北师大版八年级数学上册第2章实数(培优试题)
北师大版数学八上第1、2章实数培优练习(含答案)
八年级上册第一、二章培优题一、填空题1、(1)81的算术平方根是 ,平方根是 。
(2)平方根等于本身的数是 。
(3)已知322=-a ,则a= 。
2)32(-= 。
(4)某正数的两个平方根之差为8,则这个正数是 。
(5)4的立方根是 。
-8的立方根是 。
64-的立方根是 。
2、直角三角形的面积为2,斜边为4,则这个直角三角形的周长是 。
3、已知数轴上点A 表示的数是2-,点B 表示的数是1,那么数轴上到点A 、点B 的距离相等的点C 表示的数是 。
4、已知a 为实数,则代数式21-+-+a a a 的最小值是 。
5、如图:在△ABC 中,∠BAC=90°,AB=AC=7cm ,点F 在边AC 上,且AF=3 cm ,过点F 作DF ⊥BC 于点D ,交BA 的延长线于点E ,则△AEF 与△CFD 的周长之和 cm 。
(结果保留根号)。
6、观察下列各等式:(1)33722722⨯=+ ; (2)3326332633⨯=+; (3)3363446344⨯=+; (4)331245512455⨯=+; ……, 根据你找到的规律写出第5个等式: 。
二、选择题1、大于-25,且不大于32的整数的个数是( )A. 9B. 8C. 7D. 52、小明同学估算一个无理数的大小时,不慎将墨水瓶打翻,现只知道被开方数是260,估算的结果约等于6或7,则根指数应为( )A. 2B. 3C. 4D. 5 3、下列几种说法:(1)无理数都是无限小数;(2)带根号的数是无理数;(3)实数分为正实数和负实数;(4)无理数包括正无理数、零和负无理数。
其中正确的有( ) A.(1)(2)(3)(4) B.(2)(3) C.(1)(4) D. 只有(1) 4、下列四个命题中,正确的是( )A. 数轴上任意一点都表示唯一的一个有理数B. 数轴上任意一点都表示唯一的一个无理数C. 两个无理数之和一定是无理数D. 数轴上任意两个点之间还有无数个点 5、a ,b 的位置如图,则下列各式有意义的是( )A. b a +B. b a -C. abD. a b - 6、△ABC 中,∠A:∠B:∠C=1:2:3,则BC:AC:AB 为( ) A. 1:2:3 B. 1:2:3 C. 1:3:2 D. 3:1:2 三、计算题 (1)12+271-31 (2)5352045-+(3)1(312248)233-+÷ (4)20)21()23(36318-+-++-A第5题 BD FE四、解答题1、在数轴上作出-8所表示的点A 。
北师大版八年级数学上册第二章《实数》测试题及答案
八年级上学期第二章《实数》单元测试及答案一、选择(每小题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.下列说法中正确的是().(A)4是8的算术平方根(B)16的平方根是4(C)是6的平方根(D)没有平方根2.下列各式中错误的是().(A)(B)(C)(D)3.若,则().(A)-0.7 (B)±0.7 (C)0.7 (D)0.494.的立方根是().(A)-4 (B)±4 (C)±2 (D)-25.,则的值是().(A)(B)(C)(D)6.下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)的平方根是;(4).共有()个是错误的.(A)1 (B)2 (C)3 (D)4+的值为()7.x是9的平方根,y是64的立方根,则x yA.3 B.7 C.3,7 D.1,78.=)A. x ≥1B. x ≥-1C.-1≤x ≤1D. x ≥1或x ≤-19. 计算515202145+-所得的和结果是( ) A .0 B .5- C .5 D .53 10. x --23 (x ≤2)的最大值是( )A .6B .5C .4D .3二、填空(每小题3分,共30分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的) 1.若,则是的__________,是的___________.2.9的算术平方根是__________,的平方根是___________.3.下列各数:①3.141、②0.33333……、③75-、④π、⑤252.±、⑥32-、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、⑧))((2727+-中.其中是有理数的有_______;是无理数的有_______.(填序号)4.的立方根是__________,125的立方根是___________.5.若某数的立方等于-0.027,则这个数的倒数是____________. 6.已知,则.7.和数轴上的点一一对应的数集是______.8. 估计200=__________(误差小于1);30=___________(误差小于0.1). 9.一个正方体的体积变为原来的27倍,则它的棱长变为原来的 倍. 10.如果一个正数的一个平方根是-a ,那么这个数的另一个平方根是______,这个数的算术平方根是______.三、计算(只要你认真思考, 仔细运算, 一定会解答正确的!每小题10分,共60分) 1.化简下列各式:(1 (2);2.甲同学用如下图示方法作出了C 点,表示数13,在△OA B 中,∠OAB =90°,OA =2,AB =3,且点O 、A 、C(1)请说明甲同学这样做的理由:(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点A .3.飞出地球,遨游太空,长期以来就是人类的一种理想,可是地球的引力毕竟太大了,飞机飞的再快,也得回到地面,炮弹打得再高,也得落向地面,只有当物体的速度达到一定值时,才能克服地球引力,围绕地球旋转,这个速度叫做第一宇宙速度.计算式子是:v=gR 千米/秒其中重力加速度g=0.0098千米/秒2,地球半径R=6370千米试求出第一宇宙速度的值.-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 64.如图所示,要在离地面5米处的电线杆处向两侧引拉线AB 和AC ,固定电线杆,生活经验表明,当拉线的固定点B (或C )与电线杆底端点D 的距离为其一侧AB 长度的31时,电线杆比较稳定,问一条拉线至少需要多长才能符合要求?试用你学过的知识进行解答.(精确到0.1米)5.自由下落的物体的高度h (米)与下落时间t (秒)的关系为h =4.92t .有一学生不慎让一个玻璃杯从19.6米高的楼上自由下落, 刚好另有一学生站在与下落的玻璃杯同一直线的地面上, 在玻璃杯下落的同时楼上的学生惊叫一声. 问这时楼下的学生能躲开吗? (声音的速度为340米/秒)6. 先阅读下列的解答过程,然后再解答:形如n m 2±的化简,只要我们找到两个数a 、b ,使m b a =+,n ab =,使得m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >例如:化简347+解:首先把347+化为1227+,这里7=m ,12=n ,由于4+3=7,1234=⨯即7)3()4(22=+,1234=⨯∴347+=1227+=32)34(2+=+ 由上述例题的方法化简:42213-;参考答案一、1.C2.D3.B4.D5.B6. C7.D8.A9.D 10.D二、1.平方,平方根2.3,±33.2.①②⑤⑥⑧,③④⑦;4.;55.6.0 7.实数集8.14或15;5.5或5.4 9.3;10.a,|a|三、1.(1)3;(2)22.2.(1)在直角三角形OAB中,由勾股定理可得:OB2=OA2+AB2.所以,OC=OB=13,即点C表示数13.(2)略.3. v=gR7.90千米/秒4. 1.8米5.楼下的学生能躲开,玻璃杯从19.6米高的楼上自由下落所用时间为t1167,声音从19.6米高的楼上到楼下学生听到所用时间为t2=19.6340≈0.06,167>0.06,所以,楼下的学生能躲开.6. =。
北师大版 八年级上册数学 第2章 实数 单元测试试卷 (含解析)
八年级(上)学期数学第2章实数单元测试卷一.选择题(共10小题)1.在3.14,0,,,,(每两个1之间的0依次增加1个)中,无理数有A.2个B.3个C.4个D.5个2.下列二次根式是最简二次根式的是A.B.C.D.3.下列说法不正确的是A.是负数B.是负数,也是有理数C.是负数,是有理数,但不是实数D.是负数,是有理数,也是实数4.A.B.C.8D.45.下列运算中正确的是A.B.C.D.6.立方根是的数是A.9B.C.D.277.计算的值在A.0到之间B.到之间C.到之间D.到之间8.若,为实数,且,则的值为A.1B.2C.D.9.已知、、是三角形的三边,且满足,则这个三角形是A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形10.如果表示,两个实数的点在数轴上的位置如图所示,那么化简的结果等于A.B.0C.D.二.填空题(共8小题)11.与的平方根之和等于.12.计算的结果是.13.若代数式在实数范围内有意义,则的取值范围是.14.若与互为相反数,则的值为.15.的整数部分是,小数部分是,则的值是.16.数轴上点,分别表示实数与,则点距点的距离为.17.如图,在中,,,点与数轴上表示1的点重合,点与数轴上表示2的点重合,以为圆心,长为半径画圆弧,与数轴交于点,则点所表示的数是.18.若记表示任意实数的整数部分,例如:,,,则(其中“”“”依次相间)的值为.三.解答题(共7小题)19.计算:(1);(2).20.已知某一实数的平方根是和,求的值.21.(1)如图,是边长为1的正方形的对角线,且,数轴上点对应的数是:.(2)请仿照(1)的做法,在数轴上描出表示的点.22.已知,求下列各式的值.(1);(2).23.我们定义:如果两个实数的和等于这两个实数的积,那么这两个实数就叫做“和积等数对”,即如果,那么与就叫做“和积等数对”,记为.例如:,,则称数对,,,为“和积等数对”.(1)判断和,是否是“和积等数对”,并说明理由;(2)如果(其中,是“和积等数对”,那么(用含有的代数式表示).24.观察下列各式及其验证过程:,验证:.,验证:.(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用为任意自然数,且表示的等式,并给出验证.(3)针对三次根式及次根式为任意自然数,且,有无上述类似的变形?如果有,写出用为任意自然数,且表示的等式,并给出验证.25.阅读材料:材料一:两个含有二次根式而非零代数式和乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式例如:,我们称的一个有理化因式是的一个有理化因式是.材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如:,请你仿照材料中的方法探索并解决下列问题:(1)的有理化因式为,的有理化因式为;(均写出一个即可)(2)将下列各式分母有理化:;②;(要求;写出变形过程)(3)请从下列,两题中任选一题作答,我选择题.计算:的结果为.计算:的结果为.参考答案一.选择题(共10小题)1.在3.14,0,,,,(每两个1之间的0依次增加1个)中,无理数有A.2个B.3个C.4个D.5个解:3.14是有限小数,属于有理数;0是整数,属于有理数;是分数,属于有理数;无理数有:,,,(每两个1之间的0依次增加1个)共3个.故选:.2.下列二次根式是最简二次根式的是A.B.C.D.解:,,,只有为最简二次根式.故选:.3.下列说法不正确的是A.是负数B.是负数,也是有理数C.是负数,是有理数,但不是实数D.是负数,是有理数,也是实数解:、小于零,是负数,故正确;、小于零是负数,是整数,也是有理数,故正确;、小于零是负数,是整数,也是有理数,有理数属于实数,故错误;、小于零是负数,是整数,也是有理数,有理数属于实数,故正确.故选:.4.A.B.C.8D.4解:;故选:.5.下列运算中正确的是A.B.C.D.解:、与不能合并,所以选项错误;、原式,所以选项正确;、原式,所以选项错误;、原式,所以选项错误.故选:.6.立方根是的数是A.9B.C.D.27解:,立方根是的数是.故选:.7.计算的值在A.0到之间B.到之间C.到之间D.到之间解:,,,,故选:.8.若,为实数,且,则的值为A.1B.2C.D.解:,,,,,,故选:.9.已知、、是三角形的三边,且满足,则这个三角形是A.等腰三角形B.直角三角形C.等腰直角三角形D.钝角三角形解:,,,,,这个三角形是直角三角形.故选:.10.如果表示,两个实数的点在数轴上的位置如图所示,那么化简的结果等于A.B.0C.D.解:,,,原式,故选:.二.填空题(共8小题)11.与的平方根之和等于或.解:,9的平方根是,与的平方根之和为或.故答案为:或.12.计算的结果是.解:原式.故答案为:.13.若代数式在实数范围内有意义,则的取值范围是.解:由题意得:,解得:,故答案为:.14.若与互为相反数,则的值为.解:根据题意得,则,,所以,,所以原式.故答案为.15.的整数部分是,小数部分是,则的值是.解:,,.则.故答案为:.16.数轴上点,分别表示实数与,则点距点的距离为11.解:,故答案为:11.17.如图,在中,,,点与数轴上表示1的点重合,点与数轴上表示2的点重合,以为圆心,长为半径画圆弧,与数轴交于点,则点所表示的数是.解:,,点所表示的数是.故答案为:.18.若记表示任意实数的整数部分,例如:,,,则(其中“”“”依次相间)的值为.解:,,,,,,,,.故答案为:.三.解答题(共7小题)19.计算:(1);(2).解:(1);(2).20.已知某一实数的平方根是和,求的值.解:和是同一实数的平方根(互为相反数),,,,解得,,.21.(1)如图,是边长为1的正方形的对角线,且,数轴上点对应的数是:.(2)请仿照(1)的做法,在数轴上描出表示的点.解:(1)由勾股定理得,,由圆的半径相等,得;数轴上点对应的数是,故答案为:;(2)如图所示,在数轴上作一个长为2,宽为1的长方形,则对角线,以为圆心,长为半径画弧,交数轴于点,则,点即为表示的点.22.已知,求下列各式的值.(1);(2).解:(1)原式;(2)原式.23.我们定义:如果两个实数的和等于这两个实数的积,那么这两个实数就叫做“和积等数对”,即如果,那么与就叫做“和积等数对”,记为.例如:,,则称数对,,,为“和积等数对”.(1)判断和,是否是“和积等数对”,并说明理由;(2)如果(其中,是“和积等数对”,那么(用含有的代数式表示).解:(1),,不是“和积等数对”;,,,是“和积等数对”;(2)根据题意得:,整理得:.故答案为:.24.观察下列各式及其验证过程:,验证:.,验证:.(1)按照上述两个等式及其验证过程,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用为任意自然数,且表示的等式,并给出验证.(3)针对三次根式及次根式为任意自然数,且,有无上述类似的变形?如果有,写出用为任意自然数,且表示的等式,并给出验证.解:(1),理由是:;(2)由(1)中的规律可知,,,,验证:;正确;(3)为任意自然数,且,验证:.25.阅读材料:材料一:两个含有二次根式而非零代数式和乘,如果它们的积不含二次根式,那么这两个代数式互为有理化因式例如:,我们称的一个有理化因式是的一个有理化因式是.材料二:如果一个代数式的分母中含有二次根式,通常可将分子、分母同乘分母的有理化因式,使分母中不含根号,这种变形叫做分母有理化.例如:,请你仿照材料中的方法探索并解决下列问题:(1)的有理化因式为,的有理化因式为;(均写出一个即可)(2)将下列各式分母有理化:;②;(要求;写出变形过程)(3)请从下列,两题中任选一题作答,我选择题.计算:的结果为.计算:的结果为.解:(1)的有理化因式为,的有理化因式为;(2)①②;(3)题:原式;题:原式.故答案为;;、;;.。
北师大版八年级数学上册第2章-实数(培优试题)
第二章实数专题无理数近似值的确定1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()A.x是有理数 B.x取0和1之间的实数C.x不存在 D.x取1和2之间的实数2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.答案:1.D 【解析】 ∵面积为3的正方形的边长为x ,∴x 2=3,而12=1,22=4,∴1<x 2<4,∴1<x <2,故选D.2.解:(1)边长为5cm. (2)设大正方形的边长为x ,∵大正方形的面积=32+32=18,而42=16,52=25,∴16<x 2<25,∴4<x <5,故正方形的边长不是整数,它的值在4和5之间.3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.专题一 非负数问题1. 若2(a +与1+b 互为相反数,则a b -的值为( )A B1C1-D.1-2.设a,b,c都是实数,且满足(2-a)2,ax2+bx+c=0,求式子x2+2x的算术平方根.3.若实数x,y,z= 14(x+y+z+9),求xyz的值.专题二探究题4.研究下列算式,你会发现有什么规律?=2=5;…请你找出规律,并用公式表示出来.5.先观察下列等式,再回答下列问题:答案:(a+与|b+1|互为相反数,1.D 【解析】∵2(a++|b+1|=0,∴2a=0且b+1=0,∴+-=1 D.∴a=2,b=﹣1,a b2.解:由题意,得2-a=0,a2+b+c=0,c+8=0.∴a=2,c=-8,b=4.∴2x2+4x-8=0.∴x2+2x=4.∴式子x2+2x的算术平方根为2.3.解:将题中等式移项并将等号两边同乘以4得+9=0,∴+4)=0,∴-2)2-2)2-2)2=0,-2=0-2=0,=2,∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.∴xyz=120.专题立方根探究性问题专题比较无理数大小2. 观察下列一组等式,然后解答后面的问题:(121++132++143++…+ 120132012+)•( 2013+1). (2)利用上面的规律,试比较1211-与1312-的大小.3. 先填写下表,通过观察后再回答问题.问: (1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?(3)试比较a 与a 的大小.答案:1.D 【解析】 ∵a 2=2000+21003997⨯,b 2=2000+21001999⨯,c 2=4004=2000+2×1002,1003×997=1 000 000-9=999 991,1001×999=1 000 000-1=999 999,10022=1 004 004. ∴c >b >a .故选D .2.解:(1)由上面的解题规律可直接写出111n n n n=+-++, 则(121++132++143++…+ 120132012+)•( 2013+1)=[(2-1)+ (3- 2)+(4-3)+…+(2013-2012)](2013+1)=( 2013-1) ( 2013+1)=2012.(2)∵11211-=1211+,11312-=1312+, 又1211+<1312+,∴11211-<11312-, ∴1211->1312-. 3.解:依次填:0.001,0.01,0.1,1,10,100,1000.(1)有规律,当被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点向左(或向右)移动1位.(2)观察1.8和1800,小数点向右移动了3位,则a 的值小数点向右移动6位,即a=3240000;(3)当0<a <1时,a >a ;当a=1或0时,a =a ;当a >1时,a <a .专题 实数与数轴1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )A .2B .22C .12D .122.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处3. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .(1)化简:|a-b|+|c-b|+|c-a|;(2)若a=4x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.答案:1.B 【解析】 由勾股定理得:正方形的对角线为2,设点A 表示的数为x ,则2-x=2,解得x=2-2.故选B .2.B 【解析】 根据题意,数轴上刻度15,18的位置分别对准A ,B 两点,而AB 两点间距离157-140=17(公里),即数轴上的3个刻度对应实际17公里的距离.又有数轴上刻度0与15之间有15个刻度,故刻度0的位置对准地图上公路的位置距A 点有15×173=85(公里), 140-85=55,故刻度0的位置对准地图上公路的55公里处.故选B .3.3+22 【解析】 在直角△ABC 中,AC=CB=2,根据勾股定理可以得到AB=22,则当顶点C下一次落在数轴上时,所在的位置表示的实数是4+22-1=3+22.故答案为:3+22.4.解:(1)由数轴可知:a-b>0,c-b<0,c-a<0,所以原式=(a-b)-(c-b)-(c-a)=a-b-c+b-c+a=2a-2c.(2)由题意可知:x+y=0,z=-1,mn=1,所以a=0,b=-(-1)2=-1,c=-4,∴98a+99b+100c=-99-400=-499.(3)满足条件的D点表示的整数为-7、3,它们的和为-4.专题一与二次根式有关的规律探究题1.将1、2、3、6按如图所示的方式排列.若规定(m,n)表示第m排从左到右第n个数,则(4,2)与(21,2)表示的两数之积是()A.1B.2C.232. 观察下列各式及其验证过程:322322=+=======. (1)按照上述两个等式及其验证过程,猜想1544+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.3. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a=m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: +=( +2;(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.专题二 利用二次根式的性质将代数式化简4. 化简二次根式22a a a 的结果是( ) A. 2a B. 2a C. 2a D. 2a5.如图,实数a .b 在数轴上的位置,化简:222)(b a b a -+-.答案:1.D 【解析】 从图示中知道,(4,2)所表示的数是6.∵前20排共有1+2+3+4+…+20=210个数,∴(21,2)表示的是第210+2=212个数.∵这些数字按照1、2、3、6的顺序循环出现,212÷4=53,∴(21,2)表示的数是6.∴(4,2)与(21,2)表示的两数之积是666⨯=.2.解:(14441515+=24644444415151515⨯+===. (22211a a a a a +=--(a 为任意自然数,且2a ≥). 3322221111a a a a a a a a a a a a -++===---- (3)333311-=-+a a a a a a (a 为任意自然数,且2a ≥).验证:a === =2a a =2a .故选 5.解:由图知,a <0,b >0,∴a ﹣b <0,222)(b a b -+-=|a |。
北师大版八年级上册数学第二章 实数含答案(精练)
北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、实数﹣27的立方根是()A.-3B.±3C.3D.-2、若a2=4 , b3= -8,则a+b的值是()A.0或-4或4B.0或-4C.-4D.03、下列说法中,正确的是()A.16的算术平方根是-4B.25的平方根是5C.-8的立方根是-2 D.1的立方根是±14、下列各式中,正确是A. B. C. D.5、下列说法正确的有()①任何实数的平方根有两个,且它们互为相反数②无理数就是带根号的数③数轴上所有的点都表示实数④负数没有立方根A.1个B.2个C.3个D.4个6、下列计算正确的是()A. B.2 C.()2=2 D.=37、化简得()A.100B.10C.D.±108、的平方根是( )A.±B.C.-D.±49、下列叙述正确的是()A.4的平方根是2B.16的算术平方根是4C.-27没有立方根 D. 是无理数10、下列各式中,正确的是()A. =±6B. =﹣C. =﹣4D.﹣=﹣0.611、下列运算正确的是()A. B. C. D.12、下列说法不正确的是()A.0的立方根是0B.0的平方根是0C.1的立方根是±1D.4的平方根是±213、9的平方根是()A.±3B.3C.﹣3D.8114、如图,已知数轴上的点A,B,C,D分别表示数-2、1、2、3,则表示数的点P应落在线段()A. 上 B. 上C. 上D. 上15、下列命题:①若a<1,则(a﹣1)=﹣;②平行四边形既是中心对称图形又是轴对称图形;③ 的算术平方根是3;④如果方程ax2+2x+1=0有两个不相等的实数根,则实数a<1.其中正确的命题个数是()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、计算的结果是________.17、使有意义的的取值范围是________ .18、计算:的结果是________.19、式子,当________时,这个式子有意义.20、计算:=________.21、在(两个非零数之间依次多一个0),其中无理数有________个22、若y=+-6,则xy=________.23、若x+17的立方根是3,则3x﹣5的平方根是________.24、化简________.25、三角形的一边长是cm,这边上的高是cm,则这个三角形的面积________cm2.三、解答题(共5题,共计25分)26、计算:﹣|﹣2|+()﹣1﹣2cos45°27、已知Rt△ABC的三边长分别为a,b,c,且a和b满足+b2-4b+4=0.(1)求a、b的长;(2)求△ABC的面积.28、已知一个正数的两个平方根分别是2a﹣1和a﹣5,求这个正数的值.29、计算:30、已知2a+1的平方根是±3,b+8的算术平方根是4,求:b-a的平方根.参考答案一、单选题(共15题,共计45分)1、A2、B3、C4、D5、A6、C7、B8、A9、B10、B11、D12、C13、A14、B15、A二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、。
北师大 八年级数学上册第二章实数测试卷(精华)(带答案)
北师大 八年级数学上册第二章实数测试卷(精华)(带答案)第二章 实数 单元测试卷(一卷)一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。
1、若x 2=a,则下列说法错误的是( )(A )x 是a 的算术平方根 (B )a 是x 的平方(C )x 是a 的平方根 (D )x 的平方是a2、下列各数中的无理数是( )(A )16 (B )3.14(C )113 (D )0.1010010001…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( )(A )任何一个实数都可以用分数表示(B )无理数化为小数形式后一定是无限小数(C )无理数与无理数的和是无理数(D )有理数与无理数的积是无理数4、9=( )(A )±3 (B )3 (C )±81 (D )815、如果x 是0.01的算术平方根,则x=( )(A )0.0001 (B )±0.0001 (C )0.1 (D )±0.16、面积为8的正方形的对角线的长是( )(A )2 (B )2 (C )22 (D )47、下列各式错误的是( )(A )2)5(5= (B )2)5(5-= (C )2)5(5-=(D )2)5(5-=8、4的算术平方根是( )(A )2 (B )2 (C )4 (D )169、下列推理不正确的是( )(A )a=b b a = (B )a=b 33b a =(C )a =(D )33b a = a=b10、如图(一),在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中长度是有理数的有( )条。
(A )1 (B )2 (C )3 (D )4二、填空题(每空2分,共20分)1、任意写一对和是有理数的无理数 。
(一)2、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。
3、如果a 21-有意义,则a 的取值范围是 。
北师大版八年级数学上册《第二章.实数》 培优单元测试题附答案
北师大版八年级数学上册《第二章.实数》培优单元测试题附答案一、选择题1、下列各数是无理数的是( )A. B. C.0.38 D.0.010********2、若x+y=0,则下列各式不成立的是()A. B.C. D.3、已知+|b﹣1|=0,那么(a+b)2016的值为( )A.﹣1 B.1 C.32015 D.﹣320154、如果y=+2,那么(﹣x)y的值为( )A.1 B.﹣1 C.±1 D.05、估计+1的值在( )A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间6、有理数、、的大小顺序是()A. B. C. D.7、对描述错误的一项是()A. 面积为2的正方形的边长B. 它是一个无限不循环小数C. 它是2的一个平方根D. 它的小数部分大于2-8、下列关于数的说法正确的是()A. 有理数都是有限小数B. 无限小数都是无理数C. 无理数都是无限小数D. 有限小数是无理数9、如图,实数-3,x,3,y在数轴上的对应点分别为M,N,P,Q,这四个数中绝对值最小的数对应的点是( )A.点M B.点N C.点P D.点Q10、如图,在数轴上表示数﹣的点可能是( )A.点E B.点F C.点P D.点Q11、若x=﹣4,则x的取值范围是( )A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<612、如下图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数为()A.0 B.1 C.2 D.3二、填空题13、的绝对值14、若,则中,最小的数是。
15、计算: +(π﹣2)0+(﹣1)2017= .16、规定:用符号[x]表示一个不大于实数x的最大整数,例如:[3.69]=3,[+1]=2,[-2.56]=-3,[-]=-2.按这个规定,[--1]= .3、解答题17、计算(1)、计算:﹣(﹣1)2018﹣|2﹣|++(2)(+3)(﹣3)﹣(3)18、已知的平方根是,的立方根是2,是的整数部分,求的值.19、若与(b 216)2互为相反数,求的立方根.20、有一个n位自然数能被整除,依次轮换个位数字得到的新数能被整除,再依次轮换个位数字得到的新数能被整除,按此规律轮换后,能被整除,…,能被整除,则称这个n位数是的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”.(2)若三位自然数是3的一个“轮换数”,其中,求这个三位自然数.21、我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a= ,b= ;(2)如果,其中a、b为有理数,求a+2b的值.22、先阅读材料,然后回答问题:(1)小张同学在研究二次根式的化简时,遇到了一个问题:化简经过思考,小张解决这个问题的过程如下:=…①=…②=…③=﹣…④上述化简过程中,第 步出现了错误,化简正确的结果为 .(2)请根据你从上述材料中得到的启发,化简23、探究规律在数轴上,把表示数1的点称为基准点,记作点O.对于两个不同点M和N,若点M和点N到点O的距离相等,则称点M与点N互为基准变换点.例如:图1中MO=NO=2,则点M和点N互为基准变换点.发现:(1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.①若a=0,则b= ;若a=4,则b= ;②用含a的式子表示b,则b= ;应用:(2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B.若点A与点B互为基准变换,则点A表示的数是多少?探究:(3)点P是数轴上任意一点,对应的数为m,对P点做如下操作:P点沿数轴向右移动k(k>0)个单位长度得到P1,P2为P1的基准变换点,点P2沿数轴向右移动k个单位长度得到点P3,点P4为P3的基准变换点,“…依次顺序不断的重复,得到P6…,求出数轴上点P2018表示的数是多少?(用含m的代数式表示)五、综合题24、如图,数轴上A、B两点对应的数分别为﹣5、15.(1)点P是数轴上任意一点,且PA=PB,则点P对应的数是 ;(2)点M、N分别是数轴上的两个动点,点M从点A出发以每秒3个单位长度的速度运动,同时,点N从原点O出发以每秒2个单位长度的速度运动.①若M、N两点都向数轴正方向运动,经过几秒,点M、点N分别到原点O的距离相等?②当M、N两点运动到AM=2BN时,请直接写出点M在数轴上对应的数.参考答案一、选择题1、B.2、D3、B;4、A.5、C【分析】先估算出的范围,即可得出答案.【解答】解:∵3<<4,∴4<+1<5,即+1在4和5之间,故选:C.【点评】本题考查了估算无理数的大小,能估算出的范围是解此题的关键.6、D7、D8、C 解析:无理数是指无限不循环小数,也就是说无理数都是无限小数.9、B 10、B.11、A解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.12、C二、填空题13、14、15、 ﹣2 .【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用零指数幂的性质以及立方根的定义分别化简进而求出答案.【解答】原式=﹣2+1﹣1=﹣2.16、-5.17、计算题(1)、解:原式=﹣1﹣(2﹣)+9﹣3=﹣1﹣2++9﹣3=3+.(2)、原式=()2﹣32﹣(﹣3)=14﹣9+3=8;(3)、三、简答题18、a=5 b=2 c=7 =1619、1.20、(1)设此两位数为=10a+2a=12a=6×2a为6的倍数,轮换后=20a+a=21a=7×3a为7的倍数所以为一个6个轮换数(2)此三位数为=200+10b+c=198+9b+(2+b+c)为3的倍数则2+b+c为3的倍数轮换后=100b+10c+2=100b+8b+(2c+2)为4的倍数则c+1为2的倍数即c为奇数=100c+20+b为5的倍数则b为0或者5当b=0时,2+c为3的倍数且c为奇数则c=1,或7 即三位数为201 或207当b=5时,2+c为3的倍数且c为奇数则c=5 即三位数为25521、22、解:(1)第④,﹣,故答案为:④,;(2)====|﹣|=﹣.23、【解答】解:(1)①∵点A表示数a,点B表示数b,点A与点B互为基准变换点,∵a+b=2,当a=0时,b=2;当a=4时,b=﹣2.故答案为:2;﹣2.②∵a+b=2,∴b=2﹣a.故答案为:2﹣a;(2)设点A表示的数为x,根据题意得:x﹣3+x=2,解得:x=2.故点A表示的数是2;(3)设点P表示的数为m,由题意可知:P1表示的数为m+k,P2表示的数为2﹣(m+k),P3表示的数为2﹣m,P4表示的数为m,P5表示的数为m+k,…由此可分析,4个一循环,∵2018÷4=504…2,∴点P2018表示的数与点P2表示的数相同,即点P2018表示的数为2﹣(m+k).24、【解答】解:(1)设P点表示的数为x,由题意得,x+5=15﹣x,解得,x=5,故答案为:5;(2)①由数轴知,当M,N重合时,3t﹣5=2t,解得,t=5(秒);当M,N在O点异侧时,5﹣3t=2t,解得t=1(秒);综上所述,经过5秒或1秒,点M、点N分别到原点O的距离相等;②由题可得,ON=2t,AM=3t,当点N在线段OB上时,BN=OB﹣ON=15﹣2t,由AM=2BN,可得3t=2×(15﹣2t),解得t=,若点M向右移动,则点M表示的数为﹣5+3×当点N在线段OB的延长线上时,BN=ON﹣OB=2t﹣15,=,若点M向左移动,则点M表示的数为﹣5﹣3×=﹣;由AM=2BN,可得3t=2×(2t﹣15),解得t=30,若点M向右移动,则点M表示的数为﹣5+3×30=85,若点M向左移动,则点M表示的数为﹣5﹣3×30=﹣95;综上所述,M在数轴上对应的数为﹣95,85,﹣,.。
北师大版八年级数学上册 第二章实数 综合测试卷(含答案)
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯北师版八年级数学上册第二章实数综合测试卷(时间90分钟,满分120分)一、选择题(共10小题,3*10=30)1.下列四个数:-3,0.5,23,5中,绝对值最大的数是( )A .-3B .-0.5C .23D . 52.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分3.下列各式一定是二次根式的是( ) A. a B.x 3+1 C.1-x 2 D.x 2+14.实数m ,n 在数轴上对应点的位置如图所示,则下列判断正确的是( )A .|m|<1B .1-m>1C .mn>0D .m +1>05.如图,两个实数互为相反数,在数轴上的对应点分别是点A ,点B ,则下列说法正确的是( )A .原点在A 的左边B .原点在线段AB 的中点处C .原点在点B 的右边D .原点可以在点A 或点B 上6. 实数m 在数轴上对应的点的位置在表示-3和-4的两点之间,且靠近表示-4的点,则这个实数m 可能是( )A.-3 3 B.-2 3 C.-11 D.-157.下列等式成立的是()A.31=±1B.3225=15C.3-125=-5D.3-9=-38.-27的立方根与81的平方根之和是().A.0B.6 C.-12或6D.0或-69.估计8-1的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间10.若2<a<3,则(2-a)2-(a-3)2的值为()A.5-2a B.1-2a C.2a-5D.2a-1二.填空题(共8小题,3*8=24)11.144的算术平方根是________.12. 代数式-3-a+b的最大值为________.13. 若3(4-k)3=k-4,则k的值为________.14. 若5个同样大小的正方体的体积是135 cm3,则每个正方体的棱长为________.15.比较大小:7-12________12(填“>”“<”或“=”).16. 大于2且小于5的整数是________.17.已知a-2+(b+5)2+|c+1|=0,那么a-b-c=________.18.下面是一个简单的数值运算程序,当输入x的值为16时,输出的数值为________.三.解答题(共7小题,66分)19.(8分) 计算下列各题:(1)(-1)2 019+6×27 2;(2)( 2-23)(23+2);(3)|3-7|-|7-2|-(8-272;20.(8分) 若33a -1与31-2b 互为相反数,求a b的值(b≠0).21.(8分) 已知a ,b 互为相反数,c ,d 互为倒数,x 是2的平方根,求5(a +b )a 2+b 2-2cd +x 的值.22.(10分)若a <0,求1bab 3+a b a 的值.23.(10分) 已知一个直角三角形的两条直角边长分别为(3+5)cm 和(5-3)cm ,求这个直角三角形的周长和面积.24.(10分)比较 2 023- 2 022与 2 022- 2 021的大小.25.(12分) 如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,求线段GH 的长.参考答案1-5ABDBB 6-10DCDBC11. 1212. -313. 414. 3 cm15. >16. 217. 818. 319. 解:(1)原式=-1+9=8;(2)原式=2-12=-10;(3)原式=(3-7)-(7-2)-(8-27)=-3;20. 解:因为33a -1与31-2b 互为相反数,所以3a -1与1-2b 互为相反数.所以3a -1=2b -1.所以3a =2b.又因为b≠0,所以a b =23.21. 解:由题意知a +b =0,cd =1,x =± 2.当x =2时,原式=-2+2=0;当x =-2时,原式=-2-2=-2 2,故原式的值为0或-2 2.22. 解:因为a <0,ab 3≥0,b a ≥0,b≠0,所以b <0,-a >0.所以-b >0. 所以1b ab 3+a b a =1b ab·b 2+a aba 2 =1b ab·(-b)2+a ab(-a)2=1b ·(-b)ab +a·1-a ab =-ab -ab=-2ab.23. 解:根据勾股定理可知, 这个直角三角形的斜边长是(3+5)2+(5-3)2=28+103+28-103=56=214(cm). 所以这个直角三角形的周长为(3+5)+(5-3)+214=10+214(cm),面积为12×(3+5)×(5-3)=12×(25-3)=11(cm 2).24. 解:12 023- 2 022 = 2 023+ 2 022( 2 023- 2 022)×( 2 023+ 2 022) = 2 023+ 2 022( 2 023)2-( 2 022)2 = 2 023+ 2 022,同理可得12 022- 2 021 = 2 022+ 2 021.而 2 023+ 2 022> 2 022+ 2 021,所以12 023- 2 022>12 022- 2 021.又因为 2 023- 2 022>0, 2 022- 2 021>0,所以 2 023- 2 022< 2 022- 2 021.25. 解:如图,延长BG 交CH 于点E ,因为四边形ABCD 是正方形,所以BC =AB =CD.又因为AG =CH ,BG =DH ,所以△ABG ≌△CDH(SSS).所以∠AGB =∠CHD ,∠2=∠6.因为AG =8,BG =6,AB =10,所以AG 2+BG 2=AB 2.所以△ABG 是直角三角形,且∠AGB =90°.所以△CDH 也是直角三角形,∠AGB =∠CHD =90°.所以∠1+∠2=90°,∠5+∠6=90°.又因为∠2+∠3=90°,∠4+∠5=90°,所以∠1=∠3,∠4=∠6=∠2.又因为AB=BC,所以△ABG≌△BCE(ASA).所以BE=AG=8,CE=BG=6,∠BEC=∠AGB=90°.所以∠BEH=90°,GE=BE-BG=8-6=2,HE=CH-CE=8-6=2.在Rt△GHE中,GH=GE2+HE2=22+22=2 2.一天,毕达哥拉斯应邀到朋友家做客。
北师版八年级数学上册第二章《实数》进阶培优辅导题
北师版八年级数学上册第二章《实数》进阶培优辅导题第一阶梯:1. ()20.9-的平方根是( )A .0.9-B .0.9±C .0.9D .0.81 2. 下列说法错误的是( )A .5是25的算术平方根B .1是1的一个平方根C .2)4(-的平方根是-4 D .0的平方根与算术平方根都是03. 要使式子有意义,则x 的取值范围是( )A .x >0B .x ≥-2C .x ≥2D .x ≤2 4. 在实数,,,,中,无理数有( )A.1个B.2个C.3个D.4个5. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y 等于( )A .2B .8C .3D .26. 若m 是169的算术平方根,n 是121的负的平方根,则(m +n )2的平方根为( )A. 2B. 4C.±2D. ±4 7.(南京中考)下列无理数中,在-2与1之间的是( ) A .-B .-C .D .8.(南京中考)8的平方根是( )A .4B .±4C . 2D .9. 若a ,b 为实数,且满足|a -2|+,则b -a 的值为( ) A .2 B .0 C .-2 D .以上都不对 10.(福州中考)若(m -1)20,则m +n 的值是( ) A .-1 B .0 C .1 D . 2第9题图11. 若与互为相反数,则的值为( ) A.B .C .D .12、25的平方根是( )A 、5B 、-5C 、±5D 、5±13、下列各组数中互为相反数的是( )A 、2)2(2--与 B 、382--与 C 、2)2(2-与 D 、22与-14、在下列各数中是无理数的有( ) -0.333…,4, 5, π-, 3π, 3.1415, 2.010101…(相邻两个1之间有1个0),76.0123456…(小数部分由相继的正整数组成). A.3个 B.4个 C. 5个 D. 6个 15、下列平方根中, 已经简化的是( ) A.31B. 20C. 22D. 12116、2)9(-的平方根是x , 64的立方根是y ,则y x +的值为( ) A 、3 B 、7 C 、3或7 D 、1或7 17、当14+a 的值为最小值时,a 的取值为( )A 、-1B 、0C 、41- D 、1 18( ). AB .2C .4D .1619.若4-40=m ,则估计m 的值所在范围是( )A.21<<m B 、32<<m C 、43<<m D 、54<<m 20.已知0)2(32=-+-y x x ,则y x +的平方根是( ) A 、3 B 、3± C 、9 D 、9± 21.下列各组数中,互为相反数的是( )A 、23-3-)(和 B 、31-3-2和)( C 、327-3-和 D 、3-273和 1+b22.已知m 是13的整数部分,n 是13的小数部分,则nm nm +-的值是( ) A 、1313-6 B 、1313-136 C 、3133-13+ D 、13-623.边长为2的正方形的对角线长是( )A. B. 2 C. 2 D. 424.n 为 ( )A 、2B 、3C 、4D 、525. 若a a =-2)3(-3,则a 的取值范围是( ).A. a >3B. a ≥3C. a <3D. a ≤3 26若代数式21--x x 有意义,则x 的取值范围是 A .21≠>x x 且 B .1≥x C .2≠x D .21≠≥x x 且221、若,则=2、化简:3、若一正数的平方根是12-a 与2+-a ,这个数为4、32-的相反数是_________,绝对值是________,倒数是_________;5、若+(y +3)2=0,则x +y =__________.6.a 是9的算术平方根,而b 的算术平方根是9,则a +b =__________. 7、36的平方根是 ;16的算术平方根是 8.(福州中考)计算:1)1)=________. 9.(湖北黄冈中考))计算:﹣=_________.03)2(12=-+-+-z y x z y x ++=-2)3(π2x -1.计算:(1)862⨯-82734⨯+; (2))62)(31(-+-2)132(-.(3)0)31(33122-++; (4)(21)-1-2--121-+(-1-2)2;(5)(-2)3+21(2004-3)0-|-21|; (6) 3643632932-+-++(7)22)3223()3223(+-- (8)0)2(231121-++++π(9)5145203-- (10) 20513375⨯--2.已知43=a ,0312=-++-c c b ,求33c b a ++的立方根?3、已知y x ,满足条件421025+=---y x x ,求y x -的算术平方根?4、若x 、y 都是实数,且y= 求x+y 的值。
新版北师大版八年级数学上册第2章《实数》单元测试试卷及答案(共10套)
新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (共10套 )(总分值:150 时间:120 )一、选择题 (每题4分 ,共60分 )1、如果一个数的平方根与它的立方根相同 ,那么这个数是 ( )A 、±1B 、0C 、1D 、0和1 2、在316x 、32-、5.0-、xa 、325中 ,最|简二次根式的个数是 ( ) A 、1 B 、2 C 、3 D 、43、以下说法正确的选项是 ( )A 、0没有平方根B 、-1的平方根是-1C 、4的平方根是-2D 、()23-的算术平方根是34、164+的算术平方根是 ( )A 、6B 、-6C 、6D 、6±5、对于任意实数a ,以下等式成立的是 ( ) A 、a a =2 B 、a a =2 C 、a a -=2 D 、24a a =6、设7的小数局部为b ,那么)4(+b b 的值是 ( )A 、1B 、是一个无理数C 、3D 、无法确定 7、假设121+=x ,那么122++x x 的值是 ( )A 、2B 、22+C 、2D 、12-8、如果1≤a ≤2 ,那么2122-++-a a a 的值是 ( ) A 、a +6 B 、a --6 C 、a - D 、1 9、二次根式:①29x -;②))((b a b a -+;③122+-a a ;④x1;⑤75.0中最|简二次根式是 ( )A 、①②B 、③④⑤C 、②③D 、只有④ 10、式子1313--=--x xx x 成立的条件是 ( ) A 、x ≥3 B 、x ≤1 C 、1≤x ≤3 D 、1<x ≤311、以下等式不成立的是 ( )A 、()a a =2B 、a a =2C 、33a a -=-D 、a aa -=-112、假设x <2 ,化简()x x -+-322的正确结果是 ( )A 、-1B 、1C 、52-xD 、x 25- 13、式子3ax -- (a >0 )化简的结果是 ( )A 、ax x -B 、ax x --C 、ax xD 、ax x - 14、231+=a ,23-=b ,那么a 与b 的关系是 ( )A 、b a =B 、b a -=C 、ba 1= D 、1-=ab 15、以下运算正确的选项是 ( ) A 、()ππ-=-332B 、()12211-=--C 、()0230=- D 、()6208322352-=-1、()221-的平方根是 ;8149的算术平方根是 ;3216-的立方根是 ;2、当a 时 ,23-a 无意义;322xx +-有意义的条件是 .3、如果a 的平方根是±2 ,那么a = .4、最|简二次根式b a 34+与162++-b b a 是同类二次根式 ,那么a = ,b= .5、如果b a b b ab b a )(2322-=+- ,那么a 、b 应满足 .6、把根号外的因式移到根号内:a 3-= ;当b >0时 ,x xb = ;aa --11)1(= . 7、假设04.0-=m ,那么22m m -= . 8、假设m <0 ,化简:3322m m m m +++= .9、比拟大小:56;13-6- .10、请你观察思考以下计算过程: ∵121112= ∴11121= ∵123211112= ∴11112321=因此猜测:76543211234567898= . 11、xy =3 ,那么yxyx y x+的值_________. 12、3392-⋅+=-x x x 成立那么X 的范围为1、abb a ab b 3)23(235÷-⋅ 2、62332)(62332(+--+)3、化简:)0(96329222<---b xb a b x a a 4、673)32272(-⋅++5、23923922-++++xx xx (0<x<3)6、假设17的整数局部为x ,小数局部为y ,求y x 12+的值.7、,3232,3232+-=-+=y x 求值:22232y xy x +-9.如图 ,B 地在A 地的正东方向 ,两地相距282km ,A ,B 两地之间有一条东北走向的高速公路 ,A ,B 两地分别到这条高速公路的距离相等.上午8:00测得一辆在高速公路上行驶的汽车位于A 地的正南方向P 处.至|上午8:20 ,B 地发现该车在它的西北方向Q 处 ,该段高速公路限速为11Okm /h ,问该车有否超速行驶?参考答案选择题二、填空题 1、±21 ,37,36-;2、32<a ,x ≤2且x ≠-8;3、16;4、1 ,1;5、a ≤b 且b ≥0;6、a 9- ,xb 2,a --1;7、0.12;8、m .9、< ,> 10、111111111 11、± 12、x ≥3 三、解答题1、 -a 2b2、12 -12 32(a b - 45 6、20 + 7、385 8 、不能 9、超速新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (7 )一、选择题 1、以下判断⑴12 3 和1348 不是同类二次根式;⑵145 和125 不是同类二次根式;⑶8x 与8x 不是同类二次根式 ,其中错误的个数是 ( )A 、3B 、2C 、1D 、02、如果a 是任意实数 ,以下各式中一定有意义的是 ( ) A 、 a B 、1a2 C 、3-a D 、-a 2 3、以下各组中的两个根式是同类二次根式的是 ( ) A 、52x 和3x B 、12ab 和13abC 、x 2y 和xy 2D 、 a 和1a 24、以下二次根式中 ,是最|简二次根式的是 ( ) A 、8x B 、x 2-3 C 、x -y x D 、3a 2b5、在27 、112 、112 中与3 是同类二次根式的个数是 ( )A 、0B 、1C 、2D 、36、假设a<0 ,那么|a 2 -a|的值是 ( ) A 、0 B 、2a C 、2a 或-2a D 、-2a7、把(a -1)11-a根号外的因式移入根号内 ,其结果是 ( ) A 、1-a B 、-1-a C 、a -1 D 、-a -18、假设a +b4b 与3a +b 是同类二次根式 ,那么a 、b 的值为 ( )A 、a =2、b =2B 、a =2、b =0C 、a =1、b =1D 、a =0、b =2 或a =1、b =1 9、以下说法错误的选项是 ( )A 、(-2)2的算术平方根是2B 、 3 - 2 的倒数是 3 + 2C 、当2<x<3时 ,x 2-4x +4 (x -3)2 = x -2x -3 D 、方程x +1 +2 =0无解10、假设 a + b 与 a - b 互为倒数 ,那么 ( )A 、a =b -1B 、a =b +1C 、a +b =1D 、a +b =-1 11、假设0<a<1 ,那么a 2 +1a 2 -2 ÷(1 +1a )×11 +a 可化简为 ( )A 、1-a 1 +aB 、a -11 +a C 、1-a2 D 、a 2-1 12、在化简x -yx +y时 ,甲、乙两位同学的解答如下: 甲:x -y x +y = (x -y)(x -y )(x +y )(x -y ) =(x -y)(x -y )(x )2-(y )2=x -y 乙:x -y x +y =(x )2-(y )2x +y = (x -y )(x +y )x +y =x -yA 、两人解法都对B 、甲错乙对C 、甲对乙错D 、两人都错 ( ) 二、填空题1、要使1-2xx +3 +(-x)0有意义 ,那么x 的取值范围是 . 2、假设a 2 =( a )2 ,那么a 的取值范围是 . 3、假设x 3 +3x 2 =-x x +3 ,那么x 的取值范围是 . 4、观察以下各式:1 +13 =213 ,2 +14 =314 ,3 +15 =415 ,……请你将猜测到的规律用含自然数n(n≥1)的代数式表示出来是 . 5、假设a>0 ,化简-4ab = . 6、假设o<x<1 ,化简(x -1x )2 +4 -(x +1x )2-4 = .7、化简:||-x 2 -1|-2| = .8、在实数范围内分解因式:x 4 +x 2-6 = .9、x>0 ,y>0且x -2xy -15y =0,那么2x +xy +3yx +xy -y= .10、假设5 +7 的小数局部是a ,5-7 的小数局部是b ,那么ab +5b = . 11、设 3 =a ,30 =b ,那么0.9 = . 12、a<0 ,化简4-(a +1a )2 -4 +(a -1a )2 = .1、13 (212 -75 ) 2、24 - 1.5 +223 -3 + 23 - 23、(-2 2 )2-( 2 +1)2 +( 2 -1)-1 4、7a 8a -2a 218a +7a 2a5、2nm n -3mnm 3n 3 +5mm 3n (m<0、n<0) 6、1a + b7、x 2-4x +4 +x 2-6x +9 (2≤x≤3) 8、x +xyxy +y +xy -y x -xy四、化简求值 1、x =2 +12 -1,y = 3 -13 +1,求x 2-y 2的值 . 2、x =2 + 3 ,y =2- 3 ,求x +yx -y-x -yx +y的值 .3、当a = 12 +3 时 ,求1-2a +a 2a -1 -a 2-2a +1a 2-a的值 .五、x +1x =4,求x -1x 的值 .参考答案一、选择题 1、B 2、C 3、B 4、B 5、C 6、D 7、B 8、D 9、C 10、B 11、A 12、B1、x ≤≠-3 ,x ≠02、a ≥03、-3≤x ≤04、 (n +1) 1n +25、-2b -ab6、2x7、18、(x + 3 )(x + 2 )(x - 2 ) 9、2927 10、2 11、3a b 12、-4三、计算与化简 1、 -1 2、 66 -5 3、6- 2 4、412 a 2a 5、-10mn6、 (1)当a ≠ b 时 ,原式 =12a 或 b2b (2)当a = b 时 ,原式 =a - b a 2-b7、18、(x +y)xy xy 四、化简求值1、-11 +12 2 +16 62、2 3 33、3 五、±2 3新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (8 )(时间:45分钟 分数:100分 )一、选择题 (每题2分 ,共20分 )1.以下式子一定是二次根式的是 ( )A .2--xB .xC .22+xD .22-x2.假设b b -=-3)3(2,那么 ( )A .b>3B .b<3C .b ≥3D .b ≤3 3.假设13-m 有意义 ,那么m 能取的最|小整数值是 ( )A .m =0B .m =1C .m =2D .m =34.假设x<0 ,那么xx x 2-的结果是 ( )A .0B . -2C .0或 -2D .2 5.以下二次根式中属于最|简二次根式的是 ( ) A .14 B .48 C .baD .44+a 6.如果)6(6-=-•x x x x ,那么 ( )A .x ≥0B .x ≥6C .0≤x ≤6D .x 为一切实数 7.小明的作业本上有以下四题: ①24416a a =; ②a a a 25105=⨯; ③a aa a a=•=112;④a a a =-23 .做错的题是 ( )A .①B .②C .③D .④ 8.化简6151+的结果为 ( ) A .3011B .33030C .30330D .11309.假设最|简二次根式a a 241-+与的被开方数相同 ,那么a 的值为 ( ) A .43-=a B .34=a C .a =1 D .a = -1 10.化简)22(28+-得 ( )A . -2B .22-C .2D . 224- 二、填空题 (每题2分 ,共20分 )11.①=-2)3.0( ;②=-2)52( .12.二次根式31-x 有意义的条件是 .13.假设m<0 ,那么332||m m m ++ = .14.1112-=-•+x x x 成立的条件是 .16.=•y xy 82 ,=•2712 . 17.计算3393aa a a-+ = . 18.23231+-与的关系是 .19.假设35-=x ,那么562++x x 的值为 .20.化简⎪⎪⎭⎫⎝⎛--+1083114515的结果是 . 三、解答题 (第21~22小题各12分 ,第23小题24分 ,共48分 )21.求使以下各式有意义的字母的取值范围: (1 )43-x (2 )a 831- (3 )42+m (4 )x1-22.化简:(1 ))169()144(-⨯- (2 )22531- (3 )5102421⨯-(4 )n m 21823.计算: (1 )21437⎪⎪⎭⎫ ⎝⎛- (2 )225241⎪⎪⎭⎫⎝⎛--(3 ))459(43332-⨯ (4 )⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-126312817(5 )2484554+-+ (6 )2332326--24.假设代数式||112x x -+有意义 ,那么x 的取值范围是什么 ?25.假设x ,y 是实数 ,且2111+-+-<x x y ,求1|1|--y y 的值 .参考答案一、选择题1.C 2.D 3.B 4.D 5.A 6.B 7.D 8.C 9.C 10.A 二、填空题11.①0.3 ②25- 12.x ≥0且x ≠9 13. -m 14.x ≥1 15.< 16.x y 4 18 17.a 3 18.相等 19.1 20.33165315++ 三、解答题 21. (1 )34≥x (2 )241<a (3 )全体实数 (4 )0<x22.解: (1 )原式 =1561312169144169144=⨯=⨯=⨯;(2 )原式 =51531-=⨯-; (3 )原式 =51653221532212-=⨯-=⨯-; (4 )原式 =n m n m 232322=⨯⨯ . 23.解: (1 )原式 =49×21143=; (2 )原式 =25125241=-; (3 )原式 =345527315)527(41532-=⨯-=-⨯; (4 )原式 =2274271447912628492=⨯=⨯=⨯;(5 )原式 =225824225354+=+-+;(6 )原式 =265626366-=-- . 24.解:由题意可知: 解得 ,121≠-≥x x 且 .25.解:∵x -1≥0, 1 -x ≥0,∴x =1 ,∴y<21.∴1|1|--y y =111-=--y y.新版北师大版八年级|数学上册第2章?实数?单元测试试卷及答案 (9 )(时间:45分钟 分数:100分 )一、选择题 (每题2分 ,共20分 )1.以下说法正确的选项是 ( )A .假设a a -=2 ,那么a<0B .0,2>=a a a 则若C .4284b a b a =D . 5的平方根是5 2.二次根式13)3(2++m m 的值是 ( )A .23B .32C .22D .0 3.化简)0(||2<<--y x x y x 的结果是 ( )2x +1≥0 ,1 -|x|≠A .x y 2-B .yC .y x -2D .y -4.假设ba是二次根式 ,那么a ,b 应满足的条件是 ( ) A .a ,b 均为非负数 B .a ,b 同号 C .a ≥0 ,b>0 D .0≥ba 5.a<b ,化简二次根式b a 3-的正确结果是 ( )A .ab a --B .ab a -C .ab aD .ab a - 6.把mm 1-根号外的因式移到根号内 ,得 ( ) A .m B .m - C .m -- D .m - 7.以下各式中 ,一定能成立的是 ( ) .A .22)5.2()5.2(=- B .22)(a a =C .122+-x x =x -1D .3392+⋅-=-x x x8.假设x +y =0 ,那么以下各式不成立的是 ( )A .022=-y xB .033=+y xC .022=-y x D .0=+y x9.当3-=x 时 ,二次根7522++x x m 式的值为5 ,那么m 等于 ( ) A .2 B .22C .55D .510.1018222=++x xx x,那么x 等于 ( ) A .4 B .±2 C .2 D .±4二、填空题 (每题2分 ,共20分 )11.假设5-x 不是二次根式 ,那么x 的取值范围是 .12. (2005·江西 )a<2 ,=-2)2(a .13.当x = 时 ,二次根式1+x 取最|小值 ,其最|小值为 . 14.计算:=⨯÷182712 ;=÷-)32274483( . 15.假设一个正方体的长为cm 62 ,宽为cm 3 ,高为cm 2 ,那么它的体积为3cm .16.假设433+-+-=x x y ,那么=+y x .17.假设3的整数局部是a ,小数局部是b ,那么=-b a 3 . 18.假设3)3(-•=-m m m m ,那么m 的取值范围是 .19.假设=-⎪⎪⎭⎫ ⎝⎛-=-=y x y x 则,432311,132.三、解答题 (21~25每题4分 ,第26小题6分 ,第27小题8分 ,共44分 ) 21.21418122-+- 22.3)154276485(÷+-23.x xx x 3)1246(÷- 24.21)2()12(18---+++ 25.0)13(27132--+- 26.:132-=x ,求12+-x x 的值 .27.:的值。
实数(单元测试培优卷)-2023-2024学年八年级数学上册基础知识专项突破讲与练(北师大版)
第2章实数(单元测试·培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.下列实数中,()是无理数.A .3.14B C D .2272.下列式子中是二次根式的是()A BCD 3.下列运算正确的是()A =B .4=CD 2=4)A .2和3B .4和5C .5和6D .6和75.如果一个比m 小2的数的平方等于2(4)-,那么m 等于()A .4-B .4±C .2-D .2-或66.下列二次根式在实数范围内有意义,则x 的取值范围是1x ≥的选项是()AB C .2x -D 7.若2m =,则m n-=()A .425B .254C .254-D .425-8.化简|2)A .5B 1C .2D .29.若0,0mn m n >+<=()A .mB .-mC .nD .-n10.下列说法中,正确的是()AB .若)21x ->则x >C3x +与3不一定相等D .若0a b +<=二、填空题(本大题共8小题,每小题4分,共32分)11.36的平方根是,的立方根是.12.比较大小:1.13=.14.若两个代数式M 与N 满足1M N ⋅=-,则称这两个代数式为“互为友好因式”“互为友好因式”是.15.如图,在数轴上,1OB =,过O 作直线l OB ⊥于点O ,在直线l 上截取2OA =,且A 在OC 上方.连接AB ,以点B 为圆心,AB 为半径作弧交直线OB 于点C ,则C 点的横坐标为.16.如图,某品牌的计算器上三个按键是并列的按键,是算术平方根按键;是倒数按键;是平方按键.计算器显示屏上现在显示100这个数字,小敏第一下按,第二下按,第三下按,之后以的顺序轮流按,当他共按2023下后,该计算器荧幕显示的数是.17.观察上表中的数据信息:则下列结论: 1.51=;1=;③只有3个正整数a 满足15.215.3<<; 1.510<.其中正确的是.(填写序号)a 1515.115.215.315.4…a 2225228.01231.04234.09237.16…18.仔细观察图,认真分析各式,然后请利用用上述变化规律求出2322221n S S S S +++⋯+的值为.222212OA =+=,12S=222313OA =+=,22S =222414OA =+=,3S =三、解答题(本大题共6小题,共58分)19.(8分)(1)已知27-的立方根是12m -,2是3n -的一个平方根,求m n +的值.(2)若a 、b 、c 是三角形ABC 的三条边长,且222c a b =+,其中25c =,15b =,求a 的值.20.(8分)计算:(1)(2)())(21111-++-.21.(10分)完成下列各小题:(1)已如1,1x y ==-,求22232x xy y ++的值;(2)已知210x -+=,求式子1x x-的值;22.(10分)(1)已知x 1x +=121()x x-的值;(2)已知x ﹣2(x ﹣1)2﹣2(x ﹣1)+1的值.23.(10分)在数学课本36页的阅读材料中,运用反证法说明是一个无理数”,请模仿这种方法,说明阅读材料:“无理数”的由来是一个有理数,a b =,其中a 、b 是整数且a 、b 互素且0b ≠,这时,就有:22a b ⎛⎫= ⎪⎝⎭,于是222a b =,则a 是2的倍数.再设2a m =,其中m 是整数,就有:222)2(m b =,也就是:222b m =,所以b也是2的倍数,可见a、b不是互素数,与前面所假设的a与b不可能是一个有理数.ab+=(a、b是整数且a、b互素且0b≠),ab=-两边同时平方得:_____________,所以:21ab⎛⎫=-⎪⎝⎭,可得:a bb a=-,=______________,因为:______________,是一个无理数.24.(12分)【阅读材料】小华根据学习“二次根式“及”乘法公式“积累的经验,通过“由特殊到一般”的方法,探究”当00a b>>、与a b+的大小关系”.下面是小单的深究过程:①具体运算,发现规律:当00a b>>、时,特例1:若2a b+=,则2≤;特例2:若3a b+=,则3≤;特例3:若6a b+=,则0≤.②观察、归纳,得出猜想:当00a b>>、时,a b+.③证明猜想:当00a b>>、时,∵20a b =-+≥,∴2a b ab a b +≥≥++,∴a b ≤+.当且仅当a b =时,a b =+.请你利用小华发现的规律解决以下问题:(1)当0x >时,1x x+的最小值为(2)当0x <时,2x x--的最小值为;(3)当0x <时,求226x x x++的最大值.参考答案1.B【分析】无理数就是无限不循环小数,理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,由此即可判断选项.【详解】解:A.3.14是有理数,故A 不符合题意;是无理数,故B 符合题意;2=是有理数,故C 不符合题意;D.227是有理数,故D 不符合题意;故选:B .【点拨】本题主要考查无理数的定义,其中初中范围内学习的无理数有:π,2π等;开不尽方的数;以及像0.101001000100001…等有这样规律的数.2.C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B1x <-时,不是二次根式,故此选项不符合题意;C ,()210x +≥恒成立,因此该式是二次根式,故此选项符合题意;D20-<,不是二次根式,故此选项不符合题意;故选:C .0a ≥)的式子叫做二次根式.3.C【分析】根据二次根式的加减法法则,乘除法法则计算并依次判断.【详解】解:A 选项:A 选项不符合题意;B 选项:=B 选项不符合题意;C 选项:原式C 选项符合题意;D 选项:原式=,故D 选项不符合题意.故选:C .【点拨】此题考查二次根式的运算,掌握二次根式的加减法法则,乘除法法则是解题的关键.4.A【分析】根据469<<<23<<,即可得.【详解】解:∵469<<,<<23<<∴最接近的两个整数是2和3,故选:A .【点拨】本题考查了运用算术平方根知识对无理数进行估算的能力,关键是能准确理解并运用该知识.5.D【分析】根据题意得出22(2)(4)m -=-,解方程即可.【详解】解:根据题意得:22(2)(4)m -=-,即2(2)16m -=,∴24m -=±,∴2m =-或6,故选:D .【点拨】本题考查了平方根,根据题意列出方程结合平方根的意义求解是关键.6.B【分析】根据二次根式有意义的条件,A 选项保证被开放式大于等于0,且分母不为0;B 选项保证被开放式大于等于0;C 选项保证被开放式大于等于0,且坟墓不为0;D 选项保证被开放式大于等于0,且分母不为0,求出x 的取值范围即可.【详解】解:A.x 的取值范围是1x >,故此项不符合题意;B.x 的取值范围是1x ≥,故此项符合题意;C.x 的取值范围是1x ≥,且2x ≠,故此项不符合题意;D.x 的取值范围是1x >,故此项不符合题意;故选B .【点拨】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解题的关键.7.A【分析】先根据二次根式的意义求出n ,再求出m ,最后根据负整数指数幂的运算法则得到最终解答.【详解】解:由题意可得:2n-5=5-2n=0,∴52n=,m=0+0+2=2,∴n-m=22524 2525-⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,故选A.【点拨】本题考查二次根式和负整数指数幂的综合应用,熟练掌握二次根式有意义的条件及负整数指数幂的计算方法是解题关键.8.A【分析】先化简各数,再求和即可.【详解】解:|2235-=-故选:A.【点拨】本题考查了立方根和绝对值,掌握相关运算法则是解题的关键.9.B【分析】先由已知条件得到m、n的符号,再根据二次根式的乘除法则化简计算即可.【详解】解:由已知条件可得:m<0,n<0,∴原式=|m|=-m,故选:B.【点拨】本题考查二次根式的应用,熟练掌握二次根式的乘除法是解题关键.10.C【分析】根据二次根式的性质及运算法则计算判断即可.【详解】1-,不是互为倒数,选项错误;B.若)21x>20<,则xC.3x +与3不一定相等,选项正确;D.0a b ≥,结合0a b +<可得0a ≤,0b <=故选:C【点拨】本题考查了二次根式的混合运算,熟记相关概念是解题是解题的关键.11.6±2-【分析】根据平方根的定义,立方根的定义,开平方运算解答即可.【详解】解:①∵()2636±=,∴36的平方根是6±,故答案为6±;②∵8=-,∴()328-=-,∴8-的立方根为2-,∴2-,故答案为2-.【点拨】本题考查了平方根的定义,开平方运算,立方根的定义,掌握平方根的定义是解题的关键.12.<【分析】可得()11=10<,即可求解.【详解】解:()11=1<10∴<,()10∴<()1∴<,故答案:<.【点拨】本题主要考查了用作差法比较实数的大小,掌握比较的方法是解题的关键.13.0【分析】根据二次根式有意义的条件可得2210,10a a -=-=,进而即可求解.都是二次根式,∴2210,10a a -≥-≥∴2210,10a a -=-=,=0,故答案为:0.【点拨】本题考查了二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.14.2/2【分析】根据“互为友好因式”的概念解答即可.“互为友好因式”为:()112-´-´===-,【点拨】本题考查了定义新运算,二次根式的分母有理化,解题的关键是掌握二次根式的分母有理化的方法.15.11+【分析】根据勾股定理求得AB ,根据题意可得BC AB ==【详解】解:∵l OB ⊥,1OB =,2OA =,在Rt AOB △中,AB ===∴BC AB ==∴1OC OB BC =+=O 为原点,OC 为正方向,则C 点的横坐标为1故答案为:1.【点拨】本题考查了勾股定理与无理数,实数与数轴,熟练掌握勾股定理是解题的关键.16.10【分析】根据题中的按键顺序确定出显示的数的规律,即可得出结论.10=,10.110=,20.10.01=,0.1=,1100.1=,210100=,……,∵202363371=⨯+,∴当他共按2023下后,该计算器荧幕显示的数是10,故答案为:10.【点拨】本题考查了求一个数的算术平方根,倒数,有理数的乘方,找到规律是解题的关键.17.①②③【分析】由表格中的信息:①利用被开方数的小数点与其算术平方根的小数点之间的变化规律解答即可;②利用被开方数的小数点与其算术平方根的小数点之间的变化规律,分别确定被减数和减数的值,再相减即可;③先确定a④【详解】解:①∵15.1222801=,1.51=,故①正确;②∵215.3234.09=,215.2231.04=,1531521=-=,故②正确;③∵15.215.3<,∴231.04234.09a <<,其中整数有:232,233,234共3个,故③正确;④由①1.51=,1.510=,故④错误.综上,正确的是:①②③,故答案为:①②③.【点拨】本题考查无理数的估计,解答时需要从表格中获取信息,运用到无理数大小比较,有理数的运算,整数的概念等,熟练掌握被开方数的小数点与其算术平方根的小数点之间的变化规律是解题的关键.18.()18n n +【分析】由题意得到122124S ⎛== ⎝⎭,222224S ⎛== ⎝⎭,223324S ⎛== ⎝⎭,……,2224n n S ⎛== ⎝⎭,求和即可得到2322221n S S S S +++⋯+的值.【详解】解:由题意知,222212OA =+=,1S =122124S == ⎪⎝⎭,222313OA =+=,22S =,222224S ⎛== ⎝⎭,222414OA =+=,32S =,22334S ==⎝⎭,……222111n OA n +=+=+,2n S =,2224n n S ⎛== ⎝⎭,∴()()23222211112314444428n S S S n S n n n n ++=++++=⨯=+++⋯+⋯,故答案为:()18n n +【点拨】此题考查了勾股定理的规律题,还考查了二次根式的运算,熟练掌握勾股定理和二次根式的运算法则是解题的关键.19.(1)16;(2)20【分析】(1)根据立方根、平方根的意义可得到123m -=-,34n -=,进而得到m 、n 的值,再将m 、n 的值代入m n +即可求得答案;(2)将b 、c 的值代入222c a b =+中即可得到a 的值.【详解】解:(1)27- 的立方根是12m -,2是3n -的一个平方根,123m ∴-=-,34n -=,9m ∴=,7n =,9716m n ∴+=+=.(2)222c a b =+ ,且25c =,15b =,2222515a ∴=+,2400a ∴=,20a ∴=±,a 是三角形ABC 的边长,0a ∴>,20a ∴=.【点拨】本题考查了平方根、立方根,熟练掌握平方根、立方根的意义是解题的关键.20.(1)-(2)21-【分析】(1)根据二次根式的混合运算进行计算即可求解;(2)根据完全平方公式以及平方差公式,零指数幂进行计算即可求解.【详解】(1()2-==-(2)解:())(21111++-=181211-+-+=21-【点拨】本题考查了二次根式的混合运算,零指数幂,熟练掌握二次根式的运算法则是解题的关键.21.(1)15;(2)±4【分析】(1)利用完全平方公式把原式变形,代入计算得到答案.(2)根据已知等式可得1x x+=【详解】解:(1)∵1,1x y ==-,∴x y +=)111xy ==,∴原式=2(x +y )2-xy =15.(2)∵210x -+=,∴1x x+=∴(222114416x x x x ⎛⎫⎛⎫-=+-=-= ⎪ ⎪⎝⎭⎝⎭,∴1x x-=±4.【点拨】本题考查的是二次根式的化简求值,一元二次方程的解,掌握二次根式的混合运算法则、完全平方公式是解题的关键.22.(1)(2)(x ﹣2)2,2.【分析】(1)利用完全平方公式222)2(a ab b a b ±+=±推出2211()()4x x x x-=+-,然后整体代入即可;(2)先对原代数式利用完全平方公式2222()a ab b a b -+=-进行化简,然后整体代入求值即可.【详解】(1)∵22211(2x x x x -=+-,22211()2x x x x +=++∴2211()()4x x x x-=+-∵x 1x+=1∴原式=2(14(13)4-=++-=(2)(x ﹣1)2﹣2(x ﹣1)+1=(x ﹣2)2,把x ﹣2=)2=2.【点拨】本题主要考查代数式求值,掌握完全平方公式和整体代入法是解题的关键.23.232ab ⎛⎫=- ⎪⎝⎭;12a b b a ⎛⎫- ⎪⎝⎭;,a b b a 为有理数,a b b a -盾【分析】仿照题干方法进行证明即可.+是一个有理数.a b +=(a 、b 是整数且a 、b 互素且0b ≠),a b=-两边同时平方得:232a b ⎛⎫=- ⎪⎝⎭,所以:21a b ⎛⎫=- ⎪⎝⎭,可得:a b b a =-,=12a b b a ⎛⎫- ⎪⎝⎭,因为:,a b b a 为有理数,a b b a-为无理数,与前面所设矛盾,是一个无理数.【点拨】本题考查了无理数的证明,能够理解并运用题干的反证法是解题的关键.24.(1)2(2)(3)2-+【分析】(1)直接由题中规律即可完成;(2)当0x <时,200x x->->,,则可由题中规律完成;(3)原式226x x x++变形为62x x ++,由0x <,计算出6()x x ⎛⎫-+- ⎪⎝⎭的最小值,即可求得6x x +的最大值,则最后可求得原式的最大值.【详解】(1)解:当0x >时,1x x,均为正数,由题中规律得:12x x +≥=,当且仅当1x x=,即1x =时,12x x +=,∴当x >0时,1x x +的最小值为2;故答案为:2;(2)解:当0x <时,200x x->->,,由题中规律得:22()x x x x ⎛⎫--=-+-≥= ⎪⎝⎭当且仅当2x x-=-,即x =2x x --=,∴当x <0时,2x x--的最小值为故答案为:(3)解:∵2226266622x x x x x x x x x x x x ++⎛⎫=++=++=++ ⎪⎝⎭,∴当0x <时,600x x ->->,,∴6()x x ⎛⎫-+-≥= ⎪⎝⎭,当且仅当6x x -=-,即x =6x x--=,∵6()x x ⎛⎫-+-≥ ⎪⎝⎭,∴6x x +≤-∴622x x++≤-,∴2262x x x++≤-,当且仅当x =226x x x++的最大值为2-+,∴当0x <时,226x x x++的最大值为2-.【点拨】本题考查了求代数式的最大值或最小值问题,读懂题目中的规律是解题的关键,另外特别注意规律中两个字母均为正数,在使用时要注意.。
北师大版2019-2020八年级数学上册第二章实数单元测试题1(培优 附答案)
北师大版2019-2020八年级数学上册第二章实数单元测试题1(培优 附答案)1.化简的结果是()A .-3B .3C .±3D .±92.下列根式中属最简二次根式的是( )A BC D 3.9的平方根是( )A .3B .3±CD .4.如果-b 是a 的立方根,那么下列结论正确的是( )A .-b 也是-a 的立方根B .b 是a 的立方根C .b 是-a 的立方根D .±b 都是a 的立方根5.下列说法正确的是( )A .﹣(﹣8)的立方根是﹣2B .立方根等于本身数有﹣1,0,1C .的立方根为﹣4D .一个数的立方根不是正数就是负数6.估算+1的值 ( )A .在3与4之间B .在4与5之间C .在5与6之间D .在6与7之间7.下列计算正确的是( )A B .824x x x ÷= C .()3326a a = D .326326a a a ⋅= 8.下列各式计算正确的是 ( )A .B .C .D . 9.4的算术平方根是 ( )A .2B .±2CD .10.下列二次根式中,是最简二次根式的为( )A .B .C .D .11.化简: ____________==.12.计算: ()3-︒=______________.13.下列各数:①3.141;②0.3;③ ;④∏;⑤± ;⑥23- ⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2);其中是有理数的有__________;是无理数的有___________(填序号)。
14.函数y=自变量的取值范围是_____.15.计算8﹣29= .16.若正数m 的两个平方根是2a-1和a-5,则a=________,m=___________17.在学习了《实数》这一章后,小明发现: 23== 56==等.根据小明发现的规律,若代数式的值为不等于1的整数..,则整数..a =___________.18.如图,数轴上表示1、的对应点分别为A 、B ,点C 为点B 关于点A 的对称点,设点C 所表示的数为x ,则_______.19.计算:(1)()1016 3.52π-⎛⎫+- ⎪⎝⎭;(2)220.(8分)计算:2-21.求下列各式中的x:(1)8x3+27=0;(2)64(x+1)3=27.22.已知2a-1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.23.计算:参考答案1.B【解析】根据二次根式的性质可得=3,故选B.2.A【解析】试题分析:最简二次根式是指无法进行化简的二次根式.A、无法化简;B、原式=;C、原式=2;D、原式=.考点:最简二次根式3.B【解析】试题分析:因为(±3)2=9,所以9的平方根是±3.故选B.点睛:本题考查了平方根的概念,熟记若x2=a(a≥0),则x叫做a的平方根是解决此题的关键.4.C【解析】试题分析:根据立方根的意义,可由-b是a的立方根,那么b是-a的立方根,故C正确.故选:C.5.B【解析】A. ∵的立方根是,故不正确;B. ∵立方根等于本身数有,故不正确;C. ∵的立方根为,故不正确;D. ∵一个数的立方根可能是0,正数,负数,故不正确;6.D【解析】根据实数的大小关系,可得25<26<36,可知5<<6,因此可知6<+1<7.故选:D.点睛:此题主要考查了二次根式的估算,解题关键是找到相近的平方数,根据相近的平方数的平方根得到二次根式的近似值,然后即可判断其取值的范围.7.A【解析】A. 23=⨯,故正确; B.826x x x ÷= ,故不正确; C.()3328a a = ,故不正确; D. 325326a a a ⋅=,故不正确;故选A.8.D 【解析】选项A ,原式=,选项A 错误;选项B ,原式=2选项B 错误;选项C ,原式,选项C 错误;选项D ,原式=,选项D 正确,故选D.9.A【解析】∵22=4,所以4的算术平方根是2. 故选A.点睛:一般地,如果一个非负数x 的平方等于a ,即x 2=a ,那么这个非负数x 叫做a 的算术平方根. 10.A【解析】试题分析:是最简二次根式,故选项A 正确, ,故选项B 错误,,故选项C 错误,,故选项D 错误,故选A .考点:最简二次根式.11.【解析】试题解析: ==2233====故答案为: 12.43【解析】原式=13+1=4313. 1,2,5,6, 3,4,7【解析】∵⑤=±32,∴在①3.141;②0.3;④π;⑤;⑥−23;⑦0.3030003000003…(相邻两个3之间0的个数逐次增加2)中,有理数有①②⑤⑥,无理数有③④⑦;故答案为:①②⑤⑥;③④⑦。
北师大版八年级上册数学第二章实数检测试卷
检测内容:第二章 实数得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.在实数:3-27,3.141 592 6,0.1·2·3·,π2,34,103,25,22,0.101 001 000 1…(相邻两个1之间0的个数逐次加1)中,无理数有( )A .2个B .3个C .4个D .5个2.下列说法正确的是( )A .1的平方根是1B .-25的平方根是±5C .16的算术平方根是4D .3是(-3)2的算术平方根 3.求0.052 9的正确按键顺序为( ) A .0·0529 B .0·0529 C .0·0529=D .0·0529=4.已知二次根式23-a 与8化成最简二次根式后被开方数相同,则正整数a 的最小值为( )A .23B .21C .15D .55.(北京)实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .|a|>4B .c -b >0C .ac >0D .a +c >0 6.下列计算错误的是( ) A .43÷121=27B .(8+3)×3=26+3 C .(42-36)÷22=2-323D .(5+7)(5-7)=-27.现规定一种运算:a ※b =ab +a -b ,其中a ,b 为实数,则16※3-8等于( ) A .-6 B .-2 C .2 D .68.在化简m -nm +n 时,甲、乙两位同学的解答如下,那么两人的解法( )甲:m -n m +n =(m -n )(m -n )(m +n )(m -n )=(m -n )(m -n )(m )2-(n )2=m -n ; 乙:m -nm +n =(m )2-(n )2m +n =(m +n )(m -n )m +n=m -n.A.都对B.甲错乙对C.甲对乙错D.都错9.如图,在长方形ABCD中无重叠放入面积分别为8 cm2和12 cm2的两张正方形纸片,则图中空白部分的面积为()A.43cm2B.(83-12)cm2C.(46-8)cm2D.(46+12)cm210.已知x=2-3,则代数式(7+43)x2+(2+3)x+3的值是()A.0 B.3C.2+3D.2- 3二、填空题(每小题3分,共24分)11.(-9)2的平方根是__________,若a的平方根等于±4,则a的值是__________.12.若a,b都是实数,且b=1-2a+2a-1-2,则a b的值为.13.若x<6-1<y,且x,y是两个连续的整数,则x+y的值是.14.(广州)如图,数轴上点A表示的数为a,化简:a+a2-4a+4=.,第14题图),第15题图),第17题图)15.如图所示,已知四边形ABCD是边长为2的正方形,AP=AC,则数轴上点P所表示的数是.16.将式子-(m-n)-1m-n化为最简二次根式为.17.如图,等边三角形和长方形具有一条公共边,长方形内有一个正方形,其四个顶点都在长方形的边上,等边三角形的周长和正方形的面积分别是62和2,则图中阴影部分的面积是.18.观察下列二次根式的化简:S1=1+112+122=1+11-12;S2=1+112+122+1+122+132=(1+11-12)+(1+12-13);S3=1+112+122+1+122+132+1+132+142=(1+11-12)+(1+12-13)+(1+13-14);则S2 0192 019=__________.三、解答题(共66分)19.(8分)计算:(1)(12+20)+(3-5); (2)(62-24)÷8;(3)(5+3)2-(5+3)(5-3); (4)(523-54)÷3+12× 6.20.(6分)已知5a+2的立方根是3,4a+2b+1的平方根是±5,求a-2b的算术平方根.21.(9分)如图,用两个边长为152cm的小正方形拼成一个大的正方形.(1)求大正方形的边长;(2)沿此大正方形边的方向能否剪出一张长、宽之比为4∶3且面积为720 cm2的长方形纸片?若能,试求出剪出的长方形纸片的长与宽;若不能,试说明理由.22.(9分)如图,在等腰梯形ABCD中,上底AD=32cm,下底BC=318cm,高AE =32cm.(1)求梯形ABCD的周长l;(2)求梯形ABCD的面积S.23.(10分)解答下列各题:(1)已知x=3+1,y=3-1,求式子x2+y2-xy的值;(2)a,b分别是4-5的整数部分和小数部分,求式子3b+5ab的值.24.(11分)阅读材料:在二次根式中有一种相辅相成的“对子”,如:(2+3)(2-3)=1,(5+2)(5-2)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:13=1×33×3=33,2+32-3=(2+3)(2+3)(2-3)(2+3)=7+4 3.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4-7的有理化因式可以是 ,323分母有理化得 ;(2)①已知x =3+13-1,y =3-13+1,求x 2+y 2的值; ②计算:11+2+12+3+13+4+…+11 999+2 000.25.(13分)小明在解方程24-x -8-x =2时采用了下面的方法: 解:由(24-x -8-x)(24-x +8-x)=(24-x)2-(8-x)2=(24-x)-(8-x)=16,又有24-x -8-x =2,可得24-x +8-x =8,将这两式相加可得⎩⎪⎨⎪⎧24-x =5,8-x =3,将24-x =5两边平方可解得x =-1,经检验x =-1是原方程的解. 请你学习小明的方法后完成下列各题:(1)方程x 2+42+x 2+10=16的解是__________;(2)解方程:4x 2+6x -5+4x 2-2x -5=4x.1.C 2.D 3.D 4.D 5.B 6.D 7.B 8.B 9.C 10.C 11.±3 256 12.4 13.3 14.2 15.-2216.n -m 17.2 18.2 0212 02019.解:(1)原式=33+5 (2)原式=3- 3(3)原式=6+215 (4)原式=143220.解:因为5a +2的立方根是3,4a +2b +1的平方根是±5,所以5a +2=27,4a +2b +1=25,解得a =5,b =2,所以a -2b =5-4=1,所以a -2b 的算术平方根为121.解:(1)大正方形的边长为(152)2×2=30(cm )(2)不能,理由如下:设长方形纸片的长为4x cm ,宽为3x cm ,则4x·3x =720,解得x =215,所以4x =815>30,所以沿此大正方形边的方向不能剪出一张长、宽之比为4∶3且面积为720 cm 2的长方形纸片22.解:(1)过点D 作DH ⊥BC ,垂足为H ,则BE =CH =12(BC -AD)=12×(318-32)=32(cm ),所以CD =AB =BE 2+AE 2=(32)2+(32)2=52(cm ),所以l =2×52+32+318=222(cm )(2)S =12×(32+318)×32=48(cm 2)23.解:(1)x 2+y 2-xy =(x +y)2-3xy=(3+1+3-1)2-3×(3+1)×(3-1) =(23)2-3×(3-1)=6(2)因为4<5<9,所以2<5<3,所以-3<-5<-2,所以1<4-5<2,所以a =1,b =4-5-1=3-5,所以3b +5ab =3×(3-5)-5×1×(3-5)=14-6 524.解:(1)4+732(2)①当x =3+13-1=(3+1)(3+1)(3-1)(3+1)=4+232=2+3,y =3-13+1=(3-1)(3-1)(3+1)(3-1)=4-232=2-3时,x 2+y 2=(x +y)2-2xy =(2+3+2-3)2-2×(2+3)×(2-3)=16-2×1=14②原式=2-1+3-2+4-3+…+ 2 000- 1 999= 2 000-1=2505-1 25.解:(1)x =±39(2)因为(4x 2+6x -5+4x 2-2x -5)(4x 2+6x -5-4x 2-2x -5)=(4x 2+6x -5)2-(4x 2-2x -5)2=(4x 2+6x -5)-(4x 2-2x -5)=8x ,所以4x 2+6x -5-4x 2-2x -5=2,所以⎩⎨⎧4x 2+6x -5=2x +1,4x 2-2x -5=2x -1,所以(4x 2+6x -5)2=(2x +1)2,所以4x 2+6x -5=4x 2+4x +1,所以2x =6,解得x =3,经检验x =3是原方程的解,所以方程4x 2+6x -5+4x 2-2x -5=4x 的解是x =3。
初中数学北师大版《八年级上》《第二章-实数》《2.6-实数》精选专项试题训练【89】(含答案考点及解
初中数学北师大版《八年级上》《第二章实数》《2.6 实数》精选专项试题训练【89】(含答案考点及解析)班级:___________ 姓名:___________ 分数:___________1.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【答案】A【考点】初中数学知识点》图形与证明》三角形【解析】AB==15,设点C到AB的距离为x,∵S=×9×12=×15×x ∴x=.△ABC2.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的坐标为________.【答案】-1【考点】初中数学知识点》图形与证明》三角形【解析】AC=AM==,∴AM=3.若a、b均为正整数,且a>,b<,则a+b的最小值是 ()A.3B.4C.5D.6【答案】B【考点】初中数学知识点》数与式》二次根式【解析】a、b均为正整数,且a>,b<,∴a的最小值是3,b的最小值是:1,则a+b的最小值是4.4.下列计算错误的是().A.B.C.D.【答案】A.【考点】初中数学知识点》数与式》二次根式【解析】试题分析:A、,此选项错误;B、,此选项正确;C、,此选项正确;D、,此选项正确.故选A.考点:二次根式的混合运算.5.如图,在Rt△ABC中,∠B=90°,沿AD折叠,使点B落在斜边AC上,若AB=3,BC=4,则BD=.【答案】【考点】初中数学知识点》图形与证明》三角形【解析】如图,点B′是沿AD折叠,点B的对应点,连接B′D,∴∠AB′D=∠B=90°,AB′=AB=3,∵在Rt△ABC中,∠B=90°,AB=3,BC=4,∴AC==5,∴B′C=AC-AB′=5-3=2,设BD=B′D=x,则CD=BC-BD=4-x,在Rt△CDB′中,CD2=B′C2+B′D2,即:(4-x)2=x2+4,解得:x=,∴BD=.6.使二次根式有意义的x的取值范围是 .【答案】x≤2.【考点】初中数学知识点》数与式》二次根式【解析】试题分析:根据二次根式的性质,被开方数大于等于0,即:2﹣x≥0,解得:x≤2.故答案是x≤2.考点:二次根式的性质.7.等边三角形的边长为4,则其面积为_______________.【答案】4【考点】初中数学知识点》图形与证明》三角形【解析】根据勾股定理求出高为=2,面积为底×高×=4×=4.8.已知:a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号: ______________;(2)错误的原因为________________________________;(3)本题正确的解题过程:【答案】(1)③ (2)除式可能为零(3)∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2).∴a2-b2=0或c2=a2+b2.当a2-b2=0时,a=b;当c2=a2+b2时,∠C=90度,∴△ABC是等腰三角形或直角三角形.【考点】初中数学知识点》图形与证明》三角形【解析】(1)(2)两边都除以a2-b2,而a2-b2的值可能为零,由等式的基本性质,等式两边都乘以或除以同一个不为0的整式,等式仍然成立.(3)根据等式的基本性质和勾股定理,分情况加以讨论.9.已知+,那么 .【答案】8【考点】初中数学知识点》数与式》二次根式【解析】由+,得,所以.10.在△中,三边长满足,则互余的一对角是()A.∠与∠B.∠与∠C.∠与∠D.∠、∠、∠【答案】B【考点】初中数学知识点》图形与证明》三角形【解析】由,得,所以△是直角三角形,且是斜边,所以,从而互余的一对角是∠与∠.11.已知m是3的算术平方根,则x-m<的解集为______.【答案】【考点】初中数学北师大版》八年级上》第二章实数》2.6 实数【解析】试题分析:首先根据算术平方根的定义确定m的值,再将其代入不等式即可.∵m是3的算术平方根,∴,∴,考点:本题考查的是算术平方根点评:解答本题的关键是熟记掌握一个正数有两个平方根,它们互为相反数,其中正的平方根叫算术平方根.12.下列各组数,能作为三角形三条边的是()A.,,B.,,C.,,D.,,【答案】D【考点】初中数学北师大版》八年级上》第二章实数》2.5 用计算器开方【解析】试题分析:利用计算器分别计算出各个根式的值,根据近似值结合三角形的三边关系依次分析即可.A、,不能构成三角形,故本选项错误;B.,不能构成三角形,故本选项错误;C.,不能构成三角形,故本选项错误;D.,能构成三角形,本选项正确;故选D.考点:本题考查的是三角形的三边关系点评:解答本题的关键是熟练掌握三角形的三边关系:任两边之和大于第三边,只要验证两个较小的数的和小于最大的数即可.13.若+有意义,则=______.【答案】【考点】初中数学北师大版》八年级上》第二章实数》2.3 立方根【解析】试题分析:根据平方根、立方根的定义即可得到结果由题意得,则考点:本题考查的是平方根,立方根点评:解答本题的关键是熟记掌握一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根;正数的立方根是正数,0的立方根是0,负数的立方根是负数.14.求下列各数的立方根(1)729;(2)-4;(3)-;(4)(-5)3【答案】(1)9;(2)-;(3)-;(4)-5【考点】初中数学北师大版》八年级上》第二章实数》2.3 立方根【解析】试题分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义即可得到结果.(1)729的立方根是9;(2)-4的立方根是-;(3)-的立方根是-;(4)(-5)3的立方根是-5.考点:本题考查的是立方根点评:解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的符号相同.15.0和负数没有平方根.()【答案】错【考点】初中数学北师大版》八年级上》第二章实数》2.2 平方根【解析】试题分析:根据平方根的定义即可判断.0的平方根是0,故本题错误.考点:本题考查的是平方根点评:解答本题的关键是熟记掌握一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.。
北师大版八上第二章实数培优专题(含答案)
第二章《实数》培优专题一、解答题1.已知:9y =-,求xy 的立方根.2.已知实数a ,b ,c ||c a -.3.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:(21=+,善于思考的小明进行了以下探索:设a +(2m =+(其中a 、b 、m 、n 均为整数),则有:a +222m n =++,∴a =m 2+2n 2,b =2mn ,这样小明就找到了一种把类似a +的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +(2m =+,用含m 、n 的式子分别表示a 、b 得:a= ,b = ;(2)利用所探索的结论,用完全平方式表示出:= .(3)4.化简求值:(1)已知a 是√13的整数部分,(2)已知:实数a ,b a b - .5.求√3+√5√3−√5的值.解:设x =√3+√5√3−√5,两边平方得:x 2=(√3+√5)2+(√3−√5)2+2√(3+√5)(3−√5),即x 2=3+√5+3−√5+4,x 2=10 ∴x =±√10.∵√3+√5√3−√5>0,∴√3+√5+√3−√5=√10. 请利用上述方法,求√4+√7+√4−√7的值.6.(1)已知x y ==①求x +y 的值;②求2x 2+2y 2﹣xy 的值(2)若x 、y 都是实数,且y =8+,求x +3y 的平方根7.已知A =√n −m +3m−n是n -m +3的算术平方根,B =√m +2n m−2n+3是m +2n 的立方根,求B-A 的平方根8.观察下面的变形规律:1=- = = =,… 解答下面的问题:(1)若n = ;(2)计算:)×1+)9.像(√5+2)(√5﹣2)=1、√a •√a =a (a ≥0)、(√b +1)(√b ﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.例如,√5与√5,√2 +1与√2﹣1,2√3+3√5与2√3﹣3√5等都是互为有理化因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1)化简:3√3;(2)计算:2−√3√3−√2;(3)比较√2018−√2017与√2017−√2016的大小,并说明理由.10.已知,a b (10b --=,求20152016a b -的值.11.阅读理解∵在√4<√5<√9,即2<√5<3,∴1<√5−1<2.∴√5−1的整数部分为1,小数 部分为√5−2. 解决问题已知a 是√17−3的整数部分,b 是√17−3的小数部分,求(−a)3+(b +4)2的平方根.12.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为11)+a b 的值。
北师大版八年级上册数学第二章 实数含答案(必刷题)
北师大版八年级上册数学第二章实数含答案一、单选题(共15题,共计45分)1、实数界于哪两个相邻的整数之间( )A.3和4B.5和6C.7和8D.9和102、的算术平方根的平方根是()A. B. C. D.3、下列计算正确的是()A. =-9B. =±5C. =-1D.(-) 2=44、下列说法中正确的是()A. 的平方根是±6B. 的平方根是±2C.|﹣8|的立方根是﹣2D. 的算术平方根是45、估算在()A.5与6之间B.6与7之间C.7与8之间D.8与9之间6、下列各数:、3.1415926、﹣、0、π0、0.1010010001…(相邻两个1之间0的个数逐次加1)、3 、﹣中无理数有()个.A.1B.2C.3D.47、下列叙述中,不正确的是( )A.绝对值最小的实数是零B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零8、的平方根是()A. B.- C. D.9、设x=,则x的值满足()A.1<x<2B.2<x<3C.3<x<4D.4<x<510、下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的有( )A.0个B.1个C.2个D.3个11、下列运算正确的是()A. =2B.|﹣3|=﹣3C. =±2D. =312、下列说法正确的是()A.负数没有立方根B.不带根号的数一定是有理数C.无理数都是无限小数 D.数轴上的每一个点都有一个有理数于它对应13、下列说法中,正确的是( )① ② 一定是正数③无理数一定是无限小数④16.8万精确到十分位⑤(﹣4)2的算术平方根是4.A.①②③B.④⑤C.②④D.③⑤14、下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1 C.如果一个数的平方等于这个数本身,那么这个数一定是0 D.如果一个数的算术平方根等于这个数本身,那么这个数一定是015、(-5)2的平方根是()A.-5B.5C.±5 D.25二、填空题(共10题,共计30分)16、若一个正数x的平方根是2a+1和4a-13,则a=________,x=________.17、有下列命题:①无理数是无限不循环小数;②平方根与立方根相等的数有1和0;③若a⊥b,b⊥c,则a⊥c;④邻补角是互补的角;⑤无理数包括正无理数、零、负无理数.其中正确的有________个.18、计算: =________.19、已知,,则的值为________.20、计算:(π﹣2015)0﹣(﹣1)2015﹣|﹣3|=________.21、如果a与b互为倒数,c与d互为相反数,那么的值是________.22、新定义运算“*”,规定x*y=x2+y,若﹣1*2=k,则k能否使得一元二次方程x2﹣2kx+9=0有两个相等的实数解________(填“能”或‘否’).23、若5+ 的整数部分是a,则a=________.24、平方等于的数是________,-64的立方根是________25、计算-8的立方根与9的平方根的积是________.三、解答题(共5题,共计25分)26、计算:27、在数轴上表示a、b、c三数点的位置如下图所示,化简:|c|- -|a-b|.28、把下列各数分别填在相应的括号内:,,,,,,,,,,,,,0.1010010001整数;分数;正数;负数;有理数;无理数;29、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.30、已知3既是(x-1)的算术平方根,又是(x-2y+1)的立方根,求x2-y2的平方根.参考答案一、单选题(共15题,共计45分)1、B2、D3、C4、B5、D6、D7、D8、C9、C10、D11、A12、C13、D14、A15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
第二章实数单元培优卷 北师大版数学八年级上册
2021-2022学年度八年级上第二章实数单元培优卷一.选择题1.25的平方根是( )A .±5B .5C .-5D .25 20;0.2-;π3722,1.1010010001···,无理数的个数是( ). A . 2 B . 3 C . 4 D . 53.下列各组数中,互为相反数的一组是( )A .﹣2与B .﹣2与C .﹣2与﹣D .|﹣2|与24.的平方根是( ) A . B . C . D . 5.下列计算正确的是( )A= B .27-123=9-4=1 C.(21+=D=62的值( )A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间 7.下列说法正确的是( )A .有理数只是有限小数B .无理数是无限小数C .无限小数是无理数D .3π是无理数 8.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是A .2.5B .2 2C . 3D . 5二.填空题 913131-31±811±9.比较下列各组数的大小:(112142)5_____73)24 (4)2412___1.5. 10.2______; 3_______;-的相反数是11.代数式在实数范围内有意义,则x 的取值范围是. 12.已知一个正数的平方根是32x -和56x +,则这个数是 .13.9的算术平方根是 ;(-3)2 的算术平方根是 ;3的平方根是 ; 0的平方根是 ;-2的平方根是 .14.若03)2(12=-+-+-z y x ,则z y x ++=15.如图,在网格图中的小正方形边长为1,则图中的△ABC 的面积等于 .16.已知032=++-b a ,则______)(2=-b a .三.解答题17.计算:(1) 8350324-+; (2) 9·2731+; (3)(﹣)2 (4) 18.求下列各式中的x .(1)25x 2=36(2)3x 2-15=0 (3)3338x -=19.如图,实数a .b 在数轴上的位置,化简222()a b a b -328220.八年级(3)班两位同学在打羽毛球, 一不小心球落在离地面高为6米的树上.其中一位同学赶快搬来一架长为7米的梯子, 架在树干上, 梯子底端离树干2米远, 另一位同学爬上梯子去拿羽毛球.问这位同学能拿到球吗?21.大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小平用﹣1来表示的小数部分,你同意小平的表示方法吗?事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知:5+的小数部分是a,5﹣的整数部分是b,求a+b的值.。
北师大版八年级数学上册 第二章 实数 章末同步培优、拔高检测卷(无答案)
北师大版八年级数学上册 第二章 实数 章末同步培优、拔高检测卷(时间:120分钟 满分:120分)一、选择题(每小题3分,共36分)1.下列各数中,是无理数的是( )A .πB .0 C. 4 D .-47132.9的平方根是( )A .±3B .±13C .3D .-33.一个正数的平方根是x -5和x +1,则x 的值为( ) A .2 B .-2 C .0 D .无法确定4.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 5.下列各式计算正确的是( )A.2+3= 5 B .43-33=1 C .23×33=6 3 D.27÷3=36.已知a +2+|b -1|=0,那么(a +b )2017的值为( ) A .-1 B .1 C .32017 D .-320177.若m =30-3,则m 的范围是( )A .1<m <2B .2<m <3C .3<m <4D .4<m <58.实数a ,b 在数轴上的位置如图所示,且|a |>|b |,则化简a 2-|a +b |的结果为( )A .2a +bB .-2a +bC .bD .2a -b 9.已知a =3+2,b =3-2,则a 2+b 2的值为( )A .4 3B .14 C.14 D .14+4 3 10.计算12×13+5×3的结果在( ) A .4至5之间 B .5至6之间 C .6至7之间 D .7至8之间 11.化简二次根式-a 3的正确结果是( )A .a -aB .a aC .-a -aD .-a a12.若6-13的整数部分为x ,小数部分为y ,则(2x +13)y 的值是( ) A .5-313 B .3 C .313-5 D .-3选择题答题卡:二、填空题(每小题3分,共24分)115.若代数式x -3有意义,则实数x 的取值范围是______________. 16.一个长方形的长和宽分别是62cm 与2cm ,则这个长方形的面积等于________cm 2,周长等于________cm. 17.若最简二次根式5m -4与2m +5可以合并,则m 的值可以为________. 18.已知x ,y 都是实数,且y =x -3+3-x +4,则y x =________. 19.已知 3.456≈1.859,34.56≈5.879,则345600≈________.20.任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72――→第一次[72]=8――→第二次[8]=2――→第三次[2]=1,这样对72进行3次操作后变为1,类似地,①对81进行________次操作后变为1;②进行3次操作后变为1的所有正整数中,最大的是________.三、解答题(共62分)21.(每小题3分,共6分)求下列各式中x 的值: (1)(x -2)2+1=17; (2)(x +2)3+27=0.22.(每小题3分,共12分)计算下列各题:(1)8+32-2; (2)614+30.027-31-124125;(3)(6-215)×3-612; (4)(548-627+12)÷3.23.(6分)一个数的算术平方根为2M -6,平方根为±(M -2),求这个数.24.(8分)如图,四边形ABCD中,AB=AD,∠BAD=90°,若AB=22,CD=43,BC=8,求四边形ABCD 的面积.25.(6分)用48米长的篱笆在空地上围一个绿化场地,现有两种设计方案:一种是围成正方形场地,另一种是围成圆形场地.选用哪一种方案围成的场地的面积较大?并说明理由.26.(8分)已知a-17+217-a=b+8.(1)求a的值;(2)求a2-b2的平方根.27.(6分)已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.28.(10分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2.善于思考的小明进行了以下探索:设a+b2=(m+n2)2(其中a,b,m,n均为整数),则有a+b2=m2+2n2+2mn 2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a,b,m,n均为正整数时,若a+b3=(m+n3)2,用含m,n的式子分别表示a、b,得a=______________,b=________;(2)利用所探索的结论,找一组正整数a,b,m,n填空:________+________3=(________+________3)2;(3)若a+43=(m+n3)2,且a,m,n均为正整数,求a的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数
2.1认识无理数
专题无理数近似值的确定
1. 设面积为3的正方形的边长为x,那么关于x的说法正确的是()
A.x是有理数 B.x取0和1之间的实数
C.x不存在 D.x取1和2之间的实数
2.(1)如图1,小明想剪一块面积为25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?
(2)若小明想将两块边长都为3cm的正方形纸板沿对角线剪开,拼成如图2所示的一个大正方形,你能帮他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间.
3.你能估测一下我们教室的长、宽、高各是多少米吗?你能估测或实际测量一下数学课本的长、宽和厚度吗?请你再估算一下我们的教室能放下多少本数学书?这些数学书可供多少所像我们这样的学校的初一年级学生使用呢?请你对每一个问题给出估测的数据,再把估算的过程结果一一写出来.
答案:
1.D 【解析】∵面积为3的正方形的边长为x,∴x2=3,而12=1,22=4,∴1<x2<4,∴1<x<2,故选D.
2.解:(1)边长为5cm.
(2)设大正方形的边长为x,∵大正方形的面积=32+32=18,而42=16,52=25,
∴16<x2<25,∴4<x<5,故正方形的边长不是整数,它的值在4和5之间.
3.解:估算的过程:教室的长、宽、高可以用我们的身高估计出来;数学课本的长、宽和厚度可以用我们的手指估计出来,也可以用直尺测量出来;我们用长宽高相乘估计出教室的容积与课本的体积相除算出能放下多少本数学书,就是能供多少名学生使用,再用本班人数乘一年级班数估计本校一年级人数,然后相处就可以估计出这些数学书可供多少所像我们这样的学校的初一年级学生使用了.估测的数据、估算的结果略.
2.2平方根
专题一 非负数问题
1. 若2(a +与1+b 互为相反数,则a b -的值为( )
A B 1+ C 1
D .1-
2. 设a ,b ,c 都是实数,且满足(2-a )2+|c+8|=0,ax 2+bx+c=0,求式子x 2+2x
的算术平方根.
3. 若实数x ,y ,z = 14
(x+y+z+9),求xyz 的值.
专题二 探究题
4. 研究下列算式,你会发现有什么规律?
=2;… 请你找出规律,并用公式表示出来.
5.先观察下列等式,再回答下列问题:
答案:
(a与|b+1|互为相反数,
1.D 【解析】∵2
(a++|b+1|=0,
∴2
a=0且b+1=0,
∴+
-=1,故选D.
∴a=-b=﹣1,a b
2.解:由题意,得2-a=0,a2+b+c=0,c+8=0.
∴a=2,c=-8,b=4.
∴2x2+4x-8=0.
∴x2+2x=4.
∴式子x2+2x的算术平方根为2.
3.解:将题中等式移项并将等号两边同乘以4得+9=0,
∴+4)=0,
∴-2)2-2)2-2)2=0,
-2=0-2=0-2=0,
=2,
∴x=4,y-1=4 ,z-2=4,∴x=4,y=5,z=6.
∴xyz=120.
2.3立方根专题立方根探究性问题
2.4估算 专题 比较无理数大小 1. 设a=1003+997,b=1001+999,c=21001,则a ,b ,c 之间的大小关系是
( )
2. 观察下列一组等式,然后解答后面的问题:
(2+1)(2-1)=1,(3+2 )(3- 2)=1,(4+3)(4-3)=1,
(5+4)(5-4)=1…
(1)观察上面的规律,计算下列式子的值.
(121++132++143++…+ 120132012
+)•( 2013+1). (2)利用上面的规律,试比较1211-与1312-的大小.
3. 先填写下表,通过观察后再回答问题.
问:
(1)被开方数a 的小数点位置移动和它的算术平方根a 的小数点位置移动有无规律? 若有规律,请写出它的移动规律;
(2)已知:a =1800,- 3.24 =-1.8,你能求出a 的值吗?
(3)试比较a 与a 的大小.
2.6实数 专题 实数与数轴
1.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A ,则点A 表示的数是( )
A .2-
B .22-
C .12-
D .12+
2.如图所示,直线L 表示地图上的一条直线型公路,其中A 、B 两点分别表示公路上第140公里处及第157公里处.若将直尺放在此地图上,使得刻度15,18的位置分别对准A ,B 两点,则此时刻度0的位置对准地图上公路的第( )公里处
A .17
B .55
C .72
D .85
3. 一个等腰直角三角形三角板沿着数轴正方向向前滚动,起始位置如图,顶点C 和A 在数轴上的位置表示的实数为-1和1.那么当顶点C 下一次落在数轴上时,所在的位置表示的实数是___________.
4. 如图,已知A 、B 、C 三点分别对应数轴上的数a 、b 、c .
(1)化简:|a-b|+|c-b|+|c-a|;
(2)若a=4
x y ,b=-z 2,c=-4mn .且满足x 与y 互为相反数,z 是绝对值最小的负整数,m 、n 互为倒数,试求98a+99b+100c 的值;
(3)在(2)的条件下,在数轴上找一点D ,满足D 点表示的整数d 到点A ,C 的距离之和为10,并求出所有这些整数的和.
2.7二次根式 专题一 与二次根式有关的规律探究题
1.将1、2、3、6按如图所示的方式排列.
若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数之积是( )
A.1
B.2
C. 23
D.6
2. 观察下列各式及其验证过程:
322322=+228222223333
⨯+===. 333388+=2327333338888
⨯+=== (1)按照上述两个等式及其验证过程,猜想15
44+的变形结果并进行验证; (2)针对上述各式反映的规律,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证;
(3)针对三次根式及n 次根式(n 为任意自然数,且2n ≥),有无上述类似的变形,如果有,写出用a (a 为任意自然数,且2a ≥)表示的等式,并给出验证.
3. 阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=221)(+,善于思考的小明进行了以下探索:
设a+b 2=22)(n m +(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2
+2mn 2, ∴a=m 2+2n 2
,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:
(1)当a 、b 、m 、n 均为正整数时,若a +b 3=2)3(n m +,用含m 、n 的式子分别表示a 、
b ,得:a = ,b = ;
(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + 3 =( + 3)2;
(3)若a +43=2)3(n m +,且a 、m 、n 均为正整数,求a 的值.
专题二 利用二次根式的性质将代数式化简
4. 化简二次根式2
2a a a +-的结果是( ) A. 2a -- B. 2a --- C.
2a - D. 2a -- 5.如图,实数a .b 在数轴上的位置,
化简:2
22)(b a b a -+-.
2.解:(1====.
(2=(a 为任意自然数,且2a ≥).
=== (3)333311-=-+
a a a a a a (a 为任意自然数,且2a ≥).
验证:a ===.
5.解:由图知,a <0,b >0,∴a ﹣b <0,。