微带线和带状线设计
微带线和带状线阻抗
微带线和带状线阻抗导言:微带线和带状线是在高频电路和微波领域中常用的传输线路结构。
它们由于其特殊的结构和材料选择,在高频信号传输中具有重要的应用价值。
本文将从微带线和带状线的概念、结构、特点以及阻抗等方面进行介绍和比较,以便更好地理解和应用这两种传输线路。
一、微带线微带线是一种常用的平面传输线路结构,由导体、介质和地面构成。
导体通常采用金属箔或薄膜形式,介质可以是空气、聚四氟乙烯(PTFE)等。
微带线的特点在于其导体位于介质的一侧,而另一侧与地面相隔一定距离。
1. 结构特点微带线的结构简单,由导体、介质和地面三部分组成。
导体通常是一条细长的金属带,宽度较窄,厚度较薄。
介质可以是空气、聚四氟乙烯等,其厚度相对导体较大。
地面一般采用金属层,作为微带线的底部。
2. 电磁特性由于微带线的特殊结构,其电磁特性与常规传输线路有所不同。
微带线主要有两种电磁模式,即TEM模式和TE模式。
TEM模式是指电磁波既不沿导体方向传播,也不沿介质方向传播,而是沿着微带线的平面方向传播。
TE模式是指电磁波仅沿着微带线的平面方向传播。
3. 阻抗特性微带线的阻抗取决于其结构参数和材料特性。
一般来说,微带线的阻抗较为灵活,可以通过调整导体宽度、介质高度和介电常数等参数来实现不同的阻抗匹配。
常见的微带线阻抗有50欧姆和75欧姆等。
二、带状线带状线是一种平面传输线路结构,其结构类似于微带线,但在导体形状和介质选择上有所不同。
带状线的导体通常是一条细长的金属带,宽度较宽,厚度较薄。
介质可以是聚四氟乙烯等。
1. 结构特点带状线的结构与微带线相似,由导体、介质和地面三部分组成。
导体通常是一条宽度较宽的金属带,厚度较薄。
介质可以是聚四氟乙烯等。
地面一般采用金属层,作为带状线的底部。
2. 电磁特性带状线的电磁特性与微带线类似,也有TEM模式和TE模式。
TEM模式是指电磁波既不沿导体方向传播,也不沿介质方向传播,而是沿着带状线的平面方向传播。
TE模式是指电磁波仅沿着带状线的平面方向传播。
微带线(microstrip)和带状线(stripline)
微带线(microstrip)和带状线(stripline)微带线剖面图适合制作微波集成电路的平面结构传输线。
与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。
60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。
一般用薄膜工艺制造。
介质基片选用介电常数高、微波损耗低的材料。
导体应具有导电率高、稳定性好、与基片的粘附性强等特点。
两个方面的作用在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。
一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。
1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。
影响PCB 走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。
微带线2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。
按照传输线的结构,可以将它分为微带线和带状线。
在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。
最常使用的微带线结构有4种:表面微带线(surfacemicrostrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。
2.微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导线(信号线).与地平面之间用一种电介质隔离开。
印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。
如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。
微带线和带状线
微带线和带状线微带线和带状线在现代通信领域,微带线和带状线是最常见的两种传输线类型。
它们各自具有独特的优点和应用场景,被广泛用于微波电路、射频电路等领域。
本文将对微带线和带状线进行详细介绍。
1.微带线微带线是一种平板传输线,通常由金属线路和绝缘基板组成。
微带线具有结构简单、成本低廉和易于制造的优点,因此在微波电路和射频电路中被广泛应用。
微带线的特性阻抗随着基板尺寸和介电常数的变化而变化,因此可以通过调整基板参数来实现特定的阻抗匹配。
微带线的主要应用场景包括天线、滤波器、功率分配器、耦合器等。
其中,微带天线是最常见的应用之一。
由于微带线可以在基板表面上实现,因此形成天线的成本和制造难度要低得多。
此外,由于微带线的结构可以自由设计,因此可以用来实现各种不同类型的天线,例如贴片天线、宽带天线、喇叭天线等。
2.带状线带状线是一种同轴传输线,由两个同心的导体组成,中间的空气或绝缘材料将它们分开。
带状线的特点是阻抗稳定,衰减小,可靠性高,因此在高频、高速信号传输系统中得到了广泛应用。
带状线的主要应用场景包括高速数据传输、精密测量、信号传输等。
例如,在高速数据传输系统中,带状线可以用来连接各种高速设备,例如CPU、存储器、芯片等。
由于带状线的阻抗稳定,因此它可以减少信号折射和反射,提高系统的可靠性和传输速度。
另外,带状线还可以用于精密测量。
例如,在用于测量电磁脉冲的场合,带状线可以提供稳定且可靠的传输路径,并保持信号的完整性和准确性。
此外,在信号传输方面,带状线可以用来连接各种高性能设备,例如放大器、滤波器等,以实现高保真、高速度的信号传输。
总之,微带线和带状线均是非常重要的传输线类型,具有独特的应用场景和优点。
在通信领域不断发展的今天,它们将继续发挥着重要作用,为高频、高速信号传输系统的发展提供技术支持。
pcb布线中的微带线和带状线设计
PCB布线中的微带线和带状线到底是哪个部分啊?1 特性阻抗近年来,在数字信号速度日渐增快的情况下,在印制板的布线时,还应考虑电磁波和有关方波传播的问题。
这样,原来简单的导线,逐渐转变成高频与高速类的复杂传输线了。
在高频情况下,印制板(PCB)上传输信号的铜导线可被视为由一连串等效电阻及一并联电感所组合而成的传导线路,如图1所示。
只考虑杂散分布的串联电感和并联电容的效应,会得到以下公式:式中Z0即特性阻抗,单位为Ω。
PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。
影响PCB走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。
在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。
最常使用的微带线结构有4种:表面微带线(surface microstrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。
下面只说明表面微带线结构,其它几种可参考相关资料。
表面微带线模型结构如图2所示。
Z0的计算公式如下:对于差分信号,其特性阻抗Zdiff修正公式如下:公式中:——PCB基材的介电常数;b——PCB传输导线线宽;d1——PCB传输导线线厚;d2——PCB介质层厚度;D——差分线对线边沿之间的线距。
从公式中可以看出,特性阻抗主要由、b、d1、d2决定。
通过控制以上4个参数,可以得到相应的特性阻抗。
2 信号完整性(SI)SI是指信号在电路中以正确的时序和电压作出响应的能力。
如果电路中的信号能够以要求的时序、持续时间和电压幅度到达IC,则该电路具有较好的信号完整性。
反之,当信号不能正常响应时,就出现了信号完整性问题。
从广义上讲,信号完整性问题主要表现为5个方面:延迟、反射、串扰、同步切换噪声和电磁兼容性。
延迟是指信号在PCB板的导线上以有限的速度传输,信号从发送端发出到达接收端,其间存在一个传输延迟。
传输线带状线与微带线
n
a
cos
nx
a
cosh
ny
a
0
An
cos
nx
a
cosh
n
a
b
yb
yb 2 2 y
b
➢ 中心导带上的电荷密度
s Dy x, y b / 2 Dy x, y b / 2
s
2 0 r
n1,3,5,..
An
n
a
cos
nx
a
cosh
屏蔽带状线的电位方程和边界条件
t2 x, y 0 x a 2,0 y (3.200)
主要分析方法(TEM模)
✓ 采用静场分析方法
保角变换
求解电位的拉普表拉征斯参方数程:
用途:
特征阻抗Z0 传播常数β
衰减常数α
✓ 微波无源集成电路。特别适
合多层微波集成的中间层。
相速
vp c r (3.176)
传播常数
vp
0 0 r
r k0 (3.177 )
计算特征阻抗的经验公式
nb
2a
(3.187 )
系数An的求解 ➢ 中心导体表面电荷分布的简单假设
s
x
1 0
x x
W W
2 (3.188) 2
➢ 利用三角函数的正交性,得到系数An
An
n
2a sinnW 2a 20 r coshnb /
2a3.189
带状线单位长度电容
➢ 中心导体的电压
V
b 0
2 Ey x
0,
(中心导体零厚度)
Z0
30 r
we
b (3.179a) 0.441b
带状线和微带线
由于其结构简单,易于制作和 加工,因此微带线在微波集成 电路中占据了主导地位。
微带线还具有低辐射、低损耗 和高可靠性等优点,因此在无 线通信、雷达、电子战等领域 得到了广泛应用。
微带线的应用场景
微带线在微波和毫米波频段的应 用非常广泛,如卫星通信、雷达、 电子战、高速数字信号处理等领
域。
在微波集成电路中,微带线被用 作信号传输线、元件和电路之间
带状线和微带线
目录
• 带状线介绍 • 微带线介绍 • 带状线和微带线的比较 • 带状线和微带线的制作工艺 • 带状线和微带线的未来发展
01 带状线介绍
带状线的定义
定义
01
带状线是一种传输线结构,由一条金属带和两侧的接
地面构成。
结构
02 金属带通常由铜、铝或其它导电材料制成,宽度和厚
度根据需要而定。接地面通常为金属板或导电层。
制作过程中需要严格控制工艺参数,如温度、压力、时间等,以确保 导体和绝缘层的厚度、宽度以及间距的精度。
尺寸缩小与精度控制
随着通信技术的发展,对带状线和微带线的尺寸和精度要求越来越高, 需要不断提高制作工艺的精度和稳定性。
可靠性问题
带状线和微带线在制作和使用过程中可能会受到环境因素的影响,如 温度、湿度、机械应力等,需要采取措施提高其可靠性。
导体制作
利用电镀或溅射技术在光刻胶 保护下形成导带,去除光刻胶 后得到微带线导体。
表面处理
对微带线导体表面进行清洗、 干燥和保护处理,确保其具有 良好的导电性能和稳定性。
制作工艺的难点和挑战
材料选择与制备
带状线和微带线对材料的要求较高,需要选择合适的导电材料和绝缘 材料,并确保其性能稳定可靠。
制程控制
硬件Layout元器件布线规范篇
硬件Layout元器件布线规范篇目录概述 (3)1.1.C OMMON R OUTING R ULE (3)1.2.PWM的布线 (15)1.3.CLK的布线 (21)1.4.RJ45 TO T RANSFORMER的布线 (25)1.5.SFP的布线XFP的布线 (28)1.6.SGMII,GMII(RGMII),MII的走线(MAC TO PHY端) (33)1.7.POE部分的布线 (38)1.8.RS485布线 (46)1.9.CPU子系统的布线 (47)概述本文是用来描述硬件研发部元器件布线设计规范手册,从EMI,散热,噪声,信号完整性,电源完整性,等角度,来规范元器件布线设计。
此部分的Check应该Layout 布线阶段执行,并在Layout Review阶段做Double Check,若升级时Key Component 有更改,需要对以下内容再次Check。
Common Routing Rule1.1.1传输线传输线分为2种:微带线(Microstrip)和带状线(stripline)微带线(Microstrip):一般走在外层的Trace.带状线(stripline):一般走内层的 Trace.微带线与带状线的特征阻抗不一样,必须避免不同形态的传输线存在于不同的层面上。
1.1.2跨Plane高频信号走线必须注意不跨不同的Power Plane的问题,否则会因为回流路径不好造成信号完整性的问题。
铜箔在VCC GND Plane 层面尽量避免有连续的破孔出现,如有,请确认不会造成对电源完整性,和参考平面有影响。
如下图所示:图1第一层有2个不同的Plane AGND&DGND,图2 CLK Trace 同时跨在AGND与DGND,此信号严重会受到干扰。
所以此类问题一定要检查一下!1.1.3绕线1, Serpentine Trace (蛇形线):一般在BUS和CLK应用上,为了要求等长,必须较短的Trace要求绕线增加长度,方能达到所需的要求。
微带线与带状线
带状线:走在内层(stripline/double stripline),埋在PCB内部的带状走线,如下图所示。
蓝色部分是导体,绿色部分是PCB的绝缘电介质,stripline是嵌在两层导体之间的带状导线。
因为stripline是嵌在两层导体之间,所以它的电场分布都在两个包它的导体(平面)之间,不会辐射出去能量,也不会受到外部的辐射干扰。
但是由于它的周围全是电介质(介电常数比1大),所以信号在stripline中的传输速度比在microstrip line中慢!微带线:是走在表面层(microstrip),附在PCB表面的带状走线,如下图所示。
蓝色部分是导体,绿色部分是PCB的绝缘电介质,上面的蓝色小块儿是microstrip line。
其中黄色部分是环氧有机材料。
由于microstrip line(微带线)的一面裸露在空气里面(可以向周围形成辐射或受到周围的辐射干扰),而另一面附在PCB的绝缘电介质上,所以它形成的电场一部分分布在空中,另一部分分布在PCB的绝缘介质中。
但是microstrip line中的信号传输速度要比stripline中的信号传输速度快,这是其突出的优点!影响PCB走线特性阻抗Z0的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。
在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。
最常使用的微带线结构有4种:表面微带线(surface microstrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。
微带线的接地参考层和高速信号线在不同layer?比如L1/L2但是共面波导的接地参考层和高速线在同一个layer,就是高速线包地。
就是说高速信号两边铺铜,铜的属性是地覆铜板/层压板(Laminate)半固化片(Prepreg)Prepreg:半固化片,又称预浸材料,是用树脂浸渍并固化到中间程度(B阶)的薄片材料。
耦合微带线和耦合带状线
dIe dz
jC(1 kC )Ve
jCeVe
YeVe
耦模激励状态 (continue 1)
据此可求得偶模相速度、偶模波 导波长和偶模特性阻抗分别为:
pe
1 LeCe
1
4.3-14
LC (1KL )(1KC )
2 pe ge e f
4.3-15
Z Z 0e
Le Ce
L(1KL ) C(1KC )
大小相同,方向相同的电流对耦合线两
导带的激励(中心磁壁)
odd/even excitation methods (continue 1)
odd/even excitation methods (continue 2)
奇模电容——奇模激励下,单根导带对地 的分布电容C0
C0=C11+2C12=C22+2C12 4.3-1
Ce (r ) ee Ce (1)
耦合微带特性计算方法
保角变换求出: Co (r ),Ce (r )
Co (1),Ce (1)
再使用4.3-3 、4.3-4 、4.3-29
阻抗、有效介质常数. 计算用图4.3-9
C22为导体1不存在 时的对地自电容
C12为接地板不存在 时的对地自电容
<1> 奇耦模分析方法——利用对称性
( odd/even excitation methods )
-V V=0 V
奇模激励(odd-mode excitation):
大小相同,方向相反的电流对耦合线两
导带的激励(中心电壁) 偶模激励(even-mode excitation): H=0
设电源时谐变化,由基尔霍夫定律有
dV1 jL1dzI1 jLmdzI2
微波射频笔记3.微带线与带状线介绍
微带线1.随便介绍一下①用途:微带功分器、微带耦合器、微带滤波器、PCB板布线、微带天线...②优点:易于有源、无源电路集成③走线原则:①尽量短②尽量平滑③尽量正交微带布线的弯曲,宽度突变,接头处会引入寄生电抗,影响匹配,可以通过去处一部分导体来实现补偿,可借鉴下图:2.选用指南微带板导体一般选用金银铜这三种,最常用的铜箔厚度有35um和18um两种。
铜箔越薄,越易获得高的图形精密度,所以高精密度的微波图形应选用不大于18um的铜箔。
目前的铜箔类型有压延铜箔和电解铜箔两类。
压延铜箔较电解铜箔更适合于制造高精密图形,所以在材料订货时,可以考虑选择压延铜箔的基材板。
压延法制造的铜箔要求铜纯度高(一般≥99.9%),铜箔弹性好,适用于挠性板、高频信号板等高性能PCB的制造,在产品说明书中用字母“W”表示。
电解铜箔则用于普通PCB的制造,铜的纯度稍低于压延法所用的铜纯度(一般未99.8%),并用字母“E”表示3.高段位玩法在射频微波电路中,微带线结构可以模拟实现集总参数元件;若传输线长度<λ/8,则给定频率时,L正比于Z0,C反比于Z0,若使Z0很大,则L很大,C 很小以至于可以忽略。
故串联电感可用高阻抗微带线代替,同理并联电容可用低阻抗微带线实现。
如上图,一段半波长微带线跨接在主传输线上,两端开路,其中长度<λ/4的相当于电容,而>λ/4的相当于电感。
带状线1.结构:一般是微带线上在盖一层相同厚度的基板,上下都接地,也可以看成是同轴线的一种;带状线也支持高阶TM模和TE模,因此需要避免,可采用:一、短路螺钉将上下两面地短路;二、两平面间距离小于λ/4。
2.用途:常用于耦合器3.优点:封闭的电磁场,故损耗比微带线小,相同频率下比微带更小型化;4.其余各项要求性能与微带线相似。
3.3 耦合带状线和耦合微带线
Ve Y11 Y22 2Y12 Vo
Y11 Y22
特别对于对称耦合传输线Y11=Y22,有
I e Y0 e Io 0 0 Ve Y0 o Vo
1、奇偶模分析方法
其中
1 Y (Y Y22 2Y12 ) oe 2 11 Y 1 (Y Y 2Y ) 22 12 oo 2 11
完全类似
[ A] 1 2 {[ A] [ A] }
T
1 2
{[ A] [ A] }
T
1 1 (V V2 ) (V V2 ) 2 1 V1 2 1 V2 1 (V V ) 1 (V V ) 2 2 2 1 2 1
分别是偶模导纳和奇模导纳,这种做法把互耦 问题化成两个独立问题--从数学上而言,也即矩阵 对角化的方法,从几何上而言,则对应坐标旋转的 方法。
I e Y0 eVe I o Y0 oVo
1、奇偶模分析方法
在技术方面习惯常用阻抗
1 Z 0e Y 0e Z 1 0o Y0 o
1、奇偶模分析方法
我们定义
1 (V1 V2 ) Ve 2 Vo 1 (V V ) 2 2 1
分别为偶模激励和奇模激励。 偶模(even mode)激励——是一种对称激励; 奇模(odd mode)激励——是一种反对称激励。
1、奇偶模分析方法
r
K为耦合系数
1、奇偶模分析方法
这样就可以得到
I e 1 1 I o 2 1 1 Y11 1 Y12 Y12 1 Y22 1 1 Ve 1 Vo
PCB布线中的微带线和带状线设计
PCB布线中的微带线和带状线设计在PCB布线设计中,微带线和带状线是两种常用的传输线结构。
它们被广泛应用于高频电路中,如射频电路和微波电路,以保证信号的传输质量和减小传输损耗。
本文将详细介绍微带线和带状线的概念、设计原理和性能特点。
一、微带线的概念和设计原理微带线是一种平面传输线结构,由一条导体线和接地平面构成。
导体线通常位于接地平面的上方,与接地平面通过介质层相隔一定的距离。
微带线的导体线可以是导线或导电层,接地平面则是铜层或称为接地层。
在微带线中,信号的传输主要是通过导体线的电磁场耦合在介质层中进行,同时也有一部分能量通过导体线与接地平面之间的电容耦合进行传输。
微带线的电磁场分布主要由两个因素决定:导体线的宽度和导体线与接地平面之间的距离。
这两个因素共同决定了微带线的特性阻抗和传播特性。
通常情况下,当微带线的宽度增加时,阻抗会降低,但是传输损耗会增加;当微带线与接地平面的距离增加时,阻抗会增加,但是传输损耗会降低。
因此,在设计微带线时需要根据具体应用要求权衡选择合适的宽度和距离。
微带线的设计还需要考虑到导体线的长度和弯曲,因为这些因素会对传输线的电磁性能产生影响。
导体线的长度应尽量避免过长,因为导体线长度的增加会导致信号的传输延迟和功率损耗的增加。
而弯曲则会引入信号反射和散射,影响传输线的匹配和信号完整性。
二、带状线的概念和设计原理带状线是一种常用的传输线结构,由一条狭窄的导体线嵌在介质层中,上面覆盖着一层接地平面。
带状线的导体线与接地平面之间的距离通常比微带线小,这样可以实现更高的功率传输和更低的传输损耗。
带状线的设计与微带线类似,主要考虑的因素包括导体线的宽度、导体线与接地平面之间的距离以及导体线的长度和弯曲。
不同的是,带状线相比微带线更适用于高功率、高频和窄带的应用。
带状线的导体宽度可以选择得更窄,这样可以实现更高的特性阻抗。
同时,带状线的传输电磁场主要分布在导体线附近,相对于微带线来说,带状线的电磁场集中度更高,能够实现更好的信号耦合效果。
到底微带线和带状线延时上的差别有多大?
到底微带线和带状线延时上的差别有多大?
大家在对一些数据总线处理等长的时候,都知道要同组同层,除了免去过孔带来的传输延时之外,微带线和带状线由于信号传输速度的不同,同样长度的走线延时也是有差别。
我们绕等长的最终目的是为了满足时间上的等长而不是单纯走线长度上的物理等长。
到底微带线和带状线延时上的差别有多大,绕等长的时候过孔的长度要不要算进去,可能有个具体的数据会更直观点。
下面我们来将这些数据进行估算和量化。
1.微带线和带状线传输时延
PCB中微带线是指走线只有一个参考面,带状线是指走线有两个参考面。
带状线由于电磁场都被束缚在两个参考面之间的板材中,所以走线的有效介电常数为板材的介电常数。
微带线会导致部分电磁场暴露在空气中,空气的相对介电常数约为1.0006,板材如常规FR4的介电常数为4.2,那幺微带线的有效介电常数在1和4.2之间。
现在以特定的FR4板材和层叠结构来量化微带线和带状线的传输延时。
1.微带线层叠和时延。
微带线(microstrip)和带状线(stripline)
微带线(microstrip)和带状线(stripline)微带线剖面图适合制作微波集成电路的平面结构传输线。
与金属波导相比,其体积小、重量轻、使用频带宽、可靠性高和制造成本低等;但损耗稍大,功率容量小。
60年代前期,由于微波低损耗介质材料和微波半导体器件的发展,形成了微波集成电路,使微带线得到广泛应用,相继出现了各种类型的微带线。
一般用薄膜工艺制造。
介质基片选用介电常数高、微波损耗低的材料。
导体应具有导电率高、稳定性好、与基片的粘附性强等特点。
两个方面的作用在手机电路中,一条特殊的印刷铜线即构成一个电感微带线,在一定条件下,我们又称其为微带线。
一般有两个方面的作用:一是它把高频信号能进行较有效地传输;二是与其他固体器件如电感、电容等构成一个匹配网络,使信号输出端与负载很好地匹配。
1.PCB的特性阻抗Z0与PCB设计中布局和走线方式密切相关。
影响PCB 走线特性阻抗的因素主要有:铜线的宽度和厚度、介质的介电常数和厚度、焊盘的厚度、地线的路径、周边的走线等。
微带线2.当印制线上传输的信号速度超过100MHz时,必须将印制线看成是带有寄生电容和电感的传输线,而且在高频下会有趋肤效应和电介质损耗,这些都会影响传输线的特征阻抗。
按照传输线的结构,可以将它分为微带线和带状线。
在PCB的特性阻抗设计中,微带线结构是最受欢迎的,因而得到最广泛的推广与应用。
最常使用的微带线结构有4种:表面微带线(surfacemicrostrip)、嵌入式微带线(embedded microstrip)、带状线(stripline)、双带线(dual-stripline)。
2.微带线是位于接地层上由电介质隔开的印制导线,它是一根带状导线(信号线).与地平面之间用一种电介质隔离开。
印制导线的厚度、宽度、印制导线与地层的距离以及电介质的介电常数决定了微带线的特性阻抗。
如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。
圆波导、同轴线、带状线、微带线简介
微带电路简介
微带电路的结构图
微带电路简介
r =13,tanδ=0.006)。则微带电路与普通晶体 ( 管印刷电路的区别为:微带电路要求基片介质必 须损耗小,不易变形,介电常数 在 r 2-20之间, 金属板的导电性能好,加工线条精度高。 微带线是一种双导体结构。对于空气微带线, 其上传输的波形是TEM波;对于实际填充 介 质的标准微带线,导带周围有两种介质,其场大 部分集中在导带与接地板之间。由于相速度在介 质不连续的界面处不能与TEM模匹配,因此实际 上,微带线中传输的是一种TE-TM混合波。其纵 向场分量主要是由介质、空气分界面处的边缘场
1、3 带状线简介
带状线的结构 带状线的结构如下图所示,由一个宽度为W, 厚度为t的中心导带和相距为d的上、下两块接地 板构成,接地板之间填充 r 的均匀介质。 带状线支持TEM波传输,这也是带状线的主 模式。同时带状线可认为是由同轴线演变而来, 故存在高次波形TE或TM模。一般可通过选择带 状线的横向尺寸来抑制高次模的出现,当取 min min b W 时可保证TEM波主模单模工 2 r 2 r 作。
r d tan 0
同轴线简介
Rs 1 1 2 a b c b ln a 1
Rs f / 2 式中, 是导体的表面电阻, tanσ是同轴 线中填充介质的损耗角正切。
同轴线中的高次模 若同轴线的尺寸与波长相比足够大时,传输线上 有可能传输TM或TE波。
圆波导
圆波导TE01场结构分布图
圆波导 TM01模 将m=0,n=1代入TM波的各分量表达式中,可得:
Ez J 0 (
01
a a
) e j z
) e j z
带状线和微带线 PPT
得 Ez (r,) Ez (r, 2n ) n=0,1,2,…
07:08:23
有 cos(n 0 ) cos(n 2n 0 )
(3)边界条件:理想导体壁,在r=a处
E z (a, ) AB1J n (kca) cos(n 0 ) 0
得 Jn (kca) 0
ˆ
Em
e
j z
07:08:23
同轴线TEM导模场结构
07:08:23
E
H
传输特性
相速度与波导波长 TEM: kc 0, c பைடு நூலகம், k
相速度
vp v
c
r
波导波长
g
0 r
07:08:23
工作波长 0 r
c 截止波长
g 波导波长g
kca 必为Jn(u)的零点
kc
TM ni
uni a
uni 为Jn(u)的第i个零点
07:08:23
TM波的通解:
TM波纵向电场Ez(r, φ, z)
EZ (r,, z)
m0
n1
Emn
J
m
(
umn a
)
cos m sin m
e
j
z
其中,umn是m阶贝塞尔函数Jm(x)的第n个根 且kcTMmn=umn/a, 于是可求得其它场分量:
Ez
(
x,
y,
z;
t
)
m0
n0
jD[
m
a
2
n
b
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MT-094 指南微带线和带状线设计简介 人们撰写了大量文章来阐述如何端接PCB走线特性阻抗以避免信号反射。
但是,妥善运用 传输线路技术的时机尚未说清楚。
下面总结了针对逻辑信号的一条成熟的适用性指导方针。
当PCB走线单向传播延时等于或大于施加信号上升/下降时间(以最快边沿为准)时端接传输 线路特性阻抗。
例如,在Er = 4.0介电质上2英寸微带线的延时约270 ps。
严格贯彻上述规则,只要信号上升 时间不到~500 ps,端接是适当的。
更保守的规则是使用2英寸(PCB走线长度)/纳秒(上升/下降时间)规则。
如果信号走线超过 此走线长度/速度准则,则应使用端接。
例如,如果高速逻辑上升/下降时间为5 ns,PCB走线等于或大于10英寸(其中测量长度包括 曲折线),就应端接其特性阻抗。
在模拟域内,必须注意,运算放大器和其他电路也应同样适用这条2英寸/纳秒指导方针, 以确定是否需要传输线路技术。
例如,如果放大器必须输出最大频率fmax,则等效上升时 间tr和这个fmax相关。
这个限制上升时间tr可计算如下: tr = 0.35/fmax 等式 1然后将tr乘以2英寸/纳秒来计算最大PCB走线长度。
例如,最大频率100 MHz对应于3.5 ns的 上升时间,所以载送此信号的7英寸或以上走线应视为传输线路。
PCB板上受控阻抗走线的设计 在受控阻抗设计中,可以采用多种走线几何形状,既可与PCB布局图合二为一,也可与其 相结合。
在下面的讨论中,基本模式遵循IPC标准2141A的规定(见参考文献1)。
Rev.0, 01/09, WKPage 1 of 7MT-094请注意,下面的图示中将使用术语“接地层”。
需要了解的是,该接地层实际上是一个大面 积、低阻抗的参考层。
在实践中,可能是一个接地层或电源层,假定二者的交流电位均为 零。
首先是简单的平面上布线形式的传输线路,也称微带线。
图1所示为横截面视图。
这类传 输线路可能是实验板中使用的信号线。
其构成非常简单,一条分立的绝缘线以固定间距分 布于接地层上。
介电质既可能是线材的绝缘层,也可能是该绝缘层与空气的结合体。
WIREDDIELECTRICHGROUND PLANE图1:一种阻抗既定的微带线传输线路 由一条分布于接地层的绝缘线形成该线路的阻抗(单位:欧姆)可以用等式2估算。
其中,D为导体直径,H为线材在接地层上 的间距,εr为介电常数。
等式 2 对于与PCB相融合的图形,有多种几何模型可供选择,分为单端和差分两类。
这些在IPC 标准2141A(见参考文献1)中有详细说明,这里对两个常见示例略加说明。
在开始进行任何基于PCB传输线路设计时,必须知道,有大量的等式都声称适用于此类设 计。
此时,一个极其重要的问题就是,“哪些等式是精确的呢?”不幸的是,没有一个等式 是完全精确的!所有现有等式都是近似值,因而,其精度不尽相同,取决于具体情况。
最 知名也是引用最多的是参考文献1中给出的等式,但是,即使这些等式也存在一些应用问 题。
参考文献2针对不同几何图形,在试验PCB样品上对参考文献1中的等式进行了评估。
结果 发现,预测精度因目标阻抗而异。
下面引述的等式均来自参考文献1,这里只是作为设计 的起点,实际设计时,还需要进一步的分析、测试和进行设计验证。
原则就是,要仔细研 究,谨慎面对PCB走线阻抗等式。
Page 2 of 7MT-094微带线PCB传输线路 对于其中一面为接地层的简单双面PCB设计,可以在另一面设计一条信号走线以控制阻 抗。
这种几何图形被称为表面微带,简称微带。
图2中的双层PCB横截面视图展示了这种微带几何图形。
TRACEW T DIELECTRIC HGROUND PLANE图2:一种阻抗既定微带传输线路由一条分布于接地层、 采用适当几何图形的PCB走线形成对于给定的PCB基板和铜重量,需要注意的是,W(信号走线宽度)以外的所有参数都是事 先确定的。
因而,可用等式3来设计一种PCB走线,以匹配电路要求的阻抗。
若信号走线 宽W、厚T,且由介电常数为εr的PCB电介质以距离H与接地层(或电源层)相分离,则其特 性阻抗为: 等式 3请注意,在这些表达式中,测量值均为常用单位(mil)。
这些传输线路不但有特性阻抗,也有特性电容。
其计算单位为pF/in,如等式4所示。
等式 4作为包括这些计算的示例,一块双层板可能用20 mil宽(W)、1盎司(T=1.4)的铜走线,并由 10 mil (H) FR-4 (εr = 4.0)的介电材料分离。
结果,该微带线的阻抗为50 左右。
对于其他标 准阻抗(如75 的视频标准阻抗),使"W"调整为8.3 mil左右即可。
Page 3 of 7MT-094微带线设计的一些指导原则 本例涉及到一个有趣且微妙的要点。
参考文献2讨论了与微带PCB阻抗相关的有用指导原 则。
若介电常数为4.0 (FR-4),结果显示,当W/H为2/1时,阻抗将接近50 (与第一个示例 类似,其中,W = 20 mil)。
仔细的读者会发现,根据等式3预测,Zo应为46 左右,与参考文献2提到的精度(>5%)相吻 合。
IPC微带线等式在50 与100 之间最精确,但当阻抗低于或超过该范围时,其精度则 大幅下降。
根据等式5,也可以计算微带线的传播延迟。
这是微带信号走线的单向通过时间。
有趣的 是,对于给定的几何模型,延迟常数(单位:ns/ )仅为介电常数而非走线维度的函数(见参 考文献6)。
请注意,这可以带来极大的便利。
意味着,当给定PCB基板(并给定εr)时,各种 阻抗线路的传播延迟常数是固定不变的。
t pd (ns/ft ) = 1.017 0.475ε r + 0.67等式 5该延迟常数也可以ps/in为单位,这样更适用于小型PCB。
即:t pd (ps/in ) = 85 0.475ε r + 0.67等式 6因此,举例来说,对于PCB介电常数4.0,不难发现微带线的延迟常数约为1.63 ns/ ,合 136 ps/in。
这两条额外的准则对于设计PCB走线中信号的时序具有参考意义。
对称带状线PCB传输线路 从多种角度来看,多层PCB是一种更好的PCB设计方法。
在这种模式下,信号走线嵌入电 源层与接地层之间,如图3中的横截面视图所示。
低阻抗交流接地层和嵌入的信号走线形 成一条对称带状线传输线路。
从图中可以看出,高频信号走线的电流回路直接位于接地层/电源层上的信号走线的上方 和下方。
因此,高频信号被完全限制在PCB板内部,结果使放射降至最低,为输入杂散信 号提供了天然的屏障。
Page 4 of 7MT-094DIELECTRIC GROUND, POWER PLANES W T EMBEDDED TRACEH B HFigure 3: A Symmetric Stripline Transmission Line With Defined Impedance is Formed by a PCB Trace of Appropriate Geometry Embedded Between Equally Spaced Ground and/or Power Planes 该设计的特性阻抗同样取决于几何图形以及PCB介电质的εr。
该带状传输线路的ZO可表示 为: 等式 7 这里的所有维度同样以mil为单位,B为两个层的间距。
在这种对称几何图形中,需要注意 的是,B同样等于2H + T。
参考文献2指出,参考文献1中的这个等式的精度通常在6%左右。
适用于εr = 4.0的对称带状线的另一条便利准则是,使B成为W的倍数,范围为2至2.2。
结果 将得到约50 的带状线阻抗。
当然,这条法则是以另一近似法为基础的,忽略了T。
尽管如 此,该法则对于粗略估算还是很有用的。
对称带状线同样有一个特性电容,其计算单位为pF/in,如等式8所示。
等式 8 对称带状线的传播延迟如等式9所示。
t pd (ns/ft ) = 1.017 ε r等式 9或者以ps为单位:t pd (ps/in ) = 85 ε r等式 10Page 5 of 7MT-094当PCB介电常数为4.0时,可以发现,对称带状线的延迟常数几乎正好为2 ns/ ,合170 ps/in。
走线嵌入法的利弊 根据上述讨论,在设计阻抗既定的PCB走线时,既可以置于一个表层之上,也可嵌入两层 之间。
当然,在这些阻抗因素之外,还有许多其他考虑因素。
嵌入式信号确实存在一个明显的大问题——隐藏电路走线的调试非常困难,甚至无法做 到。
图4总结了嵌入式信号走线的利弊。
NOT EMBEDDED Route Power Ground Route Power Route Route GroundAdvantages Signal traces shielded and protected Lower impedance, thus lower emissions and crosstalk Significant improvement > 50MHz Disadvantages Difficult prototyping and troubleshooting Decoupling may be more difficult Impedance may be too low for easy matchingEMBEDDED图4:多层PCB设计中嵌入与不嵌入信号走线的利弊设计多层PCB时也可能不使用嵌入式走线,如最左边的横截面视图所示。
可以将这种嵌入 式设计看作一种双重双层PCB设计(共有四层铜)。
顶部的走线与电源层构成微带,底部的 走线则与接地层构成微带。
在本例中,两个外层的信号走线可以方便地供测量和故障排查 使用。
但这种设计并未利用各层的屏蔽作用。
这种非嵌入式设计的辐射量较大,更容易受到外部信号的影响,而右侧的嵌入式设计采用 了嵌入法,则很好地利用了各层的优势。
就如诸多其他工程设计一样,PCB设计中到底采 用嵌入法还是非嵌入法是折衷的结果。
这里的折衷则体现在减少辐射与方便测试之间。
Page 6 of 7MT-094参考文献:1. Standard IPC-2141A, "Controlled Impedance Circuit Boards and High Speed Logic Design," 2004, Institute for Interconnection and Packaging Electronic Circuits, 3000 Lakeside Drive, 309 S, Bannockburn, IL 60015, 847-615-7100. Eric Bogatin, BTS015, PCB Impedance Design: Beyond the IPC Recommendations, . Eric Bogatin, Signal Integrity – Simplified, Prentice Hall PTR, 2003, ISBN-10: 0130669466, ISBN-13: 978-0130669469. Andrew Burkhardt, Christopher Gregg, Alan Staniforth, "Calculation of PCB Track Impedance," Technical Paper S-19-5, presented at the IPC Printed Circuits Expo '99 Conference, March 14–18, 1999. Brian C. Wadell, Transmission Line Design Handbook, Artech House, Norwood, MA, 1991, ISBN: 089006-436-9. William R. Blood, Jr., MECL System Design Handbook (HB205/D, Rev. 1A May 1988), ON Semiconductor, August, 2000. Hank Zumbahlen, Basic Linear Design, Analog Devices, 2006, ISBN: 0-915550-28-1. Also available as Linear Circuit Design Handbook, Elsevier-Newnes, 2008, ISBN-10: 0750687037, ISBN-13: 9780750687034. Chapter 12 Walt Kester, Analog-Digital Conversion, Analog Devices, 2004, ISBN 0-916550-27-3, Chapter 9. Also available as The Data Conversion Handbook, Elsevier/Newnes, 2005, ISBN 0-7506-7841-0, Chapter 9. Walter G. Jung, Op Amp Applications, Analog Devices, 2002, ISBN 0-916550-26-5, Chapter 7. Also available as Op Amp Applications Handbook, Elsevier/Newnes, 2005, ISBN 0-7506-7844-5. Chapter 7.2. 3. 4. 5. 6. 7.8. 9.Copyright 2009, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’ products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Tutorials.Page 7 of 7。