(完整版)苏教版七年级数学-有理数整理、修订篇
完整版)苏教版七年级上数学知识点总结
完整版)苏教版七年级上数学知识点总结第一章我们与数学同行(略)第二章有理数一、正数和负数1.正数和负数的概念正数是比0大的数,负数是比0小的数。
如果a表示正数,那么-a表示负数;如果a表示负数,那么-a表示正数;如果a表示0,那么-a还是0.需要注意的是,有时候正数在前面会加上"+",但也有时候省略不写。
省略正号的数是正数。
2.具有相反意义的量如果正数表示某种意义的量,那么负数可以表示具有与该正数相反意义的量。
例如,零上8℃表示为+8℃,而零下8℃表示为-8℃。
3.0表示的意义0表示“没有”,例如教室里没有人;它既不是正数也不是负数,而是正数和负数的分界线。
二、有理数1.有理数的概念正整数、负整数、0、正分数和负分数都可以写成分数的形式,这样的数称为有理数。
只有能化成分数的数才是有理数。
有限小数和无限循环小数都可以化成分数,也是有理数。
但是,无限不循环小数(如π)不能写成分数形式,不是有理数。
2.有理数的分类按有理数的意义分类:正整数、负整数、0、正分数和负分数都是有理数。
按正、负来分:正整数、正分数是非负有理数,负整数、负分数是非正有理数。
三、数轴1.数轴的概念数轴是一条向两端无限延伸的直线,规定了原点、正方向和单位长度。
2.数轴上的点与有理数的关系所有的有理数都可以用数轴上的点来表示。
正有理数用原点右边的点表示,负有理数用原点左边的点表示,0用原点表示。
需要注意的是,同一数轴上的单位长度要统一。
所有的有理数都可以用数轴上的点表示,但并非所有数轴上的点都表示有理数,因此有理数与数轴上的点不是一一对应关系。
例如,数轴上的点π不是有理数。
利用数轴可以表示两个数的大小关系。
在数轴上,右边的数总比左边的数大;正数都大于负数;两个负数比较,距离原点远的数比距离原点近的数小。
数轴上有一些特殊的最大(小)数。
最小的自然数是1,无最大的自然数;最小的正整数是1,无最大的正整数;最大的负整数是-1,无最小的负整数。
苏教版七年级数学上册知识点(详细全面精华)
苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比 0 小的数正数:比 0 大的数0 既不是正数,也不是负数注意:①字母 a 可以表示任意数,当 a 表示正数时, -a 是负数;当 a 表示负数时, -a是正数;当 a 表示 0 时, -a 仍是 0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如 +a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“ +”省略不写。
所以省略“ +”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上 8℃表示为: +8℃;零下8℃表示为: -8 ℃3.0 表示的意义⑴0 表示“没有”,如教室里有0 个人,就是说教室里没有人;⑵0 是正数和负数的分界线, 0 既不是正数,也不是负数。
(3)0 表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0 米就表示海平面。
1.2 有理数1. 有理数的概念⑴正整数、 0、负整数统称为整数(0 和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数, 0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像 -2,-4,-6,-8 ⋯也是偶数,-1,-3,-5 ⋯也是奇数。
2. 有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0 ( 0 不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、 0 统称为非负整数(也叫自然数)②负整数、 0 统称为非正整数③正有理数、 0 统称为非负有理数1④负有理数、 0 统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
(完整版)苏教版七年级上数学知识点总结
第一章我们与数学同行(略)第二章有理数一、正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:二、有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三、数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
苏教版七年级上册数学知识点整理
《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上表示为:+;表示为:3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有xx分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0正有理数负整数正分数有理数有理数0(0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位xx的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位xx 是数轴的三要素,三者缺一不可;⑶同一数轴上的单位xx要统一;⑷数轴的三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
苏教版七年级上册数学知识点整理
苏教版七年级上册数学知识点整理《有理数》知识点总结归纳正数和负数⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a 是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。
如:有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
2.有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不1共12页可;⑶同一数轴上的单位长度要统一;⑷数轴的三要素都是根据实际需要规定的。
苏教版七年级数学全册知识点总结
苏科版数学知识点第二章:有理数一、实数与数轴1、整数分为正整数,0与负整数。
正整数与0统称自然数。
能被2整除得整数称为偶数,被2除余1得整数叫作奇数。
2、分数:可以写成两个整数之比得不就是整数得数,叫做分数。
分数都可以转化为有限小数或循环小数。
反之,有限小数或循环小数都可以转化为分数。
3、有理数:整数与分数统称有理数。
4、无理数:无限不循环小数称为无理数。
5、实数:有理数与无理数统称为实数。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无理数负分数正分数分数负整数正整数整数有理数实数0 6、数轴:规定了原点、正方向、单位长度得直线称为数轴。
原点、正方向、单位长度就是数轴得三要素。
7、数轴上得点与实数得对应关系:数轴上得每一个点都表示一个实数,而每一个实数都可以用数轴上得唯一得点来表示。
实数与数轴上得点就是一一对应得关系。
二、绝对值与相反数8、绝对值:在数轴上表示一个数得点与原点得距离,叫做这个数得绝对值。
设数轴上原点为O,点A 表示得数为a,则a A =O ,设数轴上点A 表示得数为a,点B 表示得数为b,则b a -=AB9、一个正数得绝对值等于它本身,一个负数得绝对值等于它得相反数,0得绝对值为0、 反过来,绝对值等于它本身得数为非负数(正数或0),绝对值等于它得相反数为非正数(负数或0)、10、相反数:符号不同,绝对值相等得两个数互为相反数。
0得相反数就是0、在数轴上互为相反数得两个数表示得点,分居在原点两侧,并且到原点得距离相等。
相反数等于本身得数只有0、在一个数前面添上“+”号还表示这个数,在一个数前面添上“—”号,就表示求这个数得相反数。
二、实数大小得比较11、在数轴上表示两个数,右边得数总比左边得数大。
12、正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大得反而小。
三、实数得运算13、加法:(1)同号两数相加,取原来得符号,并把它们得绝对值相加;(2)异号两数相加,取绝对值较大得加数得符号,并用较大得绝对值减去较小得绝对值。
苏教版七年级上册数学[有理数与无理数 知识点整理及重点题型梳理]
苏教版七年级上册数学重难点突破知识点梳理及重点题型巩固练习有理数与无理数知识讲解【学习目标】1、理解有理数的意义,知道无理数是客观存在的,了解无理数的概念.2、会判断一个数是有理数还是无理数.【要点梳理】要点一、有理数我们把能够写成分数形式mn(m,n是整数,n≠0)的数叫做有理数.要点诠释:(1)有限小数和循环小数都可以化为分数,他们都是有理数.(2)所有整数都可以写成分母是1的分数,因此可以理解为整数和分数统称为有理数.要点二、无理数1.定义:无限不循环小数叫做无理数.要点诠释:(1)无理数的特征:无理数的小数部分位数无限.无理数的小数部分不循环,不能表示成分数的形式.(2)目前常见的无理数有两种形式:①含π类.②看似循环而实质不循环的数,如:1.313113111…….2.有理数与无理数的区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.要点三、循环小数化分数1.定义:如果一个无限小数的各数位上的数字,从小数部分的某一位起,按一定顺序不断重复出现,那么这样的小数叫做无限循环小数,简称循环小数,其中重复出现的一个或几个数字叫做它的一个循环节.2.纯循环小数从小数点后面第一位起就开始循环的小数,叫做纯循环小数.例如:0.666…、0.2..纯循环小数化为分数的方法是:分子是一个循环节的数字组成的数;分母的各位数字都是9,9的个数等于一个循环节的位数.例如310.393==,18970.18999937==.3.混循环小数如果小数点后面的开头几位不循环,到后面的某一位才开始循环,这样的小数叫做混循环小数.例如:0.12、0.3456456….混循环小数化为分数的方法是:分子是不循环部分和一个循环节的数字组成的数减去不循环部分的数字组成的数所得的差,分母就是按一个循环节的位数写几个9,再在后面按不循环部分的位数添写几个0组成的数.例如91891010.918990110-==,2392360.23990025-==,351353535100130.35135999009990037-===.要点诠释:(1)任何一个循环小数都可化为分数.(2)混循环小数化分数也可以先化为纯循环小数,然后再化为分数.【典型例题】类型一、有理数1.下列说法正确的是()A.整数就是正整数和负整数 B.分数包括正分数、负分数C.正有理数和负有理数统称有理数 D.无限小数叫做无理数【答案】B【解析】A选项整数包括正整数、负整数和0;C选项正有理数、负有理数和0统称有理数;D选项无限不循环小数才叫做无理数,所以选B.【总结升华】概念问题同学们往往忽略0的存在而模糊分类的界限,只有对定义达到真正的理解认识才不会出错.举一反三:【变式1】下列说法:①一个有理数不是整数就是分数;②有理数包括正有理数和负有理数;③分数可分为正分数和负分数;④存在最大的负整数;⑤不存在最小的正有理数.其中正确的个数是()A.2个 B.3个 C.4个 D.5个【答案】C【变式2】(2015•杭州模拟)是()A.整数 B.有限小数 C.无限循环小数 D.无限不循环小数【答案】C2.在实数,,0,,,﹣1.414,有理数有()A.1个 B.2个 C.3个 D.4个【思路点拨】根据有理数是有限小数或无限循环小数,可得答案.【答案】D【解析】解:,0,,﹣1.414,是有理数,【总结升华】本题考查了有理数,有理数是有限小数或无限循环小数.类型二、无理数3.(2016•盐城)下列实数中,是无理数的为()A.﹣4 B.0.101001 C. D.【思路点拨】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【答案】D【解析】解:A、﹣4是整数,是有理数,故本选项不符合题意;B、0.101001是小数,属于分数,故本选项不符合题意;C、是小数,属于分数,故本选项不符合题意;D、是无理数,正确;故选D.【总结升华】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.举一反三:【变式】以下各正方形的边长是无理数的是()A.面积为25的正方形;B.面积为16的正方形;C.面积为8的正方形;D.面积为1.44的正方形.【答案】C4.将下列各数填入相应的括号内3π,-2,1-2,3.020020002 0227,-(-2),2012,-0.23整数集合:{}分数集合:{}负有理数集合:{}无理数集合:{}【答案与解析】整数集合:{-2, 0,-(-2),2012}分数集合:{1-2,227,-0.23}负有理数集合:{-2,1-2,-0.23}无理数集合:{3π,3.020020002…,}【总结升华】本题考查了对有理数的有关概念的理解和应用,关键是能区分有关定义,注意:整数包括正整数、0、负整数;有理数包括正有理数、0、负有理数;无理数是指无限不循环小数.类型三、循环小数化分数5.把下列循环小数化分数【思路点拨】按循环小数化分数的规律方法化即可.【答案与解析】(1)(2),所以(3)(4)【总结升华】循环小数化分数时,整数部分不动,在掌握两种化简规律的基础上把小数部分进行相应的化简即可.举一反三:【变式】在6.4040…、3.333、9.505三个数中,是循环小数,把这个数化为分数可以写作.【答案】6.4040…;699。
苏教版初一数学知识点完整版
第一章有理数
1正数、负数、有理数、相反数、科学记数法、近似数
2数轴:用数轴来表示数
3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零
4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。
5有理数的加法法则:
同号两数相加,取相同的符号,并把绝对值相加;
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值;
互为相反数的两数相加为零;
一个数加上零,仍得这个数。
6有理数的减法(把减法转换为加法)
减去一个数,等于加上这个数的相反数。
7有理数乘法法则
两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数同零相乘,都得零。
乘积是一的两个数互为倒数。
第四章图形认识初步
1 几何图形:平面图和立体图
2 点、线、面、体
3 直线、射线、线段
两点确定一条直线;
两点之间,线段最短
4 角
角的度量度数
角的比较和运算
补角和余角:等角的补角和余角相等
初一下册
第五章相交线和平行线
1 相交线:对顶角相等
2 垂线
经过一点有且只有一条直线和已知直线垂直;
连接直线外一点与直线上各点的所有线段中,垂线段最短(垂线段最短)
8有理数的除法(转换为乘法)
除以一个不为零的数,等于乘这个数的倒数。
9有理数的乘方
正数的任何次幂都是正数;
零的任何次幂都是负数;
负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序
(1)先乘方,再乘除,最后加减;
(2)同级运算,从左到右进行;
苏教版七年级数学知识点总结
第一册第一章数学与我们同行第二章 有理数2.1正数和负数以前学过的0以外的数前面加上负号“-”的数叫做负数,像-154,-38.87,-117.3,-0.102% 以前学过的0以外的数叫做正数,像8844.43, 100, 357, 78数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义正整数、0、负整数统称整数,正分数和负分数统称分数。
2.2有理数与无理数 我们把能够写成分数形式)0,( n n m nm 是整数,的数叫做有理数。
整数和分数统称有理数。
有限小数和循环小数都可以化为分数,它们都是有理数。
无限不循环小数叫做无理数2.3 数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
在数轴上表示的两个数,右边的数总比左边的数大正数都大于0;负数都小于0;正数大于负数;两个负数,绝对值大的反而小。
一般地,设a 是一个正数,则数轴上表示a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。
2.4 绝对值与相反数数轴上表示一个数的点与原点的距离叫做这个数的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
两个正数,绝对值大的正数大;两个负数,绝对值大的负数小。
符号不同、绝对值相同的两个数叫做互为相反数,其中一个数叫做另一个数的相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
2.5 有理数的加减法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
⑶一个数同0相加,仍得这个数。
七年级下册数学知识点总结:有理数苏教版
七年级下册数学知识点总结:有理数(苏教版)一、大于0的数叫做正数。
二、在正数前面加上负号“-”的数叫做负数。
3、整数和分数统称为有理数。
4、人们通经常使用一条直线上的点表示数,这条直线叫做数轴。
数轴三要素:正方向、原点、单位长度。
五、在直线上任取一个点表示数0,那个点叫做原点。
六、一样的,数轴上表示数a的点与原点的距离叫做数a的绝对值。
7、由绝对值的概念可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
八、正数大于0,0大于负数,正数大于负数。
九、两个负数,绝对值大的反而小。
0、有理数加法法那么(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
(3)一个数同0相加,仍得那个数。
一、有理数的加法中,两个数相加,互换互换加数的位置,和不变。
二、有理数的加法中,三个数相加,先把前两个数相加,或先把后两个数相加,和不变。
3、有理数减法法那么减去一个数,等于加上那个数的相反数。
4、有理数乘法法那么两数相乘,同号得正,异号得负,并把绝对值向乘。
任何数同0相乘,都得0。
五、有理数中仍然有:乘积是1的两个数互为倒数。
六、一样的,有理数乘法中,两个数相乘,互换因数的位置,积相等。
7、三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等。
八、一样地,一个数同两个数的和相乘,等于把那个数别离同这两个数相乘,再把积相加。
20、两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
2一、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在an中,a叫做底数,n叫做指数。
2二、依照有理数的乘法法那么能够得出负数的奇次幂是负数,负数的偶次幂是正数。
显然,正数的任何次幂都是正数,0的任何次幂都是0。
23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
第一单元数学有理数 知识点梳理(苏教版)
第一单元数学有理数知识点梳理(苏教版)
有理数是数的一个重要的概念,在我们的数学研究中有着重要
的地位。
下面是第一单元数学有理数的知识点梳理。
有理数的定义
有理数由整数和分数组成,可以用分数形式表示。
有理数包括
正有理数、负有理数和0。
有理数的比较
根据有理数的大小关系,可以进行比较运算。
当两个有理数进
行比较时,可以根据它们的数值大小以及正负性进行判定。
- 如果两个有理数的数值相等,即使它们的符号不同,它们也
相等。
- 如果两个有理数的数值不等,可以根据它们的符号进行比较:- 正数大于0,0大于负数,正数大于负数。
- 负数小于0,0小于正数,负数小于正数。
有理数的加法和减法
有理数的加法和减法可以通过数轴上的移动来表示。
具体的运算规则如下:
- 两个正数相加,结果为正数。
- 两个负数相加,结果为负数。
- 正数与负数相加,结果的符号取决于它们的数值大小,绝对值较大的数的符号保留。
有理数的乘法和除法
有理数的乘法和除法同样可以通过数轴上的移动来表示。
具体的运算规则如下:
- 两个正数相乘,结果为正数。
- 两个负数相乘,结果为正数。
- 正数与负数相乘,结果为负数。
- 除法运算中,除数不能为0,如果除数和被除数的符号相同,结果为正数,如果符号不同,结果为负数。
这些是第一单元数学有理数的主要知识点,通过对这些知识点
的理解和掌握,我们可以更好地应用有理数进行数学计算和解决问题。
苏教版七年级数学-有理数整理、修订篇
苏教版 七年级数学《有理数》1.1正数和负数负数:以前学过的0以外的数前面加上负号“-”的数叫做负数。
正数:以前学过的0以外的数叫做正数。
0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义 注:-a 不一定是负数,+a 也不一定是正数; 1.2.1有理数:凡能写成)0,(≠p q p pq为整数且形式的数,都是有理数。
(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.(2)有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 注意:1) 0不是正数,也不是负数;2) π不是有理数;无限不循环小数不是有理数。
无限循环小数是有理数; 3) 小数也归为分数。
4) 自然数⇔ 0和正整数;5) a >0 ⇔ a 是正数;a <0 ⇔ a 是负数; 6) a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; 7) a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2.2数轴:规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设a 是一个正数,则数轴上表示a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。
1.2.3.相反数:只有符号不同的两个数叫做相反数。
注意:(1)一般地,a 和-a 互为相反数,特别地,0的相反数还是0;(2) a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.一般地,设a 是一个正数,数轴上与原点的距离是a 的点有两个,它们分别在原点左右,表示-a 和a ,我们说这两点关于原点对称 1.2.4.绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏教版 七年级数学《有理数》1.1正数和负数负数:以前学过的0以外的数前面加上负号“-”的数叫做负数。
正数:以前学过的0以外的数叫做正数。
0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义 注:-a 不一定是负数,+a 也不一定是正数; 1.2.1有理数:凡能写成)0,(≠p q p pq为整数且形式的数,都是有理数。
(1)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.(2)有理数的分类:① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 注意:1) 0不是正数,也不是负数;2) π不是有理数;无限不循环小数不是有理数。
无限循环小数是有理数; 3) 小数也归为分数。
4) 自然数⇔ 0和正整数;5) a >0 ⇔ a 是正数;a <0 ⇔ a 是负数; 6) a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; 7) a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.1.2.2数轴:规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设a 是一个正数,则数轴上表示a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度。
1.2.3.相反数:只有符号不同的两个数叫做相反数。
注意:(1)一般地,a 和-a 互为相反数,特别地,0的相反数还是0;(2) a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ; (3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.一般地,设a 是一个正数,数轴上与原点的距离是a 的点有两个,它们分别在原点左右,表示-a 和a ,我们说这两点关于原点对称 1.2.4.绝对值:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值。
(1)一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
注:绝对值的意义是数轴上表示某数的点到原点的距离。
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0()0(a a a a a ;(3)绝对值的问题经常分类讨论;01>⇔=a aa ;a 1aa <⇔-=;(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|,baba =. (5)有理数比大小:①正数大于0,0大于负数,正数大于一切负数和0。
②两个负数,绝对值大的反而小。
③正数的绝对值越大,这个数越大; ④大数-小数 > 0,小数-大数 < 0;⑤在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,所以左边的数永远小于右边的数。
即数轴上的两个数,右边的数总比左边的数大补充:倒数:乘积为1的两个数互为倒数; 注(1)0没有倒数;若 a ≠0,那么a 的倒数是a1;(2)倒数是本身的数是±1;(3)若ab=1⇔ a、b互为倒数;若ab=-1⇔ a、b互为负倒数.1.3.1 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
(3)一个数与0相加,仍得这个数.有理数加法的运算律:(1)加法的交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a(2)加法的结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
(a+b)+c=a+(b+c).补充:去括号法则:(1)括号前是“+”,把括号和括号前的“+”去掉,括号里各项都不改变符号。
(2)括号前是“-”,把括号和括号前的“-”去掉,括号里各项都改变符号。
(3)括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。
1.3.2有理数减法法则:(有理数的减法可以转化为加法来进行)减去一个数,等于加上这个数的相反数;即a-b=a+(-b).1.4.1有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。
(4)乘积是1的两个数互为倒数。
有理数乘法的运算律:(1)乘法的交换律:两个数相乘,交换因数的位置,积相等。
ab=ba(2)乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
(ab)c=a(bc)(3)乘法的分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
a (b +c )=ab +ac1.4.2有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
a ÷b =a ·b1(b ≠0) 两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。
乘除混合运算往往 先将除法化成乘法,然后确定积的符号,最后求出结果。
注:零不能做除数,无意义即0a.1.5.1有理数乘方的法则:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在a n 中,a 叫做底数,叫做指数,当a n 看作a 的n 次方的结果时,也可以读作a 的n 次幂。
(1)负数的奇次幂是负数,负数的偶次幂是正数。
(2)正数的任何次幂都是正数,0的任何正整数次幂都是0。
(3)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或(a-b)n =(b-a)n . 有理数混合运算的运算顺序: ⑴先乘方,再乘除,最后加减; ⑵同极运算,从左到右进行;⑶如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行 (4)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;(5)据规律 ⇒⎪⎪⎭⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.1.5.2科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.注:用科学记数法表示一个n 位整数,其中10的指数是n -1。
1.5.3近似数和有效数字接近实际数目,但与实际数目还有差别的数叫做近似数。
精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。
从一个数的左边第一个非0 数字起,到末位数字止,所有数字都是这个数的有效数字。
对于用科学记数法表示的数a ×10n ,规定它的有效数字就是a 中的有效数字。
补充:(1)混合运算法则:先乘方,后乘除,最后加减; 注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.(2)特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.知识点1.负数代表相反意义的量例:(1)下列有正数和负数表示相反意义的量,其中正确的是( ) A. 一天凌晨的气温是—50C ,中午比凌晨上升100C ,所以中午的气温是+100C B. 如果生产成本增加12%,记作+12%,那么—12%表示生产成本降低12% C. 如果+5.2米表示比海平面高5.2米,那么—6米表示比海平面低—6米 D. 如果收入增加10元记作+10元,那么—8表示支出减少8元(2)某粮店出售三种品牌的面粉,袋上分别标有质量为(50±0.1)kg 、(50±0.2)kg 、(50±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相 差 . 知识点2.有理数的定义例:把下列各数填在相应的大括号内-7,3.5,12,3.3333,0,3π,+29,1.362109…,-1.15,-0.1010010001… 非负数集合{ }; 整数集合{ }; 负分数集合{ }; 有理数集合{ }。
知识点3.数轴与相反数1.(1)数轴上到-2点的距离是3的点是(2)在数轴上表示数a 的点到原点的距离为3,则._________3=-a 2.-3的相反数是 ,3-π的相反数是 3.a 与b 互为相反数,c 与d 互为倒数,a+b -cd= 4.比较大小45-89-5.(1) 有理数a 对应点在数轴上的位置如下图所示,则a ,-a ,1的大小关系是。
(2)有理数a 、b 在数轴上的对应的位置如图所示: 则( )A .a + b <0B .a + b >0;C .a -b = 0D .a -b >0 知识点4.绝对值1.若∣a ∣=-a ,则a ,若∣a ∣=a ,则a若a 为有理数,且1,a b c a b c ++==1,则a 0,若a ∠0,则1,a b c a b c++== 2. ∣3-π∣=若用A 、B 、C 分别表示有理数a ,b ,c ,O 为原点,如下图所示:化简= 。
3.绝对值为2的数是 ,绝对值小于6的所有整数是4.若∣x ∣=3,∣-y ∣=3,则x+y=5.若∣a ∣=3,∣b ∣=5, 且ab>0,则∣a+b ∣=若|X|=2,则X=______,若|X —3|=0,则X=______,|X —3|=6,则X=______ 若∣a ∣=∣b ∣,则a 与b ,即 。
6. ∣a+2∣+∣b-3∣=0,a+b= 知识点5.加减运算1.加减混合运算:先去括号,再把同号的相加,最后异号两数相加例:38+(-22)+(+62)+(-78) (-8)+(-10)+2+(-1)0.5+(-41)-(-2.75)+21 (+4.3)-(-4)+(-2.3)-(+4)-11ab||||||2a c b c b a c ---+++知识点6:有理数乘除运算法则乘法运算法则a:只要有一个因数为0,则积为0。
b:几个不为零的数相乘,积的符号由负数的个数决定,当负数的个数为奇数,则积为负,当负数的个数为偶数,则积为正。
例1、计算:(1)()()3275-⨯-⨯-⨯(2)5411511654⎛⎫⎛⎫⨯-⨯⨯-⎪ ⎪⎝⎭⎝⎭除法是乘法的逆运算1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与零相乘都得零。