参数估计和假设检验习题解答讲解
统计基础试题——参数估计和假设检验
第七章参数估计和假设检验一、填空题1.在抽样推断中,常用的总体指标有、和。
2.在抽样推断中,按随机原则从总体中抽取的部分单位叫,这部分单位的数量叫。
3.整群抽样是对总体中群内的进行的抽样组织形式。
4.若总体单位的标志值不呈正态分布,只要,全部可能样本指标也会接近于正态分布。
5.抽样估计的方法有和两种。
6.扩大误差范围,可以推断的可靠程度,缩小误差范围则会推断的可靠程度。
7.对总体的指标提出的假设可以分为和。
8.如果提出的原假设是总体参数等于某一数值,这种假设检验称为,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为。
二、单项选择题1.所谓大样本是指样本单位数在()及以上。
A.50个B.30个C.80个D.100个2.总体平均数和样本平均数的关系是()。
A.总体平均数是确定值,样本平均数是随机变量B.总体平均数是随机变量,样本平均数是确定值C.总体平均数和样本平均数都是随机变量D.总体平均数和样本平均数都是随机变量3.先对总体按某一标志分组,然后再在各组中按随机原则抽取一部分单位构成样本,这种抽样组织方式称为()。
A.简单随机抽样B.机械抽样C.类型抽样D.整群抽样4.用样本指标对总体指标作点估计时,应满足4点要求,其中无偏性是指()。
A.样本平均数等于总体平均数B.样本成数等于总体成数C.样本指标的平均数等于总体的平均数 D.样本指标等于总体指标5.在其它条件不变的情况下,提高抽样估计的可靠程度,其精确度将()。
A.保持不变B.随之扩大C.随之缩小D.无法确定6.在抽样估计中,样本容量()。
A.越小越好B.越大越好C.有统一的抽样比例D.取决于抽样估计的可靠性要求。
7.假设检验中的临界区域是指()。
A.接受域B.拒绝域C.检验域D.置信区间三、多项选择题1.在抽样推断中,抽取样本单位的具体方法有()。
A.重复抽样B.不重复抽样C.分类抽样D.等距抽样E.多阶段抽样2.在抽样推断中,抽取样本的组织形式有()。
第八讲参数估计和假设检验
证:(1)由于 的密度为 ,
故 的分布函数为 ,
对应的密度函数为 ,
从而 。
所以, 是 的无偏估计,
类似地, 的密度为 ,
故
,
( , , , )
所以, 是 的无偏估计。
(2)为计算 ,先算 。
, , ,
越小, 越大,故
的分布函数为
的分布函数为
的密度函数为
,故 不是 的无偏估计。取 ,因 ,故 是 的无偏估计。
例6.设总体 的概率分布为
0 1 2 3
其中 是未知参数,利用总体的如下8个样本:3,1,3,0,3,1,2,3,求 的矩估计和最大似然估计值。
解:
,令 ,即 ,
解得 得矩估计值 。
又从题目要求 ,可令 ,得 =15.68,取大于 的最小整数是16。
例8.设总体 , 已知,问样本容量 为多大时,方能保证 的置信度为0.95下的置信区间长度不超过 ?
解:由于 , 已知,故用 作统计量即可找到分位数 ,
使 ,即 ,
从而置信区间长为 ,再由题目要求 ,从中解出 ,故 ,其中 表示为小于 的最大整数。
故有 ,
,故 的置信区间为 。
(3)由上题结果 及 的严格递增性,可知:
,
故 的置信度为0.95置信区间为 。
3.假设检验
(本资料素材和资料部分来自网络,仅供参考。请预览后才下载,期待您的好评与关注!)
第八讲 极大似然估计,无偏性和有效性)
例1.设总体 的概率密度为 , 是取自总体 的简单随机样本,(1)求 的矩估计量 ;(2)求 的方差 。
假设检验练习试题-答案解析
假设检验练习题1. 简单回答下列问题:1)假设检验的基本步骤?答:第一步建立假设 (通常建立两个假设,原假设H0 不需证明的命题,一般是相等、无差别的结论,备择假设H1,与H0对立的命题,一般是不相等,有差别的结论)有三类假设第二步选择检验统计量给出拒绝域的形式。
根据原假设的参数检验统计量:对于给定的显著水平样本空间可分为两部分:拒绝域W 非拒绝域A拒绝域的形式由备择假设的形式决定H1: W为双边H1: W为单边H1: W为单边第三步:给出假设检验的显著水平第四步给出零界值C,确定拒绝域W有了显著水平按照统计量的分布可查表得到临界值,确定拒绝域。
例如:对于=0.05有的双边 W为的右单边 W为的右单边 W为第五步根据样本观测值,计算和判断计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受(计算P值 227页 p值由统计软件直接得出时拒绝,否则接受计算1-a的置信区间置信区间由统计软件直接得出统计量落入置信区间接受,否则接受)2)假设检验的两类错误及其发生的概率?答:第一类错误:当为真时拒绝,发生的概率为第二类错误:当为假时,接受发生的概率为3)假设检验结果判定的3种方式?答:1.计算统计量 Z 、 t 、当检验统计量的值落在W内时能拒绝,否则接受2.计算P值 227页 p值由统计软件直接得出时拒绝,否则接受3.计算1-a的置信区间置信区间由统计软件直接得出,落入置信区间接受,否则接受4)在六西格玛A阶段常用的假设检验有那几种?应用的对象是什么?答:连续型(测量的数据):单样本t检验 -----比较目标均值双样本t检验 -----比较两个均值方差分析 -----比较两个以上均值等方差检验 -----比较多个方差离散型(区分或数的数据):卡方检验 -----比较离散数2.设某种产品的指标服从正态分布,它的标准差σ=150,今抽取一个容量为26 的样本,计算得平均值为1 637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ = 1600。
统计学第七章、第八章课后题答案
统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为与置信水平成正比,在其他条件不变的情况下,置信水平越大,所其中: 2222α2222)(E z n σα=n z E σα2=需要的样本量越大;与总体方差成正比,总体的差异越大,所要求的样本量也越大;与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
MBA参数估计、假设检验参考答案
1.某公司雇用2 000名推销员,并希望估计其平均每年的乘车里程。
从过去的经验可知,通常每位推销员行程的标准差为5 000公里。
随机选取的25辆汽车样本的均值为14 000公里。
1)求出总体均值μ所需要的估计量;14 0002)确定总体均值μ95%的置信区间;(14000±1.96*5000/5)。
虽是小样本,但“从过去的经验可知,通常每位推销员行程的标准差为5 000公里”这句话,表明总体服从正太分布且标准差已知,所以用最基本的公式。
3)公司经理们认为均值介于13 000到15 000公里之间,那么该估计的置信度是多少?对应的Z在-1-+1之间,所以置信度为68.26%。
这里要注意的是应用均值的分布。
4)如果在3)的估计中希望有95%的置信水平,那么所要求的样本容量是多少。
96=1.962*50002/100022.生产隐形眼镜的某公司生产一种新的型号,据说其寿命比旧型号的寿命长。
请6个人对该新型眼镜做实验,得出平均寿命为4.6年,标准差为0.49年。
构造该新型眼镜的平均寿命90%的置信区间。
小样本且总体标准差未知,用t公式。
4.6±2.015*0.49/2.453.假设某厂家生产的可充电的电池式螺丝刀的使用寿命近似于正态分布。
对15个螺丝刀进行测试,并发现其平均寿命为8 900小时,样本标准差为500小时。
1)构造总体均值置信水平为95%的区间估计;8900±2.145*500/3.872)构造总体均值置信水平为90%的区间估计;8900±1.761*500/3.874.电话咨询服务部门在每次通话结束时都要记录下通话的时间。
从一个由16个记录组成的简单随机样本得出一次通话的平均时间为1.6分钟。
试求总体平均值的置信度为90%的置信区间。
已知总体服从标准差为0.7分钟的正态分布。
1.6±1.645*0.7/45.某仓库中有200箱食品,每箱食品均装100个。
考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析)
考研数学一(参数估计和假设检验)模拟试卷2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设为未知参数θ的无偏一致估计,且是θ2的( )A.无偏一致估计。
B.无偏非一致估计。
C.非无偏一致估计。
D.非无偏非一致估计。
正确答案:C解析:根据无偏估计和一致估计的概念可得的非无偏一致估计,故选C。
知识模块:参数估计2.设是取自总体X中的简单随机样本X1,X2,…,Xn的样本均值,则是μ的矩估计,如果( )A.X~N(μ,σ2)。
B.X服从参数为μ的指数分布。
C.P{X=m}=μ(1—μ)m—1,m=1,2,…。
D.X服从[0,μ]上均匀分布。
正确答案:A解析:若X~N(μ,σ2),则E(X)=μ,μ的矩估计为,故选A。
对于选项B,X服从参数为μ的指数分布,则E(X)=,μ的矩估计,对于选项C,X服从参数为μ的几何分布,E(X)=,μ的矩估计,对于选项D,E(X)=,μ的矩估计。
知识模块:参数估计3.总体均值μ置信度为95%的置信区间为,其含义是( )A.总体均值μ的真值以95%的概率落入区间。
B.样本均值以95%的概率落入区间。
C.区间含总体均值μ的真值的概率为95%。
D.区间含样本均值的概率为95%。
正确答案:C解析:根据置信区间的概念,故选C。
均值μ是一个客观存在的数,说“μ以95%的概率落入区间”是不妥的,所以不选A,而B、D两项均与μ无关,无法由它确定μ的置信区间。
知识模块:参数估计4.下列关于总体X的统计假设H0属于简单假设的是( )A.X服从正态分布,H0:E(X)=0。
B.X服从指数分布,H0:E(X)≥1。
C.X服从二项分布,H0:D(X)=5。
D.X服从泊松分布,H0:D(X)=3。
正确答案:D解析:A、B、C三项的假设都不能完全确定总体的分布,所以是复合假设,而D选项的假设可以完全确定总体分布,因而是简单假设,故选D。
概率论与数理统计实验实验3参数估计假设检验
概率论与数理统计实验实验3 参数估计假设检验实验目的实验内容直观了解统计描述的基本内容。
2、假设检验1、参数估计3、实例4、作业一、参数估计参数估计问题的一般提法X1, X2,…, Xn要依据该样本对参数作出估计,或估计的某个已知函数.现从该总体抽样,得样本设有一个统计总体,总体的分布函数向量). 为F(x, ),其中为未知参数( 可以是参数估计点估计区间估计点估计——估计未知参数的值区间估计——根据样本构造出适当的区间,使他以一定的概率包含未知参数或未知参数的已知函数的真?(一)、点估计的求法1、矩估计法基本思想是用样本矩估计总体矩.令设总体分布含有个m未知参数??1 ,…,??m解此方程组得其根为分别估计参数??i ,i=1,...,m,并称其为??i 的矩估计。
2、最大似然估计法(二)、区间估计的求法反复抽取容量为n的样本,都可得到一个区间,这个区间可能包含未知参数的真值,也可能不包含未知参数的真值,包含真值的区间占置信区间的意义1、数学期望的置信区间设样本来自正态母体X(1) 方差?? 2已知, ?? 的置信区间(2) 方差?? 2 未知, ?? 的置信区间2、方差的区间估计未知时, 方差?? 2 的置信区间为(三)参数估计的命令1、正态总体的参数估计设总体服从正态分布,则其点估计和区间估计可同时由以下命令获得:[muhat,sigmahat,muci,sigmaci] = normfit(X,alpha)此命令以alpha 为显著性水平,在数据X下,对参数进行估计。
(alpha缺省时设定为0.05),返回值muhat是X的均值的点估计值,sigmahat是标准差的点估计值, muci是均值的区间估计,sigmaci是标准差的区间估计.例1、给出两列参数?? =10, ??=2正态分布随机数,并以此为样本值,给出?? 和?? 的点估计和区间估计命令:r=normrnd(10,2,100,2);[mu,sigm,muci,sigmci]=normfit(r);[mu1,sigm1,muci1,si gmci1]=normfit(r,0.01);mu=9.8437 9.9803sigm=1.91381.9955muci=9.4639 9.584310.2234 10.3762sigmci=1.68031.75202.2232 2.3181mu1=9.8437 9.9803sigm1=1.91381.9955muci1=9.3410 9.456210.3463 10.5043sigmci1=1.6152 1.68412.3349 2.4346例2、产生正态分布随机数作为样本值,计算区间估计的覆盖率。
数理统计--参数估计、假设检验、方差分析(李志强) (3)讲解
教学单元案例: 参数估计与假设检验北京化工大学 李志强教学内容:统计量、抽样分布及其基本性质、点估计、区间估计、假设检验、方差分析 教学目的:统计概念及统计推断方法的引入和应用(1)理解总体、样本和统计量等基本概念;了解常用的抽样分布;(2)熟练掌握矩估计和极大似然估计等方法; (3)掌握求区间估计的基本方法; (4)掌握进行假设检验的基本方法; (5) 掌握进行方差分析的基本方法;(6)了解求区间估计、假设检验和方差分析的MA TLAB 命令。
教学难点:区间估计、假设检验、方差分析的性质和求法 教学时间:150分钟教学对象:大一各专业皆可用一、统计问题 引例例1 已知小麦亩产服从正态分布,传统小麦品种平均亩产800斤,现有新品种产量未知,试种10块,每块一亩,产量为:775,816,834,836,858,863,873,877,885,901问:新产品亩产是否超过了800斤?例2 设有一组来自正态总体),(2σμN 的样本0.497, 0.506, 0.518, 0.524, 0.488, 0.510, 0.510, 0.512. (i) 已知2σ=0.012,求μ的95%置信区间; (ii) 未知2σ,求μ的95%置信区间; (iii)求2σ的95%置信区间。
例3现有某型号的电池三批, 分别为甲乙丙3个厂生产的, 为评比其质量, 各随机抽取5只电池进行寿命测试, 数据如下表示, 这里假设第i 种电池的寿命),(.~2σμi i N X .(1) 试在检验水平下,检验电池的平均寿命有无显著差异? (2) 利用区间估计或假设检验比较哪个寿命最短.二 统计的基本概念: 总体、个体和样本(1)总体与样本总体 在数理统计中,我们将研究对象的某项数量指标的值的全体称为总体,总体中的每个元素称为个体比如,对电子元件我们主要关心的是其使用寿命.而该厂生产的所有电子元件的使用寿命取值的全体,就构成了研究对象的全体,即总体,显然它是一个随机变量,常用X 表示 为方便起见,今后我们把总体与随机变量X 等同起来看,即总体就是某随机变量X 可能取值的全体.它客观上存在一个分布,但我们对其分布一无所知,或部分未知,正因为如此,才有必要对总体进行研究.简单随机样本对总体进行研究,首先需要获取总体的有关信息. 一般采用两种方法:一是全面调查.如人口普查,该方法常要消耗大量的人力、物力、财力.有时甚至是不可能的,如测试某厂生产的所有电子元件的使用寿命. 二是抽样调查. 抽样调查是按照一定的方法,从总体X 中抽取n 个个体.这是我们对总体掌握的信息.数理统计就是要利用这一信息,对总体进行分析、估计、推断.因此,要求抽取的这n 个个体应具有很好的代表性.按机会均等的原则随机地从客观存在的总体中抽取一些个体进行观察或测试的过程称为随机抽样.从总体中抽出的部分个体,叫做总体的一个样本.从总体中抽取样本时,不仅要求每一个个体被抽到的机会均等,同时还要求每次的抽取是独立的,即每次抽样的结果不影响其他各次的抽样结果,同时也不受其他各次抽样结果的影响.这种抽样方法称为简单随机抽样.由简单随机抽样得到的样本叫做简单随机样本.往后如不作特别说明,提到“样本”总是指简单随机样本.从总体X 中抽取一个个体,就是对随机变量X 进行一次试验.抽取n 个个体就是对随机变量X 进行n 次试验,分别记为X1,X2,…,Xn.则样本就是n 维随机变量(X1,X2,…,Xn).在一次抽样以后, (X1,X2,…,Xn)就有了一组确定的值(x1,x2,…,xn),称为样本观测值.样本观测值(x1,x2,…,xn)可以看着一个随机试验的一个结果,它的一切可能结果的全体构成一个样本空间,称为子样空间.(2)样本函数与统计量设n x x x ,,,21 为总体的一个样本,称ϕϕ= (n x x x ,,,21 )为样本函数,其中ϕ为一个连续函数。
参数估计与假设检验
..
’. 参数估计与假设检验
一、实验目的
1、掌握正态总体和大样本下总体的参数估计和假设检验的方法;
2、了解其他参数估计和假设检验的大致操作步骤;
2、重点掌握单个总体均值的检验方法、掌握应用Excel计算P值的步骤。
二、实验内容
某机床厂加工一种零件,根据经验知道,该厂加工零件的椭圆度服从正态分布,其总
体均值为0.081mm,今换一种新机床进行加工,取200
个零件进行检验,得到椭圆度的均
值为0.076mm,样本标准差为0.025mm,问新机床加工零件的椭圆度总体均值与以前有无
明显差别。
根据以上内容写出假设检验的步骤。
三、实验步骤
由题中可知
μ0=0.081 mm σ=0.025mm n=200 =0.076mm
1 .提出原假设H0: μ=0.081mm,新机床加工零件的椭圆度总体均值与以前无明显差别
H1:μ ⎺0.081mm,新机床加工零件的椭圆度总体均值与以前有明显差别
2 .确定适当的统计量
3.规定显著性水平为
α=0.05
4 .计算检验统计量
5 、作出统计决策
由此我们得知Z a/2是由标准正态分布查表得到接受域与拒绝域相交的临界值。
决策时是用两者比较。
当Z 为正值时,接受域的范围是Z 〈Z a/2,当Z 为负值时,接受域的范围是Z 〉Z a/2.
由于Z=-2.83<Z a/2.=-1.96,计算出的z值落入拒绝域,所以拒绝H0。
即假设H1成立,新机床加工零件的椭圆度总体均值与以前有明显差别。
Matlab参数估计和假设检验:详解+实例
(3)极大似然估计:
原理:一个随机试验如有若干个可能的结果A,B,
C,...。若在一次试验中,结果A发生了,则有理由认为试 验条件对A出现有利,也即A出现的概率很大。
定义 给定样本观测值 挑选使似然函数 即选取 ,使
,在 的可能取值范围内 达到最大值的 作为 的估计值,
思想:用样本矩来替换总体矩 理论基础:大数定律
做法
1=1(1,2 ,,k )
2 =2 (1,2 ,,k )
k =k (1,2 ,,k )
ˆ1=1( A1, A2 ,, Ak ) ˆ2 =2 ( A1, A2 ,, Ak ) ˆk =k ( A1, A2 ,, Ak )
12==12((11,,22,,,,kk)) k =k (1, 2 ,, k )
这就要用到参数估计和假设检验的知识
一、参数估计
一、参数估计 1.点估计 (1)点估计的概念
总体X F(x; ),
未知参数 (1,2 ,,k )
利用样本( X1, X 2,, X n )来估计
估计量ˆ g( X1, X 2 ,, X n )
估计值ˆ g(x1, x2 ,, xn )
(2).矩估计
166.2 173.5 167.9 171.7 168.7 175.6 179.6 171.6 168.1 172.2
(1)试观察17岁城市男生身高属于那种分布,如何对其平均身高做出 估计? (2)又查到20年前同一所学校同龄男生的平均身高为168cm,根据 上面的数据回答,20年来17岁男生的身高是否发生了变化 ?
0 0 0
0 0 0
拒绝域
z z z z z z / 2 t t (n 1) t t (n 1) t t /2 (n 1)
生物统计学课后习题解答 李春喜
生物统计学课后习题解答李春喜生物统计学课后习题解答生物统计学是一门研究生物学数据分析和统计推断的学科,它在现代生物学研究中发挥着重要作用。
作为生物统计学的学习者,我们不仅需要掌握基本的统计概念和方法,还需要通过课后习题进行巩固和实践。
本文将对一些典型的生物统计学习题进行解答,帮助您更好地理解和应用生物统计学知识。
一、描述性统计解答1. 样本均值、中位数和众数有何区别?样本均值是指一组数据各个观测值之和除以观测值的个数,它代表了数据的集中趋势。
中位数是将数据按照大小排列后的中间值,它反映了数据的中间位置。
众数是指在一组数据中出现次数最多的数值,它表示数据的主要模式。
2. 什么是标准差?如何计算?标准差是衡量数据离散程度的一种统计量,它表示各个观测值与均值之间的差异程度。
标准差越大,表示数据的离散程度越大。
计算标准差的方法如下:a) 计算每个观测值与均值的差值;b) 将每个差值平方;c) 求平方和;d) 将平方和除以观测值的个数,再开平方。
二、参数估计解答1. 什么是参数估计?请举例说明。
参数估计是根据样本数据对总体参数进行估计的方法。
总体参数是指总体的均值、方差、比例等。
例如,我们想要估计某种药物的治疗成功率,可以通过从总体中取得一部分样本,计算样本中治愈的比例,然后以样本中的比例作为总体治愈成功率的估计值。
2. 什么是置信区间?如何计算?置信区间是用来估计总体参数真实值的范围。
置信区间由一个下限和一个上限组成,表示了总体参数估计值的可能范围。
计算置信区间的方法依赖于参数类型和样本大小,常用的方法有正态分布的置信区间和t分布的置信区间。
三、假设检验解答1. 什么是假设检验?请举例说明。
假设检验是一种统计方法,用于判断样本数据是否支持某个关于总体的假设。
假设检验首先假设一个原始假设(即零假设)和一个备择假设,然后通过计算样本数据得到的统计量和理论分布进行比较,判断是否拒绝原始假设。
例如,我们可以通过假设检验来判断某个新药物的疗效是否显著,原始假设可以是该药物无疗效,备择假设可以是该药物有疗效。
(完整word版)例题解答(区间估计与假设检验)
[例题]:在一项关于软塑料管的实用研究中,工程师们想估计软管所承受的平均压力。
他们随机抽取了9个压力读数,样本均值和标准差分别为3.62kg 和0.45。
假定压力读数近视服从正态分布,试求总体平均压力的置信度为0.99时的置信区间。
解: 因为,)1(~--n t nS X μ, 所以,αμαα-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-≤-≤--1)1()1(22n t n S X n t P 于是,总体平均压力μ的α-1置信区间为,⎥⎦⎤⎢⎣⎡-+--)1(),1(22n t n s x n t n s x αα 由题意知,9=n,62.3=x ,45.01=-n s ,99.01=-α3554.3)8()1(005.02==-t n t α,代入上式,得总体平均压力μ的99%置信区间为⎥⎦⎤⎢⎣⎡⨯+⨯-3554.3945.062.3,3554.3945.062.3=[3.12, 4.12][例题]:一个银行负责人想知道储户存入两家银行的钱数,他从两家银行各抽取了一个由25个储户组成的随机样本。
样本均值如下:第一家4500;第二家3250元。
根据以往资料数据可知两个总体服从方差分别为2500和3600的正态分布。
试求总体均值之差的置信度为0.95时的置信区间。
解: 因为,)1,0(~)()(2221212121N n n X X σσμμ+---,所以,ασσμμαα-=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧≤+---≤-1)()(222212121212z n n X X z P 于是,21μμ-的α-1置信区间为,()()⎥⎥⎦⎤⎢⎢⎣⎡++-+--222121221222121221,n n z x x n n z x x σσσσαα 由题意知,2521==n n ,45001=x ,32502=x ,250021=σ,360022=σ,95.01=-α96.1025.02==z z α,代入上式,得21μμ-的95%置信区间为[1219.4, 1280.6][例题]:某厂生产日光灯管。
考研数学一(参数估计和假设检验)模拟试卷3(题后含答案及解析)
考研数学一(参数估计和假设检验)模拟试卷3(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设X1,X2,…,Xn是取自总体X的简单随机样本,记E(X)=μ,D(X)=σ2,,D(S)>0,则( )A.S是σ的无偏估计。
B.S2是σ2的无偏估计。
C.是μ2的无偏估计。
D.是E(X2)的无偏估计。
正确答案:B解析:根据排除法逐项分析。
D(S)=E(S2)—[E(S)]2>0[E(S)]2≠E(S2)=σ2E(S)≠σ,故选B。
知识模块:参数估计2.设X1,X2,…,Xn是取自X~P(λ)的简单随机样本,则可以构造参数λ2的无偏估计量( )A. B. C. D. 正确答案:A解析:当T=Xi(Xi—1)时,故选A。
知识模块:参数估计3.已知总体X服从正态分布N(μ,σ2)(σ2已知),X1,X2,…,Xn是取自总体X的简单随机样本,均值为,则由P{a<U<b}=1—α,可以求得μ置信度为1—α的置信区间,其中a、b是( )A.满足的唯一实数。
B.满足的唯一实数。
C.满足的唯一实数。
D.满足P{U>b}+P{U<a}=α的任意实数。
正确答案:D解析:a,b应使P{a<U<b}=1—αa,b应满足P{U≥b}+P{U≤a}=α,故选D。
知识模块:参数估计填空题4.设X1,X2,…,Xn是取自总体X的简单随机样本,X的概率密度函数为f(x)=,—∞<x<+∞,则λ的最大似然估计量= ________。
正确答案:解析:似然函数两端取对数,可得知识模块:参数估计5.已知总体X服从参数为λ的泊松分布,X1,X2,…,Xn是取自总体X 的简单随机样本,其样本均值和样本方差分别为,S2,如果+(2—3a)S2是λ的无偏估计,则a= _________。
正确答案:解析:根据=λ求a。
计量经济学(第四版)习题及参考答案解析详细版
计量经济学(第四版)习题参考答案潘省初第一章 绪论1.1 试列出计量经济分析的主要步骤。
一般说来,计量经济分析按照以下步骤进行:(1)陈述理论(或假说) (2)建立计量经济模型 (3)收集数据 (4)估计参数 (5)假设检验 (6)预测和政策分析 1.2 计量经济模型中为何要包括扰动项?为了使模型更现实,我们有必要在模型中引进扰动项u 来代表所有影响因变量的其它因素,这些因素包括相对而言不重要因而未被引入模型的变量,以及纯粹的随机因素。
1.3什么是时间序列和横截面数据? 试举例说明二者的区别。
时间序列数据是按时间周期(即按固定的时间间隔)收集的数据,如年度或季度的国民生产总值、就业、货币供给、财政赤字或某人一生中每年的收入都是时间序列的例子。
横截面数据是在同一时点收集的不同个体(如个人、公司、国家等)的数据。
如人口普查数据、世界各国2000年国民生产总值、全班学生计量经济学成绩等都是横截面数据的例子。
1.4估计量和估计值有何区别?估计量是指一个公式或方法,它告诉人们怎样用手中样本所提供的信息去估计总体参数。
在一项应用中,依据估计量算出的一个具体的数值,称为估计值。
如Y就是一个估计量,1nii YY n==∑。
现有一样本,共4个数,100,104,96,130,则根据这个样本的数据运用均值估计量得出的均值估计值为5.107413096104100=+++。
第二章 计量经济分析的统计学基础2.1 略,参考教材。
2.2请用例2.2中的数据求北京男生平均身高的99%置信区间NS S x ==45=1.25 用α=0.05,N-1=15个自由度查表得005.0t =2.947,故99%置信限为 x S t X 005.0± =174±2.947×1.25=174±3.684也就是说,根据样本,我们有99%的把握说,北京男高中生的平均身高在170.316至177.684厘米之间。
实验三 用EXCEL进行参数估计和假设检验
实验三用EXCEL进行参数估计和假设检验一、用EXCEL进行区间估计数据:某百货公司6月份各天的销售额数据如下:(单位:万元)求在概率90%的保证下,顾客平均消费额的估计区间。
参数估计数据及结果:从上面的结果我们可以知道,该月平均销售额的置信下限为270.23,置信上限为277.97。
二、用EXCEL进行假设检验例题1:假设有A、B两个品牌的电池,现分别从这两个品牌电池中随机抽取10只进行检测,获得下表数据。
它们的使用寿命方差相等为30,试问在0.1的显著性水平下,可否认为两个品牌的平均使用寿命存在显著差异?据上,提出原假设:A、B两个品牌的电池使用寿命不存在显著差异,备择假设:A、B两个品牌的电池使用寿命存在显著差异。
进行Z检验-双样本平均差检验:得如下所示结果:此次检验属于双尾检验,P=01101282872 > 显著性水平0.1,所以在0.1的显著性水平下不能拒绝原假设,即可以认为两个品牌的平均使用寿命不存在显著性差异。
例题2:用某种药物治疗9例再生障碍性贫血患者,治疗前后患者血红蛋白变化的数据如下表所示。
问在0.05的显著性水平下,能否认为这种药物至少可以使血红蛋白数量增加15个单位?提出原假设:这种药物不能使患者血红蛋白至少增加15个单位;备择假设:这种药物可以使患者的血红蛋白至少增加15个单位。
由于总体平均差已知,选用t-检验:平均值的成对二样本分析:得结果如下:由于显著性水平为0.05大于P值0.00037558,因此要拒绝原假设,即可以认为这种药物至少能使血红蛋白数量增加15个单位。
例题3:某研究所试验出一批新品种,想知道新品种产量是否比老品种产量有显著提高,随机抽取新老品种产量各9个,数据如下(单位:千克)。
试问,在0.05的显著性水平下,可否认为新品种比老品种的产量有显著提高?据条件,提出原假设:新品种比老品种产量没有显著提高;备择假设:新品种比老品种产量显著提高。
得出t检验:双样本异方差分析结果如下:在显著性水平为0.05的单侧检验下,P值为0.097038594,大于显著性水平,应拒绝原假设,即可以认为在0.05的显著性水平下,新品种比老品种的产量有显著提高。
假设检验-例题讲解
假设检验一、单样本总体均值的假设检验 .................................................... 1 二、独立样本两总体均值差的检验 ................................................ 2 三、两匹配样本均值差的检验 ........................................................ 4 四、单一总体比率的检验 ................................................................ 5 五、两总体比率差的假设检验 .. (7)一、单样本总体均值的假设检验例题:某公司生产化妆品,需要严格控制装瓶重量。
标准规格为每瓶250 克,标准差为1 克,企业的质检部门每日对此进行抽样检验。
某日从生产线上随机抽取16 瓶测重,以95%的保证程度进行总体均值的假设检验。
x t μ-=data6_01 样本化妆品重量 SPSS 操作:(1)打开数据文件,依次选择Analyze (分析)→Compare Means (比较均值)→One Sample T Test (单样本t 检验),将要检验的变量置入Test Variable(s)(检验变量);(2)在Test Value (检验值)框中输入250;点击Options (选项)按钮,在Confidence Interval(置信区间百分比)后面的框中,输入置信度(系统默认为95%,对应的显著性水平设定为5%,即0.05,若需要改变显著性水平如改为0.01,则在框中输入99 即可);(3)点击Continue(继续)→OK(确定),即可得到如图所示的输出结果。
图中的第2~5 列分别为:计算的检验统计量t 、自由度、双尾检验p-值和样本均值与待检验总体均值的差值。
使用SPSS 软件做假设检验的判断规则是:p-值小于设定的显著性水平Ɑ时,要拒绝原假设(与教材不同,教材的判断标准是p<Ɑ/2)。
考研数学一(参数估计和假设检验)模拟试卷4(题后含答案及解析)
考研数学一(参数估计和假设检验)模拟试卷4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.若总体X服从正态分布N(μ,1),X1,X2,X3是来自X的样本,则下列估计量是μ的有偏估计的是( )正确答案:C解析:根据期望的性质可得根据无偏估计的定义知,选项(A)、(B)、(D)都是无偏估计。
故选(C)。
知识模块:参数估计2.X1,X2,X3,X4是来自总体X的样本,若总体X的数学期望E(X)存在,则下列四个选项中不是总体X的数学期望E(X)的无偏估计的是( ) A.(X1+X2+X3)。
B.(X1+X2+X4)。
C.(X1+X4)。
D.X2正确答案:A解析:对于(A),E[(X1+X2+X3)]=[E(X1)+E(X2)+E(X3)]=E(X),故选项(A)不是数学期望E(X)的无偏估计。
对于(B)、(C)、(D),E[(X1+X2+X4)]=[E(X1)+E(X2)+E(X4)]=E(X),E[(X1+X4)]=[E(X1)+E(X4)]=E(X),E(X2)=E(X),故选项(B)、(C)、(D)都是数学期望E(X)的无偏估计。
故选(A)。
知识模块:参数估计3.已知总体X服从正态分布N(μ,σ2)(σ2已知),X1,X2,…,Xn是取自总体X的简单随机样本,均值为,如果记U=,则由P{a<U<b}=1一α,可以求得μ的置信水平为1一α的置信区间,其中a,b是( )A.满足P{U>b}=,P{U>a}=1一的唯一实数。
B.满足P{ U>b}=,P{U<a}=的唯一实数。
C.满足P{ U>b}=,P{U<a}=α的唯一实数。
D.满足P{U>b}+P{U<a}=α的任意实数。
正确答案:D解析:由于a、b需满足P{a<U<b}=1一α,即a、b应满足P{U≥b}+P{U ≤a}=α。
故选(D)。
知识模块:参数估计4.设n个随机变量X1,X2,…,Xn独立同分布,且D(Xi)=σ2(σ>0),,则( ) A.S是σ的无偏估计量。
假设检验习题答案
单击此处添加副标题
汇报人姓名 汇报日期
目 录CATALOGUE
1 假设检验的基本概念 2 参数假设检验 3 非参数假设检验 4 习题答案与解析
ONE
1
假设检验的基本概念
定义与目的
判断该假设是否成 立,从而做出接受 或拒绝该假设的决 策。
假设检验是一种统计方法,用于根据样本数据对 某一假设进行评估。
假设检验的类型
单侧检验 只关注某一方向的假设是否成立。
参数检验 对总体参数进行假设检验。
双侧检验 同时关注两个方向的假设是否成立。
非参数检验 不涉及总体参数的假设检验。
ONE
2
参数假ቤተ መጻሕፍቲ ባይዱ检验
单参数假设检验
在单参数假设检验 中,我们通常会对 一个总体参数提出 假设,然后使用样 本数据来检验这个 假设。例如,我们 可能会假设一组数 据的平均值等于某 个值,然后使用样 本数据来检验这个 假设是否成立。
据是否符合正态分布、泊松分布等。
ONE
4
习题答案与解析
习题一答案与解析
答案:D
logo
解析:根据题目给出的数据,我们首先计 算出平均值和标准差。然后,利用假设检 验的方法,我们计算出Z统计量并确定其所 属的临界区间。根据临界区间的结果,我 们判断原假设是否被拒绝,并选择相应的 答案。
习题一答案与解析
秩次检验
详细描述
秩次检验将数据按照大小排序,并赋予每个数据 一个秩次值。然后比较两组数据的秩次分布是否 相同,以判断它们的相对大小关系。如果两组数 据的秩次分布相似,则可以认为它们的相对大小 关系相同;如果秩次分布不同,则可以认为它们 的相对大小关系不同。
秩次检验是一种非参数统计方法,用于比较两组 数据的相对大小关系。
参数估计和假设检验习题解答讲解
参数估计和假设检验习题1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?0.05,α=26,n =0:1600H μ=,即,以95%的把握认为这批产品的指标的期望值μ为1600.2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。
问,新工艺上浆率能否推广(α=0.05)?解: 012112:, :,H H μμμμ≥<3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠,即, 以95%的把握认为新工艺对此零件的电阻有显著影响.4.有一批产品,取50个样品,其中含有4个次品。
在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)?解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==,50,n =由检验统计量0.9733Z ===<1.65,接受H 0:p ≤0.05.即, 以95%的把握认为p ≤0.05是成立的.5.某产品的次品率为O.17,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=0.05)?解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n =0.950.05, 1.65z α=-=-,由检验统计量4001.5973i x npZ -===-∑>-1.65, 接受0:0.17H p ≥,即, 以95%的把握认为此项新工艺没有显著地提高产品的质量.6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)?解: 01:12100, :12100,H H μμ=≠总体标准差σ未知,拒绝域为2(1)t t n α>-,24,n = x =11958,s =323,0.0250.05,(23) 2.0687t α==, 由检验统计量2.1537t ===>2.0687,拒绝0:12100H μ=,接受1:12100,H μ≠ 即, 以95%的把握认为试验物的发热量的期望值不是12100.7.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参数估计和假设检验习题1.设某产品的指标服从正态分布,它的标准差σ已知为150,今抽了一个容量为26的样本,计算得平均值为1637。
问在5%的显著水平下,能否认为这批产品的指标的期望值μ为1600?0.05,α=26,n =0:1600H μ=,即,以95%的把握认为这批产品的指标的期望值μ为1600.2.某纺织厂在正常的运转条件下,平均每台布机每小时经纱断头数为O.973根,各台布机断头数的标准差为O.162根,该厂进行工艺改进,减少经纱上浆率,在200台布机上进行试验,结果平均每台每小时经纱断头数为O.994根,标准差为0.16根。
问,新工艺上浆率能否推广(α=0.05)?解: 012112:, :,H H μμμμ≥<3.某电器零件的平均电阻一直保持在2.64Ω,改变加工工艺后,测得100个零件的平均电阻为2.62Ω,如改变工艺前后电阻的标准差保持在O.06Ω,问新工艺对此零件的电阻有无显著影响(α=0.05)?解: 01: 2.64, : 2.64,H H μμ=≠已知标准差σ=0.16,拒绝域为2Z z α>,取0.02520.05, 1.96z z αα===,100,n =由检验统计量 3.33 1.96Z ===>,接受1: 2.64H μ≠,即, 以95%的把握认为新工艺对此零件的电阻有显著影响.4.有一批产品,取50个样品,其中含有4个次品。
在这样情况下,判断假设H 0:p ≤0.05是否成立(α=0.05)?解: 01:0.05, :0.05,H p H p ≤>采用非正态大样本统计检验法,拒绝域为Z z α>,0.950.05, 1.65z α==,50,n =由检验统计量0.9733Z ===<1.65,接受H 0:p ≤0.05.即, 以95%的把握认为p ≤0.05是成立的.5.某产品的次品率为O.17,现对此产品进行新工艺试验,从中抽取4O0件检验,发现有次品56件,能否认为此项新工艺提高了产品的质量(α=0.05)?解: 01:0.17, :0.17,H p H p ≥<采用非正态大样本统计检验法,拒绝域为Z z α<-,400,n =0.950.05, 1.65z α=-=-,由检验统计量4001.5973i x npZ -===-∑>-1.65, 接受0:0.17H p ≥,即, 以95%的把握认为此项新工艺没有显著地提高产品的质量.6.从某种试验物中取出24个样品,测量其发热量,计算得x =11958,样本标准差s =323,问以5%的显著水平是否可认为发热量的期望值是12100(假定发热量是服从正态分布的)?解: 01:12100, :12100,H H μμ=≠总体标准差σ未知,拒绝域为2(1)t t n α>-,24,n = x =11958,s =323,0.0250.05,(23) 2.0687t α==, 由检验统计量2.1537t ===>2.0687,拒绝0:12100H μ=,接受1:12100,H μ≠ 即, 以95%的把握认为试验物的发热量的期望值不是12100.7.某食品厂用自动装罐机装罐头食品,每罐标准重量为500克,每隔一定时间需要检查机器工作情况。
现抽得10罐,测得其重量为(单位:克):195,510,505,498,503,492,ii02,612,407,506.假定重量服从正态分布,试问以95%的显著性检验机器工作是否正常?解: 01:500 :500H vs H μμ=≠,总体标准差σ未知,拒绝域为2(1)t t n α>-,10,n =经计算得到x =502, s =6.4979,取0.0250.05,(9) 2.2622t α==,由检验统计量0.9733t ===<2.2622, 接受0:500 H μ= 即, 以95%的把握认为机器工作是正常的.8.有一种新安眠药,据说在一定剂量下,能比某种旧安眠药平均增加睡眠时间3小时,根据资料用某种旧安眠药时,平均睡眠时间为20.8小时。
标准差为1.6小时,为了检验这个说法是否正确,收集到一组使用新安眠药的睡眠时间为26.7,22.O ,24.1,21.O ,27 .2,25.0,23.4。
试问:从这组数据能否说明新安眠药已达到新的疗效(假定睡眠时间服从正态分布,α=0.05)。
解: 01:23.8 :23.8H vs H μμ≥<,已知总体标准差σ =1.6,拒绝域为Z z α<-,7,n =经计算得到x =24.2,取0.950.05, 1.65z α=-=-,由检验统计量0.6614x Z ===>-1.65, 接受0:23.8H μ≥即, 以95%的把握认为新安眠药已达到新的疗效.9.测定某种溶液中的水份,它的l0个测定值给出x =0.452%,s =O.037%,设测定值总体服从正态分布,μ为总体均值,σ为总体的标准差,试在5%显著水平下,分别检验假(1)H 0: μ=O.5%; (2)H 0: σ=O.04%。
解:(1)H 01: μ=O.5%,11:0.5%H μ≠, 总体标准差σ未知,拒绝域为2(1)t t n α>-,10,n =x =0.452%,s =O.037%,取0.0250.05,(9) 2.2622t α==,由检验统计量4.102t ===>2.2622,拒绝H 0: μ=O.5%, (2) H 02:σ=0.04%, H 12:σ≠0.04%,拒绝域为2222122(1) (1)n n ααχχχχ-≤-≥-或,10,n =取α=0.05,2220.9750.025(9) =2.7 (9)19.023χχχ≥=,,由检验统计量22222(1)(101)0.000377.70060.0004n s χσ--===,即22.77.700619.023χ<=<,接受H 02:σ=0.04%.10.有甲、乙两个试验员,对同样的试样进行分析,各人试验分析结果见下表(分析结果服从正态分布解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F Fn n F F n n αα-≤--≥--或,128,n n ==取α=0.05, 0.9750.0250.0251(7,7)0.2004 , (7,7) 4.99(7,7)F F F ===,经计算22120.2927,0.2927,s s ==由检验统计量2212/0.2927/0.29271F s s ===,接受220112:,H σσ=(2) 02121212:, :H H μμμμ=≠拒绝域为122(2)t t n n α>+-,128,n n ==0.0250.05,(14) 2.1448t α==,并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=0.2927, w s =0.5410, 由检验统计量-0.6833t ===<2.1448, 接受0212:,H μμ=即, 以95%的把握认为甲、乙两试验员试验分析结果之间无显著性的差异.11.为确定肥料的效果,取1000株植物做试验。
在没有施肥的100株植物中,有53株长势良好;在已施肥的900株中,则有783株长势良好,问施肥的效果是否显著(α=O.01)?解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F Fn n F F n n αα-≤--≥--或,取α=0.01,12100,900,n n ==0.9950.0050.0051(99,899)0.7843 , (99,899) 1.3(899,99)F F F ===,计算22125353783783(1)0.2491,(1)0.1131,100100900900s s =⨯-==⨯-=由检验统计量 2212/0.2491/0.1131 2.2025F s s ===, 拒绝220112:,H σσ=(2) 02121212:, :H H μμμμ≤>拒绝域为12(2)t t n n α>+-,12100,900,n n ==0.010.01,() 2.4121t α=∞≥并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=0.1266, w s =0.3558, 由检验统计量-9.0656x y t ===<2.4121, 接受0212:,H μμ≤即, 以95%的把握认为施肥的效果有显著性的差异.(备注: 0.005(99,899)F =1.43+(1.43-1.69)*0.5=1.3, 0.025(899,99)F =1.36+(1.36-1.53)*0.5=1.275)12.在十块地上同时试种甲、乙两种品种作物,设每种作物的产量服从正态分布,并计算得x =30.97,y =21.79,x s =26.7,y s =12.1。
这两种品种的产量有无显著差别(α=O.01)?解:(1)222201121112:, :,H H σσσσ=≠拒绝域为1212122(1,1) (1,1)F Fn n F F n n αα-≤--≥--或,1210,n n ==取α=0.01, 0.9950.0050.0051(9,9)0.1529 , (9,9) 6.54(9,9)F F F ===,有题设22712.89,146.41,x y s s ==由检验统计量2212/712.89/146.41 4.8691F s s ===, 接受220112:,H σσ=(2) 02121212:, :H H μμμμ≥<,拒绝域为12(2)t t n n α<-+-,0.010.01,(18) 2.5524t α==-,1210,n n ==并样本得到222112212(1)(1)2wn s n s s n n -⨯+-⨯=+-=(9×712.89+9×146.41)/18=429.6500, w s =20.7280, 由检验统计量0.9903x y t ===>-2.5524, 接受0212:,H μμ≥即, 以95%的把握认为此两品种作物产量有显著差别,并且是第一种作物的产量显著高于第二种作物的产量.13.从甲、乙两店备买同样重量的豆,在甲店买了10次,算得y =116.1颗,1021()i i y y =-∑=1442;在乙店买了13次,计算x =118颗,1321()i i x x =-∑=2825。