货郎担问题或旅行商问题动态规划算法
旅行商问题的求解方法动态规划法和贪心法;算法论文
旅行商问题的求解方法摘要旅行商问题(TSP问题)时是指旅行家要旅行n个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。
该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。
本文主要介绍用蛮力法、动态规划法、贪心法和分支限界法求解TSP问题,其中重点讨论动态规划法和贪心法,并给出相应求解程序。
矚慫润厲钐瘗睞枥庑赖。
关键字:旅行商问题;动态规划法;贪心法;分支限界法1引言旅行商问题(TSP)是组合优化问题中典型的NP-完全问题,是许多领域内复杂工程优化问题的抽象形式。
研究TSP的求解方法对解决复杂工程优化问题具有重要的参考价值。
关于TSP的完全有效的算法目前尚未找到,这促使人们长期以来不断地探索并积累了大量的算法。
归纳起来,目前主要算法可分成传统优化算法和现代优化算法。
在传统优化算法中又可分为:最优解算法和近似方法。
最优解算法虽然可以得到精确解,但计算时间无法忍受,因此就产生了各种近似方法,这些近似算法虽然可以较快地求得接近最优解的可行解,但其接近最优解的程度不能令人满意。
但限于所学知识和时间限制,本文重点只讨论传统优化算法中的动态规划法、贪心法和分支限界法,并对蛮力法做简单介绍,用以比较。
聞創沟燴鐺險爱氇谴净。
2正文2.1蛮力法2.1.1蛮力法的设计思想蛮力法所依赖的基本技术是扫描技术,即采用一定的策略将待求解问题的所有元素一次处理一次,从而找出问题的解。
一次处理所有元素的是蛮力法的关键,为了避免陷入重复试探,应保证处理过的元素不再被处理。
在基本的数据结构中,一次处理每个元素的方法是遍历。
残骛楼諍锩瀨濟溆塹籟。
2.1.2算法讨论用蛮力法解决TSP问题,可以找出所有可能的旅行路线,从中选取路径长度最短的简单回路。
如对于图1,我们求解过程如下:酽锕极額閉镇桧猪訣锥。
(1)路径:1->2->3->4->1;路径长度:18;(2)路径:1->2->4->3->1;路径长度:11;(3)路径:1->3->2->4->1;路径长度:23;(4) 路径:1->3->4->2->1;路径长度:11;(5) 路径:1->4->2->3->1;路径长度:18;(6) 路径:1->4->3->2->1;路径长度:18;从中,我们可以知道,路径(2)和(4)路径长度最短。
动态规划解决背包问题和旅行商问题
动态规划解决背包问题和旅行商问题动态规划(Dynamic Programming)是一种解决复杂问题的算法思想,它通过将问题划分为多个子问题,并记录子问题的解来解决原始问题。
在背包问题和旅行商问题中,动态规划是一种常见且高效的解决方法。
1. 背包问题背包问题是一个经典的优化问题,可以用动态规划的方法解决。
给定一组物品,每个物品有自身的价值和重量,同时给定一个背包的容量,要求在不超过背包容量的前提下,选择物品放入背包,使得背包中物品的总价值最大化。
动态规划的思路是定义一个二维数组dp[i][j],其中i表示从第1个到第i个物品,j表示背包的容量。
dp[i][j]表示在前i个物品中,容量为j的背包中能够放入的物品的最大价值。
通过状态转移方程可以求解dp[i][j],其中状态转移方程为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i])其中w[i]表示第i个物品的重量,v[i]表示第i个物品的价值。
通过计算dp[i][j],最终可以得到在背包容量为j的情况下的最大价值。
可以通过回溯的方法找到具体放入背包的物品。
2. 旅行商问题旅行商问题是一个典型的组合优化问题,它要求在给定的一组城市中,寻找一条最短的路径使得旅行商经过每个城市一次后返回起始城市。
动态规划可以通过建立一个二维数组dp[S][i]来解决旅行商问题,其中S表示城市的集合,i表示当前所在的城市。
dp[S][i]表示从起始城市出发经过集合S中的城市,最后到达城市i的最短路径长度。
对于dp[S][i],可以通过以下状态转移方程来计算:dp[S][i] = min(dp[S-{i}][j] + d[j][i])其中S-{i}表示从集合S中去除城市i,d[j][i]表示从城市j到城市i的距离。
通过计算dp[S][i],最终可以得到从起始城市出发经过所有城市一次后返回起始城市的最短路径长度。
同样可以通过回溯的方法找到具体的最短路径。
动态规划:旅行售货员问题
xxxxxxxx大学结课论文项目动态规划算法解决旅行售货商问题课程名称: xxxxxxxxxxxxxx院系: xxxxxxxxxxxxxx学生姓名: xxxxxx学号: xxxxxxxxx指导教师: xxxxxx2015年6月15日摘要:旅行商问题(TSP问题)时是指旅行家要旅行n个城市然后回到出发城市,要求各个城市经历且仅经历一次,并要求所走的路程最短。
该问题又称为货郎担问题、邮递员问题、售货员问题,是图问题中最广为人知的问题。
动态规划( dynamic programming )算法是解决多阶段决策过程最优化问题的一种常用方法,难度比较大,技巧性也很强。
利用动态规划算法,可以优雅而高效地解决很多贪婪算法或分治算法不能解决的问题。
本次课程设计运用动态规划解决旅行售货员问题,动态规划的基本思想是:把求解的问题分成许多若干阶段或许多子问题,然后按顺序求解各子问题。
前一子问题的解,为后一子问题的求解提供了有用的信息,在求解任一子问题时列出各种可能的局部解,通过决策保留那些有可能达到最优的局部解,丢弃其他局部解。
依次解决各子问题,最后一个子问题就是初始问题的解。
通过图的关系矩阵来表示个城市之间的关系,二维数组表示顶点之间的距离关系,对子问题进行求解比较,最后得出所求结果。
关键字:旅行商问题动态规划法图矩阵目录第一章绪论1.1算法介绍1.2算法应用第二章动态规划理论知识2.1动态规划的基本思想2.2动态规划设计步骤第三章旅行售货员问题3.1问题描述:旅行售货员问题3.2算法设计内容3.3算法分析3.4流程图第四章物流配送网络第五章结论第一章绪论1.1算法介绍动态规划( dynamic programming )是解决多阶段决策过程最优化问题的一种数学方法。
1951年美国数学家Bellman(贝尔曼)等人根据一类多阶段决策问题的特性,提出了解决这类问题的“最优性原理”,并研究了许多实际问题,从而创建了最优化问题的一种新方法——动态规划。
TSP问题
lb=((1+3)+(3+6)+(1+2)+(3+4)+(2+3))/2=14
于是,得到了目标函数的界[14, 16]。 需要强调的是,这个解并不是一个合法的选择(可能没有 构成哈密顿回路),它仅仅给出了一个参考下界。
d(1, {2, 3})=min{c12+d(2, {3}), c13+ d(3, {2})}=min{2+5, 3+11}=7(1→2) d(2, {1, 3})=min{c21+d(1, {3}), c23+ d(3, {1})}=min{4+6, 2+12}=10(2→1) d(3, {1, 2})=min{c31+d(1, {2}), c32+ d(2, {1})}=min{7+8, 5+9}=14(3→2) 最后有:
③ 边(u, v) 加入解集合S后,S中不产生分枝;
∞3 3 2 6
C= 3 ∞ 7 3 2 3 7 ∞2 5
2 3 2∞3
6 2 5 3∞
1
52
2
4
3
(a) 5城市的代价矩阵 (b) 城市1→城市4
1
2 5
22
4
3
(c) 城市5→城市2
货郎担问题 其他应用
用微分法可求得上式当x1=s1/3=3时,有最大值:f1(s1)= 3 3 3 3 因此,原问题的最优解为: x1= x2= x3= 3,最优值为:
例9 求解四个城市的推销员问题,其距离矩阵如下表所示:
i
j 1 2 3 4
1
2
3
4
0 8 5 6 6 0 8 5 7 9 0 5 9 7 8 0
解:k=0 f0(2,φ)=8, f0(3,φ)=5, f0(4,φ)=6 k=1 f1(2,{3})= f0(3,φ)+d32=5+9=14; f1(2,{4})= f0(4,φ)+d42=6+7=13 f1(3,{2})= f0(2,φ)+d23=8+8=16; f1(3,{4})= f0(4,φ)+d43=6+8=14 f1(4,{2})= f0(2,φ)+d24=8+5=13; f1(4,{3})= f0(3,φ)+d34=5+5=10
k=2 f2(2,{3,4})=min{ f1(4,{3})+ d42, f1(3,{4})+d32} =min{10+7,14+9}=17 p2(2,{3,4})=4 f2(3,{2,4})=min{ f1(4,{2})+ d43, f1(2,{4})+d23} =min{13+8,13+8}=21 p2(3,{2,4})=2或4 f2(4,{2,3})=min{ f1(2,{3})+ d24, f1(3,{2})+d34} =min{14+5,16+5}=19 p2(4,{2,3})=2 k=3 f 3(1,{2,3,4}) =min{f2(2,{3,4})+d21, f2(3,{2,4})+d31, f2(4,{2,3}+d41) =min{17+6,21+7,19+9}=23 员最短路线为 1→3→4→2→1 ,最短距离为23。 实际中很多问题都可以归结为货郎担问题,如物资运输中汽车 应走怎样的路线使路程最短;工厂中机床应如何布置,可使零件所 经过的路线最短等等。
动态规划求解TSP问题
f5(i, )=min{Cij+f6(1, )}=Ci1, d5(i, 1), i=2, 3, 4, 5 f5(i, )的值列表如下:
1
i 2
f5(i, ) 2
5 3
5 1 2 7
2
2 3 3
3
4 5
7
2 5
6
4 4
5
7
对于k=4, 有
f4(i, S4)=min{Cij+f5(j, S5)}, jS4, f4(i, S4。并且有 xn=(i, ), i=2, 3, …, n,
xn+1=(1, )
4
动态规划模型构造
决策变量:dk=(i, j), 其中i为当前所在的城市, j为下一站将要到达的城市。 状态转移方程:若当前的状态为 xk=(i, Sk) 采取的决策为 dk=(i, j) 则下一步到达的状态为 xk+1=T(xk, dk)=(j , Sk\{j})
9
(i, S3) (2, {3, 4}) (2, {3, 5})
J {3} {4} {3} {5}
Cij 3 5 3 1
S4 {4} {3} {5} {3}
Cij+f4(j, S4) 3+f4(3, {4})=3+6=9* 5+f4(4, {3})=5+11=16 3+f4(3, {5})=3+11=14* 1+f4(5, {3})=1+13=14*
(1, S1) (1, {2, 3, 4, 5})
J {2} {3} {4} {5}
Cij 2 7 2 5
S2 {3, 4, 5} {2, 4, 5} {2, 3, 5} {2, 3, 4}
旅行商问题——模拟退火算法实现
旅⾏商问题——模拟退⽕算法实现1.问题描述旅⾏商问题(Travelling Salesman Problem, 简记TSP,亦称货郎担问题):设有n个城市和距离矩阵D=[d ij],其中d ij表⽰城市i到城市j的距离(i,j=1,2 … n),则问题是要找出遍访每个城市恰好⼀次的⼀条回路并使其路径长度为最短。
2.算法设计对原问题进⾏分析,TSP的⼀个解可表述为⼀个循环排列:Π= (Π1,Π2,Π3… Πn),即Π1→Π2→ … →Πn→Π1有(n-1)!/2 种不同⽅案,若使⽤穷举法,当n很⼤时计算量是不可接受的。
旅⾏商问题综合了⼀⼤类组合优化问题的典型特征,属于NP 难题,不能在多项式时间内进⾏检验。
若使⽤动态规划的⽅法时间复杂性和空间复杂性都保持为n的指数函数。
本次实验利⽤模拟退⽕算法(Simulated Annealing)求解TSP问题。
模拟退⽕算法最早由N.Metropolis等⼈于1953年提出,基于物理中固体物质的退⽕过程与⼀般组合优化问题之间的相似性。
该算法从某⼀较⾼初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间随机寻找全局最优解。
退⽕是将固体加热到⾜够⾼的温度,使分⼦呈随机排列态,然后逐步降温冷却,最后分⼦以低能状态排列,得到稳定状态的固体。
退⽕的过程有:(1)加温过程:增强粒⼦运动,消除系统原本可能存在的⾮均匀态;(2)等温过程:对于与环境换热⽽温度不变的封闭系统,系统状态的⾃发变化总是朝向⾃由能减少的⽅向进⾏,当⾃由能达到最⼩时,系统平衡;(3)冷却过程:使粒⼦热运动减弱并逐渐趋于有序,系统能量逐渐下降,从⽽得到低能的晶体结构。
其中,固体在恒温下达到热平衡的过程采⽤Metropolis⽅法进⾏模拟:温度恒定为T时,当前状态i转为新状态j,如果j状态的能量⼩于i,则接受状态j为当前状态;否则,如果概率p=exp{-(E j-E i)/(k*T)}⼤于[0,1)区间的随机数,则仍接受状态j为当前状态;若不成⽴则保留状态i为当前状态。
算法分支限界法货郎担问题解法
标题:算法分支限界法在货郎担问题中的应用摘要:分支限界法是一种高效的解决组合优化问题的算法,本文将详细介绍分支限界法在货郎担问题中的应用,包括问题的描述、算法原理、实现步骤以及案例分析等内容。
一、问题描述货郎担问题,又称为旅行商问题(TSP),是一个经典的组合优化问题。
问题的描述为:有n个城市,货郎担需要从一个城市出发,经过所有的城市且只经过一次,最后回到出发的城市,要求找到一条最短的路径。
这是一个NP-hard问题,传统的穷举法在城市数量较大时难以找到最优解。
二、算法原理分支限界法是一种以深度优先搜索为基础的优化算法。
其核心思想是根据当前问题状态的下界(或上界)对搜索空间进行剪枝,从而减少搜索空间,提高搜索效率。
在货郎担问题中,分支限界法通过动态规划的方式记录已经访问过的城市,从而避免重复计算,同时利用启发式信息(如最近邻居、最小生成树等)进行路径选择,不断更新路径的下界,直至找到最优解或者搜索空间被完全剪枝。
三、实现步骤1. 初始化:设置初始的城市路径、已访问城市集合、路径长度、下界等参数。
2. 搜索:利用深度优先搜索,根据当前路径确定下一个访问的城市,并更新路径长度和下界。
3. 剪枝:根据当前路径长度与下界的关系,对搜索空间进行剪枝。
4. 回溯:如果搜索路径无法继续扩展,进行回溯,更新路径状态。
5. 结束条件:当所有城市都被访问过一次后,得到一条完整的路径,更新最优解。
四、案例分析假设有5个城市,它们的坐标为:A(0, 0)、B(1, 2)、C(3, 1)、D(5, 3)、E(4, 0)利用分支限界法求解货郎担问题,我们按照以下步骤进行计算:(1)初始化:选择一个城市作为出发点,并初始化已访问城市集合、路径长度和下界。
(2)搜索:根据当前路径选择下一个访问的城市,并更新路径长度和下界。
(3)剪枝:根据当前路径长度与下界的关系,进行搜索空间的剪枝。
(4)回溯:如果搜索路径无法继续扩展,进行回溯,更新路径状态。
概述数学建模经典问题——旅行商问题.ppt
25
于是,dmin(i, 1)代表与第i个结点关联的所有边 中最长边的长度,dmin_j(i, 1) 代表与第i个结点关联 的所有边中次长边的另一个结点编号(其中一个结点 编号为i),第i结点的dmin(i, k)和dmin_j(i, k)可由距 离矩阵w轻易求得。
通过对下界b2进行改进,可以得出一个求对称 型TSP更好的下界b3。
13
互间的距离设定为∞,其他数值不变。
二、多面体理论
从上世纪70年代开始的关于算法复杂性的研究 表明,要想为TSP找到一个好的算法,也即多项式 算法,似乎是不可能的。由于推销员的每条路线可 以用一个以1开始的排列来表示,因此所有可能的路 线有条。这样,若用枚举法来解决这一问题,即使 不太大,例如n=30,用目前最快的计算机,也要 化几百万年才能求出一条最短的路线。
最新 文档
10
假定收益的数学性质与相同,则最小比率TSP的 数学模型也与标准TSP类似,仅目标函数不同:
min Z
i j dij xij
i j pij xij
毫无疑问,由于目标函数中的非线性因素,最 小比率TSP的求解比之标准TSP显得更为困难。
最新 文档
11
(3) 多人TSP
若标准TSP中,出发点有多个推销员同时出发,各自行 走不同的路线,使得所有的城市都至少被访问过一次,然后 返回出发点,要求所有推销员的总行程最短,则问题就成为 一个多人的旅行商问题(简记MTSP)。
若e j T 若e j T
最新 文档
16
称X为路线T的关联向量,其m=n(n-2)/2个分量中,恰好 有个为1,其余的都为0。
图有许多Hamilton回路,设为T1, T2… Ts,,对应的关联向 量记为X1, X2… Xs ,在m维空间Rm中,考虑这些向量生成的 凸包(convex hull) Qn :
货郎担问题
以一个例题来加以说明
设有5个工件需要在机床A,B上加工,加工的顺序是先A后 B,每个工件所需加工时间(单位:小时) 如下表. 问如何安 排加工顺序可使机床连续加工完所有的加工总时间最少?
机床 加工时间 工件号码
A 3 7 4 5
B 6 2 7 3
1 2 3 4
5
7
4
(2) 在工时矩阵M中找到最小的元素(若最 小的不止一个,可任选其一);若它在上行, 则将相应的工件排在最前面的位置;若它在 下行,则将相应的工件排在最后面的位置.
最小生成树的普里姆算法
最短路径问题
Dijkstra提出了一个按路径长度递增的顺序逐步 产生最短路径的方法,称为Dijkstra算法。
这是因为:1,各城市之间可能是复线2,两地之间可能会 使用不同的交通工具从而费用不同。
实际中很多问题都可以归结为货郎担这类问题. 如: 1,物资运输路线中,汽车应该走怎样的路线使路程 最短; 2,工厂里在钢板上要挖一些小圆孔,自动焊接机的 割咀应走怎样的路线使路程最短; 3,城市里有一些地方铺设管道时,管子应走怎样 的路线才能使管子耗费最少,等等 比如说,前面曾经遇到的排序问题,以前我们 是用0-1整数规划来解决这类问题的。 在这里,我们同样可以使用动态规划的方法。 而且相对简单了很多。
决策变量Pk(i,S)表示:从v1经k个中间城镇 的S集合到vi城镇的最短路线上邻接vi的前一个城 镇,则动态规划的顺序递推关系为:
fk(i,S)= j属于S
min{ fk-1(j,S、{ j }+dji}
f0(i,空集)=d1i (k=1,2,…,n-1, i=2,3,…n)
例1: 已知4个城市间距离如下表,求从v1出 发,经其余城市一次且仅一次最后返回v1的 最短路径和距离。
HopField神经网络解决旅行商问题
HopField 神经网络解决旅行商问题实验名称:用Hopfield 神经网络解决旅行商(TSP)问题实验内容:旅行商问题(TravellingSalesman Problem, 简记TSP ,亦称货郎担问题):设有n 个城市和距离矩阵D=[dij],其中dij 表示城市i 到城市j 的距离,i ,j=1,2 …n ,则问题是要找出遍访每个城市恰好一次的一条回路并使其路径长度为最短。
TSP 的一个解可表述为一个循环排列,假如有5个城市ABCD E顺序为如有5个城市顺序为C→A →E→B→D→C。
那么路线总长度为:D C BD EB AE CA d d d d d d ++++=TSP 问题综合了一大类组合优化问题的典型特征,属于NP 完全问题,不能在多项式时间内进行检验。
若使用动态规划的方法时间复杂性和空间复杂性都保持为n 的指数函数。
HNN 方法是解TSP 问题的另一种有效的方法,在城市数目比较小的情况下可以在较短的时间得到满意的结果。
算法分析:所用到的基本理论与方法,具体算法。
1.根据文献(1),HNN 解TSP 问题的具体步骤为:0、置t=0,A=1.5,D=1;1、读入N 城市之间的距离),,2,1,(n y x d xy =文件;2、计算神经元之间的权重和输入偏置 权重:n j i y x Dd A A T i j xy ij xy YjXi ,2,1,,,,1,,=---=-其中δδδ输入偏置: I=2A;3、)(t U xi 的初值在0附近随机产生(x,i=1,2,……,N );4、计算))/)(tanh(1(21)(0U t U t V xi xi +=, 这里2.00=U 5、利用神经元动态方程,计算∑∑==+=∆n y nj yj yjxi xi I V Tt u 11,)(6利用一阶尤拉法计算 ,5.0)()1()1(=∆∆⨯∆++=+t t t u t U t U xi xi xi ,这里7、如果系统达到平衡状态,那么终止程序,否则返回第4步。
寻求中国货郎担问题最短回路的多项式时间算法
寻求中国货郎担问题最短回路的多项式时间算法全文共四篇示例,供读者参考第一篇示例:货郎担问题是一种经典的组合优化问题,旨在寻找一条路径,将货物从起点送达终点,并返回原位,使得路径中的总权值最小。
在中国货郎担问题中,货郎担通常是指一种人力车,货郎担问题也被称为旅行商问题或者是商旅者问题。
这个问题在实际应用中有着广泛的应用,例如物流配送、电路设计、航空航线规划等领域。
为了寻找中国货郎担问题的最短回路,数学家和计算机科学家们一直在寻找高效的算法。
多项式时间算法是一种能在多项式时间内完成的算法,它的时间复杂度随问题规模的增长而多项式增加。
在中国货郎担问题中,一种基于动态规划思想的多项式时间算法被广泛应用。
动态规划是一种常用的解决最优化问题的算法思想,它将一个大问题分解为多个子问题,通过保存已解决子问题的解来避免重复计算,从而减少时间复杂度。
在中国货郎担问题中,可以通过构建状态转移矩阵,来快速寻找最优解。
具体来说,对于n个城市的货郎担问题,我们可以定义一个二维状态转移矩阵dp[i][j],其中i表示当前访问的城市集合,j表示当前所在的城市。
dp[i][j]的含义是,从起点出发,经过城市i中的所有城市一次后,在城市j处的最短路径长度。
初始时,dp[0][0]=0,表示从起点出发到起点的路径长度为0。
接下来,我们通过状态转移方程来更新dp数组。
假设当前状态为dp[S][j],表示已访问过城市集合为S,当前在城市j处。
我们可以遍历所有可能的下一个城市k,计算从S∪{k}经过j到k的距离,即dist[j][k]。
则状态转移方程为:dp[S∪{k}][k] = min{dp[S][j]+dist[j][k]} (j∈S)最终,我们寻找dp[All][0]的最小值,其中All表示所有城市的集合,即找到从起点出发,经过所有城市一次后返回起点的最短路径长度。
通过动态规划的思想,我们可以在多项式时间内计算出中国货郎担问题的最短回路。
动态规划问题常见解法
动态规划问题常见解法动态规划(Dynamic Programming)是一种常用的算法思想,用于解决一类具有重叠子问题性质和最优子结构性质的问题。
动态规划通常通过将问题划分为若干个子问题,并分别求解子问题的最优解,从而得到原问题的最优解。
以下是动态规划问题常见的解法:1. 斐波那契数列斐波那契数列是动态规划问题中的经典案例。
它的递推关系式为 F(n) = F(n-1) + F(n-2),其中 F(0) = 0,F(1) = 1。
可以使用动态规划的思想来解决斐波那契数列问题,通过保存已经计算过的子问题的结果,避免重复计算。
2. 背包问题背包问题是一个经典的优化问题,可以使用动态规划的方法进行求解。
背包问题包括 0/1 背包问题和完全背包问题。
0/1 背包问题中每个物品要么被选中放入背包,要么不选。
完全背包问题中每个物品可以被选中多次放入背包。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解背包问题。
3. 最长递增子序列最长递增子序列是一个常见的子序列问题,可以使用动态规划的方法进行求解。
最长递增子序列指的是在一个序列中,找到一个最长的子序列,使得子序列中的元素按照顺序递增。
通过定义状态转移方程和使用动态规划的思想,可以有效地求解最长递增子序列问题。
4. 最长公共子序列最长公共子序列是一个经典的字符串问题,可以使用动态规划的方法进行求解。
给定两个字符串,找到它们之间最长的公共子序列。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解最长公共子序列问题。
5. 矩阵链乘法矩阵链乘法是一个求解最优括号化问题的经典案例,可以使用动态规划的方法进行求解。
给定多个矩阵的大小,需要找到一个最优的计算顺序,使得计算乘积的次数最少。
通过定义状态转移方程和使用动态规划的思想,可以高效地求解矩阵链乘法问题。
以上是动态规划问题的常见解法,通过使用动态规划的思想和方法,可以解决这些问题,并求得最优解。
(完整word版)TSP问题的动态规划解法
TSP问题的动态规划解法第十七组:3103038028 郑少斌3103038029 王瑞锋3103038035 江飞鸿3103038043 韩鑫3103055004 唐万强1.TSP问题简介旅行商问题(Traveling Salesman Problem,简称TSP, 亦称为货单郎问题)可以描述为:对于N 个城市,它们之间的距离已知,有一旅行商要从某一城市走遍所有的城市,且每一城市只能经过一次,最后回到出发的城市,问如何选择路线可使他走过的路径最短。
这是一个典型的组合优化问题。
它有很强的现实意义,可以应用于交通运输,物资调配,旅游线路设置。
对于了解某个国家地理分布也有一定的现实意义。
这个问题的解法有很多种,在这里我们尝试使用最优控制中的动态规划的相关知识来进行求解。
2.TSP问题分析对于这个问题,我们首先想到的是应用穷举法进行解答,但是这个方法时间和空间的复杂度很高。
从表面上看,TSP 问题很简单,其实则不然。
对于N 个城市的TSP,存在的可能路径为(N-1)!/2条,当N较大时,其数量是惊人的。
计算每条路经都需求出N 个距离之和,这样各种路径及其距离之和的计算量正比与N!/2.用搜索法要求就规模大的TSP是不现实的。
例如使用1GFLOPs 次的计算机搜索TSP 所需的时间如下表所示 城市数7152050100200加法量 3105.2⨯ 11105.6⨯ 18102.1⨯ 64105.1⨯ 157105⨯ 37410搜索时间s 5105.2-⨯1.8h350yy 48105⨯ y 14210y 35810由上可知,对于这个问题采用穷举法进行解答是不现实的,这就要求我们采用其他的方法进行解答。
3. 其他求解TSP 问题的方法*贪心法a. 所谓贪心法,就是在组合算法中,将每一步都取局部最优的求解方法。
b. 下表表示用贪心法求解TSP 的过程。
先将各城市间的距离用行列式形式表示,主对角线上用∞表示。
(完整word版)TSP问题的动态规划解法
TSP问题的动态规划解法第十七组:3103038028 郑少斌3103038029 王瑞锋3103038035 江飞鸿3103038043 韩鑫3103055004 唐万强1.TSP问题简介旅行商问题(Traveling Salesman Problem,简称TSP, 亦称为货单郎问题)可以描述为:对于N 个城市,它们之间的距离已知,有一旅行商要从某一城市走遍所有的城市,且每一城市只能经过一次,最后回到出发的城市,问如何选择路线可使他走过的路径最短。
这是一个典型的组合优化问题。
它有很强的现实意义,可以应用于交通运输,物资调配,旅游线路设置。
对于了解某个国家地理分布也有一定的现实意义。
这个问题的解法有很多种,在这里我们尝试使用最优控制中的动态规划的相关知识来进行求解。
2.TSP问题分析对于这个问题,我们首先想到的是应用穷举法进行解答,但是这个方法时间和空间的复杂度很高。
从表面上看,TSP 问题很简单,其实则不然。
对于N 个城市的TSP,存在的可能路径为(N-1)!/2条,当N较大时,其数量是惊人的。
计算每条路经都需求出N 个距离之和,这样各种路径及其距离之和的计算量正比与N!/2.用搜索法要求就规模大的TSP是不现实的。
例如使用1GFLOPs 次的计算机搜索TSP 所需的时间如下表所示 城市数7152050100200加法量 3105.2⨯ 11105.6⨯ 18102.1⨯ 64105.1⨯ 157105⨯ 37410搜索时间s 5105.2-⨯1.8h350yy 48105⨯ y 14210y 35810由上可知,对于这个问题采用穷举法进行解答是不现实的,这就要求我们采用其他的方法进行解答。
3. 其他求解TSP 问题的方法*贪心法a. 所谓贪心法,就是在组合算法中,将每一步都取局部最优的求解方法。
b. 下表表示用贪心法求解TSP 的过程。
先将各城市间的距离用行列式形式表示,主对角线上用∞表示。
货郎担问题或旅行商问题动态规划算法
#include <stdio.h>#include <stdlib.h>#define maxsize 20int n;int cost[maxsize][maxsize];int visit[maxsize]={1}; //表示城市0已经被加入访问的城市之中int start = 0; //从城市0开始int imin(int num, int cur){int i;if(num==1) //递归调用的出口return cost[cur][start]; //所有节点的最后一个节点,最后返回最后一个节点到起点的路径int mincost = 10000;for(i=0; i<n; i++){//printf("%d-------%d\n",i,visit[i]);if(visit[i]==0 && i!=start) //该结点没加入且非起始点{/*if(mincost <= cost[cur][i]+cost[i][start]){continue; //其作用为结束本次循环。
即跳出循环体中下面尚未执行的语句。
区别于break} */visit[i] = 1; //递归调用时,防止重复调用int value = cost[cur][i] + imin(num-1, i);if(mincost > value){mincost = value;}visit[i] = 0;//本次递归调用完毕,让下次递归调用}}return mincost;}int main(){int i,j;// int k,e,w;n=4;int cc[4][4]={{0,10,15,20},{5,0,9,10},{6,13,0,12},{8,8,9,0}};for(i=0; i<n; i++){for(j=0; j<n; j++){cost[i][j]=cc[i][j];}}imin(n,start);printf("把每个城市访问一次并返回原点最小费用%d\n",imin(n,start));return 0;}。
货郎担问题
赵勇 2015072014
一,问题由来 货郎担问题也叫旅行商问题,即TSP问题(Traveling Salesman Problem),是数学领域中著名问题之一。 二,问题描述 1,货郎担问题提法:有n个城市,用1,2,...,n表示,城市i,j之间的 距离为d(i,j),有一个货郎从城市1出发到其他城市一次且仅一次,最后 回到城市1,怎样选择行走路线使总路程最短? 2,旅行商问题的提法:假设有一个旅行商人要拜访n个城市,他必须 选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后 要回到原来出发的城市。路径的选择目标是要求得的路径路程为所有 路径之中的最小值。 身边实例:快递小哥。
例 4.17 矩阵C 0 10 5 0 6 13 8 8 g(2, ɸ)=c21=5
15 9 0 920 10 12 0g(3, ɸ)=c31=6
g(4, ɸ)=c41=8
由(4.20)式得 g(2,{3})=c23+g(3, ɸ)=15 g(2,{4})=18 g(3,{2})=18 G(3,{4})=20 g(4,{2})=13 g(4,{3})=15 接着,计算在|S|=2且i不等于1,1不属于S,i不属于S情况下的g(i,S): g(2,{3,4}=min{c23+g(3,{4}),c24+g(4,{3})}=25 g(3,{2,4}=min{c32+g(2,{4}),c34+g(4,{2})}=25 g(4,{2,3}=min{c42+g(2,{3}),c43+g(3,{2})}=23 最后,由(4.19)式得 g(1,{2,3,4})=min{c12+g(2,{3,4}),c13+g(3,{2,4}),c14+g(4,{2,3})} =min{35,40,43}=35
动态规划实现货郎担问题
if(tempvalue<minValue)
{
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
minValue=tempvalue;
int minValue;
if(n==1)
{
i=list_org.begin();
minValue= d[*i-1][0];
if(list_org.size()==matrix_length-1)
{
list_result=list_org;
}
}
else
{
int temp;
i=list_org.begin();
}
for(int j=2;j<n;j++)
{
i=list_org.begin();
for(int k=1;k<j;k++)
{
i++;
}
int tempvalue=*i;
list_org.erase(i);
list_org.push_front(tempvalue);
i=list_org.begin();
动态规划背包问题01背包问题动态规划动态规划问题货郎担问题动态规划动态规划子问题动态规划的对偶问题动态规划算法动态规划法什么是动态规划
#include <list>
#include <iostream>
using namespace std ;
typedef list<int> LISTINT;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include <stdio.h>
#include <stdlib.h>
#define maxsize 20
int n;
int cost[maxsize][maxsize];
int visit[maxsize]={1}; //表示城市0已经被加入访问的城市之中
int start = 0; //从城市0开始
int imin(int num, int cur)
{
int i;
if(num==1) //递归调用的出口
return cost[cur][start]; //所有节点的最后一个节点,最后返回最后一个节点到起点的路径
int mincost = 10000;
for(i=0; i<n; i++)
{
//printf("%d-------%d\n",i,visit[i]);
if(visit[i]==0 && i!=start) //该结点没加入且非起始点
{
/*if(mincost <= cost[cur][i]+cost[i][start])
{
continue; //其作用为结束本次循环。
即跳出循环体中下面尚未执行的语句。
区别于break
} */
visit[i] = 1; //递归调用时,防止重复调用
int value = cost[cur][i] + imin(num-1, i);
if(mincost > value)
{
mincost = value;
}
visit[i] = 0;//本次递归调用完毕,让下次递归调用
}
}
return mincost;
}
int main()
{
int i,j;
// int k,e,w;
n=4;
int cc[4][4]={{0,10,15,20},
{5,0,9,10},
{6,13,0,12},
{8,8,9,0}};
for(i=0; i<n; i++)
{
for(j=0; j<n; j++)
{
cost[i][j]=cc[i][j];
}
}
imin(n,start);
printf("把每个城市访问一次并返回原点最小费用%d\n",imin(n,start));
return 0;
}。