人教版八年级数学上册 第11章 数的开方 11.2 实数教案 (全国通用版)人教版
(人教版)2020八年级数学上册 第11章 数的开方 11.1 平方根与立方根 1 平方根 第2课时 算术平方根教案
A.重点□B.难点□C.易错点□
这节课的重点是算术平方根的概念教学和正数的算术平方根的求法,在讲解概念时应注意概念的自然的引导和概念的解释,注意平方根与算术平方根的区别与联系,这里一定要强调清楚.
③[师生互动反思]
通过师生间频繁的互动,使学生深刻理解概念,准确表述,并通过练习巩固掌握.
例5若 =2,则(m+2)2=________.
例6算术平方根等于它本身的数有________.
例7若已知 + =0,则x-y的算术平方根为________.
使学生通过所学的知识,在原来的基础上有拓宽、有提升,并能与过去的知识相结合,达到综合应用的目的.
活动
四:
课堂
总结
反思
当堂训练:
1.求下列各数的算术平方根:
例2[课本P3例2]将下列各数开平方:
(1)49(2)
例3[课本P4例3]用计算器求下列各数的算术平方根.
(1)529;(2)44.81(精确到0.01).
体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是 .
旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.
让学生知道平方的逆运算是开平方.
例2是由求算术平方根来得到一个数的平方根,是求平方根的另一种方法
例3是了解用计算器求算术平方根.
【拓展提升】
例4 的算术平方根为________; 的算术平方根是________.
问题解决
经历算术平方根激起性质的产生过程,能用概念及性质解决有关问题.
八年级数学上册 第11章 数的开方11.2 实数第1课时 实数的有关概念课件
O
O’
每个有理数都可以(kěyǐ)用数轴上的点表示,
无理数也可以用数轴上的点表示。
第七页,共十三页。
例4 下列说法错误的是( )
A. 16 的平方根是±2 B. 2 是无理数
C. 3 27 是有理数
D. 2 是分数 2
分析: 1的6 平方根即4的平方根±2, 3 =2-73是有理
数,而 是无2理数,不属于有理数范围,故其不可能
2
是分数。故选D。
第八页,共十三页。
当堂(dānɡ tánɡ) 训练
1、下列说法中正确的是( B )
A. 4 是一个无理数
B.在 x 1 中x≥1 C.8的立方根是±2
D.若点P(2,a)和点Q(b,-3)关于y轴对称,
则a+b的值是5
2、下列各数中,不是无理数的是( D )
A.π
B. 2 C. 2 6 D. 3 216
第十二页,共十三页。
内容(nèiróng)总结
11.2 实数。问题 回忆有理数的分类,及与有理数相关的概念等。例1 (1)试着写出几个无理数。有理 数 有限小数或无限循环小数。无理数 无限不循环小数。例2 将例1(2)中各数填入相应括号(kuòhào)内 。例3 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′表 示的数是什么。例4 下列说法错误的是( )。1、下列说法中正确的是( )。课堂小结
第11章 数的开方(kāi fāng)
11.2 实数 第1课时 实数的有关 概念 (yǒuguān)
第一页,共十三页。
新课导入
问题 回忆有理数的分类,及与有理数相关的概念等。 教师引导得出下列结论:任何一个有理数都可以(kěyǐ)写成有
八年级数学上册 第11章 数的开方 11.2 实数导学案 (新版)华东师大版
11.2 实数【学习目标】1.了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。
2.知道实数在数轴上的点一一对应.3.学会比较两个实数的大小,能熟练地进行实数运算。
【学习重难点】1.无理数及实数的概念, 实数与数轴上的点一一对应2.有理数与无理数的区别, 学会两个实数的大小比较。
【学习过程】一、课前准备1、填空:(有理数的两种分类)有理数有理数2、有理数中的分数能化为小数吗?化为什么样的小数?举例加以说明二、学习新知自主学习:自己用计算器求2的值。
大家会发现,,由于计算器的位数限制,2的结果还没有完全显示出来,2的值是一个无限不循环的小数。
在以前我们所学的数域中,已经解释不了2了,像这样,小数位数无限又不循环的一类数称之无理数。
请同学们动脑筋想一想,这样的数,你还能找出来吗?请相互之间举个例子,比一比!概括:无理数:无限不循环的小数叫做无理数;实数:有理数与无理数统称为实数。
像有理数一样,无理数也有正负之分。
π是____无理数,,π-是____无理数。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:实数注意:(1)用根号表示的数不一定是无理数.如:16(2)无理数不一定都是用根号表示的数.如:π(3)无理数有无数多个.无多少之分(4)无理数可分为正无理数和负无理数.我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢?事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数②与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______③ 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?例如 2的相反数是 -π的相反数是 0的相反数是总结 数a 的相反数是______,这里a 表示任意____________。
八年级数学上册 第11章 数的开方 11.2 实数 第2课时 实数与数轴导学课件
2021/12/13
第四页,共十六页。
11.2 实数
【解析】 设点 B 表示的数是 m. 由题意,得 m-2=- 2, ∴m=2- 2,即点 B 所表示的数为 2- 2. ∴BC=2-(2- 2)= 2.
2021/12/13
第五页,共十六页。
11.2 实数
【归纳总结】实数与数轴上的点的对应性:
(1)实数与数轴上的点一一对应,“一一对应”是指每一个(yī ɡè)实数都可以 用数轴上的一个(yī ɡè)点来表示;反过来,数轴上的每一个(yī ɡè)点都表示一个 (yī ɡè)实数.
(2)实数的运算中需先取近似值(近似值的精确度要比结果要求的精确度多一 位),再计算.
2021/12/13
第十页,共十六页。
11.2 实数
总结 反思 (zǒngjié)
小结(xiǎojié) 知识点一 实数(shìshù)与数轴
实数与数轴上的点____一__一_对__应___.
2021/12/13
有理数的运算法则(fǎzé)和运算律同样适用于实数,包括运算顺序. 【点拨】 实数有加、减、乘、除、乘方、开方等运算,混合运算 的顺序是先_____乘__方__(ch_én_g_fān,g)、再开乘方除,最后加减.同级运算按照 _____从_左__到__右的顺序进行,有括号的__________先__算_括__号_里__面_的.
2021/12/13
第十三页,共十六页。
11.2 实数
反思(fǎn
sī)
计算:-(-2)2-1+123+3 -8- 9.
解:原式=22-1+18+2-3①
=4-1+18+2-3②
=218.③
(1)找错:从第________步开始出现错误;
人教版八年级数学上册 第11章 数的开方 11.1.1 平方根教案 (全国通用版)人教版
教版课题名称平方根 三维目标 1.了解一个数的平方根与算术平方根的意义。
2.会用根号表示一个数的平方根、算术平方根。
3.了解开方与乘方是互逆运算,会利用这个互逆运算关系求某些非负数的算术平方根。
重点目标 平方根、算术平方根的概念和求法。
难点目标 有关平方根、算术平方根的运算的区别于联系。
导入示标 一、 知识回顾活动一:复习平方数 22= 22-)(=231)(= 231-⎪⎭⎫ ⎝⎛= 25.0= ()25.0-= 探究交流:一对互为相反数的的数的平方有什么关系?活动二:填底数因为因为 25= ()25-=探究交流:平方得25的数有几个?分别是什么?这两个数有什么关系?它们的和等于多少呢?目标三导 学做思一:如图所示, 面积为25cm 2的正方形, 其边长为多少呢?根据正方形的面积公式,应该是边长2 = 25由此我们得出, 其边长应该为 =23=-2)3(所以( )2=9 所以( )2=25 25cm 2教版如果:面积为16,则边长应该为______;面积为9,则边长为________;面积为a ,则边长又如何呢?可设边长为x ,则得到:__________。
新知概念1:如果一个数x 的平方等于a ,那么这个数x 叫做a 的平方根。
就是说, 当 x 2=a (a ≥0)时, 称x 是a 的平方根。
而a 称为x 的平方数。
学做思二:怎么求一个数的平方根?探究交流:25的平方根只有一个吗?还有没有别的数的平方也等于25?探究交流:如何求一个数的平方根?求一个数的平方根的关键是什么呢?例1、求下列各数的平方根:(试着考虑,每个数,有几个平方根?)⑴ 100 ⑵ 0.49 ⑶ 1.69⑷ 2516 ⑸ 412 (6)36例2、(1)16的平方根是什么?(2)0的平方根是什么?(3)91的平方根是什么?(4)-4有没有平方根?为什么? 概括:⑴一个正数的平方根有( ),它们是互为( )3、填表 平方根 算术平方根 a(a ≥0)2)3( 128 非负数教版 ⑵ 0的平方根是( ), 就是它( ); ⑶( )没有平方根.新知概念2:正数a 的正的平方根叫做a 的算术平方根。
人教版八年级数学上册(表格式电子教案)初二数学11章数的开方电子教案
发现规律
让学生从读法、意义、取值、结论等方面进行比较
巩固新知
提高技能
培养归纳小结的习惯,提高归纳总结能力
板书设计:一、创设情境
二、立方根定义
三、立方根性质
四、课堂练习
五、课堂小结
六、作业:习题11.1第3、6题
教与学的反思
课题
单元复习(1)
课时1
课型
教学目标
知识与技能
理解并掌握平方根和算术平方根、立方根的意义;
过程与方法
理解并掌握实数、无理数的意义,并能正确识别有理数和无理数;
情感态度价值观
正确理解实数与数轴上的点的一一对应关系
教学重点
经历实数分类的复习过程,进一步体验数学中的分类和类比思想
教学难点
从数轴上的点与实数的关系中体会数形结合是研究数学问题的重要方法.
教学准备
课件等
教学过程
过程优化
教师活动
设计意图
实数 无理数 实际问题 平方 立方 平方根 立方根 算术平方根
二、探究归纳
1.平方根和算术平方根的意义:
(1)如果一个数的平方等于a,那么这个数叫做a的平方根;
(2)正数a的正的平方根,叫做a的算术平方根;
(3)一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.
(4)求一个非负数的平方根的运算,叫做开平方,它与平方运算互为逆运算.
2.立方根的意义:
(1)如果一个数的立方等于a,那么这个数就叫做a的立方根.
(2)求一个数的立方根的运算,叫做开立方,与立方运算互为逆运算.
(3)任何数都有立方根.
三、实践应用
例1填空:
(1) 的平方根是, 的算术平方根是;
八年级数学上册 11 数的开方 课题 实数的有关概念学案 (新版)华东师大版
课题 实数的有关概念【学习目标】1.理解无理数和实数的概念,能对实数按要求进行分类;2.知道实数与数轴上的点具有一一对应的关系,能根据实数在数轴上的位置比较大小.【学习重点】理解无理数和实数的概念,正确判断有理数与无理数.【学习难点】探索实数与数轴上的点具有一一对应的关系,初步体会“数形结合”的数学思想.,行为提示:创景设疑,帮助学生知道本节课学什么., 行为提示:教会学生看书,独学时对于书中的问题一定要认真探究,书写答案.,教会学生落实重点.,知识链接:利用边长为1的正方形的对角线获得\r(2).,学法指导:严格按照有理数和无理数分类的形式填写数据.,学法指导:实数的分类:,\a\vs4\al\co1(\a\vs4\al(实数))\b\lc\{(\a\vs4\al\co1(有理数\b\lc\{\rc\}(\a\vs4\al\co1(整数,分数))\a\vs4\al(有限小数,或无限循,环小数),无理数\b\lc\{\rc\}(\a\vs4\al\co1(正无理数,负无理数))\a\vs4\al(无限不,循环,小数))),实数\b\lc\{(\a\vs4\al\co1(正实数\b\lc\{(\a\vs4\al\co1(正有理数,正无理数)),0,负实数\b\lc\{(\a\vs4\al\co1(负有理数,负无理数)))),方法指导:1.画图或剪纸做数学,2.,,)情景导入 生成问题1.回顾什么叫有理数?有理数如何分类?在平常学习的过程中,是否存在有理数以外的数?比如π是什么数呢?2.在前几节学习的过程中,我们遇到2、3、32、39等是什么数呢?自学互研 生成能力知识模块一 无理数、实数的概念与实数的分类阅读教材P 8~P 10,完成下面的内容:1.有理数包括整数和分数,如果将下列分数写成小数的形式,你有什么发现?14,-35,23,-17,1190,-911归纳:任何一个有理数都可以写成有限小数或无限循环小数;反过来,任何一个有限小数或无限循环小数都是有理数.2.思考并回答下列问题:(1)你可以用什么方法求2?答:看书或查《数学用表》.(2)你能利用平方关系验算得到的结果吗?得到的结果平方后会等于2吗?为什么?答:验证的结果不是2,而是接近2,说明结果只是2的近似值.(3)如果用计算器计算2,结果将是多少?答:1.41421356.(4)是否有一个有理数的平方等于2?如果2不是有理数,那么它是一个怎么样的数呢?答:没有,是无理数. 归纳:无限不循环小数叫做无理数,有理数和无理数统称实数.范例:判断下列数哪些是有理数?哪些是无理数?5,π2,3.1415926,0.13··,227,-36,0.2020020002…(每两个2之间依次多一个0),34. 解:有理数:3.1415926,0.13··,227,-36; 无理数:5,π2,0.2020020002…(每两个2之间依次多一个0),34.知识模块二 实数与数轴上的点 我们知道,每个有理数都可以用数轴上的点来表示,那么无理数是否也可以用数轴上的点表示出来呢?你能在数轴上找到表示无理数的点吗? 范例:你能在数轴上表示出2吗?请同学们准备两个边长为1的正方形纸片,分别沿它的对角线剪开,得到四个什么三角形?等腰直角三角形. 如果把四个等腰直角三角形拼成一个大的正方形,其面积是多少?其边长是多少?答:面积为2,边长为 2.行为提示:教会学生怎么交流.先对学,再群学.充分在小组内展示自己,分析答案,提出疑惑,共同解决(可按结对子学—帮扶学—组内群学来开展).在群学后期教师可有意安排每组展示问题,并给学生板书题目和组内演练的时间.这就是说,边长为1的正方形对角线长是2,在数轴上画法如右图.仿例:无理数π可以用数轴上的点来表示吗?如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上一点从原点到达O′点的坐标是多少?解:O′的坐标为π.归纳:每一个实数都可以用数轴上的一个点来表示,反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一无理数、实数的概念与实数的分类知识模块二实数与数轴上的点检测反馈达成目标【当堂检测】见所赠光盘和学生用书;【课后检测】见学生用书.课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。
八年级数学上册 第十一章 数的开方 11.1 平方根与立方根 11.1.1 平方根1教案 (新版)华
平方根1教学目标知识与技能:1、了解平方根的概念、开平方的概念.会用根号表示一个数的平方根.2、了解平方运算与开平方运算是互为逆运算.3、会用平方根的概念求某些非负数的平方根.过程与方法:1、让学生经历概念形成过程,提高学生的思维水平.2、培养学生的求同和求异思维,能从相似的事物中观察到他们的共同点和不同点. 情感态度与价值观:创设学生熟悉的问题情景,培养他们对数学的好奇心和求知欲.在学生已有数学经验的基础上,探求新知,让学生获得成功的快乐.提高学生“用数学”的意识.教学重点:会用平方根的概念求某些非负数的平方根.教学难点:对只有非负数才有平方根的理解.课堂导入到目前为止我们已学过哪些运算?一个正方形边长为5厘米,它的面积为多少?是什么运算?它的逆运算是什么呢? 教学过程一、创设问题情景学校要举行美术作品比赛,小明很高兴,她想裁出一块面积为25平方分米的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果画布的面积依次改为:9、16、36……那么相应的边长是多少?二、探索归纳(1) 平方根的概念若a x 2,则x 叫做a 的平方根.(2) 举例:∵2552=∴5是25的一个平方根问:25的平方根只有一个吗?还有哪些数的平方也等于25?(3)总结求一个数平方根的方法.三、举例应用例1 求100的平方根.解 因为102=100, (-10)2=100,除了10和-10以外,任何数的平方都不等于100,所以100的平方根是10和-10,也可以说,100的平方根是±10.例2 求36的平方根.解:因为,36)6(2=±所以36的平方根为±6. 四、试一试(1) 144的平方根是什么?(2) 0的平方根是什么?(3) -4有没有平方根?为什么?答案:(1)12144±=± 00)2(=±、(3)-4没有平方根,因为没有一个数的平方是-4. 请你自己也编三道求平方根的题目,并给出解答.通过以上题目的解答,你发现了什么?概括:一个正数必定有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.五、课堂练习1、平方得81的数是 ,因此81的平方根是 .2、平方根是它本身的数是 .3、如果-b 是a 的平方根,那么A.2a b =;B.2b a = ;C.2a b -=;D.2b a -=4、求下列各式中的x 的值⑴1962=x ⑵01052=-x答案:1、±9,±9,2、03、B4、x=±16,x=±2六、课堂小结1、平方根的定义.2、平方根的性质:正数有两个平方根它们互为相反数,0的平方根是0,负数没有平方根. 课堂作业1、求下列各数的平方根: (1)49(2)8116(3)36(4)()22-.2、已知2a-1的一个平方根是+3,求2a-1的另一个平方根及a 的值.答案:1、(1)∵()4972=± (3)∵()4972=± ∴±7是49的平方根. ∴±7是49的平方根.(2)∵8116942=⎪⎭⎫ ⎝⎛± (4)∵()422=- ∴94±是8116的平方根.()422=± ∴±2是()22-的平方根.2a-1的一个平方根是+3,所以2a-1的另一个平方根是-3.∵2a-1=()23±∴ a=5教学反思易错点:对平方根的意义不理解;对平方与开平方两种运算之间的互逆关系不理解.(1)在求一个正数的平方根时,容易只写正的平方根,丢掉负的平方根.(2)如果已知一个数的一个平方根,求这个数.不知道该怎么做.。
八年级数学上册第11章数的开方11.2实数第2课时实数的性质及运算教案新版华东师大版
第2课时 实数的性质及运算1.了解有理数的相反数、绝对值等概念,运算法则、运算律在实数范围内仍然适用.2.能对实数进行大小比较和四则混合运算.重点实数的性质、实数的大小比较及运算.难点实数的大小比较.一、复习回顾1.用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律.2.用字母表示有理数的加法交换律和结合律.3.平方差公式、完全平方公式.4.有理数的相反数是什么?不为0的数的倒数是什么?有理数的绝对值等于什么?二、探究新知1.实数的性质填空:32与________互为相反数;5与________互为倒数;|-33|=________.讨论:当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?开方的意义相同吗?总结:数a 的相反数是-a,这里a 表示任意一个实数,一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数,0的绝对值是0.任意一个正数有两个平方根,0的平方根是0,负数没有平方根.任意一个实数有且仅有一个立方根.2.实数的比较思考:“利用数轴,怎样比较两个实数的大小?”学生思考回答后,教师总结讲解.在数轴上表示的数,右边的数总比左边的大,这个结论在实数范围内仍成立.我们还有什么方法可以比较两个实数的大小呢?方法很多,我们通常可以取它们的近似值来进行比较.3.实数的运算阅读教材第10页,掌握实数运算的方法.实数运算的顺序、法则和有理数的运算相同,只是涉及无理数的运算时,通常取它们的近似值来进行运算.三、练习巩固1.请你试着计算下列各题:(1)12+⎪⎪⎪⎪⎪⎪-12=________; (2)-2+32=________; (3)33+(-33)________.2.比较下列各组数中两个实数的大小:(1)23和32;(2)-72和-52.3.试解答下列问题:(1)指出5在数轴上位于哪两个整数之间;(2)写出绝对值小于4的所有整数.四、小结与作业小结这节课你学到了什么?有什么收获?有何疑问?与同伴交流,在学生交流发言的基础上,教师归纳总结.作业1.下列各数中,哪些是有理数,哪些是无理数?-0.75,513,214,π+1,-364,π2,7.676 676 667…,39,6.1.2.求下列各数的相反数和绝对值:-π,1.5,3338,3-2.3.求下列各式中的x:|x|=3;|x|=π;|2x|=5;|x+1|=3.1.比较两个实数的大小的方法:(1)比较被开方数的大小;(2)平方法;(3)近似取值法.2.实数的运算包括加减、乘除、乘方、开方三级(6种)运算,以前的运算法则、运算律仍然适用.。
第11章数的开方教案
第11章数的开方课程内容标准1.了解平方根、算术平方根、立方根的概念,会用根号表示.2.了解平方与开平方、立方与开立方互为逆运算,会用平方、立方的运算求某些数的平方根与立方根,会用计算器求一个非负数的算术平方根及任意一个数的立方根..3.了解无理数和实数的概念,知道实数与数轴上的点一一对应.4.能估计无理数的大小,培养估算能力,会进展简单的实数运算.单元教学分析§11.1 平方根与立方根1.注意与平方、立方运算的联系与转化;2.注重对根本概念的理解与应用,熟悉必要的数学语言;3.重视计算器的使用及对估算的教学,防止对学生提出繁难的数字计算要求;4.注意把握好对已出现无理数的处理.§11.2 实数与数轴1.让学生感知无理数的存在,数系扩展的必要.2.初步理解和承受实数与数轴上的点一一对应的思想.3.理解和承受有理数范围内相关概念和运算法那么的自然延伸.平方根〔1〕教学内容教科书P.2——P.3的内容教学目标:1、理解平方根的概念;2、认识平方与开平方的关系;3、会用平方根的概念求某些数的平方根。
教学重点:平方根的概念和开平方运算。
教学难点:平方根的概念;利用平方根和平方的关系解题。
教学过程:一、复习引入1、我们将要学习的第12章叫:数的开方,那什么叫“数的开方〞呢?我们已学过哪些数的运算?(加、减、乘、除、乘方5种)2、你能写出这些运算的符号吗?请举例说明。
如一个正方形的边长是5米,它的面积是多少?其运算是什么运算? (面积25平方米,运算是乘方运算)3、加法与减法这两种运算之间有什么关系?乘法与除法之间呢?(均为互逆运算)二、创设问题情境,解决问题1、请同学们欣赏本章导图,如果要剪出一块面积为25cm2的正方形纸片,纸片的边长应是多少?这里该用哪种运算呢?通常这类不易直接列算式计算的问题,我们常用方程解决:设边长为xcm,那么有x2=25,显然应取x=5。
这个问题实质上就是要找一个数,这个数的平方等于25。
八年级数学上册第11章数的开方11.2实数第1课时实数的有关概念教案新版华东师大版
11.2 实数第1课时 实数的有关概念1.理解无理数与实数的概念.2.知道实数与数轴上的点的一一对应关系,进一步培养数形结合的思想.3.会比较两个实数的大小.重点实数的概念.难点实数与数轴上的点一一对应的关系.一、创设情境教师多媒体课件展示、引出问题.如图,将两个边长为1的正方体分别沿对角线剪开、得到四个等腰直角三角形,即可拼成一个大正方形,容易知道,这个大正方形的面积是2,所以大正方形的边长为 2.通过观察教材第8页的计算你发现了什么?它是一个什么数?二、探究新知1.无理数与实数的概念用计算器计算:2=________,它与上面问题中的数化成小数后的形式是否一样?2既不是有限小数,也不是无限________小数,我们把它叫做无理数.在数学上已经证明,没有一个有理数的平方等于2,也就是说,2不是一个有理数.2.383 383 338…与2的数值是否类似?________,它也是一个________数.我们熟悉的圆周率π=________,它是一个________数.从上述题目中,你有什么发现?你能把数进行适当的分类吗?请在讨论交流后举手回答,不断补充完善,达成共识.最后教师予以点评讲解.(1)我们把无限不循环小数叫做无理数,例如:2,π,2.383 383 338…等都是无理数.有理数与无理数统称为实数.(2)分类:实数⎩⎪⎨⎪⎧有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数无理数⎩⎪⎨⎪⎧正无理数负无理数也可以这样分:实数⎩⎪⎨⎪⎧正实数⎩⎪⎨⎪⎧正有理数正无理数0负实数⎩⎪⎨⎪⎧负有理数负无理数2.实数与数轴上的点一一对应按照计算器显示的结果,你能想象出2在数轴上的位置吗?利用教材第9页的“试一试”,让学生在讨论、合作的基础上动手操作.在数轴上能画出表示2的点,说明了一个什么问题?数轴上的任意一点必定表示一个实数;反过来,每一个实数(有理数或无理数)也都可以用数轴上的点来表示,换句话说,实数与数轴上的点一一对应.三、练习巩固1.在数1.44,-5,227,3-3,3.14,81中,无理数有( )个. A .1 B .2 C .3 D .42.与数轴上的点一一对应的数是( )A .有理数B .无理数C .实数D .整数3.实数a 在数轴上的位置如图:化简:|a -1|+(a -2)2=________.四、小结与作业小结这节课你学到了什么?有什么收获?有何疑问?与同伴交流,在学生交流发言的基础上,教师归纳总结.作业教材第11页练习第1~3题.波利亚认为,“头脑不活动起来,是很难学到什么东西的,也肯定学不到更多的东西”、“学东西最好的途径是亲自去发现它”、“学生在学习中寻求欢乐”.在本节课的教学设计中注意从学生的认知水平和亲身感受出发,创设学习情境,提高学生的积极性和学习兴趣,设计系列活动让学生经历不同的学习过程.在活动过程中让学生动手试一试,说说自己的发现并与同学交流结论,从而得出数轴上的点与实数是一一对应的关系.注意类比思考,以旧迎新.。
八年级数学上册 第11章 数的开方 11.2 实数 11.2.1 实数与数轴教案 (新版)华东师大版
问题2.在数轴上,你能找到表示 的点吗?
问题3.比较大小见教 材10页例1.
五.课堂练习:
1、下列各数,哪些是有理数,哪些是无理数?
2、下列各数哪些是正实数、负有理数?
六.课后小结:
1、什么是无理数?实数?
2、实数如何分类?
1.求下列各数的平方根:
81 169 49 5 4
2.求下列各数的立方根:
8 27 -64 -125
3.回顾有理数的分类。
二.导入课题,研究知识:
本节我们继续来研究平方根,立方根的有关知识----------------实数与数轴
面向全体学生提出相关的问题。明确要研究,探索的问题是什么, 怎样去研 究和讨论。.
留给学生一定的思考和回顾知识的时间。
为学生创设表现才华的平台。
三.归纳知识,培养能力:
关概念:
(1.)有限小数或者无限循环小数是有理数
(2).无限不循环小数叫做无理数.
(3).有理数和无理数统称为实数。
实数的分类
(1)从定义分(2)从正、负分
四.运用知识,分析解题:
问 题1.指出下列各数是有理数还是无理数:
让学生经历数系扩张的过程,进一步体验数系的发展源于实际,又作用于实际的辩证关系。培养学生的数感与估数能力。培养学生严谨治学的学习态度,刻苦 学习的精神。
教学重点
无理数、实数的概念及实数的分类;实数与数轴上的点一一对应的关系。
教学难点
对实数与数轴 上的点一一对应关系的理解。
教学内容与过程
教法学法设计
一.复习提问,回顾知识,请看下面的问题:
实数与数轴
八年级数学上册 第11章 数的开方 11.2 实数教案 (新版)华东师大版-(新版)华东师大版初中八
活动一:创设情境导入新课【课堂引入】图11-2-怎样用两个面积为1的小正方形拼成一个面积为2的大正方形?如图11-2-,把两个小正方形沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2的大正方形.你知道这个大正方形的边长是多少吗?这个数是不是有理数呢?由操作导入,让学生感知到“非有理数”确实存在我们的生活中,为引出无理数做准备.活动二:实践探究交流新知探究1实数的分类知识归纳:有理数和无理数统称为实数.无理数和有理数一样,也有正负之分继续完成:把上题各数填到相应地集合内:(3)正实数集合{…}(4)负实数集合{…}探究2、在实数X围内相反数,绝对值的意义议一议:1.2与________互为相反数,-35的绝对值________.2.||3=________,|0|=________,||-π=________.,学生容易遗漏,强调0也是实数,但它既不是正数也不是负数,应单独作一类.学生类比有理数中的相关概念,建立实数的相反数、倒数和绝对值等概念,体会到了实数X围内的相反数、倒数、绝对值的意义,明白它们的意义和有理数X围内的意义是一致的.让学生体会数轴上的点表示的数既可以是有理数也可以是无理数,进一步得出实数与数轴上的点的一一对应关系,并初楚明了,更便于归纳与总结.【教学反思】①[授课流程反思]A.新课导入□B.情景导入□本节经历从具体实例到一般规律的探究过程,运用类比的方法,得出实数运算律和运算法则,使学生清楚新旧知识的区别和联系.②[讲授效果反思]A.重点□B.难点□C.易错点□反思,更进一步提升.本节课重点理解实数的意义,以及实属X围内的相反数、绝对值、倒数等计算,体会实数与有理数的关系.③[师生互动反思]关注学生对运算法则的理解,能否根据问题的特点,选择合理、简便的算法,能否依据算理正确地进行计算,能否确认结果的合理性等等,对于较复杂的实数运算,应关注学生是否会使用计算器进行运算.④[习题反思]。
[K12学习]八年级数学上册 第11章 数的开方 11.1 平方根与立方根 2 立方根教案2 (新版
11.1平方根与立方根2. 立方根一、教学目标1、知识与技能目标(1)使学生理解立方根的概念,能运用根号正确表示一个数的立方根;(2)掌握用开立方运算求某些数的立方根的方法.2、过程与方法目标(1)通过对比体会平方根、立方根的联系和区别;(2)在学习开立方运算求一个数立方根的过程中,体会开立方运算与立方运算之间的互逆关系.3、情感与态度目标(1)发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确地处理.(2)通过探究活动,锻炼学生克服困难的意志,建立自信心,提高学习热情.二、教学重点和难点1.重点:立方根的概念;求某数的立方根的方法.2. 难点:平方根、立方根的概念及区别;求一个数的立方根.三、学法设计在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式.在学习的过程中让学生仔细观察、大胆猜测、交流讨论、分析推理,最后归纳总结.让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.四、教法设计针对八年级学生的知识结构和心理特征,本节课可选择用类比及引导探索法,由浅入深,由特殊到一般地提出问题,注重启发、疏导学生自主探索,合作交流.在探究活动中,引导学生利用概念思考问题,对于学生的回答给予点拨,及时评价.这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性.五、教学过程设计(一)创设情境、复旧导新1、填表:2、思考:若一个正方体的体积是,那么这个正方体的棱长为多少呢?为使学生能更轻松地发现、掌握立方根,先激活学生记忆中有关平方根的知识,在这里设计了让学生回顾平方根的知识,以填空的形式简要归纳,为立方根的引入奠定基础.3、做一做(多媒体展示图片及问题):要制作一种容积为27m3的正方体形状包装箱,这种包装箱的棱长应该是多少?用多媒体展示图片和课件让学生动手做一做.在做的过程中引导学生思考,利用体积等于棱长的立方,将此题转化为求一个数使它的立方等于27,得出边长为3m.这样从现实生活中提出数学问题,把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,使学生积极主动地投入到数学活动中去,同时为学习立方根提供背景和生活素材.4、试一试:你能试着给数的立方根下个定义吗?(学生分组讨论,相互交流,再总结定义,最后由教师补充)一般地,如果一个数a的立方等于a,那么这个数叫做a的立方根或三次方根.即:如果x3=a,那么x叫做a的立方根.求一个数的立方根的运算,叫做开立方.(强调开立方与立方是逆运算)让学生试着给出立方根和开立方的定义.在这里让学生以原有的知识和经验出发,引导学生通过类比、思考、探索、交流来获取知识和学会学习,同时让学生经历数学知识的形成与应用过程,使他们更好地理解数学概念的形成,发展他们的数学能力.在本次活动中,教师要关注:学生对平方根的了解程度;学生能否正确地利用类比的方法说出立方根和开立方的概念;通过对概念的探究,能否理解立方与开立方是一种互逆的运算;学生在活动中的参与意识及发表个人见解的勇气.(二)启发诱导,探索新知1、探究:根据立方根的意义填空(多媒体展示,学生口答)(1)因为23=8,所以8的立方根是();(2)因为()3=0.125,所以0.125的立方根是();(3)因为()3=0,所以0的立方根是();(4)因为()3=-8,所以-8的立方根是().学生在了解立方根的有关概念的基础上通过对问题的研究,进一步巩固立方根的概念,并能熟练地利用开立方与立方的互逆性,求一个数的立方根.2、说一说(学生分组讨论):以填空的方式让学生计算具体的正数、0和负数的立方根,寻找它们各自的特点,通过小组讨论合作交流,归纳得出立方根的性质.这样让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究的过程中发展思维能力,有效地改变学生原有的学习方式. 3、自主探究:如何表示一个数的立方根?一个数a 的立方根可表示为3a ,读作:三次根号a,其中a 是被开方数,3是根指数. 通过让学生自主探究立方根的表示方法和读法,进一步训练学生利用类比的方法学习立方根,这样将新旧知识联系起来既有利于复习巩固平方根,又有利于理解和掌握立方根. 4、 议一议:你能说说数的平方根与数的立方根有什么不同吗?设计这个问题,可以了解学生对立方根及平方根知识的掌握程度,可以在教的过程中,对于学生不理解的,没掌握的知识点再加以强调.学生在归纳的过程中可能结果不是很完善,教师可以引导学生从各自的定义、性质、表示方法上加以区别.在本次活动中,教师要关注:学生能否根据立方根的概念填空;学生能否准确地归纳出立方根的性质;学生能否正确地用符号表示一个数的立方根;学生能否全面地说出平方根与立方根的区别. (三) 引导探究,延伸知识 1、探究:因为38-= ,-38= ;所以 . (-2,-2 ,=)因为327-= ,-327= ;所以. (-3,-3 ,=) 2、猜一猜:你能从上述问题中总结出互为相反数的两个数a 与-a 的立方根的关系吗?教师引导学生先分析每个式子所表示的意义再填空.通过这个活动,让学生大胆猜想,训练学生由浅入深,从特殊情形总结一般规律的能力,进一步熟悉立方根的求法,总结出负数的立方根的一个重要性质:3a -=-3a . 3、做一做:例:求下列各式的值:(1)364(2)3125-.设计说明:例题采取学生自己先动手做,再由教师点评,最后师生共同总结的方式完成.这种师生互动的形式激发了学生学习的热情,使学生主动地获取了知识和技能.在(2)、(3)两题中,鼓励学生采用多种方法来做,培养他们的发散思维.解:(1)364表示64的立方根,而43=64,所以364=4.(2)3125-表示-125的立方根,而(-5)3=-125,所以3125-=-5.4、练一练:求下列各式的值:(1)31000 (2)3001.0- (3)31-.答案:(1)10;(2)-0.1;(3)-1.设计说明:考虑到学习知识的过程就是一个由浅入深的过程,这又是学生第一次独立解题,故而练习的题目应以简单为宜.练习题中的被开方数由整数到小数再到分数,由正数到负数设计的比较全面,从学生的解题过程中也能较全面地看出学生对知识的掌握程度.在本次活动中,教师应关注:学生能否真正理解每个根式所表达的意义;学生对立方根的了解程度;学生能否正确的说出一个负数的立方根的求法.(四)归纳小结,深化新知学生总结,教师补充,重点总结平方根和立方根的异同点:让学生在总结过程中自己把本节课的内容进行梳理,小组交流,为学生创造交流的空间,调动学生的积极性,回顾所学知识,发展学生的求同存异思维,使它们能在复杂的环境中明辨是非,并做出正确的处理,通过小结培养学生的概括能力和自主学习的意识.在本次活动中,教师应重点关注不同层次的学生对本节知识的认识程度.(五)作业布置:1、自学用计算器求一个数的立方根;2、教材的练习题和习题.六、板书设计:(课题)复习一、立方根的定义四、探究延伸填表二、表示做一做。
八年级数学上册 第11章 数的开方 11.2 实数 第1课时 实数导学课件
11.2 实数(shìshù)
第一页,共二十页。
第11章 数的开方(kāi fāng)
1 第 课时 实数 的相关概念 (shìshù)
知识目标 1.2 实数
知识(zhī shi)目标
1.通过自学阅读,思考、讨论,明确无理数的概念,能识别无理 数. 2.经过思考、对比有理数和无理数,知道(zhī dào)实数的概念,能正 确地对实数进行分类. 3.在理解实数概念的基础上,类比有理数,掌握实数的相反数、 绝对值、倒数等概念.
11.2 实数
2.对无理数的四种错误认识: (1)带根号的数都是无理数. (2)无理数是开方开不尽的数. (3)分数是无理数. (4)无限小数是无理数.
第七页,共二十页。
11.2 实数
目标(mùbiāo)二 会对实数进行分类
例 2 [教材补充例题] 把下列各数填入相应的横线上:-6.8, 34,3 -1,-5, 9,-π,191, 6,0.123456….
11.2 实数
知识点二 实数(shìshù)的分类
1.按实数的定义分:
实数有理数
整数(zhěngshù)
分数(fēnshù() 有限小数或无限循环小数)
无理数(无限不循环小数)
第十五页,共二十页。
11.2 实数
2. 按实数的大小分:
正实数 实数 0
正有理数 正无理数
负实数
负有理数 负无理数
(2)有理数中的小数(xiǎoshù)是有限小数(xiǎoshù)和无限循环小数(xiǎoshù),而无理数 中的小数(xiǎoshù)是无限不循环小数(xiǎoshù).所有的有理数中的小数(xiǎoshù)都可 以写成分数的形式.
推荐学习K12八年级数学上册 第11章 数的开方 11.2 实数 第1课时 实数及其性质教案 (新版
11.2 实数及其性质【教学目标】知识目标:了解无理数、实数的概念和实数的分类.能力目标:让学生感知无理数的存在,经历数系从有理数扩展到实数的过程.通过无理数的引入,培养从特殊到一般、具体到抽象的逻辑思维能力.情感目标:渗透数形结合及分类的思想,体验数系的扩展源于实际,又服务于实际的辩证关系.【重点难点】重点:了解无理数、实数的概念和实数的分类.难点:正确理解无理数的意义.【教学过程】一、【情境导入 营造氛围】在小学的时候,我们就认识一个非常特殊的数:圆周率π.它约等于3.14,你还能说出它后面的数字吗?比一比,看谁记住的最多.教师简介目前π值已准确算到上千亿位.二、【检索旧知 揭示矛盾】π是一个怎样的数呢?引导学生回忆有理数的分类:有理数π肯定不是整数,那么它是一个分数吗?让学生用计算器将下列有理数化成小数形式: 41= , -32= , 71= 引导学生发现:任何一个有理数写成小数的形式,必定是有限小数或者无限循环小数. 形成共识:π不是一个有理数.三、【实践体验 感受新知】还有哪些数和π一样是无限不循环小数呢?动手操作:让学生用课前准备的计算器动手求2的值,再利用平方关系验算所得的结果.关注:“你发现了什么?”学生分析议论并发表个人见解,教师给出评议后再用计算机演示计算2的情形,以增强学生对“2是一个无限不循环小数”的信服度.学生认识了个别无理数之后建立一般概念:无限不循环小数叫做无理数.引入无理数的概念后再回到具体的个别情形去,让学生再举例一些无理数. 无理数的出现,使数系在有理数的基础上进一步扩展到实数:有理数与无理数统称为实数.问:你能说出实数的分类吗? 四、【练习反馈 调整巩固】1.把下列各数分别填入相应的数集里. -31π,-1322,7,327 ,0.324371, 0.5, -36.0, 39, 492, -4.0,16,0.8080080008…实数集﹛ …﹜无理数集﹛ …﹜有理数集﹛ …﹜分数集﹛ …﹜负无理数集﹛ …﹜2.下列各说法正确吗?请说明理由.⑴3.14是无理数; ⑵无限小数都是无理数;⑶无理数都是无限小数; ⑷带根号的数都是无理数;⑸无理数都是开方开不尽的数; ⑹不循环小数都是无理数. 五、【归纳小结 】 以由学生回答,教师适时补充的方式,引导学生从以下方面进行小结:1.无理数、实数的意义;2.有理数与无理数的区别;.六、板书设计:说明:本课是在学生学习了有理数及平方根、立方根以后,接触过“2”、“π”等具体的无理数的基础上,引入了无理数的概念,从而将数从有理数扩展到实数.数学教学是数学活动的教学,学生是数学学习的主人.在数学活动中如何体现学生的主体地位、关注他们的情感体验,是本案教学措施设计的追求.针对本节课概念性强、例题不多的特点,结合八年级学生思维较活跃,但抽象思维能力还比较薄弱的心理特征,本节课主要采用了引导发现的体验教学法.在学生已有知识经验的基础上创设教学情境,重视学生的实践操作和现代信息工具的运用,教师在教学中引导学生去发现“有理数都是有限小数或无限循环小数”、“2是无限不循环小数”、“边长为1的正方形对角线长为2”的数学事实,体验无理数的存在与数系扩展的必要.无理数概念的引入,遵循了“特殊”→“一般”→“特殊”的认知规律,在经历数系扩展的过程中实现知识的建构,渗透“数形结合”的思想.在教学中向学生提供充分从事数学活动的机会,在观察、对比、发现、讨论、探索、归纳的过程中自始至终贯穿着思维的训练.通过小组互相讨论,在合作学习中学会交流.。
八年级数学上册第11章数的开方11.2实数教案华东师大版(2021年整理)(1)
重庆市沙坪坝区虎溪镇八年级数学上册第11章数的开方11.2 实数教案(新版)华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市沙坪坝区虎溪镇八年级数学上册第11章数的开方11.2 实数教案(新版)华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市沙坪坝区虎溪镇八年级数学上册第11章数的开方11.2 实数教案(新版)华东师大版的全部内容。
11。
2 实数课题名称11.2 实数三维目标1。
了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。
2.知道实数在数轴上的点一一对应.3.学会比较两个实数的大小,能熟练地进行实数运算。
重点目标无理数及实数的概念,实数与数轴上的点一一对应难点目标有理数与无理数的区别,学会两个实数的大小比较。
导入示标1、填空:(有理数的两种分类)有理数有理数2、有理数中的分数能化为小数吗?化为什么样的小数?举例加以说明目标三导学做思一:做一做:参照课本,或者自己用计算器求2的值.请同学们动脑筋想一想,这样的数,你还能找出来吗?请相互之间举个例子,比一比!概括:无理数:无限不循环的小数叫做无理数;实数:有理数与无理数统称为实数.所以实数也可以这样分类:注意: 无理数常见的三种形式● (1)根号型,如;● (2)无限不循环型,如0。
301 300 130 001…等(3)圆周率等。
探究:请同学们自己讨论,下列说法对吗?1。
无限小数是无理数;( ) 2。
带根号的数是无理数;( )3. 无理数就是开方开不尽而产生的数;( )4。
无理数包括正无理数、0、负无理数三类;( )5.两个无理数的和、差、积、商仍为无理数;( )6.一个无理数和一个人有理数的和、差、积、商仍为无理数;( )7.无理数的个数少于有理数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题名称11.2 实数
三维目标 1.了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。
2.知道实数在数轴上的点一一对应.
3.学会比较两个实数的大小,能熟练地进行实数运算。
重点目标无理数及实数的概念, 实
数与数轴上的点一一对应难点目标有理数与无理数的区别, 学会两个实数
的大小比较。
导入示标1、填空:(有理数的两种分类)
有理数有理数
2、有理数中的分数能化为小数吗?化为什么样的小数?举例加以说明
目标三导学做思一:做一做:参照课本,或者自己用计算器求2
的值。
请同学们动脑筋想一想,这样的数,你还能找出来吗?请相互之间举个例子,比一
比!
概括:无理数:无限不循环的小数叫做无理数;
实数:有理数与无理数统称为实数。
所以实数也可以这样分类:
注意:无理数常见的三种形式
(1)根号型,如;
(2)无限不循环型,如0.301 300 130 001…等
(3)圆周率等。
探究:请同学们自己讨论,下列说法对吗?
1. 无限小数是无理数;( )
2. 带根号的数是无理数;( )
3. 无理数就是开方开不尽而产生的数;( )
4. 无理数包括正无理数、0、负无理数三类;( )
5.两个无理数的和、差、积、商仍为无理数;( )
6.一个无理数和一个人有理数的和、差、积、商仍为无理数;( )
7.无理数的个数少于有理数。
例1、把下列各数分别填入相应的集合里:
332278,3, 3.141,,,,2,0.1010010001,1.414,0.020202,7378π----- 正有理数{ }
负有理数{ }
正无理数{ }
负无理数{ }
学做思二:每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢?
概括 ①事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________
当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数
② 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______
学做思三:当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗
【感谢您的阅览,下载后可自由复制或修改编辑,敬请您的关注】
学生活动:2的相反数是 -π的相反数是 0的相反数是 总结 数a 的相反数是______,这里a 表示任意__________。
一个正实数的绝对值是______;一个负实数的绝对值是它的______;0的绝对值是______
达标检测 1、下列命题中,正确的是( )。
A 、无理数包括正无理数、0和负无理数
B 、无理数不是实数
C 、无理数是带根号的数
D 、无理数是无限不循环小数
2、12-的相反数是_________。
3、绝对值小于π的整数有__________________________。
反思总结 1.知识建构
2.能力提高
3.课堂体验
课后练习
1.已知04)3(2=-+-b a ,则b
a 3的值是_________。
2、计算
33841627-+-+。