【最新整理】2020初高中数学衔接教材(完整版) - 【教师版】

合集下载

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初下中数教贯串课本之阳早格格创做咱们正在初中已经教习过了下列一些乘法公式:(1)仄圆好公式 22()()a b a b a b +-=-;(2)真足仄圆公式222()2a b a ab b ±=±+.咱们还不妨通过道明得到下列一些乘法公式:(1)坐圆战公式2233()()a b a ab b a b +-+=+;(2)坐圆好公式2233()()a b a ab b a b -++=-;(3)三数战仄圆公式2222()2()a b c a b c ab bc ac ++=+++++;(4)二数战坐圆公式 33223()33a b a a b ab b +=+++;(5)二数好坐圆公式 33223()33a b a a b ab b -=-+-.对于上头列出的五个公式,有兴趣的共教不妨自己去道明.例1 估计:22(1)(1)(1)(1)x x x x x x +--+++.解法一:本式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:本式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,供222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.挖空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++).2.采用题:(1)假如212x mx k ++一个真足仄办法,则k 等于( ) (A )2m (B )214m (C )213m (D )2116m (2)没有管a ,b 为何真数,22248a b a b +--+的值( )(A )经常正数 (B )经常背数(C )不妨是整 (D )不妨是正数也不妨是背数2.果式领会果式领会的主要要领有:十字相乘法、提与公果式法、公式法、分组领会法,其余还应相识供根法及待定系数法.1.十字相乘法例1 领会果式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2领会成图中的二个x 的积,再将常数项2领会成-1与-2的乘积,而图中的对于角线上的二个数乘积的战为-3x ,便是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).道明:以后正在领会与本例类似的二次三项式时,不妨间接将图1.1-1中的二个x 用1去表示(如图1.1-2所示). (2)由图1.1-3,得x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y)-1=(x -1) (y+1) (如图1.1-5所示).课堂训练一、挖空题:1、把下列各式领会果式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay-by x x 图1.1-4 -1 1 x y 图1.1-5=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)=+-91242m m __________________________________________________.(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________.2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、采用题:(每小题四个问案中惟有一个是精确的)1、正在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相共果式的是( )A 、惟有(1)(2)B 、惟有(3)(4)C 、惟有(3)(5)D 、(1)战(2);(3)战(4);(3)战(5)2、领会果式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+-3、()()2082-+++b a b a 领会果式得( )A 、()()2 10-+++b a b a B 、()()4 5-+++b a b a C 、()()10 2-+++b a b a D 、()()5 4-+++b a b a 4、若多项式a x x +-32可领会为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或者9B 、3±C 、9±D 、3±或者9±三、把下列各式领会果式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提与公果式法例2 领会果式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或者32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++课堂训练:一、挖空题:1、多项式xyz xy y x 42622+-中各项的公果式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --领会果式得_____________________.7.估计99992+=二、推断题:(精确的挨上“√”,过失的挨上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3领会果式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++课堂训练一、222b ab a +-,22b a -,33b a -的公果式是______________________________.二、推断题:(精确的挨上“√”,过失的挨上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( )2、()()()()b a b a b a b a 43 4343892222-+=-=-………………………………… ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式领会1、()()229n m n m ++--2、3132-x 3、()22244+--x x 4、1224+-x x4.分组领会法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或者222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.课堂训练:用分组领会法领会多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.闭于x 的二次三项式ax2+bx+c(a≠0)的果式领会.若闭于x 的圆程20(0)ax bx c a ++=≠的二个真数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠便可领会为12()()a x x x x --.例5 把下列闭于x 的二次多项式领会果式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-, ∴221x x +-=(1(1x x ⎡⎤⎡⎤--+--⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.采用题:多项式22215x xy y --的一个果式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.领会果式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.领会果式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.正在真数范畴内果式领会:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 谦脚222a b c ab bc ca ++=++,试判决ABC ∆的形状.4.领会果式:x2+x -(a2-a).5. (测验考查题)已知abc=1,a+b+c=2,a²+b²+c²=,供1-c ab 1++1-a bc 1++1-b ca 1+的值. 1、一元二次圆程、一元二次没有等式与二次函数的闭系2、一元二次没有等式的解法步调一元二次没有等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相映的一元二次圆程()002≠=++a c bx ax 的二根为2121x x x x ≤且、,ac b 42-=∆,则没有等式的解的百般情况如下表:0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次圆程()的根002>=++a c bx ax 有二相同真根)(,2121x x x x < 有二相等真根 a b x x 221-== 无真根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅例1解没有等式:(1)x2+2x -3≤0; (2)x -x2+6<0;(3)4x2+4x +1≥0; (4)x2-6x +9≤0;(5)-4+x -x2<0.例2 解闭于x 的没有等式0)1(2>---a a x x解:本没有等式不妨化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或者a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或者a x ->1 例3已知没有等式20(0)ax bx c a ++<≠的解是2,3x x <>或供没有等式20bx ax c ++>的解.解:由没有等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且圆程20ax bx c ++=的二根分别为2战3,∴5,6b c a a-==, 即 5,6b c a a=-=. 由于0a <,所以没有等式20bx ax c ++>可形成20b c x x a a ++< , 即 -2560,x x ++<整治,得所以,没有等式20bx ax c +->的解是x <-1,或者x >65. 道明:本例利用了圆程与没有等式之间的相互闭系去办理问题.练 习1.解下列没有等式:(1)3x2-x -4>0; (2)x2-x -12≤0;(3)x2+3x -4>0; (4)16-8x +x2≤0.2.解闭于x 的没有等式x2+2x +1-a2≤0(a 为常数).做业:1.若0<a<1,则没有等式(x -a)(x -a1)<0的解是 ( )A.a<x<a1 B.a 1<x<a C.x>a 1或者x<a D.x<a1或者x>a 2.如果圆程ax2+bx +b =0中,a <0,它的二根x1,x2谦脚x1<x2,那么没有等式ax2+bx +b <0的解是______.3.解下列没有等式:(1)3x2-2x +1<0; (2)3x2-4<0;(3)2x -x2≥-1; (4)4-x2≤0.(5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解闭于x 的没有等式x2-(1+a)x +a <0(a 为常数).5.闭于x 的没有等式02<++c bx ax 的解为122x x <->-或 供闭于x 的没有等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的观念及本量内心:本量:中心:本量:沉心:本量:垂心:例1 供证:三角形的三条中线接于一面,且被该接面分成的二段少度之比为2:1.已知D 、E 、F 分别为△ABC 三边BC 、CA 、AB 的中面, 供证AD 、BE 、CF 接于一面,且皆被该面分成2:1.道明 连结DE ,设AD 、BE 接于面G ,D 、E 分别为BC 、AE 的中面,则DE//AB ,且12DE AB , GDE ∽GAB ,且相似比为1:2,2,2AGGD BG GE . 设AD 、CF 接于面'G ,共理可得,'2','2'.AG G D CG G F则G 与'G 沉合, AD 、BE 、CF 接于一面,且皆被该面分成2:1.例 2 已知ABC 的三边少分别为,,BC a AC b AB c ,I 为ABC 的内心,且I 正在ABC 的边BC AC AB 、、上的射影分别为D E F 、、,供证:2b c a AE AF . 道明 做ABC 的内切圆,则D E F 、、分别为内切圆正在三边上的切面,,AE AF 为圆的从共一面做的二条切线,AE AF ,共理,BD=BF ,CD=CE. 即2b c a AE AF . 例3 若三角形的内心与沉心为共一面,供证:那个三角形为正三角形. 已知O 为三角形ABC 的沉心战内心.供证 三角形ABC 为等边三角形.道明 如图,连AO 并延少接BC 于 D.O 为三角形的内心,故AD 仄分BAC ,AB BD AC DC (角仄分线本量定理)O 为三角形的沉心,D 为BC 的中面,即BD=DC. 1AB AC ,即AB AC . 共理可得,AB=BC. ABC 为等边三角形.例4 供证:三角形的三条下接于一面.已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 接于H 面. 供证CH AB .道明 以CH 为曲径做圆,D E 、正在以CH 为曲径的圆上,FCB DEH .共理,E 、D 正在以AB 为曲径的圆上,可得BED BAD .BCH BAD , 又ABD 与CBF 有大众角B ,90o CFB ADB。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学衔接教材之袁州冬雪创作我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式 33223()33a b a a b ab b +=+++;(5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( )(A )2m (B )214m (C )213m (D )2116m (2)不管a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,别的还应懂得求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).说明:此后在分解与本例近似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示).(2)由图1.1-3,得x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by --(4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.1-5所示).讲堂操练一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 1 1 图1.1-3 -ay -by xx 图1.1-4 -1 1x y 图1.1-5=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)=+-91242m m __________________________________________________.(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________.2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、选择题:(每小题四个答案中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相同因式的是( )A 、只有(1)(2)B 、只有(3)(4)C 、只有(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)2、分解因式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+-3、()()2082-+++b a b a 分解因式得( )A 、()()2 10-+++b a b aB 、()()4 5-+++b a b aC 、()()10 2-+++b a b aD 、()()5 4-+++b a b a4、若多项式a x x +-32可分解为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或9B 、3±C 、9±D 、3±或9±三、把下列各式分解因式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分解因式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++讲堂操练:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --分解因式得_____________________.7.计算99992+=二、断定题:(正确的打上“√”,错误的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3分解因式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++讲堂操练一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、断定题:(正确的打上“√”,错误的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( )2、()()()()b a b a b a b a 43 4343892222-+=-=-………………………………… ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式分解1、()()229n m n m ++--2、3132-x 3、()22244+--x x 4、1224+-x x4.分组分解法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.讲堂操练:用分组分解法分解多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠便可分解为12()()a x x x x --.例5 把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤----⎣⎦⎣⎦ =(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分解因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分解因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数范围内因式分解:(1)253x x -+ ; (2)2223x x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.3.ABC ∆三边a ,b ,c 知足222a b c ab bc ca ++=++,试断定ABC ∆的形状.4.分解因式:x2+x -(a2-a).5. (测验测验题)已知abc=1,a+b+c=2,a ²+b ²+c ²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值. 1、一元二次方程、一元二次不等式与二次函数的关系2、一元二次不等式的解法步调一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表:0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 ab x x 221-== 无实根 的解集)0(02>>++ac bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅例1解不等式:(1)x2+2x -3≤0; (2)x -x2+6<0;(3)4x2+4x +1≥0; (4)x2-6x +9≤0;(5)-4+x -x2<0.例2 解关于x 的不等式0)1(2>---a a x x解:原不等式可以化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或a x ->1 例3已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解.解:由不等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且方程20ax bx c ++=的两根分别为2和3,∴5,6b c a a-==, 即 5,6b c a a=-=. 由于0a <,所以不等式20bx ax c ++>可变成20b c x x a a++< , 即 -2560,x x ++<整理,得所以,不等式20bx ax c +->的解是x <-1,或x >65. 说明:本例操纵了方程与不等式之间的相互关系来处理问题.练 习1.解下列不等式:(1)3x2-x -4>0; (2)x2-x -12≤0;(3)x2+3x -4>0; (4)16-8x +x2≤0.2.解关于x 的不等式x2+2x +1-a2≤0(a 为常数).作业:1.若0<a<1,则不等式(x -a)(x -a1)<0的解是 ( )A.a<x<a 1B.a1<x<a C.x>a 1或x<a D.x<a1或x>a 2.如果方程ax2+bx +b =0中,a <0,它的两根x1,x2知足x1<x2,那末不等式ax2+bx +b <0的解是______.3.解下列不等式:(1)3x2-2x +1<0; (2)3x2-4<0;(3)2x -x2≥-1; (4)4-x2≤0.(5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解关于x 的不等式x2-(1+a)x +a <0(a 为常数).5.关于x 的不等式02<++c bx ax 的解为122x x <->-或 求关于x 的不等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的概念及性质心坎:性质:外心:性质:重心:性质:垂心:例 1 求证:三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.已知D、E 、F 分别为△ABC 三边BC 、CA 、AB 的中点,求证AD 、BE 、CF 交于一点,且都被该点分成2: 1.证明 保持DE ,设AD 、BE 交于点G ,D 、E 分别为BC 、AE 的中点,则DE//AB ,且12DE AB , GDE ∽GAB ,且相似比为1:2,2,2AG GD BG GE . 设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F则G 与'G 重合, AD 、BE 、CF 交于一点,且都被该点分成2:1.例2 已知ABC 的三边长分别为,,BC a AC b AB c ,I 为ABC 的心坎,且I 在ABC 的边BC AC AB 、、上的射影分别为D E F 、、,求证:2b c a AE AF . 证明 作ABC 的内切圆,则D E F 、、分别为内切圆在三边上的切点,,AE AF 为圆的从同一点作的两条切线,AE AF ,同理,BD=BF ,CD=CE. 即2b c a AE AF . 例 3 若三角形的心坎与重心为同一点,求证:这个三角形为正三角形.已知O 为三角形ABC 的重心和心坎.求证 三角形ABC 为等边三角形.证明 如图,连AO 并延长交BC 于 D. O 为三角形的心坎,故AD 平分BAC , AB BD AC DC(角平分线性质定理) O 为三角形的重心,D 为BC 的中点,即BD=DC. 1AB AC ,即AB AC . 同理可得,AB=BC. ABC 为等边三角形.例4 求证:三角形的三条高交于一点.已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 交于H 点.求证CH AB . 证明 以CH 为直径作圆,D E 、在以CH 为直径的圆上,FCB DEH .同理,E 、D 在以AB 为直径的圆上,可得BED BAD .BCH BAD , 又ABD 与CBF 有公共角B ,90o CFB ADB。

(2020年整理)初升高数学衔接教材(完整).doc

(2020年整理)初升高数学衔接教材(完整).doc

第一讲 数与式1、 绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a -<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><-或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1 段进行讨论. ③将分段求得解集,再求它们的并集. 例1. 求不等式354x -<的解集 例2.求不等式215x +>的解集 例3.求不等式32x x ->+的解集 例4.求不等式|x +2|+|x -1|>3的解集. 例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x -+->4+x (2)|x +1|<|x -2|(3)|x -1|+|2x +1|<4 (4)327x -< (5)578x +> 3、因式分解 乘法公式(1)平方差公式 22()()a b a b a b +-=- (2)完全平方公式 222()2a b a ab b ±=±+ (3)立方和公式 2233()()a b a ab b a b +-+=+ (4)立方差公式 2233()()a b a ab b a b -++=-(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式 33223()33a b a a b ab b +=+++ (7)两数差立方公式 33223()33a b a a b ab b -=-+-因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)2672x x ++(3)22()x a b xy aby -++; (4)1xy x y -+-.2.提取公因式法例2.分解因式:(1)()()b a b a -+-552(2)32933x x x +++3.公式法例3.分解因式: (1)164+-a (2)()()2223y x y x --+4.分组分解法例4.(1)x y xy x 332-+- (2)222456x xy y x y +--+-5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例5.把下列关于x 的二次多项式分解因式:(1)221x x +-; (2)2244x xy y +-.练习(1)256x x -- (2)()21x a x a -++ (3)21118x x -+(4)24129m m -+ (5)2576x x +- (6)22126x xy y +-(7)()()3211262+---p q q p (8)22365ab b a a +- (9)()22244+--x x (10)1224+-x x (11)by ax b a y x 222222++-+-(12)91264422++-+-b a b ab a (13)x 2-2x -1(14) 31a +; (15)424139x x -+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +-++-第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2=2b a-;(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,。

初高中数学衔接教材(已整理)(可编辑修改版)

初高中数学衔接教材(已整理)(可编辑修改版)
9 4 23
(2) (4m
)2 16m2 4m (
学习参考
); );
.
..
..
.
(3 ) (a 2b c)2 a2 4b2 c2 (
).
2.选择题:
(1)若 x2 1 mx k 是一个完全平方式,则 k 等于

2

(A) m2
(B) 1 m2
4
(C) 1 m2
3
(2)不论 a , b 为何实数, a2 b2 2a 4b 8 的值
学习参考
|x-3|
PCA x 01
BD
34
x
|x-1| 图 1.1-1
.
..
|PA|+|PB|>4.
..
.
由|AB|=2,可知
点 P 在点 C(坐标为 0)的左侧、或点 P 在点 D(坐标为 4)的右侧.
x<0,或 x>4.
练习
1.填空:
(1)若 x 5,则 x=_________;若 x 4 ,则 x=_________.
分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的 根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分 子中的根号的过程
在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行, 运算中要运用公式 a b ab(a 0,b 0) ;而对于二次根式的除法,通常先写成 分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加 减法类似,应在化简的基础上去括号与合并同类二次根式.
..
.
例 2 计算: 3 (3 3) .
解法一: 3 (3 3) = 3
3 3
= 3 (3 3)
(3 3)(3 3)

初升高数学衔接教材(完整)(2020年8月整理).pdf

初升高数学衔接教材(完整)(2020年8月整理).pdf

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪−<⎩(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. (3)两个数的差的绝对值的几何意义:b a −表示在数轴上,数a 和数b 之间的距离. 2、绝对值不等式的解法 (1)含有绝对值的不等式①()(0)f x a a <>,去掉绝对值后,保留其等价性的不等式是()a f x a −<<。

②()(0)f x a a >>,去掉绝对值后,保留其等价性的不等式是()()f x a f x a ><−或。

③22()()()()f x g x f x g x >⇔>。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n +1段进行讨论. ③将分段求得解集,再求它们的并集. 例1.求不等式354x −<的解集例2.求不等式215x +>的解集例3.求不等式32x x −>+的解集例4.求不等式|x +2|+|x -1|>3的解集.例5.解不等式|x -1|+|2-x |>3-x .例6.已知关于x 的不等式|x -5|+|x -3|<a 有解,求a 的取值范围. 练习解下列含有绝对值的不等式: (1)13x x −+−>4+x (2)|x +1|<|x -2| (3)|x -1|+|2x +1|<4 (4)327x −< (5)578x +>3、因式分解 乘法公式(1)平方差公式22()()a b a b a b +−=− (2)完全平方公式222()2a b a ab b ±=±+ (3)立方和公式2233()()a b a ab b a b +−+=+ (4)立方差公式2233()()a b a ab b a b −++=−(5)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++ (6)两数和立方公式33223()33a b a a b ab b +=+++(7)两数差立方公式33223()33a b a a b ab b −=−+−因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1分解因式:(1)x 2-3x +2;(2)2672x x ++(3)22()x a b xy aby −++;(4)1xy x y −+−.2.提取公因式法例2.分解因式: (1)()()b a b a −+−552(2)32933x x x +++3.公式法例3.分解因式: (1)164+−a (2)()()2223y x y x −−+4.分组分解法例4.(1)x y xy x 332−+−(2)222456x xy y x y +−−+− 5.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x −−.例5.把下列关于x 的二次多项式分解因式: (1)221x x +−;(2)2244x xy y +−.练习(1)256x x −−(2)()21x a x a −++(3)21118x x −+(4)24129m m −+(5)2576x x +−(6)22126x xy y +−(7)()()3211262+−−−p q q p (8)22365ab b a a +−(9)()22244+−−x x (10)1224+−x x (11)by ax b a y x 222222++−+−(12)91264422++−+−b a b ab a (13)x 2-2x -1(14)31a +;(15)424139x x −+;(16)22222b c ab ac bc ++++; (17)2235294x xy y x y +−++−第二讲一元二次方程与二次函数的关系1、一元二次方程 (1)根的判别式对于一元二次方程ax 2+bx +c =0(a ≠0),有:(1) 当Δ>0时,方程有两个不相等的实数根x 1,2(2)当Δ=0时,方程有两个相等的实数根x 1=x 2=-2b a; (3)当Δ<0时,方程没有实数根. (2)根与系数的关系(韦达定理)如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a −,x 1·x 2=ca.这一关系也被称为韦达定理.2、二次函数2y ax bx c =++的性质1.当0a >时,抛物线开口向上,对称轴为2bx a =−,顶点坐标为2424b ac b a a ⎛⎫−− ⎪⎝⎭,。

(完整版)初高中数学衔接教材(已整理)

(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。

初升高数学课程内容(衔接班)

初升高数学课程内容(衔接班)

【知识要点】一、一元二次不等式:1、解法步骤:(1)分解成一次因式的积,并使每一个因式中一次项的系数为正;(2)根据不等号取解集:大于号取两边,小于号取中间。

一元高次不等式的解法:穿根法(穿针引线):将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线(奇数个根穿过,偶数个根穿不过),再根据曲线显现()f x 的符号变化规律,写出不等式的解集。

2、一元二次不等式恒成立情况小结:20ax bx c ++>(0a ≠)恒成立⇔00a >⎧⎨∆<⎩.20ax bx c ++<(0a ≠)恒成立⇔0a <⎧⎨∆<⎩.二、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后转化成整式不等式求解集。

1.()0()f x g x >⇔()()0f x g x ⋅>;()0()f xg x <⇔()()0f xg x ⋅<2.()0()f x g x ≥⇔()()0()0f x g x g x ⋅≥⎧⎨≠⎩;()0()f x g x ≤⇔()()0()0f xg x g x ⋅≤⎧⎨≠⎩三、含绝对值的不等式的解法(大于取两边,小于取中间):|()|f x a <,(0a >)⇔()a f x a -<<|()|f x a >,(0a >)⇔()()f x a f x a<->或【知识讲练】1、解下列不等式:(1)27120x x -+>(2)2230x x --+≥(3)2(1)(3)(2)0x x x --+≥解不等式(4)307x x -≤+(5)2317x x -<+(6)25023xx x -<--(7)|2x -1|≤3(8)223->-x x (9)|1|12+>-x x 2、已知不等式20ax bx c ++>的解集为{|23}x x <<求不等式20cx bx a ++>的解集.3、对于任意实数x ,不等式23208kx kx +-<恒成立,则实数k 的取值范围是【巩固练习】1、不等式02<+-b x ax 的解集为{}12x x <<,则a b +=2、不等式32-+x x x )(<0的解集为3、不等式221x x +>+的解集是()A.{}101|><<-x x x 或 B.{}101-|<<<x x x 或C.{}1001|<<<<-x x x 或 D.{}11-|><x x x 或(-∞,-1)∪(1,+∞)4、已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为()A、11{|}32x x -<<B、11{|}32x x x <->或C、{|32}x x -<<D、{|32}x x x <->或5、(1)若函数34)(2++=kx kx x f 的定义域是R,则k 的取值范围是(2)已知函数1)(2--=mx mx x f ,对一切实数0)(,<x f x 恒成立,则m 的范围为【知识要点】1、集合定义:某些指定的对象集在一起成为集合。

初高中数学衔接教材(已整理精品)

初高中数学衔接教材(已整理精品)

初高中数学衔接教材之羊若含玉创作我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式222()2a b a ab b ±=±+.我们还可以通过证明得到下列一些乘法公式:(1)立方和公式2233()()a b a ab b a b +-+=+;(2)立方差公式2233()()a b a ab b a b -++=-;(3)三数和平方公式2222()2()a b c a b c ab bc ac ++=+++++;(4)两数和立方公式 33223()33a b a a b ab b +=+++;(5)两数差立方公式 33223()33a b a a b ab b -=-+-.对上面列出的五个公式,有兴趣的同学可以自己去证明.例1 盘算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +-=61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( ); (2)(4m +22)164(m m =++);(3 ) 2222(2)4(a b c a b c +-=+++).2.选择题:(1)若212x mx k ++是一个完全平方法,则k 等于 ( )(A )2m (B )214m (C )213m (D )2116m (2)不管a ,b 为何实数,22248a b a b +--+的值( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.因式分化因式分化的主要办法有:十字相乘法、提取公因式法、公式法、分组分化法,别的还应懂得求根法及待定系数法.1.十字相乘法例1 分化因式:(1)x2-3x +2; (2)x2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x2分化成图中的两个x 的积,再将常数项2分化成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x2-3x +2中的一次项,所以,有x2-3x +2=(x -1)(x -2).说明:往后在分化与本例相似的二次三项式时,可以直接将图1.1-1中的两个x 用1来暗示(如图1.1-2所示).(2)由图1.1-3,得x2+4x -12=(x -2)(x +6).(3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y)-1 =(x -1) (y+1) (如图1.1-5所示). 教室演习一、填空题:1、把下列各式分化因式:(1)=-+652x x __________________________________________________.(2)=+-652x x __________________________________________________.(3)=++652x x __________________________________________________.(4)=--652x x __________________________________________________.(5)()=++-a x a x 12__________________________________________________.(6)=+-18112x x __________________________________________________.(7)=++2762x x __________________________________________________.(8)-1 -2 x x 图1.1-1 -1 -2 1 1 图1.1-2 -2 6 11 图1.1-3 -ay -by x x 图1.1-4 -11x y 图1.1-5=+-91242m m __________________________________________________.(9)=-+2675x x __________________________________________________.(10)=-+22612y xy x __________________________________________________. 2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b .二、选择题:(每小题四个答案中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x(5)44152++x x 中,有相同因式的是( )A 、只有(1)(2)B 、只有(3)(4)C 、只有(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)2、分化因式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+- 3、()()2082-+++b a b a 分化因式得( )A 、()()2 10-+++b a b aB 、()()4 5-+++b a b aC 、()()10 2-+++b a b aD 、()()5 4-+++b a b a4、若多项式a x x +-32可分化为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( )A 、3或9B 、3±C 、9±D 、3±或9±三、把下列各式分化因式1、()()3211262+---p q q p2、22365ab b a a +-3、6422--y y4、8224--b b2.提取公因式法例2 分化因式:(1)()()b a b a -+-552 (2)32933x x x +++解: (1).()()b a b a -+-552=)1)(5(--a b a(2)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+ =2(3)(3)x x ++教室演习:一、填空题:1、多项式xyz xy y x 42622+-中各项的公因式是_______________.2、()()()•-=-+-y x x y n y x m __________________.3、()()()•-=-+-222y x x y n y x m ____________________.4、()()()•--=-++--z y x x z y n z y x m _____________________.5、()()•--=++---z y x z y x z y x m ______________________.6、523623913x b a x ab --分化因式得_____________________.7.盘算99992+=二、断定题:(正确的打上“√”,错误的打上“×” )1、()b a ab ab b a -=-24222………………………………………………………… ( )2、()b a m m bm am +=++…………………………………………………………… ( )3、()5231563223-+-=-+-x x x x x x …………………………………………… ( )4、()111+=+--x x x x n n n ……………………………………………………………… ( )3:公式法例3分化因式: (1)164+-a (2)()()2223y x y x --+解:(1)164+-a =)2)(2)(4()4)(4()(4222222a a a a a a -++=-+=-(2)()()2223y x y x --+=)32)(4()23)(23(y x y x y x y x y x y x ++=+-+-++ 教室演习一、222b ab a +-,22b a -,33b a -的公因式是______________________________.二、断定题:(正确的打上“√”,错误的打上“×” )1、()⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=-⎪⎭⎫ ⎝⎛=-1.032 1.0321.03201.094222x x x x …………………………( )2、()()()()b a b a b a b a 43 4343892222-+=-=-………………………………… ( )3、()()b a b a b a 45 4516252-+=-………………………………………………… ( )4、()()()y x y x y x y x -+-=--=-- 2222………………………………………… ( )5、()()()c b a c b a c b a +-++=+- 22……………………………………………… ( )五、把下列各式分化1、()()229n m n m ++--2、3132-x3、()22244+--x x4、1224+-x x4.分组分化法例4 (1)x y xy x 332-+- (2)222456x xy y x y +--+-.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.教室演习:用分组分化法分化多项式(1)by ax b a y x 222222++-+-(2)91264422++-+-b a b ab a5.关于x 的二次三项式ax2+bx+c(a≠0)的因式分化.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分化为12()()a x x x x --.例5 把下列关于x 的二次多项式分化因式:(1)221x x +-; (2)2244x xy y +-.解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤----⎣⎦⎣⎦=(11x x ++.(2)令2244x xy y +-=0,则解得1(2x y =-+,1(2x y =--, ∴2244x xy y +-=[2(1][2(1]x y x y ++.练 习1.选择题:多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -2.分化因式:(1)x2+6x +8; (2)8a3-b3;(3)x2-2x -1; (4)4(1)(2)x y y y x -++-.习题1.21.分化因式:(1) 31a +; (2)424139x x -+;(3)22222b c ab ac bc ++++; (4)2235294x xy y x y +-++-.2.在实数规模内因式分化:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+. 3.ABC ∆三边a ,b ,c 知足222a b c ab bc ca ++=++,试剖断ABC ∆的形状.4.分化因式:x2+x -(a2-a).5. (测验测验题)已知abc=1,a+b+c=2,a²+b²+c²=,求1-c ab 1++1-a bc 1++1-b ca 1+的值. 1、一元二次方程、一元二次不等式与二次函数的关系2、一元二次不等式的解法步调一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各类情况如下表: 0>∆ 0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2 c bx ax y ++=2一元二次方程()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(02>>++a c bx ax {}21x x x x x ><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2 R 的解集)0(02><++a c bx ax {}21x x x x << ∅ ∅例1(1)x2+2x -3≤0; (2)x -x2+6<0;(3)4x2+4x +1≥0; (4)x2-6x +9≤0;(5)-4+x -x2<0.例2 解关于x 的不等式0)1(2>---a a x x解:原不等式可以化为:0))(1(>--+a x a x若)1(-->a a 即21>a 则a x >或a x -<1 若)1(--=a a 即21=a 则0)21(2>-x R x x ∈≠,21 若)1(--<a a 即21<a 则a x <或a x ->1 例3已知不等式20(0)ax bx c a ++<≠的解是2,3x x <>或求不等式20bx ax c ++>的解.解:由不等式20(0)ax bx c a ++<≠的解为2,3x x <>或,可知0a <,且方程20ax bx c ++=的两根分离为2和3, ∴5,6b c a a -==, 即 5,6b ca a =-=.由于0a <,所以不等式20bx ax c ++>可变成20b cx x a a ++< ,即 -2560,x x ++<整理,得所以,不等式20bx ax c +->的解是x <-1,或x >65 .说明:本例应用了方程与不等式之间的相互关系来解决问题. 练 习1.解下列不等式:(1)3x2-x -4>0; (2)x2-x -12≤0;(3)x2+3x -4>0; (4)16-8x +x2≤0.2.解关于x 的不等式x2+2x +1-a2≤0(a 为常数).作业:1.若0<a<1,则不等式(x -a)(x -a 1)<0的解是 ( )A.a<x<a 1B.a 1<x<aC.x>a 1或x<a D.x<a 1或x>a2.如果方程ax2+bx +b =0中,a <0,它的两根x1,x2知足x1<x2,那么不等式ax2+bx +b <0的解是______.3.解下列不等式:(1)3x2-2x +1<0; (2)3x2-4<0;(3)2x -x2≥-1; (4)4-x2≤0.(5)4+3x -2x2≥0;(6)9x2-12x>-4;4.解关于x 的不等式x2-(1+a)x +a <0(a 为常数).5.关于x 的不等式02<++c bx ax 的解为122x x <->-或求关于x 的不等式02>+-c bx ax 的解.4.三角形的“四心”1.“四心”的概念及性质心坎:性质:外心:性质:重心:性质:垂心:例1 求证:三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.已知D 、E 、F 分离为△ABC 三边BC 、CA 、AB 的中点,求证AD 、BE 、CF 交于一点,且都被该点分成2:1.证明 贯穿连接DE ,设AD 、BE 交于点G ,D 、E 分离为BC 、AE 的中点,则DE//AB ,且12DE AB , GDE ∽GAB ,且相似比为1:2,2,2AG GD BG GE . 设AD 、CF 交于点'G ,同理可得,'2','2'.AG G D CG G F 则G 与'G 重合, AD 、BE 、CF 交于一点,且都被该点分成2:1.例 2 已知ABC 的三边长分离为,,BC a AC b AB c ,I 为ABC 的心坎,且I 在ABC 的边BC AC AB 、、上的射影分离为D E F 、、,求证:2bc a AE AF . 证明 作ABC 的内切圆,则D E F 、、分离为内切圆在三边上的切点,,AE AF 为圆的从同一点作的两条切线,AE AF ,同理,BD=BF ,CD=CE. 即2b c a AE AF . 例3 若三角形的心坎与重心为同一点,求证:这个三角形为正三角形. 已知O 为三角形ABC 的重心和心坎.求证 三角形ABC 为等边三角形.证明 如图,连AO 并延长交BC 于 D. O 为三角形的心坎,故AD 平分BAC , ABBD AC DC (角平分线性质定理)O 为三角形的重心,D 为BC 的中点,即BD=DC. 1AB AC ,即AB AC .同理可得,AB=BC. ABC 为等边三角形.例4 求证:三角形的三条高交于一点. 已知ABC 中,,AD BC D BE AC E 于于,AD 与BE 交于H 点.求证CH AB .证明 以CH 为直径作圆, D E 、在以CH 为直径的圆上, FCB DEH .同理,E 、D 在以AB 为直径的圆上,可得BED BAD . BCH BAD , 又ABD 与CBF 有公共角B ,90o CFB ADB。

初高中数学衔接教材(完整版)

初高中数学衔接教材(完整版)

初高中数学衔接教材(完整版)篇一:初高中衔接教材数学《初高中数学衔接教材》序言童永奇高一新生,你们好,祝贺大家考入临潼区马额中学!进入我校,同学们必须努力学好《初高中数学衔接教材》,理由如下:一方面,由于我校是普通农村高中学校,生源质量相对较差;另一方面,由于高中数学是初中数学的延伸与拓展,初中我们学到的知识、方法在高中会经常使用。

既然学习《初高中数学衔接教材》如此重要,那么我们应该如何学习呢?提几点建议:一、“信心”是源泉。

人缺乏信心,就丧失了驱动力,终将一事无成。

二、“恒心”是保障。

人缺乏恒心,将“三天打鱼,两天晒网”。

三、“巧心”是支柱。

人无巧心,就缺乏灵气和创造力。

最后,衷心祝愿同学们在《初高中数学衔接教材》的学习中获得成功,请将那么成功的经验及时告诉我们,以便让更多的朋友分享你们成功的喜悦!临潼区马额中学高一数学校本教材童永奇结合我校学生的实际情况——基础知识较差,能力较差,没有掌握较好的学习方法,特设计适合我校高一学生使用的校本教材。

主要包括以下两个内容:一是《怎样学好数学》,二是《初高中数学衔接》。

怎样学好数学?A.要学好数学,就应该了解数学本身具有的三大特点。

(一)抽象性:数学的抽象性是无条件的,它的概念一经产生和定义之后,就稳定下来并且被看作是已知的,它们与现实的比较不是数学本身,而是它的应用问题。

(二)严谨性:由于数学的严谨性,人们往往认为数学是一种“冷而严肃的美”。

罗素说:“数学,如果正确地看它,不但拥有真理,而且也是具有至高的美,正像雕刻的美,是一种冷而严肃的美,这种美不是投合我们天性的微弱的方面,这种美没有绘画或音乐的那些华丽的装饰,它可以纯净到崇高的地步,能够达到严格的只有最伟大的艺术才能显示的那种完美的境地。

”(三)应用的广泛性:在任何一个领域,只要能从数学的角度提出问题,数学就能给出与所提问题的精确度相符合的答案,数学的这种威力恰恰是来源于它的抽象性。

b.要学好数学,就应该重视数学思想方法的学习。

初升高数学衔接教材(完整)

初升高数学衔接教材(完整)

第一讲数与式1、绝对值(1)绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a|0, a 0,a, a 0.(2)绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离.(3)两个数的差的绝对值的几何意义: a b 表示在数轴上,数a和数b之间的距离.2、绝对值不等式的解法(1)含有绝对值的不等式① f (x) a(a 0), 去掉绝对值后,保留其等价性的不等式是 a f ( x) a 。

② f (x) a(a 0) , 去掉绝对值后,保留其等价性的不等式是 f (x) a或f (x) a 。

③ 2 2f (x) g(x) f (x)g (x)。

(2)利用零点分段法解含多绝对值不等式:①找到使多个绝对值等于零的点.②分区间讨论,去掉绝对值而解不等式.一般地n 个零点把数轴分为n+1 段进行讨论.③将分段求得解集,再求它们的并集.例1. 求不等式3x 5 4的解集例2. 求不等式2x 1 5的解集例3. 求不等式x 3 x 2 的解集例4. 求不等式| x+2| +| x-1| >3 的解集.1例5. 解不等式| x-1| +|2 -x| >3-x.例6. 已知关于x 的不等式| x-5| +| x-3| <a 有解,求 a 的取值范围.练习解下列含有绝对值的不等式:(1)x 1 x 3 >4+x(2)| x+1|<| x-2|(3)| x-1|+|2 x+1|<4(4)3x 2 7(5) 5x 7 83、因式分解乘法公式(1)平方差公式 2 2(a b)( a b) a b(2)完全平方公式 2 2 2(a b) a 2ab b(3)立方和公式 2 2 3 3(a b)(a ab b ) a b(4)立方差公式 2 2 3 3(a b)(a ab b ) a b(5)三数和平方公式 2 2 2 2(a b c) a b c 2(ab bc ac)(6)两数和立方公式 3 3 2 2 3(a b) a 3a b 3ab b2(7)两数差立方公式 3 3 2 2 3(a b) a 3a b 3ab b因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:2(1)x -3x+2;(2)26x 7x 2(3) 2 ( ) 2x a b xy aby ;(4)xy 1 x y .2.提取公因式法例2. 分解因式:2 (2)x3 9 3x2 3x (1)ab 5 a 5 b3.公式法例3. 分解因式:(1)a4 16 (2) 23x 2y x y2 4.分组分解法2例4. (1)x xy 3y 3x (2)2 22x xy y 4x 5y 65.关于x 的二次三项式ax2+bx+c( a≠0) 的因式分解.若关于x 的方程 2 0( 0)ax bx c a 的两个实数根是x1 、x2 ,则二次三项式2 ( 0)ax bx c a 就可分解为a(x x )(x x ).1 2例5. 把下列关于x 的二次多项式分解因式:(1) 2 2 1x x ;(2)2 4 4 2 x xy y .3练习 (1) 25 6xx (2) 21 x ax a(3) 2 11 18xx (4)24m 12m 9(5)25 7x 6x(6) 2212xxy 6y2q p ( 7) 6 2p q 1123( 8 )35a 2b 6ab2a( 9 )24 2 4 xx2(10) x 42x 2 1 (11) x 2 y 2 a 2 b 2 2ax 2by(12) a 24ab 4b 2 6a 12b 9(13) x 2-2x -1(14) 31a;(15)4 24x 13x 9 ;(16)2 22 2 2b cab ac bc ;(17)2 23x 5xy 2y x 9y 4第二讲 一元二次方程与二次函数的关系1、一元二次方程 (1) 根的判别式2对于一元二次方程 ax +bx +c =0(a ≠0),有:(1) 当Δ>0 时,方程有两个不相等的实数根x 1,2=,2=24 bbac 2a;(2)当 Δ=0 时,方程有两个相等的实数根 x 1=x 2=- b 2a;(3)当 Δ<0 时,方程没有实数根. (2) 根与系数的关系(韦达定理)2如果 ax +bx +c =0(a ≠0)的两根分别是 x 1,x 2,那么 x 1+x 2=b a ,x 1· x 2=c a.这一关系也被称为韦达 定理.2、二次函数2y ax bx c 的性质1. 当 a 0 时,抛物线开口向上,对称轴为xb 2a,顶点坐标为 2b4ac b , 。

初高中数学衔接教材(已整理)

初高中数学衔接教材(已整理)

初高中数学衔接教材编者的话现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.A B C P |x -3|由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧. x <0,或x >4.练 习1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________.2.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a a b b a b+-+=+; (2)立方差公式 2233()()a b a a b b a b-++=-; (3)三数和平方公式 2222()2()a b c a b c a b b c ac ++=+++++; (4)两数和立方公式 33223()33a b a a b a b b+=+++; (5)两数差立方公式 3322()33a b a a b a b b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习1.填空:(1)221111()9423a b b a -=+( );(2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如等等. 一般地,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2.二次根式a ==,0,,0.a a a a ≥⎧⎨-<⎩例1 将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <..例2 (3.解:(3)=393-=1)6=12..例3 试比较下列各组数的大小:(1 (2解: (1)∵1===,110,又>∴(2)∵===又 4>22,∴6+4>6+22例4 化简:20042005⋅.解:20042005⋅=20042004⋅⋅=2004⎡⎤+⋅⋅-⎣⎦=20041⋅-例 5 化简:(1; (21)x <<.例 6 已知x y ==22353x xy y -+的值 .初中升高中数学教材变化分析练 习 1.填空:(1=__ ___;(2)3)5x -则x 的取值范围是_ _ ___;(3)=__ ___;(4)若x ==______ __.2=成立的条件是 ( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质: A A M B B M ⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩ 解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+.例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.提示:在2c 2-5ac +2a 2=0两边同除以a 2,得练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题:若223x y x y -=+,则xy= ( )初中升高中数学教材变化分析(A )1 (B )54 (C )45 (D )653.正数,x y 满足222x y xy -=,求x yx y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ;(3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2=________;(22=,则a 的取值范围是________;(3=________.B 组1.填空:(1)12a =,13b =,则2223352a aba ab b-=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y ++=+__ __;2.已知:11,23x y ==的值.(2)计算 ( )(A (B (C ) (D )2.解方程22112()3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯. 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12;(3)22()x a b xy aby -++; (4)1xy x y -+-.初中升高中数学教材变化分析解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

初高中数学衔接教材(已整理)

初高中数学衔接教材(已整理)

目录第一章数与式1.1 数与式的运算1.1.1 绝对值1.1.2 乘法公式1.1.3 二次根式1.1.4 分式1.2 分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1 根的判别式2.1.2 根与系数的关系2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质2.2.2 二次函数的三种表达方式2.2.3 二次函数的应用2.3 方程与不等式2.3.1 二元二次方程组的解法第三章相似形、三角形、圆3.1 相似形3.1.1 平行线分线段成比例定理3.1.2 相似三角形形的性质与判定3.2 三角形3.2.1 三角形的五心3.2.2 解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3 圆3.3.1 直线与圆、圆与圆的位置关系:圆幂定理3.3.2 点的轨迹3.3.3 四点共圆的性质与判定3.3.4 直线和圆的方程〔选学〕1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①假设1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②假设12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③假设3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4.由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点 A B C P |x -1| |x -3|图1.1-1练 习 1.填空:〔1〕假设5=x ,那么x =_________;假设4-=x ,那么x =_________.〔2〕如果5=+b a ,且1-=a ,那么b =________;假设21=-c ,那么c =________. 2.选择题:以下表达正确的选项是 〔 〕〔A 〕假设a b =,那么a b = 〔B 〕假设a b >,那么a b > 〔C 〕假设a b <,那么a b < 〔D 〕假设a b =,那么a b =± 3.化简:|x -5|-|2x -13|〔x >5〕.1.1.2. 乘法公式 我们在初中已经学习过了以下一些乘法公式: 〔1〕平方差公式 22()()a b a b a b +-=-; 〔2〕完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到以下一些乘法公式:〔1〕立方和公式 2233()()a b a ab b a b +-+=+; 〔2〕立方差公式 2233()()a b a ab b a b -++=-;〔3〕三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; 〔4〕两数和立方公式 33223()33a b a a b ab b +=+++; 〔5〕两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++ =61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +- =61x -.例2 4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=. 练 习 1.填空:〔1〕221111()9423a b b a -=+〔 〕;〔2〕(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ). 2.选择题:〔 〕〔A 〕2m 〔B 〕214m 〔C 〕213m 〔D 〕2116m 〔2〕不管a ,b 为何实数,22248a b a b +--+的值 〔 〕〔A 〕总是正数 〔B 〕总是负数〔C 〕可以是零 〔D 〕可以是正数也可以是负数1.1.3.二次根式0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b 等是无理式,而21x ++,22x y ++ 1.分母〔子〕有理化把分母〔子〕中的根号化去,叫做分母〔子〕有理化.为了进行分母〔子〕有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式与,等等. 一般地,,,b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化那么是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的根底上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩例1 将以下式子化为最简二次根式:〔1 〔20)a ≥; 〔30)x <.解: 〔1=〔20)a ==≥;〔3220)x x x ==-<.例2 (3.=393-=1)6=12.解法二:(3-=====例3 试比拟以下各组数的大小:〔1 〔2.解: 〔11===,1===,>.〔2〕∵=== 又 4>22,∴6+4>6+22,<例4 化简:20042005+⋅.解:20042005⋅-=20042004⋅⋅=2004⎡⎤+⋅-⋅-⎣⎦=20041⋅例 5 化简:〔1; 〔21)x <<.解:〔1〕原式===2=-2=-.〔2〕原式1x x=-, ∵01x <<,∴11x x >>,所以,原式=1x x-.例 6 x y ==22353x xy y -+的值 .1xy==,∴22223533()1131011289x xyy x y xy-+=+-=⨯-=.练习1.填空:〔1=__ ___;〔2(x=-x的取值范围是_ ____;〔3〕=__ ___;〔4〕假设2x=+=________.2.选择题:等式=成立的条件是〔〕〔A〕2x≠〔B〕0x>〔C〕2x>〔D〕02x<<3.假设ba=,求a b+的值.4.比拟大小:2-4〔填“>〞,或“<〞〕.1.1.4.分式1.分式的意义形如AB的式子,假设B中含有字母,且0B≠,那么称AB为分式.当M≠0时,分式AB具有以下性质:A A MB B M⨯=⨯;A A MB B M÷=÷.上述性质被称为分式的根本性质.2.繁分式像abc d+,2m n pmn p+++这样,分子或分母中又含有分式的分式叫做繁分式.例1假设54x A B+=+,求常数,A B的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x xx x x x x x x ++++++===++++, ∴5,24,A B A +=⎧⎨=⎩解得 2,3A B ==.例2 〔1〕试证:111(1)1n n n n =-++〔其中n 是正整数〕; 〔2〕计算:1111223910+++⨯⨯⨯; 〔3〕证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+. 〔1〕证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++〔其中n 是正整数〕成立. 〔2〕解:由〔1〕可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=- =910. 〔3〕证明:∵1112334(1)n n +++⨯⨯+=111111()()()23341n n -+-++-+=1121n -+, 又n ≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12 . 例3 设c e a=,且e >1,2c 2-5ac +2a 2=0,求e 的值. 解:在2c 2-5ac +2a 2=0两边同除以a 2,得2e 2-5e +2=0, ∴(2e -1)(e -2)=0,∴e =12 <1,舍去;或e =2. ∴e =2. 练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+); 2.选择题: 假设223x y x y -=+,那么x y=〔 〕〔A 〕1 〔B 〕54 〔C 〕45〔D 〕653.正数,x y 满足222x y xy -=,求x yx y-+的值.1111习题1.1 A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.1x y +=,求333x y xy ++的值. 3.填空:〔1〕1819(2(2+=________;〔22=,那么a 的取值范围是________; 〔3=________.B 组1.填空:〔1〕12a =,13b =,那么2223352a ab a ab b -=+-____ ____; 〔2〕假设2220x xy y +-=,那么22223x xy y x y++=+__ __;2.:11,23x y ==的值. C 组1.选择题:〔1〕假设=,那么 〔 〕〔A 〕a b < 〔B 〕a b > 〔C 〕0a b << 〔D 〕0b a <<〔2〕计算等于〔 〕〔A〔B 〔C 〕 〔D 〕2.解方程22112()3()10x x x x +-+-=. 3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14. 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法〔3〕22()x a b xy aby -++; 〔4〕1xy x y -+-. 解:〔1〕如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示〔如图1.1-2所示〕.〔2〕由图1.1-3,得x 2+4x -12=(x -2)(x +6). 〔3〕由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- 〔4〕1xy x y -+-=xy +(x -y )-1 =(x -1) (y+1) 〔如图1.1-5所示〕. 课堂练习 一、填空题:1、把以下各式分解因式:〔1〕=-+652x x __________________________________________________。

2020年新教材新高一衔接班数学教案(教师版)

2020年新教材新高一衔接班数学教案(教师版)

12020年新教材新高一衔接班数学教案(教师版)第一章——前言首先,恭喜同学们进入高中数学殿堂的学习,同时也祝贺大家在数学的学习上进入一个更高的层次。

当然,随之而来的是学习内容的增多,学习方法的巨变,学习技巧的提高,高中数学对同学们的学习提出了更高的要求,主要体现在高中数学学习时“知识体系更严谨”、“考查方式更灵活”、“数学思想更重要”。

高中数学的知识会让同学们觉得更复杂、关联性更强,这就要求我们需要有“举一反三”、“化繁为简”、“知识迁移”的学习技巧。

在后续的衔接课程中,我们将通过具体的例子去体会上述所讲的各类名词的具体含义。

下面简要列出高中阶段最重要的几类数学思想,请同学们在学习时,多加思考,每次学习时、每次做题时,都使用到了什么数学思想。

“数形结合思想”、“分类与整合思想”、“特殊与一般思想”、“函数与方程思想”接下来,我们通过几类可以利用初中知识解决的题目来具体体会一下高中数学学习的魅力。

引例1:b kx y +=是什么?xk y =是什么?c bx ax y ++=2又是什么? 答案:对于b kx y +=⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒+=⇒≠⇒=⇒=⇒⎩⎨⎧⇒+=⇒≠⇒=⇒=⇒可能是一条直线,但有多种轴的直线是一条平行于从几何的角度看是一次函数的解析式是常数函数的解析式从代数的角度看b kx y k x b y k b kx y k b y k 0000 对于xk y =2⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⇒=⇒≠⇒=⇒=⇒⎪⎪⎩⎪⎪⎨⎧⇒=⇒=⇒≠⇒=⇒=⇒能是双曲线,但有两种可轴的直线是一条重合于从几何的角度看此分式无意义是反比例函数的解析式是常数函数的解析式从代数的角度看x k y k x y k x x k y k y k 0000000 c bx ax y ++=2同理,限于篇幅不在此继续分析。

引例1体现了数形结合、分类与整合、特殊与一般的数学思想,体现了举一反三的学习技巧。

引例2:设c b a ,,为均为正数,且b c ≥,证明:b c b a c a −≤+−+2222答案:①特殊情况:观察易得当c b =时,不等式取等②一般情况:可用代数和几何意义解决,我们着重讲解几何意义 易得⎪⎩⎪⎨⎧+=+=⇒===2222,,c a AD b a BD c AC b BC a CD AB BD AD <−b c b a c a −<+−+∴2222 综上两种情况,可得b c b a c a −≤+−+2222引例2体现了特殊与一般、数形结合的数学思想,体现了化繁为简的学习技巧。

初升高数学衔接课程

初升高数学衔接课程

初升高中衔接教程数学第1讲数与式1910+⨯的正整数n ,有1(1)n n ++第2讲一元二次函数与二次不等式第3讲一元二次方程与韦达定理第4讲绝对值不等式与无理式不等式第5讲集合的基本概念}6x<.【内容概述】用平面上封闭曲线的内部代表集合,这种图叫做韦恩图。

例6. 求下列集合之间的关系,并用Venn 图表示.A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是矩形},D ={x |x 是正方形}.【典型例题—3】集合相等:设集合A={x|x 2-1=0},B ={-1,1},那么这两个集合会有什么关系呢?【概括】集合A 与集合B 中的元素完全相同,只是表示方法不同,我们就说集合A 与集合B 相等, 即:A=B例7.判断集合{}2A x x ==与集合{}240B x x =-=的关系.例8.判断集合A 与B 是否相等?(1) A={0},B= ∅;(2) A={…,-5,-3,-1,1,3,5,…},B={x| x=2m+1 ,m ∈Z } ;(3) A={x| x=2m-1 ,m ∈Z },B={x| x=2m+1 ,m ∈Z }.变式:已知三元集合A={y x xy x -,,},B={y x |,|,0 },且A=B,求y x 与的值.【典型例题—4】真子集:【内容概述】如果集合B 是集合A 的子集,并且集合A 中至少有一个元素不属于集合B ,那么把集合B 叫做集合A 的真子集.记作B A (或A B), 读作“A 真包含B ”(或“B 真包含于A ”).[不包含本身的子集叫做真子集] 对于集合A 、B 、C ,如果AB ,BC ,则A C . 例9.选用适当的符号“⊂≠”或“”填空:(1){1,3,5}_ _{1,2,3,4,5}; (2){2}_ _ {x| |x|=2}; (3){1} _∅. 例10.设集合{}0,1,2M =,试写出M 的所有子集,和真子集第6讲集合的基本运算变式1:图中阴影部分用集合表示为_______________.变式2:已知集合}3|{},42|{a x a x B x x A <<=<<=.(1)若∅=B A ,求a 的取值范围;(2)若}4|{<<=x a x B A ,求a 的取值范围.知识点三、补集【内容概述】1.全集:在研究集合与集合之间的关系时,有时这些集合都是某一个给定集合的子集,这个给定集合可以看成一个全集,用符号“U ”表示,也就是说,全集含有我们所要研究的各个集合的全部元素.2.补集:如果集合A 是全集U 的一个子集,由全集U 中不属于集合A 的所有元素组成的集合,叫做集合A 相对于全集U 的补集,简称为集合A 的补集.3.对补集定义的理解要注意以下几点:(1)补集是相对于全集而存在的,研究一个集合的补集之前一定要明确其所对应的全集.比如当研究数的运算性质时,我们常常将实数集R 当做全集.(2)补集既是集合之间的一种关系,同时也是集合之间的一种运算,当然也是一种数学思想.(3)从符号角度来看,若U x ∈,U A ⊂,则A x ∈和A C x U ∈二者必居其一.4.集合图形,理解补集的如下性质:(1)∅====∅∅=)(,)(,)(,,A C A U A C A A A C C U C U C U U U U U U(2)若B A ⊆,则)()(B C A C U U ⊇;反之,若)()(B C A C U U ⊇,则B A ⊆(3)若A=B ,则B C A C U U =;反之,若B C A C U U =,则A=B【典型例题】例5.设全集U 是实数集R ,}4|{2>=x x A ,}13|{<≥=x x x B 或都是U 的子集,则图中阴影部分所表示的集合是__________________.变式1:已知集合}012|{2=++=b ax x x A 和}0|{2=+-=b ax x x B满足R U B C A B A C U U ===},4{)(},2{)( ,求实数a 、b 的值.变式2:设集合}123|),{(},,|),{(=--=∈=x y y x M R y x y x U ,}1|),{(+≠=x y y x N , 则)()(N C M C U U =__________________.例6.已知全集R U =,}12|{},523|{≤≤-=+<<=x x P a x a x M ,若P C M U ⊂,求实数a 的取值范围.变式1:已知集合},0624|{2R x m mx x x A ∈=++-=,},0|{R x x x B ∈<=,若∅≠B A ,求实数m 的取值范围.变式2:已知集合}50|{≤-<=a x x A ,}62|{≤<-=x a x B . (1)若A B A = ,求a 的取值范围;(2)若A B A = ,求a 的取值范围.例7.学校50名学生调查对A 、B 两个事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成;赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A ,B 都不赞成的学生数比对第7讲集合的综合复习第8讲函数的概念与定义域。

初高中数学衔接教程(全套)

初高中数学衔接教程(全套)

初高中数学衔接教程(全套)简介本教程旨在帮助初中毕业生顺利过渡到高中数学研究,并建立起坚实的数学基础。

通过本教程,学生将能够更好地理解和应用数学知识,为高中数学研究打下良好的基础。

内容概述本教程包括以下几个主要内容:1. 数的性质与运算- 自然数、整数、有理数、实数的概念与性质- 四则运算及其性质- 开方与指数运算- 计算器的使用技巧2. 代数与方程- 代数式的表示与运算- 一元一次方程与二元一次方程- 一次不等式与二次不等式- 方程与不等式的解法与应用3. 几何与图形- 基本图形的性质(三角形、四边形、圆等)- 几何证明与作图- 平面与空间几何关系- 三视图与投影图4. 函数与图像- 函数及其性质- 一次函数、二次函数与指数函数- 图像的绘制与分析- 函数应用的问题解决5. 统计与概率- 数据的收集与整理- 统计指标的计算与分析- 概率的基本概念与计算- 统计与概率在现实问题中的应用使用方法本教程提供全面而简洁的教学材料,学生可以按照教程的顺序逐章研究,确保掌握每个章节的内容。

每个章节还包括了练题和答案,以便学生巩固所学知识并进行自我评估。

结语通过本教程的研究,初中毕业生将能够充分准备好高中数学研究的挑战。

这将为他们未来的学业和职业发展打下坚实的基础。

同时,本教程也欢迎教师和家长的参与,以促进学生的研究效果和兴趣培养。

*注意:本教程的内容旨在提供数学学习的指导,因此不涉及复杂的法律问题和不可确认的引用内容。

请学生、教师和家长在使用本教程时,务必遵守当地教育政策和规定。

*。

数学新课标初高中衔接教材(教师版)

数学新课标初高中衔接教材(教师版)

第一讲 数与式1.1 数与式的运算1.1.1. 乘法公式我们在初中已经学习过了下列一些乘法公式: 〔1〕平方差公式 22()()a b a b a b +-=-; 〔2〕完全平方公式222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式: 〔1〕立方和公式2233()()a b a ab b a b +-+=+; 〔2〕立方差公式2233()()a b a ab b a b -++=-;〔3〕三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; 〔4〕两数和立方公式 33223()33a b a a b ab b +=+++; 〔5〕两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明.[例1] 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++ =33(1)(1)x x +-=61x -.[例2]已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值.解:2222()2()8a b c a b c ab bc ac ++=++-++=. 练习:1、已知2310x x -+=,求331x x +的值. 解:2310x x -+=0≠∴x 31=+∴xx原式=18)33(3]3)1)[(1()11)(1(2222=-=-++=+-+x x x x x x x x2、已知0=++c b a ,求111111()()()a b c b c c a a b+++++的值. 解:b a c a c b c b a c b a -=+-=+-=+∴=++,,,0∴原式=abba c ac c ab bc c b a +⋅++⋅++⋅333()()()a a b b c c a b c bc ac ab abc---++=++=-①abc c b a 3333=++∴②,把②代入①得原式=33-=-abcabc说明:注意字母的整体代换技巧的应用.1.1.2. 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.一、公式法[例1]用立方和或立方差公式分解下列各多项式:<1> 38x +<2> 30.12527b -分析: <1>中,382=,<2>中3330.1250.5,27(3)b b ==.解:<1> 333282(2)(42)x x x x x +=+=+-+<2> 333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+说明:<1> 在运用立方和<差>公式分解因式时,经常要逆用幂的运算法那么,如3338(2)a b ab =,这里逆用了法那么()nnnab a b =;<2> 在运用立方和<差>公式分解因式时,一定要看准因式中各项的符号.二、分组分解法从前面可以看出,能够直接运用公式法分解的多项式,主要是二项式和三项式.而对于四项以上的多项式,如ma mb na nb +++既没有公式可用,也没有公因式可以提取.因此,可以先将多项式分组处理.这种利用分组来因式分解的方法叫做分组分解法.分组分解法的关键在于如何分组. [例2]把2222()()ab c d a b cd ---分解因式.分析:按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.解:22222222()()ab c d a b cd abc abd a cd b cd ---=--+说明:由例3、例4可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用. [例3]把2222428x xy y z ++-分解因式.分析:先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.解:22222224282(24)x xy y z x xy y z ++-=++-说明:从例5、例6可以看出:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.三、十字相乘法 1.2()xp q x pq +++型的因式分解这类式子在许多问题中经常出现,其特点是:<1> 二次项系数是1;<2> 常数项是两个数之积;<3> 一次项系数是常数项的两个因数之和. 因此,2()()()x p q x pq x p x q +++=++运用这个公式,可以把某些二次项系数为1的二次三项式分解因式. [例4]分解因式:〔1〕x 2-3x +2; 〔2〕x 2+4x -12; 〔3〕22()x a b xy aby -++; 〔4〕1xy x y -+-.解:〔1〕如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=<x -1><x -2>.说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示〔如图1.2-2所示〕. 〔2〕由图1.2-3,得 x 2+4x -12=<x -2><x +6>. 〔3〕由图1.2-4,得22()x a b xy aby -++=()()x ay x by --〔4〕1xy x y -+-=xy +<x -y >-1=<x -1> <y+1> 〔如图1.2-5所示〕.2.关于x 的二次三项式ax 2+bx +c <a ≠0>的因式分解.若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,那么二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.[例5] 把下列关于x 的二次多项式分解因式:〔1〕221x x +-; 〔2〕2244x xy y +-. 解: 〔1〕令221x x +-=0,那么解得11x =-21x =-,∴221x x +-=(1(1x x ⎡⎤⎡⎤----⎣⎦⎣⎦-1 -2 x x 图1.2-1 -1 -21 1 图1.2-2 -2 6 1 1 图1.2-3 -ay -by x x 图1.2-4 -1 1x y图1.2-5=(11x x +-++.〔2〕令2244x xy y +-=0,那么解得1(2x y =-+,1(2x y =--,∴2244x xy y +-=[2(1][2(1]x y x y ++.四、其它因式分解的方法1.配方法[例6]分解因式2616x x +-解:222222616233316(3)5x x x x x +-=+⨯⨯+--=+-说明:这种设法配成有完全平方式的方法叫做配方法,配方后将二次三项式化为两个平方式,然后用平方差公式分解.当然,本题还有其它方法,请大家试验.2.拆、添项法 [例7]分解因式3234x x -+分析:此多项式显然不能直接提取公因式或运用公式,分组也不易进行.细查式中无一次项,如果它能分解成几个因式的积,那么进行乘法运算时,必是把一次项系数合并为0了,可考虑通过添项或拆项解决.解:323234(1)(33)x x x x -+=+--说明:本解法把原常数4拆成1与3的和,将多项式分成两组,满足系数对应成比例,造成可以用公式法及提取公因式的条件.本题还可以将23x -拆成224x y -,将多项式分成两组32()x x +和244x -+.一般地,把一个多项式因式分解,可以按照下列步骤进行: <1> 如果多项式各项有公因式,那么先提取公因式;<2> 如果各项没有公因式,那么可以尝试运用公式来分解;<3> 如果用上述方法不能分解,那么可以尝试用分组或其它方法<如十字相乘法>来分解; <4> 分解因式,必须进行到每一个多项式因式都不能再分解为止. 练习:1.把下列各式分解因式:<1> 327a +<2> 38m -<3> 3278x -+2.把下列各式分解因式:<1> 34xy x +<2> 33n n xx y +-<3> 2232(2)y x x y -+3.把下列各式分解因式:<1> 232x x -+ <2> 2627x x --<3> 2245m mn n --4.把下列各式分解因式:<1> 5431016ax ax ax -+ <2> 2126n n n aa b a b +++- <3> 22(2)9x x --<4> 2282615x xy y +- <5> 27()5()2a b a b +-+-5.把下列各式分解因式:<1> 233ax ay xy y -+- <2> 328421x x x +--<3> 251526x x xy y -+-<4> 22414xy x y +-- <5> 432224a b a b a b ab +-- <6> 66321x y x --+<7> 2(1)()x x y xy x +-+ 6.已知2,23a b ab +==,求代数式22222a b a b ab ++的值. 7.证明:当n 为大于2的整数时,5354n n n -+能被120整除. 8.已知0a b c ++=,求证:32230a a c b c abc b ++-+=. 答案:1.222(3)(39),(2)(42),(23)(469),a a a m m m x x x +-+-++-++2.2222()(),()(),nx x y y xy x x x y x xy y +-+-++22432(1)(4321)y x x x x x --+++ 3.(2)(1)x x --,(9)(3)x x -+,(5)()m n m n -+4.3(2)(8)ax x x -- ;(3)(2)na ab a b +- ;2(3)(1)(23)x x x x -+-+;(2)(415),x y x y -+ 5.2()(3),(21)(21),(3)(52)x y a y x x x x y -++--+;(12)(12),x y x y -++-23333()(),(1)(1),()(1)ab a b a b x y x y x x y x y +----+-++.6.2837.5354(2)(1)(1)(2)n n n n n n n n -+=--++ 8.322322()()a a c b c abc b a ab b a b c ++-+=-+++1.1.3.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离.绝对值的性质: 〔1〕0||2≥=a a 〔2〕222||)(a a a ==-〔3〕2222||||;||||b a b a b a b a >⇔>=⇔=〔4〕)0(||);0(||>-<>⇔>><<-⇔<a a x a x a x a a x a a x 或[例1]解不等式:3|2|≤+x 书P14[例2]解方程:|12||2|-=+x x 书P14[例3]解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4.解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|.所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4. 由|AB |=2,可知点P 在点C <坐标为0>的左侧、或点P 在点D <坐标为4>的右侧.x <0,或x >4. 练习:1、解下列不等式〔组〕:〔1〕1||>x 〔2〕2|1|≤+x 〔3〕2|12|1≤-≤x 2、解下列方程:1A 0 C x|x -1||x -3|图1.1-1〔1〕01|1|2=---x x 〔2〕1|1||1|=+--x x 3、化简:)5(|132||5|≤---x x x 4、若31<<x ,求|3||1|-+-x x 的值 5、解不等式:〔1〕3|2||12|≤-+-x x 〔2〕1|2||13|≥+--x x1.1.4.二次根式一般地,0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b ,等是无理式,而212x ++,22x y +其性质如下:<1> 2(0)a a =≥<2>||a =<3>0,0)a b =≥≥ <4>0,0)a b=>≥ 1.分母〔子〕有理化把分母〔子〕中的根号化去,叫做分母〔子〕有理化.为了进行分母〔子〕有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,,与与,与,等等. 一般地,与,与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化那么是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式; ②被开方数不含能开得尽方的因数或因式. 二次根式的化简常见类型有下列两种: ①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;②分母中有根式<>或被开方数有分母<.形式<>,转化为 "分母中有根式"的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.<化为,其中2+2>.2.二次根式[例1]将下列式子化为最简二次根式:〔1 〔20)a ≥; 〔30)x <.解: 〔1=〔20)a ==≥;〔3220)x x x ==-<.[例2](3.(3-解法二: (3=12+. [例3]试比较下列各组数的大小:〔1 〔2.解:〔1〕∵1===,1===,>∴.〔2〕∵1=== 又 4>2错误!,∴错误!+4>错误!+2错误!,∴[例4]化简:20042005⋅-.解:20042005⋅-=20042004⋅⋅=2004⎡⎤+⋅⋅⎣⎦=20041⋅[例5]化简:〔1; 〔21)x <<.解:〔1〕原式=2=.〔2〕原式1x x =-,∵01x <<, ∴11x x>>, 所以,原式=1x x -.[例6] 已知x y ==求22353x xy y -+的值 .解:∵2210x y +==+=,1xy ==,∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.说明:有关代数式的求值问题:<1>先化简后求值;<2>当直接代入运算较复杂时,可根据结论的结构特点,倒推几步,再代入条件,有时整体代入可简化计算量.练习:1a =-成立的条件是< > A .0a > B .0a <C .0a ≤D .a 是任意实数2.若3x <,|6|x -的值是< > A .-3B .3C .-9D .93.计算: <1> 2(34)x y z --<2> 2(21)()(2)a b a b a b +---+<3> 222()()()a b a ab b a b +-+-+<4> 221(4)(4)4a b a b ab -++4.化简<下列a 的取值X 围均使根式有意义>:<1> <2> a<3><4>+-5.化简:<1>2102m +- <2>0)x y >> 6.若112x y -=,那么33x xy yx xy y+---的值为< >: A .35B .35-C .53-D .537.设x y ==求代数式22x xy y x y +++的值.8.已知11120,19,21202020a x b x c x =+=+=+,求代数式222a b c ab bc ac ++---的值.9.设12x -=,求4221x x x ++-的值. 10.化简或计算:<1>+<2><3>答案:1. C 2. A3. <1> 2229166824x y z xy xz yz ++--+<2> 22353421a ab b a b -++-+ <3> 2233a b ab -- <4> 331164a b - 4.2 12a b +----- 5. 6. D 7.8. 3 9.3- 10.3,3-1.1.5.分式1.分式的意义 形如A B 的式子,若B 中含有字母,且0B ≠,那么称A B 为分式.当M ≠0时,分式A B具有下列性质: A A M B B M⨯=⨯; A A M B B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式 像ab c d+,2m n p m n p+++这样,分子或分母中又含有分式的分式叫做繁分式. [例1]若54(2)2x A B x x x x +=+++,求常数,A B 的值. 解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++, ∴5,24,A B A +=⎧⎨=⎩ 解得 2,3A B ==.[例2]〔1〕试证:111(1)1n n n n =-++〔其中n 是正整数〕;〔2〕计算:1111223910+++⨯⨯⨯; 〔3〕证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+. 〔1〕证明:∵11(1)11(1)(1)n n n n n n n n +--==+++, ∴111(1)1n n n n =-++〔其中n 是正整数〕成立. 〔2〕解:由〔1〕可知 =910. 〔3〕证明:∵1112334(1)n n +++⨯⨯+ =111111()()()23341n n -+-++-+ =1121n -+, 又n ≥2,且n 是正整数,∴错误!一定为正数,∴1112334(1)n n +++⨯⨯+<错误!. [例3]设c e a=,且e >1,2c 2-5ac +2a 2=0,求e 的值. 解:在2c 2-5ac +2a 2=0两边同除以a 2,得2e 2-5e +2=0,∴<2e -1><e -2>=0,∴e =错误!<1,舍去;或e =2.∴e =2.3、多项式除以多项式 做竖式除法时,被除式、除式都要按同一字母的降幂排列,缺项补零〔除式的缺项也可以不补零,但做其中的减法时,要同类项对齐〕,要特别注意,得到每个余式的运算都是减法.结果表示为:被除式=除式⨯商式+余式 [例4]计算)3()3(24x x x -÷- 解:3939333300300342222442--+----++-+++-x x x xx x x x x x练习:1、 若322=+-y x y x ,那么=yx 2、正数y x ,满足xy y x 222=-,那么=+-y x y x 3、100991431321211⨯++⨯+⨯+⨯ = 4、=++++++-443224211b a a b a a b a b a 5、已知3,2,1=+=+=+xz zx z y yz y x xy ,那么=x 6、计算:〔1〕)32()2713103(223-+÷-++x x x x x〔2〕)1()22(232-÷-+x x x〔3〕已知1453,211221923234+--=-+--=x x x B x x x x A 求:22B A ÷答案:6〔1〕32151443)32()2713103(2223-+-++=-+÷-++x x x x x x x x x 〔2〕12)1()22(2232-++=-÷-+x x x x x x 〔3〕222)23(-=÷x B A 第二讲 函数与方程 2.1 二次函数2.1.1 二次函数y =ax 2+bx +c 的图像和性质问题1 函数y =ax 2与y =x 2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系.先画出函数y =x 2,y =2x 2的图象.值扩大两倍就可以了. 再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象〔如图2-1所示〕,从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系. 通过上面的研究,我们可以得到以下结论: 二次函数y =ax 2<a ≠0>的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y=ax 2<a ≠0>中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小. 问题2 函数y =a <x +h >2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2<x +1>2+1与y =2x 2的图象〔如图2-2所示〕,从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2<x +1>2+1的图象.这两个函数图象之间具有"形状相同,位置不同"的特点.类似地,还可以通过画函数y =-3x 2,y =-3<x -1>2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a <x +h >2+k <a ≠0>中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且"h 正左移,h 负右移";k 决定了二次函数图象的上下平移,而且"k 正上移,k 负下移".由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c <a ≠0>的图象的方法:由于y =ax 2+bx +c =a <x 2+b x a >+c =a <x 2+b x a +224b a >+c -24b a 224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c <a ≠0>的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c <a ≠0>具有下列性质:〔1〕当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而减小;当x >2b a-时,y 随着x 的增大而增大;当x =2b a-时,函数取最小值y =244ac b a -. 〔2〕当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2b a ;当x <2b a -时,y 随着x 的增大而增大;当x >2b a-时,y 随着x 的增大而减小;当x =2b a-时,函数取最大值y =244ac b a -. 图2.2-2上述二次函数的性质可以分别通过图2.2-3和图2.2-4直观地表示出来.因此,在今后解决二次函数问题时,可以借助于函数图像、利用数形结合的思想方法来解决6x +1,y 随3<x +y =当x <-1时,y 随着x 时,y 随着x 的增大而减小;采用描点法画图,选顶点A <-B 3(,0)3和C 3(,0)3-,与y 过这五点画出图象〔如图2-5所示〕.说明:从这个例题可以看出,画函数的图象,可以直接选出关键点,减少了选点的盲目性,使画图更简便、图象更精确.[例2] 某种产品的成本是120元/件,试销阶段每件产品的售价x 〔元〕与产品的日销售价应定为多少元?此时每天的销售利润是多少?分析:由于每天的利润=日销售量y ×<销售价x -120>,日销售量y 又是销售价x 的一次函数,所以,欲求每天所获得的利润最大值,首先需要求出每天的利润与销售价x 之间的函数关系,然后,再由它们之间的函数关系求出每天利润的最大值.解:由于y 是x 的一次函数,于是,设y =kx +〔B 〕将x =130,y =70;x =150,y =50代入方程,有解得 k =-1,b =200.∴y =-x +200.设每天的利润为z 〔元〕,那么z =<-x +200><x -120>=-x 2+320x -24000=-<x -160>2+1600,∴当x =160时,z 取最大值1600.答:当售价为160元/件时,每天的利润最大,为1600元.[例3]把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,求b ,c 的值.解法一:y =x 2+bx +c =<x +2b >224bc +-,把它的图像向上平移2个单位,再向左平移 图2.2-3 图2.2-54个单位,得到22(4)224b b y xc =+++-+的图像,也就是函数y =x 2的图像,所以, 240,220,4b b c ⎧--=⎪⎪⎨⎪-+=⎪⎩解得b =-8,c =14. 解法二:把二次函数y =x 2+bx +c 的图像向上平移2个单位,再向左平移4个单位,得到函数y =x 2的图像,等价于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =x 2+bx +c 的图像.由于把二次函数y =x 2的图像向下平移2个单位,再向右平移4个单位,得到函数y =<x -4>2+2的图像,即为y =x 2-8x +14的图像,∴函数y =x 2-8x +14与函数y =x 2+bx +c 表示同一个函数,∴b =-8,c =14.说明:本例的两种解法都是利用二次函数图像的平移规律来解决问题,所以,同学们要牢固掌握二次函数图像的变换规律.这两种解法反映了两种不同的思维方法:解法一,是直接利用条件进行正向的思维来解决的,其运算量相对较大;而解法二,那么是利用逆向思维,将原来的问题等价转化成与之等价的问题来解,具有计算量小的优点.今后,我们在解题时,可以根据题目的具体情况,选择恰当的方法来解决问题.[例4]已知函数y =x 2,-2≤x ≤a ,其中a ≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x 的值.分析:本例中函数自变量的X 围是一个变化的X 围,需要对a 的取值进行讨论. 解:〔1〕当a =-2时,函数y =x 2的图象仅仅对应着一个点<-2,4>,所以,函数的最大值和最小值都是4,此时x =-2;〔2〕当-2<a <0时,由图2.2-6①可知,当x =-2时,函数取最大值y =4;当x =a 时,函数取最小值y =a 2;〔3〕当0≤a <2时,由图2.2-6②可知,当x =-2时,函数取最大值y =4;当x =0时,函数取最小值y =0;〔4〕当a ≥2时,由图2.2-6③可知,当x =a 时,函数取最大值y =a 2;当x =0时,函数取最小值y =0.说明:在本例中,利用了分类讨论的方法,对a 的所有可能情形进行讨论.此外,本例中所研究的二次函数的自变量的取值不是取任意的实数,而是取部分实数来研究,在解决这一类问题时,通常需要借助于函数图象来直观地解决问题.①图2.2-6② ③[例5]当22≤≤-x 时,求函数222+-=ax x y 的最小值.见书P51例2练习:1、求二次函数3422+-=x x y 的图象的开口方向、对称轴、顶点坐标、最大〔小〕值.当x 取2009,2008,2007-时的函数值分别是c b a ,,,试比较c b a ,,的大小.2、当自变量x 在下列X 围内取值时,求函数322--=x x y 的最值.〔1〕02≤≤-x ;〔2〕31≤≤x ;〔3〕21≤≤-x3、当11≤≤-x 时,求函数122++-=ax x y 的最大值.4、已知1+≤≤x x t ,求函数x x y 22-=的最小值.5、求函数25342-+--=x x y 的最大值和最小值.6、求函数x x x x x x y 93)73)(23(222++++++-=的最大值或最小值.7、求142+-=x ax y 在区间]1,0[上的最大值和最小值.答案:1、开口向上,对称轴1=x ,顶点坐标)1,1(,b c a y >==,1min2、〔1〕5,-3;〔2〕0,-4;〔3〕0,-4;3、略;4、略5、634,4min max -==y y ;6、49-=t 时,1689max -=y ,无最小值; 7、〔1〕3,10min max -==<a y y a 时,〔2〕3,10min max -===y y a 时,〔3〕3,120min max -==<<a y y a 时,〔4〕a y y a 41,142min max -==≤≤时, 〔5〕ay a y a 41,34min max -=-=≥时, 2.1.2 二次函数的三种表示方式通过上一小节的学习,我们知道,二次函数可以表示成以下两种形式:1.一般式:y =ax 2+bx +c <a ≠0>;2.顶点式:y =a <x +h >2+k <a ≠0>,其中顶点坐标是<-h ,k >.除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式,我们先来研究二次函数y =ax 2+bx +c <a ≠0>的图象与x 轴交点个数.当抛物线y =ax 2+bx +c <a ≠0>与x 轴相交时,其函数值为零,于是有ax 2+bx +c =0. ①并且方程①的解就是抛物线y =ax 2+bx +c <a ≠0>与x 轴交点的横坐标〔纵坐标为零〕,于是,不难发现,抛物线y =ax 2+bx +c <a ≠0>与x 轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b 2-4ac 有关,由此可知,抛物线y =ax 2+bx +c <a ≠0>与x 轴交点个数与根的判别式Δ=b 2-4ac 存在下列关系:〔1〕当Δ>0时,抛物线y =ax 2+bx +c <a ≠0>与x 轴有两个交点;反过来,若抛物线y=ax2+bx+c<a≠0>与x轴有两个交点,那么Δ>0也成立.〔2〕当Δ=0时,抛物线y=ax2+bx+c<a≠0>与x轴有一个交点〔抛物线的顶点〕;反过来,若抛物线y=ax2+bx+c<a≠0>与x轴有一个交点,那么Δ=0也成立.〔3〕当Δ<0时,抛物线y=ax2+bx+c<a≠0>与x轴没有交点;反过来,若抛物线y =ax2+bx+c<a≠0>与x轴没有交点,那么Δ<0也成立.于是,若抛物线y=ax2+bx+c<a≠0>与x轴有两个交点A<x1,0>,B<x2,0>,那么x1,x2是方程ax2+bx+c=0的两根,所以x1+x2=ba-,x1x2=ca,即ba=-<x1+x2>,ca=x1x2.所以,y=ax2+bx+c=a<2b cx xa a++>= a[x2-<x1+x2>x+x1x2]=a<x-x1> <x-x2>.由上面的推导过程可以得到下面结论:若抛物线y=ax2+bx+c<a≠0>与x轴交于A<x1,0>,B<x2,0>两点,那么其函数关系式可以表示为y=a<x-x1> <x-x2> <a≠0>.这样,也就得到了表示二次函数的第三种方法:3.交点式:y=a<x-x1> <x-x2> <a≠0>,其中x1,x2是二次函数图象与x轴交点的横坐标.今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题.[例1]已知某二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点〔3,-1〕,求二次函数的解析式.分析:在解本例时,要充分利用题目中所给出的条件——最大值、顶点位置,从而可以将二次函数设成顶点式,再由函数图象过定点来求解出系数a.解:∵二次函数的最大值为2,而最大值一定是其顶点的纵坐标,∴顶点的纵坐标为2.又顶点在直线y=x+1上,所以,2=x+1,∴x=1.∴顶点坐标是〔1,2〕.设该二次函数的解析式为2(2)1(0)y a x a=-+<,∵二次函数的图像经过点〔3,-1〕,∴21(32)1a-=-+,解得a=-2.∴二次函数的解析式为22(2)1y x=--+,即y=-2x2+8x-7.说明:在解题时,由最大值确定出顶点的纵坐标,再利用顶点的位置求出顶点坐标,然后设出二次函数的顶点式,最终解决了问题.因此,在解题时,要充分挖掘题目所给的条件,并巧妙地利用条件简捷地解决问题.[例2] 已知二次函数的图象过点<-3,0>,<1,0>,且顶点到x 轴的距离等于2,求此二次函数的表达式.分析一:由于题目所给的条件中,二次函数的图象所过的两点实际上就是二次函数的图象与x 轴的交点坐标,于是可以将函数的表达式设成交点式.解法一:∵二次函数的图象过点<-3,0>,<1,0>,∴可设二次函数为y =a <x +3> <x -1> <a ≠0>,展开,得 y =ax 2+2ax -3a ,顶点的纵坐标为 2212444a a a a--=-, 由于二次函数图象的顶点到x 轴的距离2,∴|-4a |=2,即a =12±. 所以,二次函数的表达式为y =21322x x +-,或y =-21322x x -+. 分析二:由于二次函数的图象过点<-3,0>,<1,0>,所以,对称轴为直线x =-1,又由顶点到x 轴的距离为2,可知顶点的纵坐标为2,或-2,于是,又可以将二次函数的表达式设成顶点式来解,然后再利用图象过点<-3,0>,或<1,0>,就可以求得函数的表达式. 解法二:∵二次函数的图象过点<-3,0>,<1,0>,∴对称轴为直线x =-1.又顶点到x 轴的距离为2,∴顶点的纵坐标为2,或-2.于是可设二次函数为y =a <x +1>2+2,或y =a <x +1>2-2,由于函数图象过点<1,0>,∴0=a <1+1>2+2,或0=a <1+1>2-2.∴a =-12,或a =12. 所以,所求的二次函数为y =-12<x +1>2+2,或y =12<x +1>2-2. 说明:上述两种解法分别从与x 轴的交点坐标及顶点的坐标这两个不同角度,利用交点式和顶点式来解题,在今后的解题过程中,要善于利用条件,选择恰当的方法来解决问题.[例3] 已知二次函数的图象过点<-1,-22>,<0,-8>,<2,8>,求此二次函数的表达式.解:设该二次函数为y =ax 2+bx +c <a ≠0>.由函数图象过点<-1,-22>,<0,-8>,<2,8>,可得解得 a =-2,b =12,c =-8.所以,所求的二次函数为y =-2x 2+12x -8.通过上面的几道例题,同学们能否归纳出:在什么情况下,分别利用函数的一般式、顶点式、交点式来求二次函数的表达式?练习:1、已知二次函数的图象经过点)0,21()2,0(),1,0(和--,求这个二次函数的解析式.2、已知抛物线c bx ax y ++=2的顶点坐标为)2,3(-,且抛物线与x 轴两交点间的距离为4, 求其解析式.3、已知二次函数c bx x y ++=2的图象经过点)3,2(),12,1(--B A ,〔1〕求该二次函数的解析式;〔2〕用配方法把由〔1〕所得的解析式化为k h x y +-=2)(的形式,并求出该抛物线的 顶点坐标和对称轴;〔3〕求抛物线与x 轴的两个交点D C ,的坐标及ACD ∆的面积.4、抛物线n mx x y ++=22过点)4,2(且其顶点在直线12+=x y 上,〔1〕求该抛物线的解析式;〔2〕求直线12+=x y 与抛物线的对称轴和x 轴所围成的三角形的面积.5、已知二次函数c bx x y ++=2的图象与x 轴的两个交点的横坐标为21,x x ,方程02022=++x b x 的两个实根为43,x x ,且34132=-=-x x x x ,求c b ,的值.答案:1、1232-+=x x y ;2、253212+-=x x y ; 3、〔1〕562+-=x x y ;〔2〕顶点)4,3(-,对称轴3=x ,〔3〕24),0,5(),0,1(=∆S D C4、〔1〕422+-=x x y ;〔2〕49=∆S 5、2,3==c b 2.1.3 二次函数的简单应用一、函数图象的平移变换与对称变换1.平移变换问题 1 在把二次函数的图象进行平移时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在对二次函数的图象进行平移时,具有这样的特点——只改变函数图象的位置、不改变其形状,因此,在研究二次函数的图象平移问题时,只需利用二次函数图象的顶点式研究其顶点的位置即可.[例1]求把二次函数y =x 2-4x +3的图象经过下列平移变换后得到的图象所对应的函数解析式:〔1〕向右平移2个单位,向下平移1个单位;〔2〕向上平移3个单位,向左平移2个单位.分析:由于平移变换只改变函数图象的位置而不改变其形状〔即不改变二次项系数〕,所以只改变二次函数图象的顶点位置〔即只改变一次项和常数项〕,所以,首先将二次函数的解析式变形为顶点式,然后,再依据平移变换后的二次函数图象的顶点位置求出平移后函数图像所对应的解析式.解:二次函数y =2x 2-4x -3的解析式可变为y =2<x -1>2-1,其顶点坐标为<1,-1>.〔1〕把函数y =2<x -1>2-1的图象向右平移2个单位,向下平移1个单位后,其函数图象的顶点坐标是<3,-2>,所以,平移后所得到的函数图象对应的函数表达式就为 y =2<x -3>2-2. 〔2〕把函数y =2<x -1>2-1的图象向上平移3个单位,向左平移2个单位后,其函数图象的顶点坐标是<-1, 2>,所以,平移后所得到的函数图象对应的函数表达式就为 y =2<x +1>2+2. 2.对称变换问题2 在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,有什么特点?依据这一特点,可以怎样来研究二次函数的图象平移?我们不难发现:在把二次函数的图象关于与坐标轴平行的直线进行对称变换时,具有这样的特点——只改变函数图象的位置或开口方向、不改变其形状,因此,在研究二次函数图象的对称变换问题时,关键是要抓住二次函数的顶点位置和开口方向来解决问题. [例2]求把二次函数y =2x 2-4x +1的图象关于下列直线对称后所得到图象对应的函数解析式: 〔1〕直线x =-1; 〔2〕直线y =1.解:〔1〕如图2.2-7,把二次函数y =2x 2-4x +1的图象关于直线x =-1作对称变换后,只改变图象的顶点位置,不改变其形状. 由于y =2x 2-4x +1=2<x -1>2-1,可知,函数y =2x 2-4x +1图象的顶点为A <1,-1>,所以,对称后所得到图象的顶点为A 1<-3,1>,所以,二次函数y =2x 2-4x +1的图象关于直线x =-1对称后所得到图象的函数解析式为y =2<x +3>2-1,即y =2x 2+12x +17.〔2〕如图2.2-8,把二次函数y =2x 2-4x +1的图象关于直线x =-1作对称变换后,只改变图象的顶点位置和开口方向,不改变其形状. 由于y =2x 2-4x +1=2<x -1>2-1,可知,函数y =2x 2-4x +1图象的顶点为A <1,-1>,所以,对称后所得到图象的顶点为B <1,3>,且开口向下,所以,二次函数y =2x 2-4x +1的图象关于直线y =1对称后所得到图象的函数解析式为y =-2<x -1>2+3,即y =-2x 2+4x +1. 二、分段函数一般地,如果自变量在不同取值X 围内时,函数由不同的解析式给出,这种函数,叫作分段函数.[例3]在国内投递外埠平信,每封信不超过20g 付邮资80分,超过20g 不超过40g 付邮资160分,超过40g 不超过60g 付邮资240分,依此类推,每封x g<0<x ≤100>的信应付多少邮资〔单位:分〕?写出函数表达式,作出函数图象.分析:由于当自变量x 在各个不同的X 围内时,应付邮资的数量是不同的.所以,可以用分段函数给出其对应的函数解析式.在解题时,需要注意的是,当x 在各个小X 围内〔如20<x ≤40〕变化时,它所对应的函数值〔邮资〕并不变化〔都是160分〕.图2.2-8。

2020年新教材新高一衔接班(教师版)数学

2020年新教材新高一衔接班(教师版)数学

目录第一章——前言 (1)第二章——衔接补充 (3)2.1 数与式 (3)2.1.1 乘法公式 (3)2.1.2 因式分解 (8)2.1.3 分式与根式 (12)2.2 方程与方程组以及不等式 (17)2.2.1 韦达定理 (17)2.2.2 分式方程与无理方程以及二元方程组 (22)2.2.3 不等式 (26)第三章——学习新知 (29)3.1 集合 (29)3.1.1 集合的基本概念 (29)3.1.2 集合的基本性质 (29)3.1.3 集合的表示方法 (30)3.1.4 集合间的基本关系 (32)3.1.5 集合间的基本运算 (34)3.2 常用逻辑用语 (40)3.2.1 充分条件、必要条件、充要条件 (40)3.2.2 全称量词与存在量词 (42)3.3 函数的概念与性质 (45)3.3.1 函数的概念 (45)3.3.2 函数的表示法 (47)3.3.3 分段函数的应用 (47)3.3.4 函数的图象 (49)3.3.5 函数的定义类问题 (51)3.3.6 函数值域的求法 (52)3.3.7 恒成立问题 (54)第一章——前言首先,恭喜同学们进入高中数学殿堂的学习,同时也祝贺大家在数学的学习上进入一个更高的层次。

当然,随之而来的是学习内容的增多,学习方法的巨变,学习技巧的提高,高中数学对同学们的学习提出了更高的要求,主要体现在高中数学学习时“知识体系更严谨”、“考查方式更灵活”、“数学思想更重要”。

高中数学的知识会让同学们觉得更复杂、关联性更强,这就要求我们需要有“举一反三”、“化繁为简”、“知识迁移”的学习技巧。

在后续的衔接课程中,我们将通过具体的例子去体会上述所讲的各类名词的具体含义。

下面简要列出高中阶段最重要的几类数学思想,请同学们在学习时,多加思考,每次学习时、每次做题时,都使用到了什么数学思想。

“数形结合思想”、“分类与整合思想”、“特殊与一般思想”、“函数与方程思想”接下来,我们通过几类可以利用初中知识解决的题目来具体体会一下高中数学学习的魅力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020初高中数学衔接教材爱的新高一的同学们:祝贺你们步入高中时代,下面有一个摆在我们面前的棘手问题急需我们师生共同努力才能解决,即“初高中衔接问题”。

由于课程改革,目前我区初中是新课标,而高中也是新课程的学习,初高中不衔接问题现在显得比较突出。

面对教学中将存在的问题,我们高一数学组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低同学们初高中衔接中的不适应度,希望大家将假期利用起来,一开学对这篇自学教材的学习将有相应的检测,愿大家为新学期做好准备。

现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

新的课程改革,难免会导致很多知识的脱节和漏洞。

本书当然也没有详尽列举出来。

我们会不断的研究新课程及其体系。

将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。

目录第一章数与式 (2)1.1 数与式的运算 (2)1.2 分解因式 (2)第二章二次方程与二次不等式 (2)2.1 一元二次方程 (2)2.2 二次函数 (2)2.3 方程与不等式 (2)第三章相似形、三角形、圆 (2)4747474848第一章数与式1.1 数与式的运算1.1.1 绝对值1.1.2 乘法公式1.1.3 二次根式1.1.4 分式1.2 分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1 根的判别式2.1.2 根与系数的关系2.2 二次函数2.2.1 二次函数y=ax2+bx+c的图像和性质2.2.2 二次函数的三种表达方式2.2.3 二次函数的应用2.3 方程与不等式2.3.1 二元二次方程组的解法第三章相似形、三角形、圆3.1 相似形3.1.1 平行线分线段成比例定理3.1.2 相似三角形形的性质与判定3.2 三角形3.2.1 三角形的五心3.2.2 解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3 圆3.3.1 直线与圆、圆与圆的位置关系:圆幂定理3.3.2 点的轨迹3.3.3 四点共圆的性质与判定3.3.4 直线和圆的方程(选学)1.1 数与式的运算1.1.1.绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即,0,||0,0,,0.a a a a a a >⎧⎪==⎨⎪-<⎩绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:b a -表示在数轴上,数a 和数b 之间的距离. 例1 解不等式:13x x -+->4.解法一:由01=-x ,得1=x ;由30x -=,得3x =; ①若1<x ,不等式可变为(1)(3)4x x ---->, 即24x -+>4,解得x <0, 又x <1, ∴x <0;②若12x ≤<,不等式可变为(1)(3)4x x --->, 即1>4,∴不存在满足条件的x ;③若3x ≥,不等式可变为(1)(3)4x x -+->, 即24x ->4, 解得x >4. 又x ≥3, ∴x >4.综上所述,原不等式的解为 x <0,或x >4. 解法二:如图1.1-1,1-x 表示x 轴上坐标为x 的点P 到坐标为1的点A 之间的距离|P A |,即|P A |=|x -1|;|x -3|表示x 轴上点P 到坐标为2的点B 之间的距离|PB |,即|PB |=|x -3|. 所以,不等式13x x -+->4的几何意义即为|P A |+|PB |>4. 由|AB |=2,可知点P 在点C (坐标为0)的左侧、或点P 在点D (坐标为4)的右侧.x <0,或x >4.练 习 1.填空:(1)若5=x ,则x =_________;若4-=x ,则x =_________.(2)如果5=+b a ,且1-=a ,则b =________;若21=-c ,则c =________. 2.选择题:下列叙述正确的是 ( )(A )若a b =,则a b = (B )若a b >,则a b > (C )若a b <,则a b < (D )若a b =,则a b =± 3.化简:|x -5|-|2x -13|(x >5).1.1.2. 乘法公式A B C P |x -1||x -3| 图1.1-1我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 例1 计算:22(1)(1)(1)(1)x x x x x x +--+++.解法一:原式=2222(1)(1)x x x ⎡⎤-+-⎣⎦=242(1)(1)x x x -++=61x -.解法二:原式=22(1)(1)(1)(1)x x x x x x +-+-++=33(1)(1)x x +- =61x -.例2 已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值. 解: 2222()2()8a b c a b c ab bc ac ++=++-++=.练 习 1.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).2.选择题:(1)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(2)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数1.1.3.二次根式一般地,0)a ≥的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式. 例如 32a b 212x ++,22x y +,1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式,例如与,与,与一般地,,与b 与b 互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用0,0)a b =≥≥;而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2a ==,0,,0.a a a a ≥⎧⎨-<⎩例1 将下列式子化为最简二次根式:(1 (20)a ≥; (30)x <.解: (1=(20)a ==≥;(3220)x x x ==-<.例2 (3.解法一: (3=393-.解法二: (3-.例3 试比较下列各组数的大小:(1- (2和解: (11===,===,>(2)∵=== 又 4>22,∴6+4>6+22,.例4 化简:20042005⋅-.解:20042005+⋅=20042004+⋅-⋅-=2004⎡⎤+⋅⋅⎣⎦=20041⋅例 5 化简:(1; (21)x <<.解:(1)原式= ==2=2=.(2)原式1x x=-,∵01x <<,∴11x x >>,所以,原式=1x x-.例 6 已知x y ==22353x xy y -+的值 .解: ∵2210x y +=+=+=,1xy ==, ∴22223533()1131011289x xy y x y xy -+=+-=⨯-=.练 习 1.填空:(1=__ ___;(2(x =-x 的取值范围是_ _ ___;(3)=__ ___;(4)若2x ==______ __. 2.选择题:=成立的条件是 ( ) (A )2x ≠ (B )0x > (C )2x > (D )02x <<3.若b =,求a b +的值.4.比较大小:2-4(填“>”,或“<”).1.1.4.分式1.分式的意义形如A B 的式子,若B 中含有字母,且0B ≠,则称A B 为分式.当M ≠0时,分式AB具有下列性质:A A MB B M ⨯=⨯; A A MB B M÷=÷. 上述性质被称为分式的基本性质.2.繁分式 像ab c d+,2m n pm n p +++这样,分子或分母中又含有分式的分式叫做繁分式.例1 若54(2)2x A Bx x x x +=+++,求常数,A B 的值.解: ∵(2)()2542(2)(2)(2)A B A x Bx A B x A x x x x x x x x x ++++++===++++,∴5,24,A B A +=⎧⎨=⎩ 解得 2,3A B ==.例2 (1)试证:111(1)1n n n n =-++(其中n 是正整数);(2)计算:1111223910+++⨯⨯⨯; (3)证明:对任意大于1的正整数n , 有11112334(1)2n n +++<⨯⨯+. (1)证明:∵11(1)11(1)(1)n n n n n n n n +--==+++,∴111(1)1n n n n =-++(其中n 是正整数)成立.(2)解:由(1)可知1111223910+++⨯⨯⨯ 11111(1)()()223910=-+-++-1110=- =910. (3)证明:∵1112334(1)n n +++⨯⨯+=111111()()()23341n n -+-++-+=1121n -+, 又n ≥2,且n 是正整数,∴1n +1 一定为正数,∴1112334(1)n n +++⨯⨯+<12 . 例3 设ce a=,且e >1,2c 2-5ac +2a 2=0,求e 的值.解:在2c 2-5ac +2a 2=0两边同除以a 2,得 2e 2-5e +2=0, ∴(2e -1)(e -2)=0,∴e =12 <1,舍去;或e =2. ∴e =2.练 习1.填空题:对任意的正整数n ,1(2)n n =+ (112n n -+);2.选择题: 若223x y x y -=+,则xy= ( )(A )1 (B )54 (C )45(D )653.正数,x y 满足222x y xy -=,求x y x y-+的值.4.计算1111 (12233499100)++++⨯⨯⨯⨯.习题1.1A 组1.解不等式:(1) 13x ->; (2) 327x x ++-< ; (3) 116x x -++>.2.已知1x y +=,求333x y xy ++的值. 3.填空:(1)1819(2(2=________;(22=,则a 的取值范围是________; (3+=________.B 组1.填空:(1)12a =,13b =,则2223352a ab a ab b -=+-____ ____; (2)若2220x xy y +-=,则22223x xy y x y++=+__ __;2.已知:11,23x y ==的值. C 组1.选择题:(1=( )(A )a b < (B )a b > (C )0a b << (D )0b a <<(2)计算 ( )(A (B (C ) (D )2.解方程22112()3()10x x x x +-+-=.3.计算:1111132435911++++⨯⨯⨯⨯. 4.试证:对任意的正整数n ,有111123234(1)(2)n n n +++⨯⨯⨯⨯++<14.1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法 例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-. 解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).课堂练习一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

相关文档
最新文档