遗传毒性试验

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遗传毒性试验能检出DNA损伤及其损伤的固定。

根据检测的遗传学终点分为4种类型:

1检测基因突变(比如:Ames试验);

2检测染色体畸变(比如:微核试验);

3检测染色体组畸变(比如:体外CHL细胞染色体畸变、精原细胞染色体畸变试验);

4检测DNA原始损伤(比如:单细胞凝胶电泳分析(singlecellgeleletrophoresis,SCGE))。以上检测结果为呈阳性(除外假阳性)的化合物,为潜在人类致癌剂和/或致突变的物质。

FDA于2006年制定了遗传毒性试验结果的综合分析法指导原则(Guidanceforindustyandreviewstaff:Recommendedapproachestointegrationofgenetict oxicologystudyresults)

对遗传毒性试验的阳性结果评价和处理:

ICHS2(R1)中的遗传毒性结果评价和追加试验策略。

目前已建立的遗传毒性短期检测法已超过200种。

1 现行组合试验方案,用一组试验配套进行试验。200多种检测方法中,真正经过验证有合适灵敏度和特异度的大概不到10种。目前多数国家规定,如体内诱变试验显示1个或以上试验呈阳性结果,则需要进行生殖细胞遗传毒性测试。

2 各类遗传毒性试验方法的研究进展

2.1 检测基因突变

2.1.1 Ames试验Ames试验是检测化学物质基因突变的常用方法。常规的Ames试验选用四个测试菌株(TA97、TA98、TA100、TA102),最近有人提出增加TA1535测试菌株,该菌株特别适用于检测混合物的致突变性。目前出现的新生菌株具有更高的敏感性和特异性,如

YG7014、TG7108,缺乏编码O6-甲基鸟嘌呤DNA甲基化转移酶的ogtST基因,专用于对烷化剂引起的DNA损伤检测;引入乙酰转移酶基因的YG1024、YG1029菌株,对硝基芳烃和芳香胺的敏感性比原菌株高100倍以上[4]。测试代谢活化系统一般采用由Aro-clor1254(PCBs)诱导大鼠肝微粒体酶的S9;国外也有用人肝S9的报道,试验证明其代谢活性明显高于鼠S9[5,6]。为了克服S9制备上的困难和不稳定性,Josephy等将沙门氏菌的芳香胺N-乙酰转移酶基因和人类细胞色素P-450基因Cyp1A2引入细胞,构建了在无外源S9时也可检出芳香胺诱变性的Ames测试菌株如DJ4501A2[7]。

2.1.2 TK基因突变试验TK基因突变试验是一种哺乳动物体细胞基因正向突变试验,近年来其应用价值有明显的提高。TK基因编码胸苷激酶,该酶催化胸苷的磷酸化反应,生成胸苷单磷酸(TMP)。如果存在三氟苷(TFT)等嘧啶类似物,则产生异常的TMP,掺入DNA中导致细胞死亡。如受检物能引起TK基因突变,胸苷激酶则不能合成,而在核苷类似物的存在下能够存活。TK基因突变试验可检出包括点突变、大的缺失、重组、染色体异倍性和其他较大范围基因组改变在内的多种遗传改变。试验采用的靶细胞系主要有小鼠淋巴瘤细胞L5178Y以及

人类淋巴母细胞TK6和WTK1等。其基因型均为tk+/-。Honma(本间正充)和张立实(1999)指出原用染毒时间3~6h对于充分检出断裂剂和锤体来说这个时间太短,获阴性结果时应延长至24h。据资料显示对于同一阳性受检物,WTK1细胞的突变频率远高于TK6细胞,认为与WTK1存在p53基因突变有关。Do-brovolsky(1999)建立了tk+/-转基因小鼠,可用于体内试验。

2.1.3 转基因小鼠基因突变试验转基因小鼠基因突变试验可在整体状态下检测基因突变,比较不同组织(包括生殖腺)的突变率,确定靶器官,对诱发的遗传改变作精确分析等[8]。1989年Gossen等报道了LacZ转基因小鼠突变测试系统。近年来,国外已陆续发展了多种用于突变检测的转基因动物,其中3种已投入商品化生产,MutaTM小鼠、Big-BlueTM小鼠和Xenomouse小鼠,它们分别采用大肠杆菌乳糖操纵子的LacZ和/或Lacl作为诱变的靶基因。陈建泉等人(1997)已经以穿梭质粒pESnx载体,以xy1E基因因为诱变靶基因建立了携带

xy1E的转基因小鼠,并对转基因小鼠进行了繁殖建系。并已实验证明xy1E转基因小鼠是一个研究体内基因突变的有效模型,它可望成为一种新的转基因小鼠突变检测系统[9]。Heddle 等(2000)建立了1个种gptdelta转基因小鼠。HiroyukiHayashi等(2003)将载有E.coligpt 基因和λ噬菌体的red/gam基因λEG10DNA整合到SD大鼠每个单倍体基因组q24~q31位点。这种转基因大鼠对乙基亚硝基脲(ENU)和苯并芘(B[a]P)的肝脏毒性显示了很好的敏感性,它也有助于研究遗传毒性物质对小鼠和大鼠的种间差异[10]。

2.1.4 反向限制性酶切位点突变分析法(inverserestrictionsitemutation,iRSM)由英国威尔士大学分子遗传和毒理中心建立并完善的[11]。iRSM适用于快速检测诱变剂所致体内外DNA的突变,但这些突变的特点是使某一酶切位点变为另一酶切位点。该方法建立者Jenkins等首先将iRSM应用于化学诱变剂所致动物体内p53基因的突变检测,取得了良好的结果:小鼠分别口服N-乙基N-亚硝基脲(ENU)、2-乙酰氨基芴(2-AAF)和二甲基酰肼(DMH)3天后,以iRSM方法相应地检测小鼠脾、骨髓和肝组织p53基因第6内含子区域的Apa→Ava 位点反向突变。结果表明ENU诱发肝组织p53基因突变的发生率为33%,2-AAF使肝组织突变的发生率为25%,这一阳性突变率反映出了不同诱变剂对相应组织的致突变强度,进一步验

证了该方法的高灵敏度和准确性。它具有灵敏度高、快速、操作简便、以及突变检测部位明确等优点,应当说是一种较具实用价值和生命力的突变检测手段。但是,iRSM的不足之处是仅能检测诱发限制性酶切位点反向的DNA突变。根据文献资料分析,化合物致突的发生具有一定的规律性,即结构类似的一组化合物常常引起一些特定序列较固定的碱基改变。例如,烷化剂和芳香胺类虽易使一连串鸟嘌呤(G)3′端G发生突变[12,13],这可能与该部位电荷密集有关,多数活性氧生成物质的DNA致突作用也具有类似规律[14];CpG二核苷常常是DNA 加成物致突变作用部位[15],所以CpG突变的检测在化合物致突检测中具有重要意义,而CpG 突变常引发某些固定酶切位点的变化。很显然,iRSM可较广泛地应用于遗传毒性化合物致突作用的检测。

2.2 检测染色体和染色体组畸变

2.2.1 微核试验传统的体内微核试验仍然是检测化学物质染色体损伤的基本方法。目前微核试验方法主要有以下改进:1体外微核试验常用细胞有中国仓鼠肺细胞(CHL)、中国仓鼠卵巢细胞(CHO)及中国仓鼠成纤维细胞(V79)等,近年开始有用L5178Y小鼠淋巴瘤细胞和

相关文档
最新文档