[VIP专享]计量经济学_四元线性回归模型案例分析

合集下载

计量经济学计量经济学教学案例

计量经济学计量经济学教学案例

计量经济学教学案例案例一 简单线性回归模型一、主题与背景用真实数据进行简单线性回归分析,应用Eviews6.0分析软件进行操作,与课本内容相对应,分析模型的截距、斜率以及可决系数,引导学生熟悉Eviews6.0的基本操作,能够解读分析报告,并尝试进行被解释变量的预测,体会变量测度单位的改变和函数形式变化给OLS 估计结果和统计特征的影响。

二、情景描述对于由CEO 构成的总体,令y 代表年薪(salary),单位为千美元。

令x 表示某个CEO 所在公司在过去三年的平均股本回报率(roe ,股本回报率定义为净收入占普通股价的百分比)。

为研究该公司业绩指标和CEO 薪水之间的关系,可以定义以下模型:Salary=0β+1βroe + u . 斜率参数1β衡量当股本回报率增长一个单位(一个百分点)时CEO 年薪的变化量,由于更高的股本回报率预示更高的CEO 年薪,所以,1β>0。

三、教学过程设计(一)数据说明数据集CEOSAL1.RAW 包含1990年209位CEO 的相关信息,该数据来自《商业周刊》(5/6/91),该样本中CEO 年薪的平均值为$1,281,120,最低值和最高值分别为$223,000和$14,822,000,1988、1989和1990年的平均股本回报率是17.18%。

(二)操作建议1:在 eviews6.0命令输入窗口定义变量:data salary roe2、用 edit+/- 编辑数据3、描述统计分析过程:view---descriptive stats---common sample4、画散点图:Scat roe salary5、在eviews6.0命令输入窗口运行简单线性回归 Ls salary c roe6、用resids 观测残差7、产生新序列:S eries lsalary =log(salary)8、改变函数形式:Ls lsalary c lsales9、改变变量测度单位:Ls salary*1000 c roe四、教学研究(一)案例结论1、回归结果估计出的回归线为:salˆary = 963.191 + 18.501 roe(1)截距和斜率保留了3位小数,回归结果显示,如果股本回报率为0,年薪的预测值为截距963.191千美元,可以把年薪的预测变化看做股本回报率变化的函数:∆salˆary = 18.501 (∆roe),这意味着当股本回报率增加1个百分点,即∆roe =1,则年薪的预测变化就是18.5千美元,在线性方程中,估计的变化与初始年薪无关。

计量经济学案例分析汇总

计量经济学案例分析汇总

计量经济学案例分析汇总(共48页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--计量经济学案例分析1一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。

改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。

但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。

例如,2002年全国城市居民家庭平均每人每年消费支出为元, 最低的黑龙江省仅为人均元,最高的上海市达人均10464元,上海是黑龙江的倍。

为了研究全国居民消费水平及其变动的原因,需要作具体的分析。

影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。

为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。

二、模型设定我们研究的对象是各地区居民消费的差异。

居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。

而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。

所以模型的被解释变量Y选定为“城市居民每人每年的平均消费支出”。

因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。

因此建立的是2002年截面数据模型。

影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。

计量经济学课程第4章(多元回归分析)

计量经济学课程第4章(多元回归分析)
Page 2
§4.1 多元线性回归模型的两个例子
一、例题1:CD生产函数
Qt AKt 1 Lt 2 et
这是一个非线性函数,但取对数可以转变为一个 对参数线性的模型
ln Qt 0 1 ln Kt 2 ln Lt t
t ~ iid(0, 2 )
注意:“线性”的含义是指方程对参数而言是线 性的
R 2 1 RSS /(N K 1) TSS /(N 1)
调整思想: 对 R2 进行自由度调整。
Page 20
基本统计量TSS、RSS、ESS的自由度:
1.
TSS的自由度为N-1。基于样本容量N,TSS

N i1
(Yi
Y
)2
因为线性约束 Y 1 N
Y N
i1 i
而损失一个自由度。
分布的多个独立统计量平方加总,所得到的新统计量就服从
2 分布。
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 23
双侧检验
概 率 密 度
概率1-
0
2 1 / 2
2 /2
图4.3.1

2
(N-K-1)的双侧临界值
双侧检验:统计值如果落入两尾中的任何一个则拒绝原假设
《计量经济学》,高教出版社2011年6月,王少平、杨继生、欧阳志刚等编著
Page 24
单侧检验
概 率 密 度
概率 概率
0
2 1
2
图4.3.2 (2 N-K-1)的单侧临界值
H0:
2


2,
0
HA :

2


2 0

计量经济学第二章经典线性回归模型

计量经济学第二章经典线性回归模型

Yt = α + βXt + ut 中 α 和 β 的估计值 和
,
使得拟合的直线为“最佳”。
直观上看,也就是要求在X和Y的散点图上
Y
* * Yˆ ˆ ˆX
Yt
* **
Yˆt
et * *
*
*
**
*
**
**
*
Xt
X
图 2.2
残差
拟合的直线 Yˆ ˆ ˆX 称为拟合的回归线.
对于任何数据点 (Xt, Yt), 此直线将Yt 的总值 分成两部分。
β
K
βK
β1 β1
...
βK
βK
Var(β 0 )
Cov(β1 ,β
0
)
Cov(β 0 ,β1 )
Var(β1 )
...
Cov(β
0

K
)
...
Cov(β1

K
)
...
...
...
...
Cov(β
K

0
)
Cov(β K ,β1 )
...
Var(β K )
不难看出,这是 β 的方差-协方差矩阵,它是一 个(K+1)×(K+1)矩阵,其主对角线上元素为各 系数估计量的方差,非主对角线上元素为各系 数估计量的协方差。
ut ~ N (0, 2 ) ,t=1,2,…n
二、最小二乘估计
1. 最小二乘原理
为了便于理解最小二乘法的原理,我们用双
变量线性回归模型作出说明。
对于双变量线性回归模型Y = α+βX + u, 我 们
的任务是,在给定X和Y的一组观测值 (X1 ,

计量经济学案例分析报告

计量经济学案例分析报告

《计量经济学》实验报告实验课题:各章节案列分析姓名:茆汉成班级:会计学12-2班学号: 2012213572指导老师:蒋翠侠报告日期: 2015.06.18目录第二章简单线性回归模型案例 01 问题引入 02 模型设定 03 估计参数 (2)4 模型检验 (2)第三章多元线性回归模型案例 (4)1 问题引入 (4)2 模型设定 (4)3 估计参数 (5)4 模型检验 (5)第四章多重线性案例 (7)1 问题引入 (7)2 模型设定 (7)3 参数估计 (7)4 对多重共线性的处理 (8)第五章异方差性案例 (10)1 问题引入 (10)2 模型设定 (10)3 参数估计 (10)4 异方差检验 (11)5 异方差性的修正 (13)第六章自相关案例 (14)1 问题引入 (14)2 模型设定 (14)3 用OLS估计 (14)4 自相关其他检验 (15)5 消除自相关 (16)第七章分布滞后模型与自回归模型案例 (18)7.2案例1 (18)1 问题引入 (18)2 模型设定 (18)3 参数估计 (18)7.3案例2 (20)1 问题引入 (20)2 模型设定 (20)3、回归分析 (20)4模型检验 (22)第八章虚拟变量回归案例 (23)1 问题引入 (23)2 模型设定 (23)3 参数估计 (25)4 模型检验 (26)第二章简单线性回归模型案例1、问题引入居民消费在社会经济的持续发展中有着重要的作用。

适度的居民消费规模和合理的消费模型是人民生活水平的具体体现,有利于经济持续健康的增长。

随着社会信息化程度和居民的收入水平的提高,计算机的运用越来越普及,作为居民耐用消费品重要代表的计算机已经为众多的城镇居民家庭所拥有。

研究中国各地区城镇居民计算机拥有量与居民收入水平的数量关系。

影响居民计算机拥有量的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入水平。

从理论上说居民收入水平越高,居民计算机拥有量越多。

计量经济学 第四章

计量经济学 第四章

100%
统计检验
利用统计量对模型参数进行假设 检验,判断参数是否显著。
80%
计量经济学检验
包括模型的异方差性、自相关性 、多重共线性等问题的检验。
模型的修正方法
增加解释变量
如果模型存在遗漏变量,可以通过增加解释变量来 修正模型。
删除解释变量
如果模型中某些解释变量不显著或存在多重共线性 ,可以考虑删除这些变量。
模型表达式
Y = β0 + β1X + ε
最小二乘法
通过最小化残差平方和来估计参数β0和β1
参数解释
β0为截距项,β1为斜率项,ε为随机误差项
模型的检验
包括拟合优度检验、显著性检验等
多元线性回归模型
01
02
03
04
模型表达式
参数解释
最小二乘法
Y = β0 + β1X1 + β2X2 + ... + βkXk + ε
最小二乘法估计量的性质
线性性
最小二乘法估计量是随机样本的线性组合。
无偏性
最小二乘法估计量的期望值等于总体参数的 真实值。
有效性
在所有无偏估计量中,最小二乘法估计量的 方差最小。
一致性
随着样本量的增加,最小二乘法估计量收敛 于总体参数的真实值。
最小二乘法的计算步骤
构造设计矩阵X和响应向量Y。 计算设计矩阵X的转置矩阵X'。 计算X'X和X'Y。
求解线性方程组X'Xβ=X'Y,得到回归系 数的最小二乘估计β^=(X'X)^(-1)X'Y。
根据β^计算因变量的拟合值Y^=Xβ^。
计算残差e=Y-Y^,以及残差平方和 RSS=e'e。

计量经济学研究案例参考

计量经济学研究案例参考

模型选择
采用Logit模型进行回归分析,探究消费者购买行为的影响 因素
变量选择
选择消费者的年龄、性别、收入、教育程度等个人信息,以及商品价格、销量 、评价等商品信息作为解释变量,以消费者是否购买该商品作为被解释变量
模型估计
使用最大似然估计法对模型参数进行估计,得到各解释变 量的回归系数和显著性水平
结果分析与解释
研究目的
探究不同国家经济增长的影响因素及 其动态变化
数据来源与预处理
数据来源
国际经济组织发布的公开数据库,如世界银 行、国际货币基金组织等
数据转换
将非数值型数据转换为数值型数据,如将分 类变量转换为虚拟变量
数据清洗
去除异常值、缺失值和重复值
数据标准化
消除量纲影响,使不同指标具有可比性
模型构建与估计
R语言应用案例
数据处理与清洗
运用R语言中的dplyr、tidyverse等包进行数据清洗、筛选和变换等操作。
高级统计分析
利用R语言进行复杂的统计分析,如多元线性回归、广义线性模型、生存分析等。
数据可视化
通过R语言的ggplot2、plotly等包实现数据可视化,创建高质量的图表和交互式图形。
Python语言应用案例
数据来源与预处理
数据来源
01
公开数据集或房地产公司提供的数据
数据预处理
02
清洗数据、处理缺失值和异常值、数据转换等
变量选择
03
选择与房价相关的自变量,如房屋面积、地理位置、建造年份

模型构建与估计
模型选择
线性回归模型
估计方法
最小二乘法
模型检验
检验模型的拟合优度、显著性等
结果分析与解释

多元回归模型分析案例

多元回归模型分析案例

多元回归模型分析案例在统计学中,多元回归模型是一种用来分析多个自变量和一个因变量之间关系的统计方法。

它可以帮助我们理解自变量对因变量的影响程度,以及它们之间的相互关系。

在本文中,我们将介绍一个关于多元回归模型的实际案例,以便更好地理解这一统计方法的应用。

假设我们有一份数据集,其中包括了房屋的售价(因变量)、房屋的面积、房龄和附近学校的评分(自变量)。

我们想要建立一个多元回归模型,来分析这些自变量对房屋售价的影响。

首先,我们需要对数据进行预处理,包括缺失值处理、异常值处理和变量转换等。

然后,我们可以利用统计软件(如SPSS、R或Python)来建立多元回归模型。

在建立模型之前,我们需要进行模型诊断,以确保模型符合统计假设。

接下来,我们可以利用模型的系数来解释自变量对因变量的影响。

例如,如果房屋面积的系数为0.5,那么可以解释为每增加1平方米的房屋面积,房屋售价将增加0.5万元。

此外,我们还可以利用模型的拟合优度来评估模型的表现,以及利用残差分析来检验模型的假设是否成立。

最后,我们可以利用模型来进行预测和决策。

例如,我们可以利用模型来预测某个房屋的售价,或者利用模型来分析不同自变量对房屋售价的影响程度,以便制定相应的策略。

通过以上案例,我们可以看到多元回归模型在实际应用中的重要性和价值。

它不仅可以帮助我们理解自变量对因变量的影响,还可以用来预测和决策。

因此,掌握多元回归模型分析方法对于统计学习者和数据分析师来说是非常重要的。

总之,多元回归模型是一种强大的统计工具,可以帮助我们分析多个自变量和一个因变量之间的关系。

通过本文介绍的实际案例,希望读者们能够更好地理解和应用多元回归模型分析方法,从而提升数据分析的能力和水平。

多元线性回归模型案例分析报告

多元线性回归模型案例分析报告

多元线性回归模型案例分析——中国人口自然增长分析一·研究目的要求中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平.此后,人口自然增长率<即人口的生育率>很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型.影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:<1>从宏观经济上看,经济整体增长是人口自然增长的基本源泉;<2>居民消费水平,它的高低可能会间接影响人口增长率.〕3〔文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率<4>人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响.二·模型设定为了全面反映中国"人口自然增长率"的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择"国名收入"及"人均GDP"作为经济整体增长的代表;选择"居民消费价格指数增长率"作为居民消费水平的代表.暂不考虑文化程度及人口分布的影响.从《中国统计年鉴》收集到以下数据<见表1>:表1中国人口增长率及相关数据设定的线性回归模型为: 三、估计参数利用EViews 估计模型的参数,方法是:1、建立工作文件:启动EViews,点击File\New\Workfile,在对话框"Workfile Range".在"Workfile frequency"中选择"Annual" 〕年度〔,并在"Start date"中输入开始时间"1988",在"end date"中输入最后时间"2005",点击"ok",出现"Workfile UNTITLED"工作框.其中已有变量:"c"—截距项"resid"—剩余项.在"Objects"菜单中点击"New Objects",在"New Objects"对话框中选"Group",并在"Name for Objects"上定义文件名,点击"OK"出现数据编辑窗口.2、输入数据:点击"Quik"下拉菜单中的"Empty Group",出现"Group"窗口数据编辑框,点第一列与"obs"对应的格,在命令栏输入"Y",点下行键"↓",即将该序列命名为Y,并依此输入Y 的数据.用同年份 人口自然增长率<%.> 国民总收入<亿元> 居民消费价格指数增长率<CPI>% 人均GDP<元> 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 20065.38 213132 1.5 16024样方法在对应的列命名X 2、X 3、X 4,并输入相应的数据.或者在EViews 命令框直接键入"data Y 2X X 3 X 4… ",回车出现"Group"窗口数据编辑框,在对应的Y 、X 2、X 3、X 4下输入响应的数据.3、估计参数:点击"Procs"下拉菜单中的"Make Equation",在出现的对话框的"Equation Specification"栏中键入"Y C X 2 X 3 X 4",在"Estimation Settings"栏中选择"Least Sqares"〕最小二乘法〔,点"ok",即出现回归结果: 表3.4根据表3.4中数据,模型估计的结果为:〕0.913842〔 〕0.000134〔 〕0.033919〔 〕0.001771〔t= 〕17.08010〔 〕2.482857〔 〕1.412721〔 〕-2.884953〔930526.02=R 915638.02=R F=62.50441四、模型检验1、经济意义检验模型估计结果说明,在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,当年居民消费价格指数增长率每增长 1%,人口增长率增长0.047918%;在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%.这与理论分析和经验判断相一致.2、统计检验<1>拟合优度:由表3.4中数据可以得到:930526.02=R ,修正的可决系数为915638.02=R,这说明模型对样本的拟合很好.<2>F 检验:针对0234:0H βββ===,给定显著性水平0.05α=,在F 分布表中查出自由度为k-1=3和n-k=14的临界值34.3)14,3(=αF .由表3.4中得到F=62.50441,由于F=62.50441 >(3,21) 3.075F α=,应拒绝原假设0234:0H βββ===,说明回归方程显著,即"国民总收入"、"居民消费价格指数增长率"、"人均GDP"等变量联合起来确实对"人口自然增长率"有显著影响.<3>t 检验:分别针对0H :0(1,2,3,4)j j β==,给定显著性水平0.05α=,查t 分布表得自由度为n-k=14临界值145.2)(2/=-k n t α.由表3.4中数据可得,与^1β、^2β、^3β、^4β对应的t 统计量分别为17.08010、2.482857、1.412721、-2.884953除^3β,其绝对值均大于145.2)(2/=-k n t α,这说明分别都应当拒绝0H :)4,2,1(0==j j β,也就是说,当在其它解释变量不变的情况下,解释变量"国民总收入"、"人均GDP"分别对被解释变量"人口自然增长率"Y 都有显著的影响.^3β的绝对值小于145.2)(2/=-k n t α,:这说明接受0H :03=β,X3系数对t 检验不显著,这表明很可能存在多重共线性.所以计算各解释变量的相关系数,选择X2、X3、X4数据,点"view/correlations"得相关系数矩阵<如表4.4>:表4.4由相关系数矩阵可以看出:各解释变量相互之间的相关系数较高,证实确实存在严重多重共线性. 五、消除多重共线性采用逐步回归的办法,去检验和解决多重共线性问题.分别作Y 对X2、X3、X4的一元回归,结果如表4.5所示:表4.5按2R 的大小排序为:X4、X2、X3以X2为基础,顺次加入其他变量逐步回归.首先加入X2回归结果为:t=〕2.542529〔 〕-2.970874〔 920622.02=R当取05.0=α时,131.2)318(025.0)(2/=-=-tt k n α,X2参数的t 检验显著,加入X3回归得t= 〕17.08010〔 〕2.482857〔〕1.412721〔 〕-2.884953〔930526.02=R 915638.02=R F=62.50441当取05.0=α时,145.2)418(2/=-αt ,X3参数的t 检验不显著,予以剔除即40005397.02000350.035540.16ˆX X Y -+=,这是最后消除多重共线性的结果.在假定其它变量不变的情况下,当年国民总收入每增长1亿元,人口增长率增长0.000332%;在假定其它变量不变的情况下,在假定其它变量不变的情况下,当年人均GDP 没增加一元,人口增长率就会降低0.005109%.金服131 王亚平13019122。

计量经济学案例分析

计量经济学案例分析

95539.1
159878.3
2005
116921.8
184937.4
2006
140974
216314.4
2007
166863.7
265810.3
2008
179921.4702
314045.4
2009
150648.0635
340902.8
2010
201722.147
401512.8
2011
236401.992
1423.32
模型检验
首先利用Eviews软件进行最小二乘估计,估计结果如下表所示:
Dependent Variable: Y Method: Least Squares Date: 10/15/13 Time: 20:48 Sample: 1990 2011 Included observations: 22
0.980421 0.975814 11225.31 2.14E+09 -233.5509 0.586840
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion F-statistic Prob(F-statistic)
另外,我国对外经济合作的好坏, 也直接影响进出口总额。这主要通过 对外承包工程合同金额这一指标来体 现。
综上,我们可以通过分析这三个影 响因素来对中国进出口总额进行回归 分析,设定多元线性回归模型,令中 国进出口总额为被解释变量Y,国内生 产总值为解释变量X1,财政收入为解 释变量X2,财政支出为解释变量X3, 对外承包工程合同金额为解释变量X4 ,得出多元线性回归方程:

计量经济学-四元线性回归模型案例分析

计量经济学-四元线性回归模型案例分析

计量经济学课程设计班级:学号:姓名:2011年月一、引言财政收入是衡量一国政府财力的重要指标,国家在社会活动中提供公共物品和服务,很大程度上需要财政收入的鼎力相助。

财政收入既是国家的集中性分配活动,又是国家进行宏观调控的重要工具。

税收是国家为实现其职能的需要,凭借其政治权利并按照特定的标准,强制、无偿的取得财政收入的一种形式,它是现代国家财政收入最重要的收入形式和最主要的收入来源。

本课题跟据我国最近几年的经济发展水平和税收收入并结合我国各地区在2008年的实际情况,利用《中国统计年鉴2009》做出了税收收入的计量模型,比较分析了职工工资总额、财政支出和人均家庭总收入等变量对税收收入的不同影响,得出了几个重要的结论。

税收是国家在社会经济活动中为提供公共物品和服务的主要收入来源,在很大程度上决定于财政收入的充裕状况。

税收是国家集中性分配活动,又是国家进行宏观调控的重要工具。

我国自改革开放以来税收一直随经济的增长在快速的增长,尤其是进入21世纪以来成高速发展趋势。

由1999年的10682.58亿元到2008年的54233.79亿元,十年来增加了5.08倍(见表1)。

近几年以来,尤其是2008年以来社会不公平和贫富差距进一步了大,造成了社会的不稳定。

2010年两会期间温家宝总理提出调整税收基数,从而来缩小贫富差距和社会公平问题。

表1 我国十年来税收一览表年份1999 2000 2001 2002 2003 2004 2005 2006 2007 2008税收收入10682.58 12581.51 15301.51 17636.38 20017.31 24165.68 28778.54 34804.35 45621.97 54223.79 (亿元)二、理论基础税收是国家为了实现其职能,以政治权利为基础,按规定标准以政治权力为基础,按预定标准像经济组织和居民无偿课征而取得的一种财政收入。

税收的影响因素有很多包括一国的经济实力,经济发展水平,劳动者的素质,职工工资总额,财政支出,家庭总收入,生产总值,商品零售价格指数等。

多元线性回归模型计量经济学

多元线性回归模型计量经济学

多重共线性诊断
通过计算自变量之间的相关系 数、条件指数等方法诊断是否
存在多重共线性问题。
异方差性检验
通过计算异方差性统计量、图 形化方法等检验误差项是否存
在异方差性。
03
多元线性回归模型的应用
经济数据的收集与整理
原始数据收集
通过调查、统计、实验等方式获取原始数据,确保数据的真实性 和准确性。
数据清洗和整理
在实际应用中,多元线性回归模型可能无法处理 非线性关系和复杂的数据结构,需要进一步探索 其他模型和方法。
随着大数据和人工智能技术的发展,多元线性回 归模型的应用场景将更加广泛和复杂,需要进一 步探索如何利用新技术提高模型的预测能力和解 释能力。
07
参考文献
参考文献
期刊论文
学术期刊是学术研究的重要载体, 提供了大量关于多元线性回归模 型计量经济学的最新研究成果。
学位论文
学位论文是学术研究的重要组成 部分,特别是硕士和博士论文, 对多元线性回归模型计量经济学 进行了深入的研究和探讨会议论文集中反映了多元线性回 归模型计量经济学领域的最新进 展和研究成果。
THANKS
感谢观看
模型定义
多元线性回归模型是一种用于描 述因变量与一个或多个自变量之 间线性关系的统计模型。
假设条件
假设误差项独立同分布,且误差项 的均值为0,方差恒定;自变量与 误差项不相关;自变量之间不存在 完全的多重共线性。
模型参数估计
最小二乘法
01
通过最小化残差平方和来估计模型参数,是一种常用的参数估
计方法。
05
案例分析
案例选择与数据来源
案例选择
选择房地产市场作为案例,研究房价 与影响房价的因素之间的关系。

线性回归案例分析

线性回归案例分析

线性回归案例分析【篇一:线性回归案例分析】散布图—练习总评估价某建筑公司想了解位于某街区的住宅地产的销房产 79,760售价格y与总评估价x之 98,480间的相关程度到底有多 110,655大?于是从该街区去年 96,859售出的住宅中随机抽10 94,798的总评估价和销售资料 139,850如右表 170,34110 corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 相关分析案例justin tao 销售价格y美元 95,000 116,500 156,900 111,000 110,110 100,000 130,000 170,400 211,500 185,000 绘制散布图,观察其相关关系输入数据点击graph scatterplot 弹出对话框,依次对应x、y输入变量列点击ok 散布图及关系分析从散布图可以看出:总评估价值x与销售价格y存在线性正相关,相关程度较大;随x增大,y有增长趋corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 计算相关系数输入数据点击stat basic statistics correlation… 弹出对话框,输入x、y变量列点击ok 散布图(相关分析)案例下面是表示某公司广告费用和销售额之间关系的资试求这家公司的广告费和销售额的相关系数广告费 (10万) 销售额 (100万) 2022 15 17 23 18 25 10 20 得出相关系数及检验p值corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 0.002 0.05 (留意水准) ,广告费和销售额的相关关系是有影响的 corporatecommunication 28.05.2007 corporatecommunication 28.05.2007 回归分析案例通过下例观察回归分析和决定系数。

计量经济学 第二章 简单线性回归模型案例分析 PPT

计量经济学 第二章 简单线性回归模型案例分析 PPT
t(ˆ 2 ) 1 1 .9 8 2 6 t0 .0 2 5 (2 9 ) 2 .0 4 5应拒绝 H0 :2 0
3. 用P值检验 α=0.05 >> p=0.0000
表明,城镇居民人均总收入对城镇居民每百户计算机拥有量确 有显著影响。
4. 经济意义检验:
所估计的参数
,说明城镇
居民家庭人均总收入每增加1元,平均说来城变量选择:被解释变量选择能代表城乡所有居民消费的 “城镇居民家庭平均每百户计算机拥有量”(单位:台) ; 解释变量选择表现城镇居民收入水平的“城镇居民平均每 人全年家庭总收入”(单位:元) 研究范围:全国各省市2011年底的城镇居民家庭平均每 百户计算机拥有量和城镇居民平均每人全年家庭总收入数 据。
3、总体回归函数(PRF)是将总体被解释变量Y的条件 均值表现为解释变量X的某种函数。 样本回归函数(SRF)是将被解释变量Y的样本条件 均值表示为解释变量X的某种函数。 总体回归函数与样本回归函数的区别与联系。
4、随机扰动项是被解释变量实际值与条件均值的偏差, 代表排除在模型以外的所有因素对Y的影响。
Yt 12Xt ut
估计参数
假定模型中随机扰动满足基本假定,可用OLS法。 具体操作:使用EViews 软件,估计结果是:
用规范的形式将参数估计和检验的结果写为: Y ˆt11.95800.002873X t
(5.6228) (0.00024) t= (2.1267) (11.9826) R2 0.8320 F=143.5836 n=31
即是说:当地区城镇居民人均总收入达到25000元时,城镇居 民每百户计算机拥有量 平均值置信度95%的预测区间为 (80.6219,86.9473)台。
12
个别值区间预测:

多元线性回归模型案例

多元线性回归模型案例

多元线性回归模型案例多元线性回归模型是统计学中常用的一种回归分析方法,它可以用来研究多个自变量对因变量的影响。

在实际应用中,多元线性回归模型可以帮助我们理解和预测各种复杂的现象,比如销售额和广告投入、学生成绩和学习时间等等。

接下来,我们将通过一个实际的案例来详细介绍多元线性回归模型的应用。

案例背景:假设我们是一家电子产品公司的市场营销团队,我们想要了解广告投入、产品定价和促销活动对销售额的影响。

为了实现这个目标,我们收集了一段时间内的销售数据,并且记录了每个月的广告投入、产品定价和促销活动的情况。

现在,我们希望利用这些数据来建立一个多元线性回归模型,从而分析这些因素对销售额的影响。

数据收集:首先,我们需要收集相关的数据。

在这个案例中,我们收集了一段时间内的销售额、广告投入、产品定价和促销活动的数据。

这些数据可以帮助我们建立多元线性回归模型,并且进行相关的分析。

建立模型:接下来,我们将利用收集到的数据来建立多元线性回归模型。

在多元线性回归模型中,我们将销售额作为因变量,而广告投入、产品定价和促销活动作为自变量。

通过建立这个模型,我们可以分析这些因素对销售额的影响,并且进行预测。

模型分析:一旦建立了多元线性回归模型,我们就可以进行相关的分析。

通过分析模型的系数、拟合优度等指标,我们可以了解每个自变量对销售额的影响程度,以及整个模型的拟合情况。

这些分析结果可以帮助我们更好地理解销售额的变化规律,以及各个因素之间的关系。

模型预测:除了分析模型的影响,多元线性回归模型还可以用来进行预测。

通过输入不同的自变量数值,我们可以预测对应的销售额。

这样的预测结果可以帮助我们制定更加合理的市场营销策略,从而提高销售业绩。

模型评估:最后,我们需要对建立的多元线性回归模型进行评估。

通过对模型的残差、预测误差等进行分析,我们可以了解模型的准确性和可靠性。

如果模型的预测效果不理想,我们还可以通过改进模型结构、增加自变量等方式来提高模型的预测能力。

计量经济学模型案例

计量经济学模型案例

计量经济学模型案例计量经济学是经济学的一个重要分支,它运用数理统计和数学工具来分析经济现象。

计量经济学模型是对经济现象进行定量分析的重要工具,通过建立数学模型来揭示经济现象的内在规律。

在本文中,我们将通过几个实际案例来介绍计量经济学模型的应用。

首先,我们来看一个简单的线性回归模型。

假设我们想要分析收入对消费支出的影响,我们可以建立一个线性回归模型来探讨二者之间的关系。

通过收集一定时间内的个体数据,我们可以利用最小二乘法来估计模型参数,从而得到收入对消费支出的影响程度。

这个模型可以帮助我们更好地理解收入和消费之间的关系,为政府制定经济政策提供参考依据。

其次,我们可以考虑一个面板数据模型的案例。

面板数据是指在一定时间内对多个个体进行观测得到的数据,它能够更好地反映出个体间的异质性。

比如,我们可以建立一个面板数据模型来分析不同城市房价与人口密度、经济发展水平等因素的关系。

通过面板数据模型,我们可以更准确地把握不同城市房价受到各种因素影响的情况,为房地产市场的监管和预测提供支持。

最后,让我们来看一个时间序列模型的案例。

时间序列数据是指在一段时间内对同一变量进行观测得到的数据,它能够更好地反映出变量随时间的变化规律。

比如,我们可以建立一个时间序列模型来预测未来某个经济指标的变化趋势。

通过对历史数据的分析和建模,我们可以利用时间序列模型来进行未来经济趋势的预测,为政府和企业的决策提供参考。

综上所述,计量经济学模型在实际应用中具有重要的意义。

通过建立合适的模型,我们可以更好地分析和解释经济现象,为经济政策的制定和实施提供科学依据。

当然,在实际应用中,我们需要根据具体问题选择合适的模型,并结合实际数据进行估计和预测。

希望本文介绍的几个案例能够帮助读者更好地理解计量经济学模型的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计量经济学课程设计
班级:
学号:
姓名:
2011年月
估计结果如下
Y=-130.4 + 0.852x1
(-152)(12.91)
R2=0.852,DW=1.492,F=166.74
可以看出运用加权最小二乘法消除了异方差。

(三)自相关检验
Y=-130.4 + 0.852x1
(-152)(12.91)
R2=0.852,DW=1.492,F=166.74 DF=30
在0.05显著水平下,查DW统计表可知,dl=1.352 du=1.489,DW>dU,说明不存在自相关。

最终模型表明,职工工资每增加一单位税收收入就会相应增加0.852个单位。

四、预测
经过实证分析,得出我国各地区税收收入主要受职工工资水平的影响。

随着职工工资水平增加,税收收入就会增加。

而且财政支出的增长速度跟家庭总收入的增长速度相差不大。

说明,随着人均家庭总收入的增加,人们的生活水平也会得到改善。

与此同时,人们的消费水平也会得到提高,使得营业税、消费税、个人所得税等都增加,而这些都是税收收入的主要来源,因此税收收入也增加了,这样就可以筹集到更多的财政收入。

国家就可以将筹集到的财政收入进行分配和使用,而分配和使用的过程就是财政支出。

职工工资总额对税收收入也有影响,而且影响也比较强,这足以说明,随着职工工资总额的增加,税收收入也会增加,它们存在正相关的关系。

五、政策建议
综合上述因素,最有效提高税收收入的方法就是要提高人们的收入,减少人们的收入差距,让人们可以去多消费,从而增加营业税、消费税、个人所得税等税收收入。

人们去消费了,就要有人去征收税收。

税收征管在我国税收的增长中也发挥着重要的作用。

2008年全国各级税务稽查局共查补收入513.6亿元。

可是由于我国目前的税收征管水平在短期内将面临较大的困难,因此近期
内税收征管难以成为推动税收增长的最重要力量。

为此,我们国家应该对税种
的征管,特别是主体税种的征管,多添加一些部门,多增加一些工作人员,乃
至全社会一起共同努力,这样既解决了税收征管问题,也可以相对的解决一些
就业问题。

随着我国经济结构的调整逐渐完善,我国的GDP也将逐步稳定发展,税收
体制也将更加理想,这样就能保持我国的GDP和税收同步协调增长,使得我国
的税收与可税GDP总量之间保持着高度正相关的,让可税GDP与同期的税收之间,能够一直维持着长期、稳定的均衡关系。

只有这样,才能共同推动我国的经济飞
速平稳的发展,使得我国的经济实力得到提升。

相关文档
最新文档