平均数的应用题及答案
小学四五年级上下册《平均数的意义》应用题大全解决问题知识巩固测试题+答案

《平均数的意义》应用题大全+答案
1、李红期末考试的5门成绩分别得分:95、87、9
2、98、93。
李红这5门功课的平均分是多少?
2、春节期间,动物园免费开放,第一天接待游客200人,第二天上午接待130人,第二天下午接待180人,这两天平均每天接待多少人?
3、小明语文数学的平均分是93分,后来英语考了92分,科学考了90分。
他这4门功课的平均分是多少分?
4、工人竖式做一批零件,共用了3小时,前1小时做46个,后2小时共做74个,他平均每小时做多少个?
5、李明期中考试中,语文、数学的平均分为89分,英语的平均分公布后,平均分提高2分。
李明英语考了多少分?
6、五个数的平均数是40,如果把这五个数排成一列,那么前三个数的平均数是42,后三个数的平均数是41。
问中间的一个数是多少?
7、幼儿园小朋友叠星星,
小明叠了7个,小红叠了9个,小花和小张一起叠了12个。
平均每人叠多少个星星?
8、同学们舞蹈比赛,第一组有18人,第二组有14人,要想让两组人数同样多,应该从第一组中调出多少人给第二组? 9、实验室用4个同样的杯子盛水,水面的高度分别是8厘米、5厘米、4厘米和3厘米。
这四杯水面的平均高度是多少厘米?
参考答案:
1、93
2、255人
3、92
4、40
5、95
6、49
7、7
8、2
9、5。
平均数应用题

3;小红前3天每天糊纸盒7个,后4天一共糊纸盒 63个,小红这星期平均每天糊纸盒多少个?
1、、小英期中考试语文90分,数学 分,英语 分, 、、小英期中考试语文 分 数学96分 英语93分 、、小英期中考试语文 三门功课的平均分是多少? 三门功课的平均分是多少? 2、、一个小组有7个同学,他们的体重分别是 千 、、一个小组有 个同学 他们的体重分别是39千 、、一个小组有 个同学, 千克, 千克 千克, 千克 千克, 千克 千克, 千克 千克, 克,36千克,37千克,40千克,34千克,38千克, 千克 35千克。这个小组的平均体重是多少千克? 千克。 千克 这个小组的平均体重是多少千克? 3、小强投掷垒球,掷了三次,成绩分别是:28米, 、小强投掷垒球,掷了三次,成绩分别是: 米 29米,27米。求小强投掷垒球的平均成绩。 米 米 求小强投掷垒球的平均成绩。
1;甲乙两地相距90千米,一辆汽车从甲地到乙 地用了2.4小时,沿原路返回用了3.6小时,这辆 汽车往返甲乙两地的平均速度是多少?
(90+90)÷(2.4+3.6)=30(千米)
答;这辆汽车往返甲乙两地的平均速度是30千米
根据算式说出道理:
植树节同学们植树,六年级 人共植 植树节同学们植树,六年级50人共植 五年级每个年级48人共 树120棵,四、五年级每个年级 人共 棵 植树180棵。 植树 棵
1、小华有邮票10张,小青有的邮票数是小 、小华有邮票 张 华的3倍 平均每人有邮票多少张? 华的 倍。平均每人有邮票多少张?
判断: 判断: 1、四(1)班平均身高 、 厘米, )班平均身高141厘米,四(2)班平均 厘米 ) 身高139厘米 小明在四( ) 厘米。 小华在四( ) 身高 厘米。小明在四(1)班,小华在四(2) 所以小明比小华高。 班,所以小明比小华高。……………( ) × ( 2、一条河的平均水深为145厘米,小强的身高为 、一条河的平均水深为 厘米 厘米, 150厘米,所以小强过河没有危险。………(×) 厘米, 厘米 所以小强过河没有危险。 (
平均数应用题

平均数应用题(一)平均数在我们的生活中经常用到,比如,有两块田地(面积不一样大),秋收完毕后,为了比较两块地中哪一块的产量高,人们就要计算出每一块地的平均产量来比较;像求平均亩产量,平均分数,平均速度都是求平均数。
计算平均数时,用总数量除以相应的总份数,简要地可以写成:平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数一. 典型例题例1. 四年级乒乓球队的同学测量身高,其中两个同学身高153厘米,一个同学身高152厘米,有两个同学身高149厘米,还有两个同学身高147厘米,求四年级乒乓球队同学的平均身高是多少厘米?分析与解:要求球队的平均身高,要先求出球队身高总和及总人数:(厘米)除了这种方法外,还可以采用“移多补少”的方法求平均数。
这七个人的身高分别是153 153 152 149 149 147 147把多的补给少的,直到每人都相等为止,这同样多的身高数就是这七个人的平均身高。
(150厘米)方法三:以最少的(147厘米)为标准,把多余的合起来再均分。
(厘米)答:四年级乒乓球队同学的平均身高是150厘米。
例2. 前进机床厂有三个车间,一车间有120名工人,月生产机床7200台,二车间有114名工人,月生产机床7068台,三车间有140名工人,月产机床10042台,求三个车间平均每个工人月产量是多少?分析与解:先求出三个车间的月总产量,再求出三个车间的总人数。
三个车间的月总产量除以总人数,就可得出三个车间平均每个工人的月产量。
=65(台)答:三个车间平均每个工人的月产量为65台。
例3. 小明参加数学考试,前两次的平均分是85分,后三次的平均分数是90分,问小明前后几次考试的平均分数是多少?分析与解:利用前两次考试的平均分数,可以求出前两次考试的总分数。
同理,也可以求出后三次考试的总分数,然后用前后几次考试的总分数除以总次数就是所求的平均分数,列式计算如下:(分)答:小刚前后几次考试的平均分数是88分。
小学数学四年级 平均数问题应用题 PPT带答案

(25+35)÷2=30(元) 答:艾小米买这些学习用品平均每天花30元。
例题2 李庄小学三年级四个班,一班、二班两个班各有学生42人,三班、四班两个
班共有学生88人,三年级平均每班有多少人?
【分析】平均数=总数÷总份数。
(42×2+88)÷4=43(人) 答:三年级平均每班有43人。
例题1 在一次单元测验中,高小帅的三个好朋友的成绩分别是100分、89分、90分,
那么这三个好朋友的平均分是多少?
【分析】平均数=总数÷总份数。
(100+89+90)÷3=93(分) 答:这三个好朋友的平均分是93分。
练习1 在这个周末的两天里,艾小米每天都去文具店买了学习用品。她在周六花了
25元,在周日花了35元,那么艾小米买这些学习用品平均每天花了多少钱?
练习2 甲筐有梨32千克,乙筐有梨38千克,丙、丁筐共有梨50千克,平均每筐多少
千克?
【分析】平均数=总数÷总份数。
(32+38+50)÷4=30(千克) 答:平均每筐30千克。
例题3 李明在一个星期里面,前4天平均每天做口算题28道,后3天平均每天做42道,
这星期李明平均每天做多少道?
【分析】平均数=总数÷总份数。
(28×4+42×3)÷(4+3)=34(道) 答:这星期李明平均每天做34道。
练习3 一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正
好读完,这个同学平均每天读多少页?
【分析】平均数=总数÷总份数。
(25×4+40×6)÷(4+6)=34(页) 答:这个同学平均每天读34页。
小学奥数平均数应用题练习100题及答案

小学奥数应用题之平均数问题练习100题附答案(1)期末考试结束了,四(1)班的8个同学的数学成绩分别是85分、82分、95分、90分、88分、80分、85分、83分。
这8个同学的平均分是多少分?(2)小明、小红等6名同学年龄分别是12、13、14、12、14、13岁,他们的平均年龄是多少?(3)学校四年级学生分两批外出活动,第一批26人,第二批是第一批的2倍。
平均每批有多少人?(4)水果店有5箱苹果,每箱的重量分别是:32,40,24,36,33千克。
问:平均每箱苹果重多少千克?(5)小李5月份1~10日内完成了一批零件的加工任务,他每天加工的个数分别是:93,87,95,97,96,89,87,94,93,89个。
问:小李5月份上旬平均每天加工多少个零件?(6)气象小组每天早上8∶00测得的一周气温如下:13℃、13℃、13℃、14℃、15℃、14℃、16℃,求一周的平均气温。
(7)小刘参加期末考试,数学96分,数学与语文的平均分是95分,小刘语文考了多少分?(8)从山顶到山脚的路长36千米,一辆汽车上山,需要4小时到达山顶,下山沿原路返回,只用2小时到达山脚。
求这辆汽车往返的平均速度。
(9)某商店第一天卖了56千克的水果,第二天也卖了一些水果。
这两天平均每天卖60千克,问第二天卖了多少千克的水果?(10)敬老院有8个老人,他们的年龄分别是78岁、76岁、77岁、81岁、78岁、78岁、76岁、80岁。
求这8个老人的平均年龄。
(11)连续7个奇数的平均数是25。
问:这7个奇数最大的是几?(12)学校排练舞蹈节目,在三年级以上同学中选演员,选出的18位女生平均身高150厘米,12位男生平均身高160厘米,求舞蹈队员的平均身高?(13)寒假里面小雨用14天看完一本书,前6天她看了150页。
后8天她每天看了32页。
问:小雨平均每天看多少页?(14)电视机厂四月份前10天共生产电视机3300台。
后20天共生产电视机6300台,这个月平均每天生产电视机多少台?(15)小强家离学校有1200米,早上上学,他从家到学校用了15分钟,中午放学,从学校到家用了10分钟,求小强往返的平均速度。
四年级数学下册求平均数应用题

(1)小红期中考试语文、数学、英语三门的平均分是91分,语文和英语平均分是89分,数学是多少分?解:91×3-89×2=273-178=95(分)答:小红数学得了95分.(2)王小军参加4门学科测试,语文得了93分,其余3门学科的平均分是89分。
他这4门学科的平均成绩是多少分?(89×3+93)÷4=360÷4=90(分)答:他这4门学科的平均成绩是90分。
(3)小梅做跳绳练习,第一次跳了67下,第二次跳了76下,要想三次平均成绩达到80下,她第三次要跳多少下?解:80×3-(67+76)=240-143=97(下)答:她第三次要跳97下.(4)小华跳绳,每一次跳了67下,第二次跳了76下,第三次跳了97下,小华三次跳绳的平均成绩是多少下?解:(95+101+68)÷3=264÷3=88(下)答:平均每次跳了88下.(5)植树节少先队员种树,第一天种了180棵、第二天、第三天共种了315棵,平均每天种多少棵?165棵.解:(180+315)÷3=495÷3=165(棵)答:平均每天种165棵.(6)某修路队修一条公路,前3天每天修了120米,后2天共修了600米,正好修完.这个修路队平均每天修路多少米?解:(120×3+600)÷(3+2)=960÷5=192(米)答:这个修路队平均每天修路192米.(7)一个同学读一本故事书,前4天每天读25页,以后每天读40页,又读了6天正好读完,这个同学平均每天读多少页?解:(25×4+40×6)÷(6+4)=(100+240)÷10=340÷10=34(页)答:这个同学平均每天读34页.(8)我们学校有六个年级,每个年级有5个班,平均每个班捐图书24本,全校一个捐图书多少本?解:24×5×6=120×6=720(本)答:全校一共捐书720本.(9)天津到济南的铁路长357千米,一列快车从天津开出,同时一辆慢车从济南开出,两车相向而行,经过3小时相遇.快车平均每小时行79千米,慢车平均每小时行多少千米?解:357÷3-79=119-79=40(千米)答:慢车平均每小时行40千米.。
初中数学上册平均数计算练习35题(含答案)

初中数学上册平均数计算练习35题(含答
案)
本文档提供了初中数学上册平均数计算练的35个题目及其答案。
以下是每个题目的描述和解答:
1. 题目:某班级有30名学生,他们的身高分别为160cm、165cm、170cm、158cm......。
请计算这个班级学生的平均身高。
解答:将所有学生的身高相加,然后除以学生人数即可得到平均身高。
2. 题目:小明连续7天每天的运动里程分别为3km、4km、
5km、6km、7km、8km、9km。
请计算这7天的平均运动里程。
解答:将连续7天的运动里程相加,然后除以7即可得到平均运动里程。
3. 题目:某家庭连续5个月的水费分别为100元、120元、150元、90元、110元。
请计算这5个月的平均水费。
解答:将连续5个月的水费相加,然后除以5即可得到平均水费。
......
35. 题目:某地区过去10年的年平均温度分别为20摄氏度、22摄氏度、19摄氏度、21摄氏度......。
请计算这个地区的年平均温度。
解答:将过去10年的年平均温度相加,然后除以10即可得到年平均温度。
本文档提供了35个平均数计算练习的题目和答案,希望对初中数学学习有所帮助。
平均数的应用题

平均数的应用题一、某班级有10名学生参加了数学竞赛,他们的分数各不相同。
已知这10名学生的平均分为85分,若去掉最高分,则平均分变为80分。
问最高分是多少分?A. 95分B. 90分C. 100分D. 85分(答案)C二、某公司五名员工的月薪分别为:3000元、3500元、4000元、4500元和6000元。
后来公司决定给每名员工加薪500元,加薪后员工的平均月薪是多少?A. 3500元B. 4000元C. 4200元D. 4500元(答案)D三、某校篮球队12名队员的平均身高是180厘米,其中一名队员的身高是195厘米。
如果去掉这名队员,剩余队员的平均身高会是多少?A. 175厘米B. 178厘米C. 181厘米D. 无法确定(答案)B四、某班级有20名学生,他们的数学平均成绩是75分。
后来老师发现计算错误,将一名学生的成绩60分误算为90分。
纠正后,全班的平均成绩应为多少分?A. 73.5分B. 74分C. 74.5分D. 75分(答案)C五、某城市五天的平均气温为20摄氏度,其中前四天的平均气温为19摄氏度。
问第五天的气温是多少摄氏度?A. 19摄氏度B. 20摄氏度C. 21摄氏度D. 25摄氏度(答案)C六、某小组有8名成员,他们的年龄各不相同。
已知这8名成员的平均年龄为25岁,若去掉年龄最小的成员,则平均年龄变为26岁。
问年龄最小的成员多少岁?A. 16岁B. 17岁C. 18岁D. 19岁(答案)A七、某班级有30名学生,他们的英语平均成绩是80分。
后来转入5名新学生,全班的平均成绩变为78分。
问这5名新学生的平均成绩是多少分?A. 68分B. 70分C. 72分D. 74分(答案)C八、某公司10名员工的月薪平均数为5000元,其中一名员工的月薪为8000元。
若将这名员工的月薪排除在外,其他员工的月薪平均数会是多少?A. 4200元B. 4400元C. 4600元D. 4800元(答案)B。
奥数专项训练应用题:平均数的问题

奥数专项训练应用题:平均数的问题2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_________分.3.有5个数,其平均数为138,按从小到大排列,从小端开始前3个数的平均数为127,从大端开始顺次取出3个数,其平均数为148,则第三个数是_________.4.某5个数的平均值为60,若把其中一个数改为80,平均值为70,这个数是_________.5.如果三个人的平均年龄为22岁.年龄最小的没有小于18岁.那么最大年龄可能是_________岁.6.数学考试的满分是100分,六位同学的平均分是91分,这6个同学的分数各不相同,其中一个同学得65分,那么居第三名的同学至少得_________分.7.在一次登山比赛中,小刚上山时每分钟走40米,18分钟达到山顶,然后按原路下山,每分钟走60米,小刚往返的平均速度是每分_________米.8.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多_________人.9.一些同学分一些书,若平均每人分若干本,还余14本,若每人分9本,则最后一人分得6本,那么共有学生_________人.10.有几位同学参加语文考试,赵峰的得分如果再提高13分,他们的平均分就达到90分,如果赵峰的得分降低5分,他们的平均分就只得87分,那么这些同学共有_________人.11.有四个数每次取三个数,算出它们的平均数再加上另一个数,用这种方法计算了四次,分别得到以下四个数:86,92,100,106那么原4个数的平均数是_________.12.甲、乙、丙三人一起买了8个面包平均分着吃,甲拿出5个面包的钱,乙付了3个面包的钱,丙没付钱.等吃完结算,丙应付4角钱,那么甲应收回钱_________分.二、解答题13.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?14.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.A:23,B:26,C:30,D:33,4个数的平均数是多少?参考答案与试题解析一、填空题1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是24.考点:平均数的含义及求平均数的方法.分析:根据“9个数的平均数是72”,可以求出这9个数的和是多少;再根据“去掉一个数后,余下的数平均数为78”,又可求出余下的8个数的和是多少;进一步求出去掉的数是多少.解答:解:9个数的和:72×9=648,余下的8个数的和:78×8=624,去掉的数是:648﹣624=24.答;去掉的数是24.故答案为;24.点评:解决此题关键是根据平均数先求出9个数与8个数的和,再进一步求出去掉的数.2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是89.5分.考点:平均数的含义及求平均数的方法.分析:先根据“平均分×人数=总成绩”分别计算出两名补考的学生总成绩和(40﹣2)名同学的总成绩,然后相加求出全班同学的总成绩,用“总成绩÷全班总人数=平均成绩”即可;解答:解:[89×(40﹣2)+99×2]÷40,=3580÷40,=89.5(分);答:这个班级中考平均分是89.5分;故答案为:89.5.点评:解答此题的关键是先求出全班同学的总成绩,用“总成绩÷全班总人数=平均成绩”即可;3.有5个数,其平均数为138,按从小到大排列,从小端开始前3个数的平均数为127,从大端开始顺次取出3个数,其平均数为148,则第三个数是135.考点:平均数的含义及求平均数的方法.分析:先根据平均数的含义列式127×3求出从小端开始前3个数的和,列式148×3求出从大端开始的3个数的和,相加可知为5个数的和+第三个数,再减去5个数的和即可求解.解答:解:127×3+148×3﹣138×5=381+444﹣690=135.故答案为:135.点评:考查了平均数的含义,本题共5个数,从小端开始前3个数的和+从大端开始的3个数的和=5个数的和+第三个数.4.某5个数的平均值为60,若把其中一个数改为80,平均值为70,这个数是30.考点:平均数的含义及求平均数的方法.分析:由平均数是60,可以得出这5个数的总和是60×5=300,若平均数是70,那么总和就是70×5=350,从这里可以看出这个数比原来多了50,80﹣50=30.所以这个数原来是30.解答:解:80﹣(70×5﹣60×5),=80﹣(350﹣300),=80﹣50,=30;答:这个数是30.故答案为:30.点评:此题考查了平均数的灵活应用.5.如果三个人的平均年龄为22岁.年龄最小的没有小于18岁.那么最大年龄可能是28岁.考点:平均数的含义及求平均数的方法.分析:先求三个人的年龄和,再假设有两个年龄小的,则可以求出最大年龄的可能值.解答:解:三人年龄和:22×3=66(岁),设有两个人的年龄最小,和为19×2=38,所以,最大年龄可能是:66﹣38=28(岁).答:最大年龄可能是28岁.故答案为:28.点评:此题主要考查平均数的含义.6.数学考试的满分是100分,六位同学的平均分是91分,这6个同学的分数各不相同,其中一个同学得65分,那么居第三名的同学至少得95分.考点:平均数的含义及求平均数的方法.分析:先得到第一、二名最多可得100+99=199(分),根据求平均数的方法可得第三、四、五名的平均分为:(91×6﹣100﹣99﹣65)÷3=94(分),由于这6个同学的分数各不相同,可得第三名最少95(分).解答:解:100+99=199(分),(91×6﹣100﹣99﹣65)÷3=282÷3=94(分).故第三名最少95(分).故答案为:95.点评:考查了平均数的含义及求平均数的方法,本题得到除了前面两名同学和得65分外的三名同学的平均分是解题的难点,是竞赛题型,有一定的难度.7.在一次登山比赛中,小刚上山时每分钟走40米,18分钟达到山顶,然后按原路下山,每分钟走60米,小刚往返的平均速度是每分48米.考点:平均数的含义及求平均数的方法.分析:要求小刚往返的平均速度是每分多少米,先根据“速度×时间=路程”,计算出从山下到山顶的路程;然后根据“时间=路程÷速度”求出下山的时间;因为根据上、下山的路程相等,继而用“往返总路程÷往返总时间=平均速度”,代入数值解答即可.解答:解:(40×18×2)÷[18+40×18÷60],=1440÷30,=48(米);答:小刚往返的平均速度是每分48米.故答案为:48.点评:此题解答的关键是抓住往返路程不变这一条件,根据路程、时间和速度三者之间的关系以及平均数的求法进行解答即可.8.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多40人.考点:平均数的含义及求平均数的方法.分析:要求男同学比女同学多多少人,先要分别求出男生和女生的人数;用男生人数减去女生人数即可;根据“平均分×人数=总成绩”,先求出全班总成绩为63×100=6300分;假设100人都是男同学,则总分为60×100=6000分;这样就比总成绩少了6300﹣6000=300分,因为一名男生比一名女生少考了70﹣60=10分,则女生人数为300÷10=30人;进而得出男生人数为100﹣30=70人,继而根据题意求出结论.解答:解:女生:(63×100﹣60×100)÷(70﹣60),=300÷10,=30(人),男生:100﹣30=70(人),70﹣30=40(人);答:男同学比女同学多40人.故答案为:40.点评:解答此题的关键是认真分析,根据平均数、人数和总成绩之间的关系,进行分析解答即可.9.一些同学分一些书,若平均每人分若干本,还余14本,若每人分9本,则最后一人分得6本,那么共有学生17人.考点:逻辑推理;盈亏问题.分析:因为每人分9本,则最后一人分得6本,所以最后一人少9﹣6=3(本);因为原来最后还剩14本的,可是现在少了3本,所以又分出去了14+3=17(本);因为只有1×17=17;所以有17个学生,每人又多分了1本.解答:解:(14+3)×1=17(人);答:那么共有学生17人;故答案为:17.点评:此题属于较复杂的逻辑推理题,解答此题时应结合题意,分析要全面,进而通过推理,得出结论.10.有几位同学参加语文考试,赵峰的得分如果再提高13分,他们的平均分就达到90分,如果赵峰的得分降低5分,他们的平均分就只得87分,那么这些同学共有6人.考点:盈亏问题.分析:找出对应量,利用盈亏分数的和除以平均分之差,即为参加考试的人数.解答:解:(13+5)÷(90﹣87)=6(人).故答案为:6.点评:此题属典型的盈亏问题,关键是明白盈亏分数的和除以平均分之差,即为参加考试的人数.11.有四个数每次取三个数,算出它们的平均数再加上另一个数,用这种方法计算了四次,分别得到以下四个数:86,92,100,106那么原4个数的平均数是48.考点:平均数的含义及求平均数的方法.分析:设这四个数为A,B,C,D,根据“平均数×个数=总数”,则:(A+B+C)÷3+D=86,(A+C+D)÷3+B=92,(A+B+D)÷3+C=100,(B+C+D)÷3+A=106,将这四个式子的左边和右边分别相加得:2A+2B+2C+2D=384;则A+B+C+D=192,(A+B+C+D)÷4=48;解答:解:根据分析得:(86+92+100+106)÷2÷4,=384÷2÷4,=48;故答案为:48.点评:解答此题的关键是根据平均数的计算方法列出式子,然后通过分析,得出:后来得到的四个数的和是原来四个数和的2倍,进而进行解答即可.12.甲、乙、丙三人一起买了8个面包平均分着吃,甲拿出5个面包的钱,乙付了3个面包的钱,丙没付钱.等吃完结算,丙应付4角钱,那么甲应收回钱35分.考点:整数、小数复合应用题.分析:要求甲应收回钱多少分,先求出每人分得几个面包,即:8÷3=个;丙付了40分钱(平均每人付的钱数),根据“总价÷数量=单价”求出每个面包的单价,即40÷=15分;进而用15×5计算出甲实际付的钱数,然后减去40分即可.解答:解:4角=40分,每人分得:8÷3=(个);40÷×5﹣40,=75﹣40,=35(分);答:甲应收回钱35分;故答案为:35.点评:解答此题应根据单价、总价和数量之间的关系以及平均数的计算方法,进行解答即可.二、解答题13.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?考点:盈亏问题.分析:据题意可知,那么10月份起超过5元,以5元为基数,前5月平均每月少5﹣4.2=0.8(元),6月起平均每月增加6﹣5=1(元).用前五个月少存的总钱数除以从6月份多存的钱数,就得到再需要几个月平均储蓄超过5元了,即(5﹣4.2)×5÷(6﹣5)=4(个),6+4=10(月),所以从10月起小明的平均储蓄超过5元.解答:解:(5﹣4.2)×5÷(6﹣5)=4(个);6+4=10(月);答:从10月起小明的平均储蓄超过5元.点评:本题考查了学生求较为复杂的平均数问题.14.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.A:23,B:26,C:30,D:33,4个数的平均数是多少?考点:平均数的含义及求平均数的方法.分析:根据余下的三个数的平均数:23、26、30、33,可求出A、B、C、D四个数的和的3倍,再除以3得A、B、C、D四个数的和,再用和除以4即得4个数的平均数.解答:解:A、B、C、D四个数的和的3倍:23×3+26×3+30×3+33×3=336;A、B、C、D四个数的和:336÷3=112;四个数的平均数:112÷4=28.答:4个数的平均数是28.点评:此题考查求平均数的方法,解决这类问题就用基本数量关系来求,即总数量÷总份数=平均数.。
平均数的训练应用题

平均数的训练应用题平均数的训练应用题一、填空题1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是_________.2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是_________分.3.有5个数,其平均数为138,按从小到大排列,从小端开始前3个数的平均数为127,从大端开始顺次取出3个数,其平均数为148,则第三个数是_________.4.某5个数的平均值为60,若把其中一个数改为80,平均值为70,这个数是_________.5.如果三个人的平均年龄为22岁.年龄最小的没有小于18岁.那么最大年龄可能是_________岁.6.数学考试的满分是100分,六位同学的平均分是91分,这6个同学的分数各不相同,其中一个同学得65分,那么居第三名的同学至少得_________分.7.在一次登山比赛中,小刚上山时每分钟走40米,18分钟达到山顶,然后按原路下山,每分钟走60米,小刚往返的平均速度是每分_________米.8.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多_________人.9.一些同学分一些书,若平均每人分若干本,还余14本,若每人分9本,则最后一人分得6本,那么共有学生_________人.10.有几位同学参加语文考试,赵峰的得分如果再提高13分,他们的平均分就达到90分,如果赵峰的得分降低5分,他们的平均分就只得87分,那么这些同学共有_________人.11.有四个数每次取三个数,算出它们的平均数再加上另一个数,用这种方法计算了四次,分别得到以下四个数:86,92,100,106那么原4个数的平均数是_________.12.甲、乙、丙三人一起买了8个面包平均分着吃,甲拿出5个面包的钱,乙付了3个面包的钱,丙没付钱.等吃完结算,丙应付4角钱,那么甲应收回钱_________分.二、解答题13.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?14.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.A:23,B:26,C:30,D:33,4个数的平均数是多少?参考答案与试题解析一、填空题1.已知9个数的平均数是72,去掉一个数后,余下的数平均数为78,去掉的数是24.考点:平均数的含义及求平均数的方法.分析:根据“9个数的平均数是72”,可以求出这9个数的和是多少;再根据“去掉一个数后,余下的数平均数为78”,又可求出余下的8个数的和是多少;进一步求出去掉的数是多少.解答:解:9个数的和:72×9=648,余下的8个数的和:78×8=624,去掉的数是:648﹣624=24.答;去掉的数是24.故答案为;24.点评:解决此题关键是根据平均数先求出9个数与8个数的和,再进一步求出去掉的数.2.某班有40名学生,期中数学考试,有两名同学因故缺考,这时班级平均分为89分,缺考的同学补考各得99分,这个班级中考平均分是89.5分.考点:平均数的含义及求平均数的方法.分析:先根据“平均分×人数=总成绩”分别计算出两名补考的学生总成绩和(40﹣2)名同学的总成绩,然后相加求出全班同学的总成绩,用“总成绩÷全班总人数=平均成绩”即可;解答:解:[89×(40﹣2)+99×2]÷40,=3580÷40,=89.5(分);答:这个班级中考平均分是89.5分;故答案为:89.5.点评:解答此题的关键是先求出全班同学的总成绩,用“总成绩÷全班总人数=平均成绩”即可;3.有5个数,其平均数为138,按从小到大排列,从小端开始前3个数的平均数为127,从大端开始顺次取出3个数,其平均数为148,则第三个数是135.考点:平均数的`含义及求平均数的方法.分析:先根据平均数的含义列式127×3求出从小端开始前3个数的和,列式148×3求出从大端开始的3个数的和,相加可知为5个数的和+第三个数,再减去5个数的和即可求解.解答:解:127×3+148×3﹣138×5=381+444﹣690=135.故答案为:135.点评:考查了平均数的含义,本题共5个数,从小端开始前3个数的和+从大端开始的3个数的和=5个数的和+第三个数.4.某5个数的平均值为60,若把其中一个数改为80,平均值为70,这个数是30.考点:平均数的含义及求平均数的方法.分析:由平均数是60,可以得出这5个数的总和是60×5=300,若平均数是70,那么总和就是70×5=350,从这里可以看出这个数比原来多了50,80﹣50=30.所以这个数原来是30.解答:解:80﹣(70×5﹣60×5),=80﹣(350﹣300),=80﹣50,=30;答:这个数是30.故答案为:30.点评:此题考查了平均数的灵活应用.5.如果三个人的平均年龄为22岁.年龄最小的没有小于18岁.那么最大年龄可能是28岁.考点:平均数的含义及求平均数的方法.分析:先求三个人的年龄和,再假设有两个年龄小的,则可以求出最大年龄的可能值.解答:解:三人年龄和:22×3=66(岁),设有两个人的年龄最小,和为19×2=38,所以,最大年龄可能是:66﹣38=28(岁).答:最大年龄可能是28岁.故答案为:28.点评:此题主要考查平均数的含义.6.数学考试的满分是100分,六位同学的平均分是91分,这6个同学的分数各不相同,其中一个同学得65分,那么居第三名的同学至少得95分.考点:平均数的含义及求平均数的方法.分析:先得到第一、二名最多可得100+99=199(分),根据求平均数的方法可得第三、四、五名的平均分为:(91×6﹣100﹣99﹣65)÷3=94(分),由于这6个同学的分数各不相同,可得第三名最少95(分).解答:解:100+99=199(分),(91×6﹣100﹣99﹣65)÷3=282÷3=94(分).故第三名最少95(分).故答案为:95.点评:考查了平均数的含义及求平均数的方法,本题得到除了前面两名同学和得65分外的三名同学的平均分是解题的难点,是竞赛题型,有一定的难度.7.在一次登山比赛中,小刚上山时每分钟走40米,18分钟达到山顶,然后按原路下山,每分钟走60米,小刚往返的平均速度是每分48米.考点:平均数的含义及求平均数的方法.分析:要求小刚往返的平均速度是每分多少米,先根据“速度×时间=路程”,计算出从山下到山顶的路程;然后根据“时间=路程÷速度”求出下山的时间;因为根据上、下山的路程相等,继而用“往返总路程÷往返总时间=平均速度”,代入数值解答即可.解答:解:(40×18×2)÷[18+40×18÷60],=1440÷30,=48(米);答:小刚往返的平均速度是每分48米.故答案为:48.点评:此题解答的关键是抓住往返路程不变这一条件,根据路程、时间和速度三者之间的关系以及平均数的求法进行解答即可.8.某校有100名学生参加数学竞赛,平均分是63分,其中男生平均分是60分,女生平均分是70分,男同学比女同学多40人.考点:平均数的含义及求平均数的方法.分析:要求男同学比女同学多多少人,先要分别求出男生和女生的人数;用男生人数减去女生人数即可;根据“平均分×人数=总成绩”,先求出全班总成绩为63×100=6300分;假设100人都是男同学,则总分为60×100=6000分;这样就比总成绩少了6300﹣6000=300分,因为一名男生比一名女生少考了70﹣60=10分,则女生人数为300÷10=30人;进而得出男生人数为100﹣30=70人,继而根据题意求出结论.解答:解:女生:(63×100﹣60×100)÷(70﹣60),=300÷10,=30(人),男生:100﹣30=70(人),70﹣30=40(人);答:男同学比女同学多40人.故答案为:40.点评:解答此题的关键是认真分析,根据平均数、人数和总成绩之间的关系,进行分析解答即可.9.一些同学分一些书,若平均每人分若干本,还余14本,若每人分9本,则最后一人分得6本,那么共有学生17人.考点:逻辑推理;盈亏问题.分析:因为每人分9本,则最后一人分得6本,所以最后一人少9﹣6=3(本);因为原来最后还剩14本的,可是现在少了3本,所以又分出去了14+3=17(本);因为只有1×17=17;所以有17个学生,每人又多分了1本.解答:解:(14+3)×1=17(人);答:那么共有学生17人;故答案为:17.点评:此题属于较复杂的逻辑推理题,解答此题时应结合题意,分析要全面,进而通过推理,得出结论.10.有几位同学参加语文考试,赵峰的得分如果再提高13分,他们的平均分就达到90分,如果赵峰的得分降低5分,他们的平均分就只得87分,那么这些同学共有6人.考点:盈亏问题.分析:找出对应量,利用盈亏分数的和除以平均分之差,即为参加考试的人数.解答:解:(13+5)÷(90﹣87)=6(人).故答案为:6.点评:此题属典型的盈亏问题,关键是明白盈亏分数的和除以平均分之差,即为参加考试的人数.11.有四个数每次取三个数,算出它们的平均数再加上另一个数,用这种方法计算了四次,分别得到以下四个数:86,92,100,106那么原4个数的平均数是48.考点:平均数的含义及求平均数的方法.分析:设这四个数为A,B,C,D,根据“平均数×个数=总数”,则:(A+B+C)÷3+D=86,(A+C+D)÷3+B=92,(A+B+D)÷3+C=100,(B+C+D)÷3+A=106,将这四个式子的左边和右边分别相加得:2A+2B+2C+2D=384;则A+B+C+D=192,(A+B+C+D)÷4=48;解答:解:根据分析得:(86+92+100+106)÷2÷4,=384÷2÷4,=48;故答案为:48.点评:解答此题的关键是根据平均数的计算方法列出式子,然后通过分析,得出:后来得到的四个数的和是原来四个数和的2倍,进而进行解答即可.12.甲、乙、丙三人一起买了8个面包平均分着吃,甲拿出5个面包的钱,乙付了3个面包的钱,丙没付钱.等吃完结算,丙应付4角钱,那么甲应收回钱35分.考点:整数、小数复合应用题.分析:要求甲应收回钱多少分,先求出每人分得几个面包,即:8÷3=个;丙付了40分钱(平均每人付的钱数),根据“总价÷数量=单价”求出每个面包的单价,即40÷=15分;进而用15×5计算出甲实际付的钱数,然后减去40分即可.解答:解:4角=40分,每人分得:8÷3=(个);40÷×5﹣40,=75﹣40,=35(分);答:甲应收回钱35分;故答案为:35.点评:解答此题应根据单价、总价和数量之间的关系以及平均数的计算方法,进行解答即可.二、解答题13.今年前5个月,小明每月平均存钱4.2元,从6月起他每月储蓄6元,那么从哪个月起小明的平均储蓄超过5元?考点:盈亏问题.分析:据题意可知,那么10月份起超过5元,以5元为基数,前5月平均每月少5﹣4.2=0.8(元),6月起平均每月增加6﹣5=1(元).用前五个月少存的总钱数除以从6月份多存的钱数,就得到再需要几个月平均储蓄超过5元了,即(5﹣4.2)×5÷(6﹣5)=4(个),6+4=10(月),所以从10月起小明的平均储蓄超过5元.解答:解:(5﹣4.2)×5÷(6﹣5)=4(个);6+4=10(月);答:从10月起小明的平均储蓄超过5元.点评:本题考查了学生求较为复杂的平均数问题.14.A、B、C、D四个数,每次去掉一个数,将其余下的三个数求平均数,这样计算了4次,得到下面4个数.A:23,B:26,C:30,D:33,4个数的平均数是多少?考点:平均数的含义及求平均数的方法.分析:根据余下的三个数的平均数:23、26、30、33,可求出A、B、C、D四个数的和的3倍,再除以3得A、B、C、D四个数的和,再用和除以4即得4个数的平均数.解答:解:A、B、C、D四个数的和的3倍:23×3+26×3+30×3+33×3=336;A、B、C、D四个数的和:336÷3=112;四个数的平均数:112÷4=28.答:4个数的平均数是28.点评:此题考查求平均数的方法,解决这类问题就用基本数量关系来求,即总数量÷总份数=平均数.。
平均数的应用题及答案

平均数的应用题及答案平均数的应用题及答案在日常的学习和生活中,经常遇到求平均数的问题,比如:求平均分数、平均年龄、平均气温、平均身高、平均亩产量……这是小学学习阶段经常接触的问题。
为大家分享了平均数的应用题,一起来看看吧!例1. 妈妈买来香蕉 5千克,每千克2.4元;梨4千克,每千克3.2元;贡桔11千克,每千克4.2元。
妈妈买的这些水果平均每千克多少元?分析:要求水果平均每千克多少元,就要求出这几种水果的总价和总重量,最后求平均数,即平均每千克水果的价钱。
解:(2.4×5+3.2×4+4.2×11)÷(5+4+11)=(12+12.8+46.2)÷20=71÷20=3.55(元)答:妈妈买的这些水果平均每千克3.55元。
例2. 小明期末数学、语文、艺术、综合实践平均成绩为90分,加上体育成绩后,五门功课的平均分数下降了2分,小明体育考了多少分?分析一:由小明期末四门功课的平均分数,可以求出四门功课的总分数,五门功课的平均分下降2分,即五门功课平均分数是90-2=88(分),那么五门功课的总分为88×5=440(分)。
五门比四门总分多的分数就是体育学科的成绩。
解法1:(90-2)×5-90×4=440-360=80(分)解法2:90-2-2×4=90-2-8=88-8=80(分)答:小明体育考了80分。
例3. 甲、乙、丙三个人各拿出同样多的钱合买同样单价的.练习本。
买来之后,甲和乙都比丙多要6本,因此,甲、乙分别给丙人民币0.96元。
每本练习本的价钱是多少元?分析一:假定三人各拿出同样的钱,应各分得同样多的练习本,但实际甲和乙都比丙多6本,一共多12本,如果把多的12本再均分给三人,则甲应退2本给丙,乙也应退2本给丙,即甲和乙分别退给丙0.96元,因此0.96元就是2本练习本的价钱。
解法1:0.96÷(6-6×2÷3)=0.96÷2=0.48(元)分析二:由于甲比丙多6本,乙也比丙多6本,只要把每人多的本数平均分成3份,每份6÷3=2(本),也就是甲给丙补上的0.96元,即求出每本单价。
平均数应用题100道

平均数应用题100道一、简单平均数计算类1. 某班有5名学生,他们的数学成绩分别是90分、85分、95分、80分、100分,求这5名学生的平均成绩。
- 解析:平均数 = 总和÷个数。
首先计算这5名学生成绩的总和为90 +85+95 + 80+100 = 450分,然后用总和除以人数5,得到平均成绩为450÷5 = 90分。
2. 小明记录了一周每天的零花钱支出情况,分别是5元、8元、3元、6元、4元、7元、2元,求小明这一周平均每天的零花钱支出。
- 解析:先计算这一周零花钱支出的总和为5+8 + 3+6+4+7+2 = 35元,一周有7天,所以平均每天零花钱支出为35÷7 = 5元。
3. 有一组数据:12、15、18、21、24,求这组数据的平均数。
- 解析:这组数据的总和为12+15 + 18+21+24 = 90,数据个数为5,所以平均数为90÷5 = 18。
二、平均数在实际生活中的应用类4. 一辆汽车前3小时行驶了180千米,后2小时行驶了120千米,求这辆汽车平均每小时行驶多少千米?- 解析:首先计算汽车行驶的总路程为180+120 = 300千米,总时间为3 + 2=5小时,根据平均数公式,平均速度 = 总路程÷总时间,即300÷5 = 60千米/小时。
5. 某工厂前两个月共生产产品1500件,后三个月共生产产品2100件,求这个工厂平均每月生产产品多少件?- 解析:先求出生产产品的总数为1500+2100 = 3600件,总月数为2+3 = 5个月,那么平均每月生产产品3600÷5 = 720件。
6. 一个班级学生参加语文考试,男生平均成绩为80分,男生有20人;女生平均成绩为85分,女生有30人,求这个班级的平均成绩。
- 解析:男生的总成绩为80×20 = 1600分,女生的总成绩为85×30 = 2550分,全班的总成绩为1600+2550 = 4150分,全班总人数为20+30 = 50人,所以班级平均成绩为4150÷50 = 83分。
小学数学平均数应用题

小学数学平均数应用题1、李明在期中考试中语文、外语和自然的平均分是74分,数学成果公布后,四门成果的平均分提高了3分。
李明数学数学考多少分?【解答】74×3=222分 74+3=77分 77×4=308分308-222=86分2、这学期,王平前四个单元测验的平均成果是85分,他想使前五个单元的平均成果上升到87分,第五个单元需要考多少分?【解答】85×4=340分 87×5=435分 435-340=95分3、李明在期中考试中语文、外语和自然的平均分是95分,数学成果公布后四门成果的平均分减削了2分。
你知道李明的数学得了几分吗?【解答】95×3=285分 95-2=93分 93×4=372分372-285=87分4、甲地到乙地的全程是120千米。
小红骑车从甲地到乙地每小时行30千米,从乙地返回甲地每小时行20千米。
求小红来回甲乙两地的平均速度。
【解答】120÷30=4小时 120÷20=6小时 120+120=240千米 4+6=10小时 240÷10=24千米此题需要留意,求平均速度,肯定要用总路程除以总时间。
5、双休日,张强登山熬炼身体。
早上开始登山,每分钟行15米;下午沿原路返回每分钟行10米。
你知道张强登山熬炼身体的平均速度吗?【解答】此题中无详细路程,可设路程为11÷15=1/15 1÷10=1/10 1+1=2 2÷〔1/15+1/10〕=12米6、有6个数的平均数是12,假如把其中的一个数改为3,这时六个数的平均数是10,这个被改动的数原来是多少?【解答】12×6=72 10×6=60 72-60=12 12+3=15 改动的数原来是15。
7、有甲、乙、丙三个数,甲数和乙数的平均数是42,甲数和丙数的平均数是46,乙数和丙数的`平均数是47,求甲、乙、丙这三个数各是多少?【解答】42×2=84 46×2=92 47×2=94 84+92+94=270 270÷2=135 135-84=51此为丙 135-92=43此为乙135-94=41此为甲。
三年级奥数平均数问题应用题及答案

三年级奥数平均数问题应用题及答案应用题1 :用4个同样的杯了装水,水面的高度分别是8厘米、5厘米、4厘米、3厘米。
这4个杯子里水面的平均高度是多少厘米?解析:根据已知条件,先求出4个杯子里水的总厘米数,再用总厘米数除以杯子的个数就可以求出平均每个杯子里水面的高度。
(8+5+4+3)÷3=5(厘米)应用题2:幼儿园小朋友做红花,小华做了7朵,小方做了9朵,小林和小宁合做了12朵。
平均每个小朋友做了多少朵?解析:根据已知条件,先求出做花的总朵数,再用花的总朵数除以人数就可求出平均每人做花的朵数。
(7+9+12)÷4=7(朵)应用题3:植树小组植一批树,3天完成。
前2天共植113棵,第3天植了55棵。
植树小组平均每天植树多少棵?解析:要求植树小组平均每天植树的棵数,必须知道植树的总棵数和植树的天数,植树的总棵数用前2天植的'113棵加上第3天植的55棵:113+55=168棵,植树的天数为3天。
所以,平均每天植树:168÷3=56(棵)。
应用题4 :一辆摩托车从甲地开往乙地,前2小时每小时行驶60千米,后3小时每小时行驶70千米。
平均每小时行驶多少千米?解析:根据已知条件,先求这辆摩托车行驶的总路程:60×2+70×3=330千米,再求行驶的总时间:2+3=5小时。
所以,平均每小时行驶:330÷5=66(千米)。
应用题5 :数学测试中,一组学生的最高分是98分,最低分是86分,其余5名学生的平均分为92分。
这一组学生的平均分是多少分?解析:要求平均分,应用总分数÷总人数=平均分,依题意,总分数为:98+86+92×5=644分,总人数为:1+1+5=7人。
所以,这组学生的平均分为:644÷7=92(分)。
平均数的应用题及答案

平均数的应用题及答案在数学中,平均数是一种常见的统计指标,它代表一组数据的中心位置。
平均数可以通过将一组数据相加并除以数据的个数来获得。
在实际生活中,我们经常会遇到各种与平均数相关的问题,例如求平均工资、平均年龄、平均成绩等。
本文将通过一些实际例子,探讨平均数的应用。
一、求平均数1. 例题:某班级有30个学生,语文考试得分如下:89, 92, 85, 78, 92, 90, 86, 93, 88, 90, 91, 85, 90, 89, 88, 92, 90, 86, 85, 89, 93, 90, 88, 89, 88, 86, 90, 91, 89, 92。
请计算这个班级的语文平均分。
解答:将所有学生的语文成绩相加得到总分,再除以学生的个数即可得到平均分。
总分 = 89 + 92 + 85 + 78 + 92 + 90 + 86 + 93 + 88 + 90 + 91 + 85 + 90 + 89 + 88 + 92 + 90 + 86 + 85 + 89 + 93 + 90 + 88 + 89 + 88 + 86 + 90 + 91 + 89 + 92 = 2668平均分 = 总分 / 学生个数= 2668 / 30 ≈ 88.93所以,该班级的语文平均分约为88.93。
二、平均数在实际生活中的应用1. 平均工资例题:某公司有10名员工,他们的工资分别是3500元、4000元、4300元、3800元、4500元、4200元、3900元、4100元、4300元、4200元。
请计算该公司的平均工资。
解答:将所有员工的工资相加得到总工资,再除以员工的人数即可得到平均工资。
总工资 = 3500 + 4000 + 4300 + 3800 + 4500 + 4200 + 3900 + 4100 + 4300 + 4200 = 40500平均工资 = 总工资 / 员工人数 = 40500 / 10 = 4050所以,该公司的平均工资为4050元。
六年级数学平均数的应用试题

六年级数学平均数的应用试题1.有4个少先队小队拾树种,甲、乙、丙3队平均每队拾24千克,乙、丙、丁3队平均每队拾26千克.已知丁队拾28千克,求甲队拾多少千克?【答案】22【解析】甲、乙、丙3队共拾了24×3=72千克,乙、丙、丁3队共拾了26×3=78千克,由丁队拾了28千克知,乙、丙两队拾了78-28=50千克.那么甲队拾了72-50=22千克.2.把自然数l,2,3,…,998,999分成3组,如果每一组数的平均数恰好相等,那么这3个平均数的和是多少?【答案】1500【解析】若设每一组的平均分均为a,则总和为999a=(1+999)×999÷2,所以a=500,于是这三组平均数的和为1500.3.在一次数学竞赛中,甲队的平均分为75分,乙队的平均分为73分,两队全体同学豹平均分为73.5分.又知乙队比甲队多6人,那么乙队有多少人?【答案】9人【解析】如果乙队去掉6个人,两队的平均分为:(75+73)÷2=74.乙队多出的6个人,分数比平均分少(73.5-73)×6=3分,说明甲队有3÷(74-73.5)÷2=3人.乙队有3+6=9人.4.甲班51人,乙班49人,某次考试两个班全体同学的平均成绩是81分,乙班的平均成绩要比甲班平均成绩高7分.那么乙班的平均成绩是多少分?【答案】84.57分【解析】甲班学生如果都在乙班学习,平均每人增加7分,共增加7×51=357分,总分增加为81×(51+49)+357=8457.所以乙班的平均分是8457÷(51+49)=84.57分.5.少年歌手大奖赛的裁判小组由若干人组成:每名裁判员给歌手的评分最高为10分.第1名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均数是9.60分;如果只去掉一个最低分;知则其余裁判员所给分数的平均分是9.68分.那么,所有裁判员所给分数中的最低分最少可以是多分?这时,大奖赛的裁判员共有多少名?【答案】9.28分;10名【解析】9.6与9.68的平均值恰好是9.64,这表明最高分与最低分的平均值是9.64.因为最高分最高可以是10,所以最低分最少可以是9.64×2-10=9.28.如果最低分是9.28,它比平均分9.64低9.64-9.28=0.36.去掉最低分可使平均分增加9.68-9.64=0.04.所以其余分数由0.36÷0.04=9名裁判给出,裁判总数为9+1=10.所以裁判员所给分数中的最低分最少可以是9.28分;这时,大奖赛的裁判员共有10名.6.小明参加了6 次数学测验,这6次测验有一个总平均分,后4次测验的平均分比总平均分多3分,第一、第二、第六这3次的平均分比总平均分少3.6分.那么前5次的平均分比总平均分(提高、降低)了多少分?【答案】0.24分【解析】我们将总平均分视为基准分,有第三、四、五、六次测试分数总和比4个基准分多3×4=12分;第一、二、六3次测试分数总和比3个基准分少3.6×3=10.8分.则第一、二、三、四、五、六次测试再加上1个第六次测试的分数总和比7个基准分多12-10.8=1.2分,即1个第六次测试的分数比基准分多1.2分.所以第一、二、三、四、五次测试的分数总和比5个基准分少1.2分,则平均分比总平均分少1.2÷5=0.24分.即前5次的平均分比总平均分降低了0.24分.7.某班有50人,在一次数学考试后,按成绩排了名次,结果,前30名的平均分数比后20名的平均分数多12分.一位同学对“平均”的概念不清楚,他把前30名的平均分数加上后20名的平均分数,再除以2,错误地认为这就是全班的平均分数.这样做,全班的平均成绩是提高了,还是降低了?请算出提高或降低了多少分?【答案】1.2分【解析】我们把后20名的平均分视为基准分,那么前30名的总分比30个基准分多12×30=360分;则这位同学操作后,“总平均分”比基准分多(12+0)÷2=6分,而实际上50个人的总分为50个基准分再加上360分,则平均分为基准分加上360÷50=7.2分.所以这样做,全班的平均成绩是降低了,降低了7.2-6=1.2分.8.某次数学竞赛原定一等奖10人,二等奖20人,现在将一等奖中最后4人调整为二等奖,这样得二等奖的学生的平均分提高了1分,得一等奖的学生的平均分提高了3分.那么原来一等奖平均分比二等奖平均分多多少分?【答案】10.5分【解析】原一等奖的最后四人的平均分,比原二等奖的平均分多(20+4)×1÷4=6分.一等奖的平均分,比原一等奖最后四人的平均分多(10-4)×3÷4=4.5分.因此原一等奖的平均分比二等奖多4.5+6=10.5分.9.有4个数,每次选取其中3个数,算出它们的平均数,再加上另外一个数.用这种方法计算了4次,分别得到以下4个数:86,92,100,106.那么,原来4个数的平均数是多少?【答案】48【解析】每次选三个数,算出它们的平均数,实际上就是算出这三个数的的和.所以,将上面的四个平均分相加,就得到原来四个数的和的2倍.所以,原来四个数的平均分是(86+92+100+106)÷2÷4=48.10.老师在黑板上写出了若干个从l开始的连续自然数l,2,3,…,后来擦掉其中的一个数,剩下的数的平均数是10.8.求被擦掉的那个自然数.【答案】15【解析】剩下的数的和显然是整数,所以剩下数的个数应是5的倍数.当剩下5个数时,剩下数的总和为10.8×5=54,而原来6个数的和为1+2+3+4+5+6=21,54>21,显然不满足;当剩下10个数时,剩下数的总和为10.8×10=108,而原来11个数的和为1+2+3+…+10+11=66,108>66,显然不满足;当剩下15个数时,剩下的数总和为10.8×15=162,而原来16个数的和为1+2+3+…+16=136,162>136,显然不满足;当剩下20个数时,剩下的数总和为10.8×20=216,而原来21个数的和为1+2+3+…+21=231,则擦去的那个数为231-216=15.。
三年级数学平均数问题应用题

三年级数学平均数问题应用题一、平均数问题应用题20题及解析。
1. 小红在三次数学测验中的成绩分别是89分、96分、92分。
求小红这三次测验的平均成绩。
- 解析:平均数 = 总数量÷总份数。
先求出三次测验的总成绩:89 + 96+92 = 277(分),总份数是3次,所以平均成绩为277÷3 = 92.33(分)。
2. 小明参加数学考试,前两次的平均分是85分,后三次的总分是270分。
求小明这五次考试的平均成绩。
- 解析:先求出前两次考试的总分,因为平均分是85分,所以前两次总分为85×2 = 170分。
五次考试的总分数为前两次总分加上后三次总分,即170+270 = 440分。
总份数是5次,那么平均成绩为440÷5 = 88分。
3. 某小组同学测量身高,其中3人的身高都是123厘米,另外4人的身高都是132厘米。
这个小组同学的平均身高是多少厘米?- 解析:先求出这个小组同学的总身高。
3个123厘米的同学总身高为123×3 = 369厘米,4个132厘米的同学总身高为132×4 = 528厘米,那么小组同学的总身高为369 + 528=897厘米。
小组总人数为3 + 4 = 7人,平均身高为897÷7 = 128.14厘米。
4. 一辆汽车从甲地开往乙地,前2小时每小时行驶40千米,后3小时每小时行驶50千米。
这辆汽车平均每小时行驶多少千米?- 解析:先求出汽车行驶的总路程。
前2小时行驶的路程为40×2 = 80千米,后3小时行驶的路程为50×3 = 150千米,总路程为80+150 = 230千米。
总时间为2 + 3 = 5小时,所以平均速度为230÷5 = 46千米/小时。
5. 有五个数,它们的平均数是30。
如果把其中一个数改为50,则这五个数的平均数变为35。
被改动的数原来是多少?- 解析:原来五个数的总和为30×5 = 150,改动后五个数的总和为35×5 = 175。
专题三-平均数应用题及其答案

题专题中小学辅导第一品牌专题三平均数应用题温馨提醒:“平均”含义:将一些数量平均分成几份,每份同样多,这就是平均数的概念。
“平均数问题”:我们经常遇到的,平均成绩,平均身高,平均年龄,平均速度等问题,公式为:总数量÷总分数=平均数解题技巧:移多补少,使每一份量相等。
例1、甲乙丙三人在银行存款,丙的存款是甲乙两人存款的平均数的1.5倍,甲乙两人存款的和是2400元。
甲乙丙三人平均每人存款多少元?思路点拨:要求甲乙丙三人平均每人存款多少元,先要求得三人存款的总数。
(2400÷2×1.5+2400)÷3=1400元◆举一反三:1、小华的期中考试成绩在外语成绩宣布前,他四门功课的平均分是90分。
外语成绩宣布后,他的平均分数下降了2分。
小华外语成绩是多少分?2、朝阳小学五年级两个班,1班51人,2班49人,期中考试两个班全体同学的平均成绩是81分。
已知2班的平均成绩比1班的平均成绩高7分,那么2班的平均成绩是多少分?3、某农场前3天共收稻谷450公顷,后3天平均每天比前3天多收稻谷60公顷,这个农场在这6天里平均每天收稻谷多少公顷?思路点拨:1、先求出四门功课的总分,再求出一门功课的的总分,然后求得外语成绩。
(90–2)×5–90×4=80分2、如果给2班的美味同学减去7分,那么两班的平均成绩就一样多了,综合算式:81×(49+51)-49×7÷(49+51)+7=84.573、〔(450÷3+60)×3+450〕÷6=180(公顷)例2:甲、乙、丙拿出同样多的钱合买相同单价的练习本,买来之后甲和乙都比丙多拿6本,因此甲、乙分别给丙0.96元,每本练习本多少钱?思路点拨:1、本题是一道剩余平均分问题,0.96÷(6-6×2÷3)=0.48(元)◆举一反三:1、甲种酒每千克30元,乙种酒每千克24元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平均数的应用题及答案
在日常的学习和生活中,经常遇到求平均数的问题,比如:求平均分数、平均年龄、平均气温、平均身高、平均亩产量……这是小学学习阶段经常接触的问题。
例1. 妈妈买来香蕉 5千克,每千克2.4元;梨4千克,每千克3.2元;贡桔11千克,每千克4.2元。
妈妈买的这些水果平均每千克多少元?
分析:要求水果平均每千克多少元,就要求出这几种水果的总价和总重量,最后求平均数,即平均每千克水果的价钱。
解:(2.4×5+3.2×4+4.2×11)÷(5+4+11)
=(12+12.8+46.2)÷20
=71÷20
=3.55(元)
答:妈妈买的这些水果平均每千克3.55元。
例2. 小明期末数学、语文、艺术、综合实践平均成绩为90分,加上体育成绩后,五门功课的平均分数下降了2分,小明体育考了多少分?
分析一:由小明期末四门功课的平均分数,可以求出四门功课的总分数,五门功课的平均分下降2分,即五门功课平均分数是90-2=88(分),那么五门功课的总分为88×5=440(分)。
五门比四门总分多的分数就是体育学科的成绩。
解法1:(90-2)×5-90×4
=80(分)
解法2:90-2-2×4
=90-2-8
=88-8
=80(分)
答:小明体育考了80分。
例3. 甲、乙、丙三个人各拿出同样多的钱合买同样单价的练习本。
买来之后,甲和乙都比丙多要6本,因此,甲、乙分别给丙人民币0.96元。
每本练习本的价钱是多少元?
分析一:假定三人各拿出同样的钱,应各分得同样多的练习本,但实际甲和乙都比丙多6本,一共多12本,如果把多的12本再均分给三人,则甲应退2本给丙,乙也应退2本给丙,即甲和乙分别退给丙0.96元,因此0.96元就是2本练习本的价钱。
解法1:0.96÷(6-6×2÷3)
=0.96÷2
=0.48(元)
分析二:由于甲比丙多6本,乙也比丙多6本,只要把每人多的本数平均分成3份,每份6÷3=2(本),也就是甲给丙补上的0.96元,即求出每本单价。
解法2:0.96÷(6÷3)
=0.48(元)
答:每本练习本要0.48元。
练习1. 李强在期末考试中,语文、英语,数学三科的平均分数是92分,艺术是100分,他的各科平均分数是多少?
(92×3+100)÷4=94(分)
答:他的各科平均分数是94分。
练习2. 有6个数排成一行,它们的平均数是27,前4个数的平均数是23,后3个数的平均数是34,求第四个数是多少? 23×4+34×3-27×6=32
答:第四个数是32.
练习3. 有三个数,已知甲、乙之和是60,乙、丙之和是42,甲、丙之和是54。
求三个数的平均数是多少?
(60+42+54)÷2÷3=26
答:三个数的平均数是26.
练习 4. 在一次数学考试中,甲、乙二人的平均分是91分,甲、丙二人的平均分是95分,乙、丙二人的平均分是87分。
这三个同学的平均分是多少?
(91×2+95×2+87×2)÷2÷3=91(分)
答:这三个同学的平均分是91分。
练习5. 甲仓存粮5887吨,乙仓存粮847吨,从甲仓每次取出140吨粮食运往乙仓,取出几次后两仓存粮正好相等?
(5887-847)÷2÷140=18(次)
答:取出18次后两仓存粮正好相等.
练习6. 小明和爸爸到离家60千米的野外春游,去时每小时行10千米,返回时每小时行15千米,他们往返的平均速度是每小时几千米?
60×2÷(60÷10+60÷15)=12(千米)
答:他们往返的平均速度是每小时12千米。
平均数的应用题
1、有两个采茶小组,第一组36人,一共采茶540千克,第二组42人,一共采茶708千克,两个组平均每人采茶多少千克?
2、修一条水渠,四月份前16天平均每天修180.5米,后14天共修2650米,求四月份平均每天修多少米?
3、一个工程队修一条公路,前8天共修100千米,后10天每天修26.9千米,这个修路队平均每天修多少千米?
4、甲乙两地相距1800千米,一架飞机从甲地飞往乙地,每小时飞行360千米,返回时顺风,比去时少用1小时.往返平均每小时飞行多少千米?
5、甲乙两地相距156千米,一辆汽车从甲地出发下坡而行,5.2小时到达乙地,又从乙地沿原路上坡返回甲地,比去时多用2.6小时。
求这辆汽车往返的平均速度。
6、王彤这次语文、数学、自然三科的平均成绩是92分。
已知自然成绩是86分。
语文、数学两科的平均成绩是多少分?
7、开学初,王老师统计全班看课外书的情况。
人数男生20人女生25人
每人看书本数 6本5本
求出平均每人看书多少本?(得数保留一位小数)
8.小华本学期语文、数学四次单元测试成绩如下。
第一次第二次第三次第四次
语文(分) 92.5 88 94 98.5
数学(分)100 97 98.5 100
⑴小华本学期语文单元测试的平均成绩是多少?
⑵哪一次单元测试中,他的语、数平均分最高?是多少分?。