初中数学教程平面直角坐标系中的轴对称

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15.1轴对称图形

第2课时平面直角坐标系中的轴对称

教学目标

【知识与能力】

1. 能够作轴对称图形;

2. 能够经过探索利用坐标来表示轴对称;

3. 能够用轴对称的知识解决相应的数学问题。

【过程与方法】

在探索问题的过程中体会知识间的关系,感受平面直角坐标系与生活的联系。

【情感态度价值观】

培养学生的应用意识和探究精神。

教学重难点

【教学重点】

1. 能够作轴对称图形;

2. 能够经过探索利用坐标来表示轴对称;

3. 能够用轴对称的知识解决相应的数学问题。

【教学难点】

用轴对称知识解决相应的数学问题。

课前准备

课件、教具等。

教学过程

一、情境导入

十一黄金周,北京吸引了许多游客.一天,小红在天安门广场玩,一位外国友人向小红问西直门的位置,可小红只知道东直门的位置,不过,小红想了想,就准确地告诉了他.你知道为什么吗?

结合老北京的地图向学生介绍:老北京城关于中轴线成轴对称设计,东直门、西直门就关于中轴线对称.如果以天安门为原点,分别以长安街和中轴线为x轴和y轴,就可以在这个平面图上建立直角坐标系,各个景点的地理位置就可以用坐标表示出来.

提问:这些景点关于坐标轴的对称点你可以找出来吗?这些对称点的坐标与已知点的坐标有什么关系呢?

二、合作探究

探究点一:关于坐标轴对称的点的坐标特点

【类型一】 求已知点关于x 轴(或y 轴)对称的点的坐标

例1 如图,点A 关于y 轴的对称点的坐标是( )

A .(5,3)

B .(3,5)

C .(5,-3)

D .(3,-5)

解析:根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.由图可知,点A 的坐标是(-5,3),所以,点A 关于y 轴的对称点的坐标是(5,3).故选A.

方法总结:本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.

【类型二】 利用两点成轴对称的性质求整式或字母的值

例2 在平面直角坐标系中,点A 关于x 轴对称的点的坐标为(7x +6y -13,y +x -4),点A 关于y 轴对称的点的坐标为(4y -2x -2,-6x -4y +5),求点A 的坐标.

解析:设点A 的坐标为(a ,b ),则它关于x 轴的对称点为A ′(a ,-b ),关于y 轴的对称点为A ″(-a ,b ),即A ′与A ″的横、纵坐标分别互为相反数.据此可列方程组求出x ,y 的值.

解:由题意,得⎩⎪⎨⎪⎧y +x -4=-(-6x -4y +5),7x +6y -13=-(4y -2x -2).解得⎩

⎪⎨⎪⎧x =-1,y =2.所以点A 的坐标为(-8,3).

方法总结:解答这类题的关键是弄清同一点关于两坐标轴对称的点的横、纵坐标之间的关系,再据此列方程或方程组求解.

探究点二:作关于x 轴(或y 轴)对称的图形

例3 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别是A (-4,1)、B (-2,

4)、C (-1,2).

(1)△ABC 关于y 轴的对称图形是△A ′B ′C ′,请写出点A ′,B ′,C ′的坐标并作出

对称图;

(2)△A ′B ′C ′关于x 轴的对称图形是△A ″B ″C ″,请写出点A ″,B ″,C ″的坐标并作出对称图;

(3)△A ″B ″C ″关于y 轴的对称图形是△A B C ,请写出点A ,B ,C 的坐标并作出对称图;

(4)若以x 轴为对称轴作△A B C 的对称图,会和△ABC 重合吗?请总结这四次对称的坐标变化规律.

解析:点(x ,y )关于x 轴对称的点的坐标为(x ,-y );点(x ,y )关于y 轴对称的点的坐标为(-x ,y ).根据图形在平面直角坐标系中关于x ,y 轴对称的规律,很容易找到对称点.

解:(1)点A ′,B ′,C ′的坐标分别是(4,1)、(2,4)、(1,2),对称图如下图△A ′B ′C ′;

(2)点A ″,B ″,C ″的坐标分别是(4,-1)、(2,-4)、(1,-2),对称图如下图△A ″B ″C ″;

(3)点A ,B ,C 的坐标分别是(-4,-1)、(-2,-4)、(-1,-2)对称图如下图△A B C ;

(4)以x 轴为对称轴作△A B C 的对称图,得到三角形的坐标分别是(-4,1)、(-2,4)、(-1,2),正好是△ABC 的三个顶点的坐标,规律列表如下:

发现经过这四次对称变化,图形又“转”回原处.

对称轴 原始点 关于y 轴对称 关于x 轴对称 关于y 轴对称 关于x 轴对称 (x ,y ) (-x ,y ) (-x ,-y ) (x ,-y ) (x ,y )

方法总结:在平面直角坐标系中,如果两个图形关于y 轴对称,那么这两个图形对称点的横坐标互为相反数、纵坐标相等;如果两个图形关于x 轴对称,那么这两个图形对称点的横坐标相等、纵坐标互为相反数;“成轴对称的两个图形的对称点的连线段被对称轴垂直平分”是轴对称作图的依据.作轴对称图形,只要先求出已知图形中的一些特殊点的对称点的坐标,描出并连接即可得到对称图;研究规律问题时,要从特殊到一般,要逐步推导;感受图形的对称变化带来的坐标变化.

三、板书设计

平面直角

坐标系中的轴对称⎩⎪⎨⎪⎧关于x 轴对称的两个点横坐标相等,纵坐标互为相反数;关于y 轴对称的两个点纵坐标相等,横坐标互为相反数. 教学反思

本节课采用探究、发现式教学法,通过找具有一定代表性,分别位于四个象限及坐标轴的一些点的对称点及坐标,寻找关于坐标轴对称的点的坐标的一般规律,培养学生观察、归纳、分析问题、解决问题的能力,并通过研究线段之间的关系发现点的坐标之间的关系,使学生体验数形结合思想.然后通过把对称轴是坐标轴变成了直线x =1和y =-1的变式探究,使学生再次体验数形结合的思想,并拓展到直线x =m 和y =n ,使学生学会通过寻找线段之间的关系来求点的坐标并形成方法.

相关文档
最新文档