰三角形讲课稿范文(通用5篇)精心整理的等腰三角形讲课稿范文(通用5篇),仅供参考,大伙儿一起来看看吧。
1、教材的地位与作用等腰三角形是在学习了轴对称之后编排的,是轴对称知识的延伸和应用。
等腰三角形的性质及判定是探索线段相等、角相等及两条直线互相垂直的重要工具,在教材中起着承上启下的作用。
2、教学重点和难点本着新课程标准,在吃透教材基础上,我把探究等腰三角形的性质定为本节课的重点,经过创设咨询题和解决咨询题来突出重点。
把等腰三角形性质的建立定为本课的难点,经过折纸实验和小组合作探索来突破难点。
1、学情分析我所教的学生,从认知的特点来看,好奇爱咨询,求知欲强,想象力丰富;并已初步具有对数学咨询题举行合作探索的能力。
2、三维目标依照教材结构和内容分析,思考到学生已有的认知结构、心理特征,我制定如下目标:知识与技能目标:了解等腰三角形的概念,探究并掌握等腰三角形的性质,并会举行有关的论证和计算,以及运用所学的知识去解决实际咨询题。
过程与办法目标:经过对性质的探索活动和例题的分析,培养学生多角度考虑咨询题的适应,提高学生分析咨询题和解决咨询题的能力;使学生进一步了解发觉真理的办法(探索-猜想-归纳-论证)。
情感态度与价值观目标:经过对等腰三角形的观看、试验、归纳,体验数学活动充满着探究性和制造性,数学就在我们周围。
在操作活动中,培养学生的合作精神,在独立考虑的并且可以认同他人. 感觉合作交流带来的成功感,树立自信心.1、教法依照教材分析和目标分析,我确定本课要紧的教法为探索发觉法。
采纳“咨询题情境—探究交流—猜想验证——建立模型”的模式安排教学,并在各个环节举行分层施教。
2、学法我们常讲:“现代的文盲别是别识字的人,而是没有掌握学习办法的人”,因而在教学中我特殊重视学法的指导。
本课采纳小组合作的学习方式,让学生遵循“观看——猜想——归纳——验证——反馈——实践”的主线举行学习。
《数学课程标准》强调,教师应发扬教学民主,成为学生数学学习活动的组织者、引导者、合作者。
2.2等腰三角形的性质教案
2.2等腰三角形的性质[教学目标]: ➢ 知识目标:1、经历等腰三角形性质的推导过程,加深对轴对称变换的认识;2、掌握等腰三角形的性质:等腰三角形的两底角相等;等腰三角形三线合一;3、会利用等腰三角形的性质进行简单的推理、判断、计算和作图。
➢ 能力目标:通过折纸、观察、归纳等活动,培养学生的逻辑推理能力。
➢ 情感目标:经历探索新知的过程,体验数学推理的必要性。
[教学重、难点]: ➢ 重点:理解掌握等腰三角形的性质:等腰三角形的两个底角相等;等腰三角形三线合一。
➢ 难点:例2是尺规作图题,做法思路需要作一些分析转换,是本节教学的难点。
[教学方法]:自主探索法、合作交流法、活动练习法[教具准备]:PPT 、三角板、圆规、直尺、透明纸 [教学过程]:一、创设情景,引入新课在上新课之前,我们先来看一个问题,把一个三角尺和重锤如图放置(三角尺的底边与横梁平行放置),就能检查一根横梁是否水平,你知道为什么?这堂课我们就要学习相关的知识,来解决这个问题。
二、合作交流,探索新知 1、小实验:在透明纸上任意画一个等腰ABC ∆(BC 为底边),将三角形对折,使得两腰AB 、AC 重叠在一起,折痕为AD 。
图9.3.2 2143你发现了什么?2、小讨论:接下去,我们以四人为一小组进行讨论(注意:每一小组推选一名组长组织讨论与发言)问题:你能找出图中的全等三角形,以及所有相等的角和线段吗? (各组派代表展示讨论结果) 全等三角形:ABC ACD ∆≅∆(分析:等腰ABC ∆为轴对称图形,折痕AD 所在的直线为对称轴,事实上ABD ∆关于直线AD 作轴对称变换得到ACD ∆,由于轴对称变换不改变图形的形状和大小,所以ABC ACD ∆≅∆)角:B C ∠=∠,12∠=∠,3490︒∠=∠= 线段:AB AC =,BD BC =接下来,我们来观察刚才讨论得到的结果 A :B C ∠=∠(等腰三角形的一对底角)性质一:等腰三角形的两个底角相等,也就是说,在同一个三角形中,等边对等角。
八年级数学上 等腰三角形
一. 教学内容:2.1 等腰三角形2.2 等腰三角形的性质二. 重点、难点:重点:理解和掌握等腰三角形以下性质:1. 等腰三角形轴对称性质;2. 等边对等角;3. 三线合一。
难点:1. 推导性质。
通过操作,观察、分析、归纳得出等腰三角形性质的过程。
2. 应用性质。
等腰三角形三线合一性质的运用,在解题思路上需要作一些转换。
三. 知识要点及学习目标1. 等腰三角形的有关概念。
首先要能根据边的长短识别和判断等腰三角形;其次,能够明确指出已知的等腰三角形的顶角、底角、腰和底边。
如图,△ABC中,若AB、BC、AC三边中有其中两边相等,则△ABC称为等腰三角形。
(1)(2)(3)图(1)中AB=AC,图(2)中AC=BC,图(3)中AB=BC。
相等的两边称为等腰三角形的腰,另一边称为等腰三角形的底边;两腰的夹角称为等腰三角形的顶角,另外两个角称为等腰三角形的底角。
你能指出上述三幅图中的腰、底边,顶角和底角吗?2. 等腰三角形的轴对称性。
通过折纸操作认识探索等腰三角形的轴对称性。
明确等腰三角形的对称轴是等腰三角形顶角平分线所在的直线(不是顶角平分线本身)。
根据轴对称图形的概念我们知道:如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫轴对称图形。
如果在△ABC中,AB=AC,我们画出顶角∠BAC的平分线AD,沿着AD对折△ABC会发现什么结论?通过操作显示出等腰△ABC是一个轴对称图形。
它的对称轴就是角平分线AD所在的直线。
(这里要注意到对称轴的概念——直线,而△ABC的顶角平分线是一条线段即这里的折痕,不能把它们混为一谈,同时也要把一般角的平分线——射线与它们区别开)。
3. 推导等腰三角形的性质。
通过进一步实验、观察、交流等活动推导等腰三角形的性质,从而加深对轴对称变换的认识。
因为等腰三角形是轴对称图形,而图形轴对称变换是全等变换中的一种基本变换,所以如下图,△ABC中,若AB=AC,AD是△ABC的∠BAC的平分线,当我们沿AD折叠时,会发现AD两旁的△ABD与△ACD能够重合即△ABD≌△ACD。
最新2.2 等腰三角形 教案
.2.2等腰三角形〖教学目标〗1.使学生了解等腰三角形的有关概念。
2.通过探索等腰三角形的性质,使学生掌握等腰三角形的轴对称性。
进一步经历观察、实验、推理、交流等活动。
〖教学重点与难点〗重点:等腰三角形轴对称性质。
难点:通过操作,如何观察、分析、归纳得出等腰三角形性质。
〖教学过程〗一、复习引入1.让学生在练习本上画一个等腰三角形,标出字母,问什么样的三角形是等腰三角形?△ABC中,如果有两边AB=AC,那么它是等腰三角形。
2.日常生活中,哪些物体具有等腰三角形的形象?二、新课1.指出△ABC的腰、顶角、底角。
相等的两边AB、AC都叫做腰,另外一边BC叫做底边,两腰的夹角∠BAC,叫做顶角,腰和底边的夹角∠ABC、∠ACB叫做底角。
2.实验。
现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三角形的大小和形状可以不一样,画出它的顶角平分线AD所在直线把纸片对折,如图(2)所示,你能发现什么现象吗?请你尽可能多的写出结论。
可让学生有充分的时间观察、思考、交流,可能得到的结论:(1)等腰三角形是轴对称图形(2)∠B=∠C(3)BD=C D,AD为底边上的中线。
(4)∠ADB=∠ADC=90°,AD为底边上的高线。
3.结论:等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。
.三、例题精讲如图3,在△ABC 中,AB =AC,D , E 分别是AB ,AC 上的点,且AD=AE ,AP 是△ABC 的角平分线, 点D ,E 关于AP 对称吗? DE 与BC 平行吗?请说明理由。
此题较难,可先由师生协同分析,1.将等腰三角形ABC 沿顶角平分线折叠时,线段AD 与AE 能重合吗?为什么?边AB 与AC 呢? 2.AD 与AE 重合,AB 与AC 重合,说明点D 与点E ,点B 与点C 分别有怎样的位置关系? 3.轴对称图形有什么性质?由此可推出AP 与DE ,BC 有怎样的位置关系?那么DE 与BC 呢? 学生口述,教师板书解题过程。
初中数学初二数学上册《等腰三角形》教案、教学设计
1.教师将学生分成小组,每组发放一张含有等腰三角形的图形,要求学生找出图形中的等腰三角形,并讨论其性质。
2.各小组汇报讨论成果,教师点评并给予鼓励。
3.教师提出问题:“等腰三角形性质在解题过程中有什么作用?”引导学生进一步探讨。
(四)课堂练习,500字
1.教师发放练习题,题目涵盖等腰三角形的性质、判定以及运用等方面。
初中数学初二数学上册《等腰三角形》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生掌握等腰三角形的定义及性质,能够识别并运用等腰三角形的性质解决问题。
2.培养学生运用几何图形、符号、文字等多种表达方式描述等腰三角形的特征,提高学生的数学表达能力。
3.通过对等腰三角形性质的学习,使学生能够运用这些性质进行简单的几何证明,培养逻辑思维能力。
作业要求:
1.学生独立完成作业,确保作业质量,书写规范,答案准确。
2.家长协助监督,关注学生的学习进度,鼓励学生主动思考和解决问题。
3.教师在批改作业时,注意学生的解题思路和方法,及时发现问题,有针对性地进行辅导。
4.学生完成作业后,进行自我检查,确保作业无误,养成良好的学习习惯。
3.结合等腰三角形的性质,思考并完成以下问题:若已知等腰三角形的一腰和底边,如何求解该等腰三角形的面积?请给出解题步骤和答案。
4.小组合作,探讨等腰三角形在生活中的应用,并以图文并茂的形式展示成果,提高学生的合作意识和实践能力。
5.完成课后拓展题:已知等腰三角形ABC,AB=AC,D、E分别是BC、AC上的点,且BD=CE。求证:AD垂直平分CE。
2.学生独立完成练习题,教师巡回指导,解答学生的疑问。
3.教师选取部分学生的解答进行展示和点评,强调解题过程中的注意事项,如证明步骤、逻辑关系等。
初中数学等腰三角形的性质教案优秀9篇
初中数学等腰三角形的性质教案优秀9篇初中数学等腰三角形的性质教案篇一教学重点:认识等腰三角形和等边三角形以及它们的特征教学目标:1、让学生在实际操作中认识等腰三角形和等边三角形,知道等腰三角形边和角的名称,知道等腰三角形两个底角相等,等边三角形3个内角相等。
2、让学生在探索图形特征以及相关结论的活动中,进一步发展空间观念,锻炼思维能力。
3、让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识。
教学准备:长方形、正方形纸,剪刀、尺等教学过程:一、复习:关于三角形,你有那些知识?1、按角分成三种角2、三个内角和是180度算第三个角的度数,如果是一般三角形,那就用180去减;如果是直角三角形,那就是90去减二、认识等腰三角形1、比较老师手边的两块三角板,他们有什么相同?(都是直角三角形)有什么不同?(其中有一块三角板的两条边相等,两个角相等;而另一块三角板的角和边都不相同。
)指出:像这种两条边相等的三角形,我们叫它等腰三角形2、折一折、剪一剪取一张长方形纸,对折;画出它的对角线,沿对角线剪开;展开观察:这样剪出来的三角形就是我们今天要认识的等腰三角形。
想一想:为什么要对折后再剪呢?(这样剪出来的两条边肯定是相等的。
)除了两条边是相等的,还有什么也是相等的?你是怎么知道的?初中数学等腰三角形的性质教案篇二教学目标1、掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明直角三角形的有关性质定理和等边三角形的判定定理。
教学重点等边三角形的。
判定定理和直角三角形的性质定理。
教学难点能够用综合法证明等边三角形的判定定理和直角三角形的性质定理。
教学方法教学后记教学内容及过程一、定理:一个角等于60°的等腰三角形是等边三角形1.引导学生回忆上节课的内容,让学生思考:等腰三角形满足什么条件时便成为等边三角形?让学生对普遍联系和相互转化有一个感性的认识。
2.肯定学生的回答,并让学生进一步思考:有一个角是60°的等腰三家形是等边三角形吗?组织学生交流自己的想法。
2.2-等腰三角形课件(八上)公开课
D BP C
请你在等边△ABC所在的平面上找出一 点P,使△PAB,△PAC,△PBC均为等腰 三角形,则满足条件的点P有多少种可 能?
说能出你这节课的收获和体验让大家 与你分享吗?
找一找:
2、如图,五角星中有几个等腰三角形?
10个
做一做:
1、已知等腰三角形的两边分别是4和6,则它 的周长是( D ) (A)14 (B)15 (C)16 (D)14或16
2、等腰三角形的周长是30,一边长是12,则 另两边长是__1_2_、__6_或__9_、__9__
折一折:
将你所画的等腰三角形ABC折一折,你会发现什么?
等腰三角形的轴对称性: (1)等腰三角形是轴对称图形. (2)顶角平分线所在的直线是它的对称轴.
例2:如图,在△ABC中,AB=AC,D、E分别是AB、 AC上的点,且AD=AE,AP是△ABC的角平分线, 点D、E关于AP对称吗?DE与BC平行吗?请说 明理由。
A
D
E
B
P
C
试一试:
如图,在△ABC中,AB=AC,AP平分∠BAC,D是 AB上的一点。请分别作出D关于AP的对称点。
义务教育课程标准实验教科书 浙江版《数学》八年级上册
有两边相等的三角形叫做等腰三角形。
找一找:
A
1、如图,点D在AC上,AB=AC,AD=BD。
你能在图中找到几个等腰三角形?
D
说出每个等腰三角形的腰腰
底边
顶角
△ABC △ABD
AB和AC BC AD和BD AB
∠A ∠ADB
2014年八年级数学上册 2.2 等腰三角形教学设计 (新版)浙教版
知识与技能:1、了解等腰三角形的有关概念。
2、掌握等腰三角形的轴对称性。
3、灵活运用等腰三角形的概念和轴对称性解决简单几何问题。
过程与方法:1、让学生经历从生活中提炼出等腰三角形的过程。
2、与人合作,并获得合理推理,抽象概括等方法。
重点:认识等腰三角形,理解等腰三角形的轴对称性。
难点:根据等腰三角形的轴对称性解决点与点,直线与直线的位置关系。
教学设计:(一)、图片欣赏,感觉新知1、欣赏图片,让学生感受学习等腰三角形的必要,感受等腰三角形的美。
2、认识等腰三角形。
借助课件,根据它们各自的特征,所在位置,在理解的基础上识别等腰三角形的腰,底边,顶角,底角。
(二)、自主练习,巩固所知找一找:1、(课本P53 T1)2、三边相等的三角形是。
等边三角形是等腰三角形吗?为什么? 归纳:等边三角形是特殊的等腰三角形。
画一画:3、(课本P53 T2)(三)、合作学习,探究新知1、思考:等腰三角形是轴对称图形吗?若是,你能找出它的对称轴吗?若不是,请说明理由。
拿出刚画好的等腰三角形验证一下。
通过操作,相信学生能够发现对折后角的平分线的两侧互相重合,从而可以追问:由此你能得出什么结论?性质归纳:等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。
2、追问:等边三角形是轴对称图形吗?有几条对称轴?是哪几条?性质归纳:等边三角形有3条对称轴,各角平分线所在的直线是它的对称轴底边顶腰 腰 底角 底角(四)例题学习,活学活用例1如图,在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 上的点,且AD =AE ,AP 是△ABC的角平分线,点D ,E 关于AP 对称吗?DE 与BC 有怎样的位置关系?请说明你的判断。
课内练习:课本P55 T2(五)学以致用,闯关练习1、已知等腰三角形的两边长分别为4和6,则它的周长是。
变式:若等腰三角形的两边分别为3和6,则它的周长是。
方法归纳:若等腰三角形中的已知没有指出谁是腰或底边,应分情况讨论,但一定要利用 “三边之间的关系”进行检验2、等腰三角形的周长是13,一边长是5,是另两边长是3、求证:等腰三角形两腰上的中线相等(六)回顾小结,布置作业1、让学生畅所欲言,谈谈不同的收获,掌握了哪些知识,获得怎样的学习方法和策略?周围哪些同学是你值得学习的?教师总结:等腰三角形的概念,轴对称性以及应用2、布置作用,必做题:书上作业题A 组,作业本选做题:(1)书上作业题B 、C(2)搜集生活中等腰三角形的应用。
2.2 等腰三角形 同步教案
等腰三角形〖教学目标〗◆1.经历利用轴对称变换推导等腰三角形的性质.◆2.掌握等腰三角形的下列性质:等腰三角形的两个底角相等.◆3.会利用等腰三角形的性质进行简单的推理、判断、计算和作图.◆4.探索等边三角形的各个内角都等于60°.〖教学重点与难点〗◆教学重点:等腰三角形的两个底角相等.◆教学难点:等腰三角形在解题思路上需要作一些转换,如辅助线等.〖教学过程〗一.创设情境,自然引入1.温故检测:叫做等腰三角形;等腰三角形是轴对称图形,它的对称轴是。
[两边相等的三角形叫做等腰三角形。
特殊情况是正三角形。
对称轴是等腰三角形顶角平分线所在的直线。
]2.引发思考将一把三角尺和一个重锤如图放置,就能检查一根横梁是否水平,你知道为什么吗?说明:首先这个三角形必须是等腰三角形,要不然三角形就放不平.对于“为什么”学生可能会回答“不知道”,那就进入下一环节“合作学习,探究等腰三角形的性质”;也有可能会回答“等腰三角形三线合一”,因为不能排除有部分学生“预习过”什么的.那就可以追问“等腰三角形三线为什么会合一”,学生会说,就让他说,但不管会说,还是不会说,都要进入下一环节“合作学习,探究等腰三角形的性质”;这是考虑到大多数学生的利益.二.交流互动,探求新知1.等腰三角形的性质教学活动材料1:如图,在等腰三角形ABC中,AB=AC,AD平分∠BAC,交BC于D,(1)把这个等腰三角形剪下来,然后沿着顶角平分线对折,仔细观察重合的部分,并写出所发现的结论。
(2)你发现了等腰三角形的哪些性质?2.多媒体演示:教师借助媒体的动态效果,介绍在一个三角形中,等边对等角和三角形一边上中线、高线及角平分线的相对位置,帮助学生在理解的基础上,掌握等腰三角形的性质. 3.解决节前图中的悬念,如果重锤经过三角尺斜边的中点,那么可以判定梁是水平的.你能说明理由吗?(当重锤线经过三角尺斜边的中点时,重锤线与斜边上的高线叠合(等腰三角形三线合一),即斜边与重锤线垂直,所以斜边与梁是水平的.及时地解决问题,使学生懂得学习的价值.)4.例题学习例1.已知:如图,在△ABC中,AB=AC,BD.CE分别是两底角的平分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2等腰三角形教案篇一:2.2等腰三角形教案(八上)2.2等腰三角形〖教学目标〗1.使学生了解等腰三角形、等边三角形的概念。
2.掌握等腰三角形的轴对称性。
进一步经历观察、实验、推理、交流等活动。
〖教学重点与难点〗重点:等腰三角形轴对称性质。
难点:通过操作,如何观察、分析、归纳得出等腰三角形性质。
〖教学过程〗一、复习引入1.让学生在练习本上画一个等腰三角形,标出字母,问什么样的三角形是等腰三角形?△aBc中,如果有两边aB=ac,那么它是等腰三角形。
2.日常生活中,哪些物体具有等腰三角形的形象?二、探究新知1.指出△aBc的腰、顶角、底角。
相等的两边aB、ac都叫做腰,另外一边Bc叫做底边,两腰的夹角∠Bac,叫做顶角,腰和底边的夹角∠aBc、∠acB叫做底角。
2.实验。
现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三角形的大小和形状可以不一样,画出它的顶角平分线ad所在直线把纸片对折,如图(2)所示,你能发现什么现象吗?请你尽可能多的写出结论。
可让学生有充分的时间观察、思考、交流,可能得到的结论:(1)等腰三角形是轴对称图形(2)∠B=∠c(3)Bd=cd,ad为底边上的中线。
(4)∠adB=∠adc=90°,ad为底边上的高线。
3.结论:等腰三角形是轴对称图形,顶角平分线所在的直线是它的对称轴。
4.等边三角形定义:三边相等的三角形叫做等边三角形,也称正三角形5.等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形三、例题精讲例2:如图,在△aBc中,aB=ac,d,E分别是aB,ac上的点,且ad=aE,aP是△aBc的角平分线,点d,E关于aP对称吗?dE与Bc平行吗?请说明理由。
本题较难,可先由师生协同分析,cPB1.将等腰三角形aBc沿顶角平分线折叠时,线段ad与aE能重合吗?为什么?边aB与ac呢?2.ad与aE重合,aB与ac重合,说明点d与点E,点B与点c分别有怎样的位置关系?3.轴对称图形有什么性质?由此可推出aP与dE,Bc有怎样的位置关系?那么dE与Bc呢?四、练习巩固P23练习1、2、补充:填空:在△aBc中,aB=ac,d在Bc上,1.如果ad⊥Bc,那么∠Bad=∠______,Bd=_______2.如果∠Bad =∠cad,那么ad⊥_____,Bd=______3.如果Bd=cd,那么∠Bad =∠_______,ad⊥______四、小结本节课,我们学习了等腰三角形的轴对称性质。
大家想一想,怎样用此性质来解决点与点,线与线之间的位置关系?说说你的想法。
五、动手探究在平面内,分别用3根、5根、6根火柴棒首尾顺次相接,能搭成什么形状的三角形?通过尝试,完成下面表格。
7根呢?8根呢?9根呢?你发现了什么规律?(1)作业本2.2;(2)课后习题.daE篇二:2.2等腰三角形教案温州翔宇中学初中部八年级数学(上)教案(15)课题:2.2教学目标:1.了解等腰三角形的概念.线是它的对称轴.3.会运用等腰三角形的概念和轴对称性解决简单几何问题.4.了解等边三角形的概念.重点和难点:重点是等腰三角形的轴对称性;难点是等腰三角形的轴对称性的推理说明.教学过程:一.自主导学:1.等腰三角形的定义:.2.等边三角形的定义:.3.若等腰三角形的两边长为5cm和7cm,则三角形的周长为.4.如图,点d在ac上,aB=ac,ad=Bd,你能在图中找到几个等腰三角形?说出每个等腰三角形的腰、底边和顶角a等腰三角形2.掌握等腰三角形的轴对称性:等腰三角形是图形,所在的直dBc5.已知线段a,b,用直尺和圆规作等腰三角形aBc,使aB=ac=b,Bc=a. 二.合作探究:交流展示一:等腰三角形概念的巩固-------求证:等腰三角形两腰上的中线相等.(注意命题的证明过程)交流展示二:等腰三角形对称性的探究-------现在请同学们做一张等腰三角形的半透明纸片,每个人的等腰三角形的大小和形状可以不一样,画出它的顶角平分线ad,然后沿着ad所在的直线把△aBc 对折,如图(2)所示,你能发现什么现象吗?请你尽可能多的写出结论. 还可以沿什么线折叠也会有以上的效果?或或.等边三角形有条对称轴.交流展示三:等腰三角形对称性的应用-------如图,在△aBc中,aB=ac,d,E分别是aB,ac上的点,且ad=aE,aP是△aBc的角平分线,点d,E关于aP对称吗?dE与Bc平行吗?请说明理由.分析与思考:1.将等腰三角形aBc沿顶角平分线折叠,线段ad与aE重合吗?为什么?边aB与ac呢?2.ad与aE重合,aB与ac重合,说明点d与点E,点B与点c分别有怎样的位置关系?3.轴对称图形有什么性质?由此可推出aP与dE,Bc有怎样的位置关系?那么dE与Bca呢?三.课堂小结:四.课堂检测:1.已知等腰三角形的两条边长分别为2cm和5cm,则三角形的周长为.2.如图,在等腰三角形aBc中,aB=ac.(1)作出△aBc的对称轴ad.BdPEc结论:等腰三角形是图形,其对称轴有条,是或(2)分别作出点E、F关于ad的对称点.3.已知线段a,用直尺和圆规作等边三角形aBc,使它的边长为a,然后作出它的所有对称轴4.15cm和6cm两部分,求等腰三角形的底边长.5.求证:等腰三角形两腰上的高线长相等.五.教学反思:篇三:等腰三角形(二)教学设计第一章三角形的证明1.等腰三角形(二)教学目标如下:1.知识目标:①探索——发现——猜想——证明等腰三角形中相等的线段,进一步熟悉证明的基本步骤和书写格式,体会证明的必要性;2.能力目标:①经历“探索-发现-猜想-证明”的过程,让学生进一步体会证明是探索活动的自然延续和必要发展,发展学生的初步的演绎逻辑推理的能力;②在命题的变式中,发展学生提出问题的能力,拓展命题的能力,从而提高学生的学习能力和思维能力,提高学生学习的主体性;③在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉;3.情感与价值观要求①鼓励学生积极参与数学活动,激发学生的好奇心和求知欲.②体验数学活动中的探索与创造,感受数学的严谨性.4.教学重、难点重点:经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.教学过程本节课设计了六个教学环节:第一环节:提出问题,引入新课;第二环节:自主探究;第三环节:经典例题变式练习;第四环节:拓展延伸、探索等边三角形性质;第五环节:随堂练习及时巩固;第六环节:探讨收获课时小结。
第一环节:提出问题,引入新课活动内容:在回忆上节课等腰三角形性质的基础上,提出问题:在等腰三角形中作出一些线段(如角平分线、中线、高等),你能发现其中一些相等的线段吗?你能证明你的结论吗?活动目的:回顾性质,既为后续研究判定提供了基础;同时,直接提出新的问题,过渡自然,引入本课研究内容,而新的问题是原有性质的一个自然拓广,有助于提高学生提出问题的能力。
第二环节:自主探究活动内容:在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。
活动目的:让学生再次经历“探索——发现——猜想——证明”的过程,进一步体会证明的必要性,并进行证明,从中进一步体会证明过程,感受证明方法的多样性。
活动效果与注意事项:活动中,教师应注意给予适度的引导,如可以渐次提出问题:你可能得到哪些相等的线段?你如何验证你的猜测?你能证明你的猜测吗?试作图,写出已知、求证和证明过程;还可以有哪些证明方法?通过学生的自主探究和同伴的交流,学生一般都能在直观猜测、测量验证的基础上探究出:等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.并对这些命题给予多样的证明。
如对于“等腰三角形两底角的平分线相等”,学生得到了下面的证明方法:已知:如图,在△aBc中,aB=ac,Bd、cE是△aBc的角平分线.求证:Bd=cE.证法1:∵aB=ac,∴∠aBc=∠acB(等边对等角).11∵∠1=∠aBc,∠2=∠aBc,22∴∠1=∠2.在△Bdc和△cEB中,∠acB=∠aBc,Bc=cB,∠1=∠2.∴△Bdc≌△cEB(aSa).∴Bd=cE(全等三角形的对应边相等)证法2:证明:∵aB=ac,E∴∠aBc=∠acB.又∵∠3=∠4.在△aBc和△acE中,∠3=∠4,aB=ac,∠a=∠a.∴△aBd≌△acE(aSa).∴Bd=cE(全等三角形的对应边相等).在证明过程中,学生思路一般还较为清楚,但毕竟严格证明表述经验尚显不足,因此,教学中教师应注意对证明规范提出一定的要求,因此,注意请学生板书其中部分证明过程,借助课件展示部分证明过程;可能部分学生还有一些困难,注意对有困难的学生给予帮助和指导。
第三环节:经典例题变式练习活动内容:提请学生思考,除了角平分线、中线、高等特殊的线段外,还可以有哪些线段相等?并在学生思考的基础上,研究课本“议一议”:在课本图1—4的等腰三角形aBc中,11(1)如果∠aBd=∠aBc,∠acE=∠acB呢?由此,你能得到一个什么结论?341111(2)如果ad=ac,aE=,那么Bd=cE吗?如果ad=,aE=aB呢?由此你得到什么2233结论?活动目的:提高学生变式能力、问题拓广能力,发展学生学习的自主性。
活动注意事项与效果:教学中应注意对学生的引导,因为学生先前这样的经验比较少,可能学生一时不知如何研究问题,教师可以引导学生思考:把底角二等份的线段相等.如果是三等份、四等份??结果如何呢?从而引出“议一议”。
由于课堂时间有限,如果学生全部解决上述问题,时间不够,可以在引导学生提出上述这些问题的基础上,让学生证明其中部分问题,而将其余问题作为课外作业,延伸到课外;当然,也可以对不同的学生提出不同的要求,如普通学生仅仅证明其中部分问题,而要求部分学优生解决所有的问题,甚至要求这部分学优生思考“还可以提出哪些类似问题,你是如何想到这些问题的”。
在学生解决问题的基础上,教师还应注意揭示蕴含其中的思想方法。
下面是学生的课堂表现:1[生]在等腰三角形aBc中,如果∠aBd=∠aBc,那么Bd=cE.这和证明等腰三角形两底3角的角平分线相等类似.证明如下:∵aB=ac,∴∠aBc=∠acB(等边对等角).11又∵∠aBd=∠aBc,∴∠acE=∠acB,33∴∠aBd=∠acE.。