孝感市中考数学试卷(含解析)

合集下载

湖北省孝感市中考数学试卷(解析版)

湖北省孝感市中考数学试卷(解析版)

湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选(C)【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.下列计算正确的是()A.b3b3=2b3B.=a2﹣4C.﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A 顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA 上是解题的关键.9.如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC 分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF 的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:B.【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键.10.如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数27500用科学记数法表示为 2.75×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:27500=2.75×104.故答案为:2.75×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.14.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH 的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.15.已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8小题,共72分)17.计算:﹣22++cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.19.今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95≤x≤1004B90≤x<95mC85≤x<90nD80≤x<8524E75≤x<808F70≤x<754请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80,表中:m=12,n=8;扇形统计图中,E等级对应扇形的圆心角α等于36度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.22.为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.01×40+14.4=10.4(万元).∵m=40时,y最小值=﹣又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB ,BD ,围成的曲边三角形的面积是 + ;(2)求证:DE 是⊙O 的切线; (3)求线段DE 的长.【分析】(1)连接OD ,由AB 是直径知∠ACB=90°,结合CD 平分∠ACB 知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S 扇形AOD+S △BOD可得答案;(2)由∠AOD=90°,即OD ⊥AB ,根据DE ∥AB 可得OD ⊥DE ,即可得证; (3)勾股定理求得BC=8,作AF ⊥DE 知四边形AODF 是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC 知tan ∠EAF=tan ∠CBA ,即=,求得EF 的长即可得.【解答】解:(1)如图,连接OD ,∵AB 是直径,且AB=10, ∴∠ACB=90°,AO=BO=DO=5, ∵CD 平分∠ACB ,∴∠ABD=∠ACD=∠ACB=45°, ∴∠AOD=90°,则曲边三角形的面积是S 扇形AOD +S △BOD =+×5×5=+,故答案为: +;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF=+5=.【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a (x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x ﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为(﹣1,﹣4),伴随直线为y=x﹣3,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为(0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的右侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴S△PBC∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2020年湖北省孝感市中考数学试卷(附答案解析)

2020年湖北省孝感市中考数学试卷(附答案解析)

2020年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.-2℃B.+2℃C.+3℃D.-3℃2.(3分)如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°3.(3分)下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b4.(3分)如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.(3分)某公司有10名员工,每人年收入数据如下表:年收入/万元46810人数/人3421则他们年收入数据的众数与中位数分别为()A.4,6B.6,6C.4,5D.6,56.(3分)已知x1,y1,那么代数式的值是()A.2B.C.4D.27.(3分)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位: )是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I B.I C.I D.I8.(3分)将抛物线C1:y=x2-2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=-x2-2B.y=-x2+2C.y=x2-2D.y=x2+29.(3分)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD =30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y 关于x的函数图象大致是()A.B.C.D.10.(3分)如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4D.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______.12.(3分)有一列数,按一定的规律排列成,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是______.13.(3分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为______m.(结果保留根号)14.(3分)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.15.(3分)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则的值为______.16.(3分)如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y和y(k<0)上,,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为______.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)计算:|1|-2sin60°+()0.18.(8分)如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.求证:EG=FH.19.(7分)有4张看上去无差别的卡片,上面分别写有数-1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)如图,在平面直角坐标系中,已知点A(-1,5),B(-3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为______;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos ∠BCE的值为______;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为______.21.(10分)已知关于x的一元二次方程x2-(2k+1)x k2-2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1-x2=3,求k的值.22.(10分)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.(10分)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出的值为______;②当⊙O的半径为2时,直接写出图中阴影部分的面积为______;(2)如图2,若 <60°,且,DE=4,求BE的长.24.(13分)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a-6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A______,B______,C______,D______;(2)如图1,直线DC交x轴于点E,若tan∠AED,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设-5<t≤m(m<0),求f的最大值.【试题答案】一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.A【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作-2℃.2.B【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°-40°=50°,∴∠AOC=∠BOD=50°.3.C【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;4.C【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,5.B【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,6.D【解答】解:原式=x+y当x1,y1,原式11=2.7.C【解答】解:设I,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I.8.A【解答】解:∵抛物线C1:y=x2-2x+3=(x-1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,-2),∴抛物线C3的解析式为y=-x2-2,9.D【解答】解:①当点P在AB上运动时,y AH×PH AP sin A×AP cos A x2x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=AB sin A=42,同理AH′=2,则y AH×PH(2x-4)×2=24+x,为一次函数;③当点P在CD上运动时,同理可得:y(26)×(4+6+2-x)=(3)(12-x),为一次函数;10.B【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5-x=BF,FG=8-x,∴EG=8-x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8-x)2,解得x,∴CE的长为,二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.1×106【解答】解:100万=1000000=1×106,12.-81【解答】解:设这三个数中的第一个数为x,则另外两个数分别为-3x,9x,依题意,得:x-3x+9x=-567,解得:x=-81.13.( 1.6)【解答】解:如图,在Rt△DEA中,∵cos∠EDA,∴DA5(m);在Rt△BCF中,∵cos∠BCF,∴CB(m),∴BF BC(m),∵AB+AE=EF+BF,∴AB=3.45 1.6(m).答:AB的长为( 1.6)m.14.C【解答】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100-10-41-100×21%=28(人),1200336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,15.【解答】解:设直角三角形另一条直角边为x,依题意有2x2m2,解得x m,由勾股定理得(m)2+(n m)2=m2,m2-2mn-2n2=0,解得m1=(-1)n(舍去),m2=(-1)n,则的值为.16.【解答】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴()2,∵A点在双曲线y,,∴S△AOM4=2,,∴()2,∴S△ODN,∵D点在双曲线y(k<0)上,∴|k|,∴k=-9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF,三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.)17.【解答】解:原式=-211=-2.18.【分析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,,∴△BEG≌△DFH(ASA),∴EG=FH.19.【分析】用列表法列举出所有可能出现的结果,从中找出“两数之差绝对值大于3”的结果数,进而求出概率.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3).20.【分析】(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A',连接A'B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A'B的解析式,令x =0,进而得到点F的坐标.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,-4);(2)如图所示,线段AE即为所求,cos∠BCE;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,-4);;(0,4).21.【分析】(1)根据根的判别式得出△=[-(2k+1)]2-4×1×(k2-2)=2(k+1)2+7>0,据此可得答案;(2)先根据根与系数的关系得出x1+x2=2k+1,x1x2k2-2,由x1-x2=3知(x1-x2)2=9,即(x1+x2)2-4x1x2=9,从而列出关于k的方程,解之可得答案.【解答】解:(1)∵△=[-(2k+1)]2-4×1×(k2-2)=4k2+4k+1-2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2k2-2,∵x1-x2=3,∴(x1-x2)2=9,∴(x1+x2)2-4x1x2=9,∴(2k+1)2-4×(k2-2)=9,化简得k2+2k=0,解得k=0或k=-2.22.【分析】(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg 丙产品的售价为3x元,根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”列方程解答即可;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40-3m)kg,根据题意列不等式求出m的取值范围;设按此方案购买40kg农产品所需费用为y元,根据题意求出y与m之间的函数关系式,再根据一次函数的性质解答即可.【解答】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg 丙产品的售价为3x元,根据题意,得:,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40-3m)kg,∴40-3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40-3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.23.【分析】(1)①由切线的性质得:∠OAF=90°,证明△ABC是等边三角形,得∠ABC=∠ACB=∠BAC=60°,根据三角形的内角和定理证明∠BAD=90°,可知BD是⊙O的直径,由圆周角,弧,弦的关系得AD=CD,说明△ADF是含30度的直角三角形,得AD=CD=2DF,可解答;②根据阴影部分的面积=S梯形AODF-S扇形OAD=代入可得结论;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,先证明△ADF≌△ADE(ASA),得DF=DE=4,由已知得DC=6,证明△CDE∽△BDC,列比例式可得BD=9,从而解答即可.【解答】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°-60°-60°=60°=∠OAD,∴OA∥DF,∴∠F=180°-∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴,∴AD=CD,∴CD=2DF,∴,故答案为:;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∴阴影部分的面积为:S梯形AODF-S扇形OADπ;故答案为:π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠F AO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵,∴△ADF≌△ADE(ASA),∵,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴,即,∴BD=9,∴BE=DB-DE=9-5=5.24.【分析】(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,即可求解;(2)由点C、D的坐标得,直线CD的表达式为:y=2ax+4a-6,进而求出点E(2,0),利用tan∠AED,即可求解;(3)①证明△FJH∽△ECO,故,则FH,即可求解;②f(t+3)2(-5<t≤m且m<0),即可求解.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=-1或-3;当x=0时,y=18,函数的对称轴为x=-2,故点A、B、C、D的坐标分别为(-3,0)、(-1,0)、(0,18)、(-2,-6);故答案为:(-3,0)、(-1,0)、(0,18)、(-2,-6);(2)y=ax2+4ax+4a-6,令x=0,则y=4a-6,则点C(0,4a-6),函数的对称轴为x=-2,故点D的坐标为(-2,-6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a-6,令y=0,则x2,故点E(2,0),则OE2,tan∠AED,解得:a,故点C、E的坐标分别为(0,)、(,0),则CE;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y x2x,故点A、C的坐标分别为(-5,0)、(0,),则点N(0,),由点A、N的坐标得,直线AN的表达式为:y x;设点P(t,t2t),则点F(t,t);则PF t2-3t,由点E(,0)、C的坐标得,直线CE的表达式为:y x,则点J(t,t),故FJ t,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH,f=PF+FH t2-3t(-t+1)t2-4t;②f t2-4t(t+3)2(-5<t≤m且m<0);∴当-5<m<-3时,f max m2-4m;当-3≤m<0时,f max.。

2020年湖北省孝感市中考数学试卷(含解析)

2020年湖北省孝感市中考数学试卷(含解析)

2020年湖北省孝感市中考数学试卷(考试时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃2.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°3.下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b4.如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.某公司有10名员工,每人年收入数据如下表:年收入/万元 4 6 8 10人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为()A.4,6 B.6,6 C.4,5 D.6,56.已知x=﹣1,y=+1,那么代数式的值是()A.2 B.C.4 D.27.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=B.I=C.I=D.I=8.将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2 B.y=﹣x2+2 C.y=x2﹣2 D.y=x2+29.如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C →D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A.B.C.D.10.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A.B.C.4 D.二、填空题(每小题3分,共18分)11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为.12.有一列数,按一定的规律排列成,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是.13.某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为m.(结果保留根号)14.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C 类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有人.15.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则的值为.16.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=和y=(k<0)上,=,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.三、解答题(共72分)17.(6分)计算:+|﹣1|﹣2sin60°+()0.18.(8分)如图,在▱ABCD中,点E在AB的延长线上,点F在CD的延长线上,满足BE=DF.连接EF,分别与BC,AD交于点G,H.求证:EG=FH.19.(7分)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)如图,在平面直角坐标系中,已知点A(﹣1,5),B(﹣3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB,使点A平移到点C,画出平移后所得的线段CD,并写出点D的坐标为;(2)将线段AB绕点A逆时针旋转90°,画出旋转后所得的线段AE,并直接写出cos∠BCE的值为;(3)在y轴上找出点F,使△ABF的周长最小,并直接写出点F的坐标为.21.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2﹣2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1﹣x2=3,求k的值.22.(10分)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg乙产品的售价比1kg 甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.(10分)已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出的值为;②当⊙O的半径为2时,直接写出图中阴影部分的面积为;(2)如图2,若α<60°,且=,DE=4,求BE的长.24.(13分)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A ,B ,C ,D ;(2)如图1,直线DC交x轴于点E,若tan∠AED=,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.参考答案与试题解析一1.【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.2.【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°﹣40°=50°,∴∠AOC=∠BOD=50°.故选:B.3.【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;故选:C.4.【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,故选:C.5.【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,故选:B.6.【解答】解:原式==x+y当x=﹣1,y=+1,原式=﹣1++1=2.故选:D.7.【解答】解:设I=,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=.故选:C.8.【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.9.【解答】解:①当点P在AB上运动时,y=AH×PH=×APsinA×APcosA=×x2×=x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=ABsinA=4×=2,同理AH′=2,则y=×AH×PH=(2+x﹣4)×2=2﹣4+x,为一次函数;③当点P在CD上运动时,同理可得:y=×(2+6)×(4+6+2﹣x)=(3)(12﹣x),为一次函数;故选:D.10.【解答】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5﹣x=BF,FG=8﹣x,∴EG=8﹣x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8﹣x)2,解得x=,∴CE的长为,故选:B.二11.【解答】解:100万=1000000=1×106,故答案:1×106.12.【解答】解:设这三个数中的第一个数为x,则另外两个数分别为﹣3x,9x,依题意,得:x﹣3x+9x=﹣567,解得:x=﹣81.故答案为:﹣81.13.【解答】解:如图,在Rt△DEA中,∵cos∠EDA=,∴DA==5(m);在Rt△BCF中,∵cos∠BCF=,∴CB==(m),∴BF=BC=(m),∵AB+AE=EF+BF,∴AB=3.4+﹣5=﹣1.6(m).答:AB的长为(﹣1.6)m.故答案为:(﹣1.6),14.【解答】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100﹣10﹣41﹣100×21%=28(人),1200×=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,故答案为:336.15.【解答】解:设直角三角形另一条直角边为x,依题意有2x2=m2,解得x=m,由勾股定理得(m)2+(n+m)2=m2,m2﹣2mn﹣2n2=0,解得m1=(﹣1﹣)n(舍去),m2=(﹣1+)n,则的值为.故答案为:.16.【解答】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴=()2,∵A点在双曲线y=,=,∴S△AOM=×4=2,=,∴=()2,∴S△ODN=,∵D点在双曲线y=(k<0)上,∴|k|=,∴k=﹣9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF=+=,故答案为.三17.【解答】解:原式=﹣2+﹣1﹣+1=﹣2.18.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,,∴△BEG≌△DFH(ASA),∴EG=FH.19.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为=,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3)==.20.【解答】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,﹣4);(2)如图所示,线段AE即为所求,cos∠BCE===;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,﹣4);;(0,4).21.【解答】解:(1)∵△=[﹣(2k+1)]2﹣4×1×(k2﹣2)=4k2+4k+1﹣2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=k2﹣2,∵x1﹣x2=3,∴(x1﹣x2)2=9,∴(x1+x2)2﹣4x1x2=9,∴(2k+1)2﹣4×(k2﹣2)=9,化简得k2+2k=0,解得k=0或k=﹣2.22.【解答】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg丙产品的售价为3x元,根据题意,得:,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40﹣3m)kg,∴40﹣3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40﹣3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.23.【解答】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°﹣60°﹣60°=60°=∠OAD,∴OA∥DF,∴∠F=180°﹣∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴,∴AD=CD,∴CD=2DF,∴=,故答案为:;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∵∠AOD=60°,∴阴影部分的面积为:S梯形AODF﹣S扇形OAD=﹣==π;故答案为:π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠FAO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵,∴△ADF≌△ADE(ASA),∴DF=DE=4,∵,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴,即,∴BD=9,∴BE=DB﹣DE=9﹣5=5.24.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=﹣2,故点E(﹣2,0),则OE=﹣2,tan∠AED===,解得:a=,故点C、E的坐标分别为(0,﹣)、(,0),则CE==;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y=x2+x﹣,故点A、C的坐标分别为(﹣5,0)、(0,﹣),则点N(0,﹣),由点A、N的坐标得,直线AN的表达式为:y=﹣x﹣;设点P(t,t2+t﹣),则点F(t,﹣t﹣);则PF=﹣t2﹣3t+,由点E(,0)、C的坐标得,直线CE的表达式为:y=x﹣,则点J(t,t﹣),故FJ=﹣t+,∵FH⊥DE,JF∥y轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故,则FH=,f=PF+FH=﹣t2﹣3t++(﹣t+1)=﹣t2﹣4t+;②f=﹣t2﹣4t+=﹣(t+3)2+(﹣5<t≤m且m<0);∴当﹣5<m<﹣3时,f max=﹣m2﹣4m+;当﹣3≤m<0时,f max=。

2020年湖北省孝感市中考数学试卷附详细答案解析

2020年湖北省孝感市中考数学试卷附详细答案解析

2020年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣的绝对值是()A.﹣3 B.3 C.D.﹣2.(3分)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个B.3个C.2个D.1个3.(3分)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b4.(3分)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.5.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.6.(3分)方程=的解是()A.x=B.x=5 C.x=4 D.x=﹣57.(3分)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为8.(3分)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)9.(3分)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.10.(3分)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为.12.(3分)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.13.(3分)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB 的值最小,则点P的坐标为.14.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.15.(3分)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD 的度数为.16.(3分)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.三、解答题(本大题共8小题,共72分)17.(6分)计算:﹣22++•cos45°.18.(8分)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.19.(9分)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A 95≤x≤100 4B 90≤x<95 mC 85≤x<90 nD 80≤x<85 24E 75≤x<80 8F 70≤x<75 4请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为,表中:m= ,n= ;扇形统计图中,E等级对应扇形的圆心角α等于度;(2)该校决定从本次抽取的 A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.(8分)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.21.(8分)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.22.(10分)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2020年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2020年市政府经过招标,决定年内采购并安装劲松公司A,B 两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的 5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?23.(10分)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是;(2)求证:DE是⊙O的切线;(3)求线段DE的长.24.(13分)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为,伴随直线为,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为和;(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.2020年湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2020•孝感)﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选C【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.(3分)(2020•孝感)如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个B.3个C.2个D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.(3分)(2020•孝感)下列计算正确的是()A.b3•b3=2b3B.(a+2)(a﹣2)=a2﹣4C.(ab2)3=ab6D.(8a﹣7b)﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2020•孝感)一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.(3分)(2020•孝感)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.(3分)(2020•孝感)方程=的解是()A.x=B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.(3分)(2020•孝感)下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.(3分)(2020•孝感)如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA上是解题的关键.9.(3分)(2020•孝感)如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC分别交AB,AC于点E,F.已知△ABC 的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:B.【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x 的关系式是解决问题的关键.10.(3分)(2020•孝感)如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)(2020•孝感)我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数字27500用科学记数法表示为 2.75×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:27500=2.75×104.故答案为:2.75×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.(3分)(2020•孝感)如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.(3分)(2020•孝感)如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.14.(3分)(2020•孝感)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.15.(3分)(2020•孝感)已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.(3分)(2020•孝感)如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A 的坐标为(n,1),则k的值为.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8小题,共72分)17.(6分)(2020•孝感)计算:﹣22++•cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.(8分)(2020•孝感)如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.19.(9分)(2020•孝感)今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A 95≤x≤100 4B 90≤x<95 mC 85≤x<90 nD 80≤x<85 24E 75≤x<80 8F 70≤x<75 4请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80 ,表中:m= 12 ,n= 8 ;扇形统计图中,E等级对应扇形的圆心角α等于36 度;(2)该校决定从本次抽取的 A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.(8分)(2020•孝感)如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.(8分)(2020•孝感)已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1,x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1•x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1•x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的 m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.22.(10分)(2020•孝感)为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B 两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,2020年每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)2020年市政府经过招标,决定年内采购并安装劲松公司A,B 两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的 5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.∵m=40时,y最小值=﹣0.1×40+14.4=10.4(万元).又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.(10分)(2020•孝感)如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB,BD,围成的曲边三角形的面积是+;(2)求证:DE是⊙O的切线;(3)求线段DE的长.【分析】(1)连接OD,由AB是直径知∠ACB=90°,结合CD平分∠ACB知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S扇形AOD+S△BOD可得答案;(2)由∠AOD=90°,即OD⊥AB,根据DE∥AB可得OD⊥DE,即可得证;(3)勾股定理求得BC=8,作AF⊥DE知四边形AODF是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC知tan∠EAF=tan∠CBA,即=,求得EF的长即可得.【解答】解:(1)如图,连接OD,∵AB是直径,且AB=10,∴∠ACB=90°,AO=BO=DO=5,∵CD平分∠ACB,∴∠ABD=∠ACD=∠ACB=45°,∴∠AOD=90°,则曲边三角形的面积是S扇形AOD+S△BOD=+×5×5=+,故答案为:+;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF=+5=.【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.(13分)(2020•孝感)在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a(x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为(﹣1,﹣4),伴随直线为y=x﹣3 ,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为(0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的左侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m 的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],∴S△PBC=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2022年湖北省孝感市中考数学试题及答案

2022年湖北省孝感市中考数学试题及答案

2022年孝感市中考数学试题一、选择题〔本大题共12小题,每题3分,总分值36分〕 1.-5的绝对值是【】A .5B .-5C . 1 5D .- 152.我国平均每平方千米的土地上,一年从太阳得到的能量相当于燃烧130000吨煤所产生的能量.130000用科学记数法表示为【】A .13×104B .1.3×105C .0.13×106D .1.3×108 3.∠α是锐角,∠α与∠β互补,∠α与∠γ互余,那么∠β-∠γ的值是【】 A .45º B .60º C .90º D .180º 4.以下运算正确的选项是【】A .3a 2·2a 2=6a 6B .4a 2÷2a 2=2aC .3a -a =2aD .a +b =a +b5.几个棱长为1的正方体组成的几何体的三视图如以下列图所示,那么这个几何体的体积是【】 A .4 B .5 C .6 D .7 6.以下事件中,属于随机事件的是【】 A .通常水加热到100ºC 时沸腾B .测量孝感某天的最低气温,结果为-150ºC C .一个袋中装有5个黑球,从中摸出一个是黑球D .篮球队员在罚球线上投篮一次,未投中7.如图,在塔AB 前的平地上选择一点C ,测出塔顶的仰角为30º,从C 点向塔底B 走100m 到达D 点,测出塔顶的仰角为45º,那么塔AB 的高为【】A .503mB .1003mC .50(3-1)mD .50(3+1)m8.假设关于x 的一元一次不等式组⎩⎨⎧x -a >01-2x >x -2无解,那么a 的取值范围是【】A .a ≥1B .a >1C .a ≤-1D .a <-19.如图,△ABC 在平面直角坐标系中的第二象限内,顶点A 的坐标是(-2,3),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作△A 1B 1C 1关于x 轴的对称图形△A 2B 2C 2,那么顶点A 2的坐标是【】 A .(-3,2) B .(2,-3) C .(1,-2) D .(3,-1)10.假设正比例函数y =-2x 与反比例函数y = kx的图象的一个交点坐标为(-1,2),那么另一个交点的坐标为【】A .(2,-1)B .(1,-2)C .(-2,-1)D .(-2,1)11.如图,在△ABC中,AB=AC,∠A=36º,BD平分∠ABC交AC于点D.假设AC=2,那么AD的长是【】A.5-12B.5+12C.5-1 D.5+112.如图,在菱形ABCD中,∠A=60º,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有【】①∠BGD=120º;②BG+DG=CG;③△BDF≌△CGB;④S△ADE=34AB2.A.1个B.2个C.3个D.4个二、填空题〔本大题共6小题,每题3分,总分值18分〕13.分解因式:a3b-ab=.14.计算:cos230º+tan30º·sin60º=.15.2022年北京成功举办了一届举世瞩目的奥运会,今年的奥运会将在英国伦敦举行,奥运会的年份与届数如下表所示:表中n的值等于.16.把如下列图的长方体材料切割成一个体积最大的圆柱,那么这个圆柱的体积是(结果不取近似值).17.一组数据x1,x2,…,x n的方差是S2,那么新的一组数据ax1+1,ax2+1,…,ax n+1(a为非零常数)的方差是(用含a和S2的代数式表示).18.二次函数y=ax2+bx+c(a≠0)的图象的对称轴是直线x=1,其图象的一局部如下列图.以下说法正确的选项是(填正确结论的序号).①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<时,y>0.三、解答题〔本大题共7小题,总分值66分〕19.(6分)先化简,再求值:a-ba÷⎝⎛⎭⎫a-2ab-b2a,其中a=3+1,b=3-1.20.(8分)我们把依次连接任意四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,依次连接各边中点得到中点四边形EFGH.(1)这个中点四边形EFGH的形状是;(2)证明你的结论.21.(8分)在6张卡片上分别写有1~6的整数,随机抽取一张后放回,再随机抽取一张.(1)用列表或画树状图表示所有可能出现的结果;(2)记第一取出的数字为a,第二取出的数字为b,求ba是整数的概率.22.(10分)如图,AB是⊙O的直径,AM、BN分别与⊙O相切于点A、B,CD交AM、BN于点D、C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)假设AD=4,BC=9,求⊙O的半径R.23.(10分)为提醒人们节约用水,及时修好漏水的水龙头,两名同学分别做了水龙头漏水实验,他们用于接水的量筒最大容量为100毫升.实验一:小王同学在做水龙头漏水实验时,每隔10秒观察量筒中水的体积,记录的数据如下表(漏出的水量精确到1毫升):(1)在图1的坐标系中描出上表中数据对应的点;(2)如果小王同学继续实验,请探求多少秒后量筒中的水会满而溢出(精确到1秒)(3)按此漏水速度,一小时会漏水千克(精确到0.1千克).实验二:小李同学根据自己的实验数据画出的图象如图2所示,为什么图象中会出现与横轴“平行〞的局部24.(12分)关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)假设x1、x2是原方程的两根,且|x1-x2|=22,求m的值和此时方程的两根.25.(12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)、B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式及顶点D的坐标;(2)P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC的面积的最大值和此时点P的坐标;(3)点Q是抛物线第一象限上的一个动点,过点Q作QN∥AC交x轴于点N.当点Q的坐标为时,四边形QNAC是平行四边形;当点Q的坐标为时,四边形QNAC是等腰梯形(直接写出结果,不写求解过程).参考答案及评分标准。

2019-2020学年湖北省孝感市中考数学试卷(含解析及答案)

2019-2020学年湖北省孝感市中考数学试卷(含解析及答案)

2019-2020学年湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题10小题,每小题3分,共30分,在每小题出的四个选项中只有一项是符合题目求的,不涂,错涂或涂的代号超过一个,一律得0分)1.(3.00分)(2018•孝感)﹣的倒数是()A.4 B.﹣4 C.D.162.(3.00分)(2018•孝感)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42°B.50°C.60°D.68°3.(3.00分)(2018•孝感)下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A.B.C.D.4.(3.00分)(2018•孝感)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sinA等于()A.B.C.D.5.(3.00分)(2018•孝感)下列说法正确的是()A.了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件6.(3.00分)(2018•孝感)下列计算正确的是()A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a57.(3.00分)(2018•孝感)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52 B.48 C.40 D.208.(3.00分)(2018•孝感)已知x+y=4,x﹣y=,则式子(x﹣y+)(x+y ﹣)的值是()A.48 B.12C.16 D.129.(3.00分)(2018•孝感)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B 点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.10.(3.00分)(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)11.(3.00分)(2018•孝感)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是千米.12.(3.00分)(2018•孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为cm2.13.(3.00分)(2018•孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是.14.(3.00分)(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是cm.15.(3.00分)(2018•孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是.16.(3.00分)(2018•孝感)如图,在平面直角坐标系中,正方形ABCD的顶点A 的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为.三、用心做一做做,显显自己的能力!(本大题共8小题,满分72分)17.(6.00分)(2018•孝感)计算:(﹣3)2+|﹣4|+﹣4cos30°.18.(8.00分)(2018•孝感)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.19.(9.00分)(2018•孝感)在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗队飘,引我成长”知识竞赛,赛后机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成A,B,C,D,E五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)D类所对应的圆心角是度,样本中成绩的中位数落在类中,并补全条形统计图;(2)若A类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图法求恰好抽到1名男生和1名女生的概率.20.(7.00分)(2018•孝感)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是;(2)若∠ABC=70°,求∠BPC的度数.21.(9.00分)(2018•孝感)已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.22.(10.00分)(2018•孝感)“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B 型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.23.(10.00分)(2018•孝感)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=2,CF=2,求AE和BG的长.24.(13.00分)(2018•孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.2019-2020学年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题10小题,每小题3分,共30分,在每小题出的四个选项中只有一项是符合题目求的,不涂,错涂或涂的代号超过一个,一律得0分)1.(3.00分)(2018•孝感)﹣的倒数是()A.4 B.﹣4 C.D.16【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣的倒数为:﹣4.故选:B.【点评】此题主要考查了倒数的定义,正确把握定义是解题关键.2.(3.00分)(2018•孝感)如图,直线AD∥BC,若∠1=42°,∠BAC=78°,则∠2的度数为()A.42°B.50°C.60°D.68°【分析】依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.【解答】解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3.(3.00分)(2018•孝感)下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A.B.C.D.【分析】先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.【解答】解:A、此不等式组的解集为x<2,不符合题意;B、此不等式组的解集为2<x<4,符合题意;C、此不等式组的解集为x>4,不符合题意;D、此不等式组的无解,不符合题意;故选:B.【点评】本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.4.(3.00分)(2018•孝感)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,则sinA等于()A.B.C.D.【分析】先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.【解答】解:在Rt△ABC中,∵AB=10、AC=8,∴BC===6,∴sinA===,故选:A.【点评】本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.5.(3.00分)(2018•孝感)下列说法正确的是()A.了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则甲的成绩比乙稳定C.三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D.“任意画一个三角形,其内角和是360°”这一事件是不可能事件【分析】根据随机事件的概念以及概率的意义结合选项可得答案.【解答】解:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,此选项错误;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,此选项错误;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确;故选:D.【点评】此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.6.(3.00分)(2018•孝感)下列计算正确的是()A.a﹣2÷a5=B.(a+b)2=a2+b2C.2+=2D.(a3)2=a5【分析】直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.【解答】解:A、a﹣2÷a5=,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.【点评】此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.7.(3.00分)(2018•孝感)如图,菱形ABCD的对角线AC,BD相交于点O,AC=10,BD=24,则菱形ABCD的周长为()A.52 B.48 C.40 D.20【分析】由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.【解答】解:∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,故选:A.【点评】此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质,属于中考常考题型.8.(3.00分)(2018•孝感)已知x +y=4,x ﹣y=,则式子(x ﹣y +)(x +y ﹣)的值是( )A .48B .12C .16D .12 【分析】先通分算加法,再算乘法,最后代入求出即可.【解答】解:(x ﹣y +)(x +y ﹣)=•=•=(x +y )(x ﹣y ),当x +y=4,x ﹣y=时,原式=4=12,故选:D .【点评】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.9.(3.00分)(2018•孝感)如图,在△ABC 中,∠B=90°,AB=3cm ,BC=6cm ,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A.B.C.D.【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【解答】解:由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.【点评】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.10.(3.00分)(2018•孝感)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为()A.5 B.4 C.3 D.2【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB 即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP==x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE﹣BH=a+2x﹣2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴=,即=,整理,得:2x2=(﹣1)ax,由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;故选:B.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)11.(3.00分)(2018•孝感)一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是 1.496×108千米.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:149600000=1.496×108,故答案为:1.496×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3.00分)(2018•孝感)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为16πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13.(3.00分)(2018•孝感)如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则方程ax2=bx+c的解是x1=﹣2,x2=1.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.所以方程ax2=bx+c的解是x1=﹣2,x2=1故答案为x1=﹣2,x2=1.【点评】本题考查抛物线与x轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题,属于中考常考题型.14.(3.00分)(2018•孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD之间的距离是2或14cm.【分析】分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可,小心别漏解.【解答】解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF﹣OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.【点评】本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.15.(3.00分)(2018•孝感)我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”从图中取一列数:1,3,6,10,…,记a1=1,a2=3,a3=6,a4=10,…,那么a4+a11﹣2a10+10的值是﹣24.【分析】由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.【解答】解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11﹣2a10+10=10+66﹣2×55+10=﹣24,故答案为:﹣24.【点评】本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.16.(3.00分)(2018•孝感)如图,在平面直角坐标系中,正方形ABCD的顶点A 的坐标为(﹣l,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,则△BCE的面积为7.【分析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B 作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=﹣x﹣1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【解答】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=﹣x﹣1,∴DG=BM,∴1﹣=﹣1﹣x﹣,x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣,∴E(﹣,﹣4),∴EH=2﹣=,∴CE=CH﹣HE=4﹣=,∴S=CE•BM=××4=7;△CEB故答案为:7.【点评】本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.三、用心做一做做,显显自己的能力!(本大题共8小题,满分72分)17.(6.00分)(2018•孝感)计算:(﹣3)2+|﹣4|+﹣4cos30°.【分析】直接利用二次根式的性质以及特殊角的三角函数值、绝对值的性质进而化简得出答案.【解答】解:原式=9+4+2﹣4×=13+2﹣2=13.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(8.00分)(2018•孝感)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED是平行四边形.【分析】由AB∥DE、AC∥DF利用平行线的性质可得出∠B=∠DEF、∠ACB=∠F,由BE=CF可得出BC=EF,进而可证出△ABC≌△DEF(ASA),根据全等三角形的性质可得出AB=DE,再结合AB∥DE,即可证出四边形ABED是平行四边形.【解答】证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.【点评】本题考查了平行线的性质、平行四边形的判定以及全等三角形的判定与性质,利用全等三角形的性质找出AB=DE是解题的关键.19.(9.00分)(2018•孝感)在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗队飘,引我成长”知识竞赛,赛后机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成A,B,C,D,E五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)D类所对应的圆心角是72度,样本中成绩的中位数落在C类中,并补全条形统计图;(2)若A类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图法求恰好抽到1名男生和1名女生的概率.【分析】(1)首先用C类别的学生人数除以C类别的人数占的百分率,求出共有多少名学生;然后根据B类别百分比求得其人数,由各类别人数和等于总人数求得D的人数,最后用360°乘以样本中D类别人数所占比例可得其圆心角度数,根据中位数定义求得答案.(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名担任校园广播“孝心伴我行”节目主持人,应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)∵被调查的总人数为30÷30%=100人,则B类别人数为100×40%=40人,所以D类别人数为100﹣(4+40+30+6)=20人,则D类所对应的圆心角是360°×=72°,中位数是第50、51个数据的平均数,而第50、51个数据均落在C类,所以中位数落在C类,补全条形图如下:(2)列表为:由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,∴恰好选到1名男生和1名女生的概率为=.【点评】此题考查了扇形统计图、条形统计图和列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.20.(7.00分)(2018•孝感)如图,△ABC中,AB=AC,小聪同学利用直尺和圆规完成了如下操作:①作∠BAC的平分线AM交BC于点D;②作边AB的垂直平分线EF,EF与AM相交于点P;③连接PB,PC.请你观察图形解答下列问题:(1)线段PA,PB,PC之间的数量关系是PA=PB=PC;(2)若∠ABC=70°,求∠BPC的度数.【分析】(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°﹣2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论.【解答】解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;(2)∵AB=AC,∴∠ABC=∠ACB=70°,∴∠BAC=180°﹣2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.【点评】本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.21.(9.00分)(2018•孝感)已知关于x的一元二次方程(x﹣3)(x﹣2)=p(p+1).(1)试证明:无论p取何值此方程总有两个实数根;(2)若原方程的两根x1,x2,满足x12+x22﹣x1x2=3p2+1,求p的值.【分析】(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6﹣p2﹣p,结合x12+x22﹣x1x2=3p2+1,即可求出p值.【解答】解:(1)证明:原方程可变形为x2﹣5x+6﹣p2﹣p=0.∵△=(﹣5)2﹣4(6﹣p2﹣p)=25﹣24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6﹣p2﹣p.又∵x12+x22﹣x1x2=3p2+1,∴(x1+x2)2﹣3x1x2=3p2+1,∴52﹣3(6﹣p2﹣p)=3p2+1,∴25﹣18+3p2+3p=3p2+1,∴3p=﹣6,∴p=﹣2.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22﹣x1x2=3p2+1,求出p值.22.(10.00分)(2018•孝感)“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B 型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.【分析】(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m ﹣200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量﹣a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.【解答】解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:=,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50﹣x)≤98000,解得:x≤40.W=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵当70<a<80时,120﹣a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,∴W的最大值是(23800﹣40a)元.【点评】本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.23.(10.00分)(2018•孝感)如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=2,CF=2,求AE和BG的长.【分析】(1)连接OD,AD,由圆周角定理可得AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD∥AC,从而由DG⊥AC可得OD⊥FG,即可得证;(2)连接BE.BE∥GF,推出△AEB∽△AFG,可得=,由此构建方程即可解决问题;【解答】解:(1)连接OD,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD∥AC,∵DG⊥AC,∴OD⊥FG,∴直线FG与⊙O相切;(2)连接BE.∵BD=2,∴,∵CF=2,∴DF==4,∴BE=2DF=8,∵cos∠C=cos∠ABC,∴=,∴=,∴AB=10,∴AE==6,∵BE⊥AC,DF⊥AC,∴BE∥GF,∴△AEB∽△AFG,∴=,∴=,∴BG=.【点评】本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质及中位线定理等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.24.(13.00分)(2018•孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为(﹣6,0),点E的坐标为(2,0);抛物线C1的解析式为y=﹣.抛物线C2的解析式为y=﹣;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.【分析】(1)根据旋转的性质,可得C,E,F的坐标,根据待定系数法法求解析式;(2)①根据P点直线CA或其关于x轴对称直线与抛物线交点坐标,求出解析式,联立方程组求解;②根据图象上的点满足函数解析式,可得P、N、M纵坐标,根据平行于y轴直线上两点间的距离是较大的较大的纵坐标间较小的纵坐标,可得二次函数,根据x取值范围讨论h范围.【解答】解:(1)由旋转可知,OC=6,OE=2,则点C坐标为(﹣6,0),E点坐标为(2,0),分别利用待定系数法求C1解析式为:y=﹣,C2解析式为:y=﹣故答案为:(﹣6,0),(2,0),y=﹣,y=﹣(2)①若点P在x轴上方,∠PCA=∠ABO时,则CA1与抛物线C1的交点即为点P设直线CA1的解析式为:y=k1x+b1∴解得∴直线CA1的解析式为:y=x+2联立:解得或根据题意,P点坐标为(﹣);若点P在x轴下方,∠PCA=∠ABO时,则CA1关于x轴对称的直线CA2与抛物线C1的交点即为点P设直线CA2解析式为y=k2x+b2∴解得∴直线CA2的解析式为:y=﹣x﹣2联立解得或由题意,点P坐标为(﹣)∴符合条件的点P为(﹣)或(﹣)②设直线BC的解析式为:y=kx+b∴解得∴设直线BC的解析式为:y=﹣x﹣6。

2020年湖北省孝感市中考数学试卷-解析版

2020年湖北省孝感市中考数学试卷-解析版

2020年湖北省孝感市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A. −2℃B. +2℃C. +3℃D. −3℃2.如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE=40°,则∠AOC的度数为()A. 40°B. 50°C. 60°D. 140°3.下列计算正确的是()A. 2a+3b=5abB. (3ab)2=9ab2C. 2a⋅3b=6abD. 2ab2÷b=2b4.如图是由5个相同的正方体组成的几何体,则它的左视图是()A.B.C.D.5.年收入/万元46810人数/人3421则他们年收入数据的众数与中位数分别为A. 4,6B. 6,6C. 4,5D. 6,56.已知x=√5−1,y=√5+1,那么代数式x 3−xy2x(x−y)的值是()A. 2B. √5C. 4D. 2√57.已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A. I=24RB. I=36RC. I=48RD. I=64R8.将抛物线C1:y=x2−2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A. y=−x2−2B. y=−x2+2C. y=x2−2D. y=x2+29.如图,在四边形ABCD中,AD//BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH的面积为y,则y关于x的函数图象大致是()A. B.C. D.10.如图,点E在正方形ABCD的边CD上,将△ADE绕点A顺时针旋转90°到△ABF的位置,连接EF,过点A作EF的垂线,垂足为点H,与BC交于点G.若BG=3,CG=2,则CE的长为()A. 54B. 154C. 4D. 92二、填空题(本大题共5小题,共15.0分)11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______.12.有一列数,按一定的规律排列成13,−1,3,−9,27,−81,….若其中某三个相邻数的和是−567,则这三个数中第一个数是______.13.某型号飞机的机翼形状如图所示,根据图中数据计算AB的长为______m.(结果保留根号)14.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则nm的值为______.15.如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=4x和y=kx (k<0)上,ACBD=23,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为______.三、解答题(本大题共9小题,共75.0分)16.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人.17. 计算:√−83+|√3−1|−2sin60°+(14)0.18. 如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF.连接EF ,分别与BC ,AD 交于点G ,H . 求证:EG =FH .19. 有4张看上去无差别的卡片,上面分别写有数−1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20. 如图,在平面直角坐标系中,已知点A(−1,5),B(−3,1)和C(4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为______;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos∠BCE 的值为______;(3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为______.21.已知关于x的一元二次方程x2−(2k+1)x+12k2−2=0.(1)求证:无论k为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x1,x2满足x1−x2=3,求k的值.22.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg乙产品的售价比1kg甲产品的售价多5元,1kg丙产品的售价是1kg甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg农产品最少要花费多少元?23.已知△ABC内接于⊙O,AB=AC,∠ABC的平分线与⊙O交于点D,与AC交于点E,连接CD并延长与⊙O过点A的切线交于点F,记∠BAC=α.(1)如图1,若α=60°,①直接写出DFDC的值为______;②当⊙O的半径为2时,直接写出图中阴影部分的面积为______;(2)如图2,若α<60°,且DFDC =23,DE=4,求BE的长.24.在平面直角坐标系中,已知抛物线y=ax2+4ax+4a−6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A______,B______,C______,D______;(2)如图1,直线DC交x轴于点E,若tan∠AED=4,求a的值和CE的长;3(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设−5<t≤m(m<0),求f的最大值.答案和解析1.【答案】A【解析】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作−2℃.故选:A.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数与负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.【答案】B【解析】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°−40°=50°,∴∠AOC=∠BOD=50°.故选:B.直接利用垂直的定义结合对顶角的性质得出答案.此题主要考查了垂线以及对顶角,正确得出∠BOD的度数是解题关键.3.【答案】C【解析】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a⋅3b=6ab,因此选项C符合题意;2ab2÷b=2ab,因此选项D不符合题意;故选:C.根据单项式乘以多项式、积的乘方幂的乘方以及整式加减的计算法则进行计算即可.本题考查单项式乘以多项式、积的乘方幂的乘方以及整式加减的计算法则,掌握计算法则是正确计算的前提.4.【答案】C【解析】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C的图形符合题意,故选:C.从左侧看几何体所得到的图形就是该几何体的左视图,从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C符合题意.本题考查简单几何体的三视图,明确三种视图的形状和大小是正确判断的前提.5.【答案】B【解析】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6,将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6,故选:B.根据中位数、众数的计算方法,分别求出结果即可.本题考查中位数、众数的计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.【答案】D【解析】解:原式=x(x+y)(x−y)x(x−y)=x+y当x=√5−1,y=√5+1,原式=√5−1+√5+1=2√5.故选:D.先将分式化简,再代入值求解即可.本题考查了分式的化简求值,解决本题的关键是掌握分式的化简.7.【答案】C【解析】解:设I=KR,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=48R.故选:C.直接利用待定系数法求出反比例函数解析式即可.此题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.8.【答案】A【解析】解:∵抛物线C1:y=x2−2x+3=(x−1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,−2),∴抛物线C3的解析式为y=−x2−2,故选:A.根据抛物线C1的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线C2的得到坐标,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的函数表达式.本题主要考查了二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可,关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数,难度适中.9.【答案】D【解析】解:①当点P在AB上运动时,y=12AH×PH=12×APsinA×APcosA=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH′=ABsinA=4×12=2,同理AH′=2√3,则y=12×AH×PH=12(2√3+x−4)×2=2√3−4+x,为一次函数;③当点P在CD上运动时,同理可得:y=12×(2√3+6)×(4+6+2−x)=(3+√3)(12−x),为一次函数;故选:D.分别求出点P在AB上运动、点P在BC上运动、点P在CD上运动时的函数表达式,进而求解.本题是运动型综合题,考查了动点问题的函数图象、解直角三角形、图形面积等知识点.解题关键是深刻理解动点的函数图象,了解图象中关键点所代表的实际意义,理解动点的完整运动过程.10.【答案】B【解析】解:如图所示,连接EG,由旋转可得,△ADE≌△ABF,∴AE=AF,DE=BF,又∵AG⊥EF,∴H为EF的中点,∴AG垂直平分EF,∴EG=FG,设CE=x,则DE=5−x=BF,FG=8−x,∴EG=8−x,∵∠C=90°,∴Rt△CEG中,CE2+CG2=EG2,即x2+22=(8−x)2,解得x=154,∴CE的长为154,故选:B.连接EG,根据AG垂直平分EF,即可得出EG=FG,设CE=x,则DE=5−x=BF,FG=EG=8−x,再根据Rt△CEG中,CE2+CG2=EG2,即可得到CE的长.本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.【答案】1×106【解析】解:100万=1000000=1×106,故答案:1×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.此题考查科学记数法的表示方法.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.12.【答案】−81【解析】解:设这三个数中的第一个数为x,则另外两个数分别为−3x,9x,依题意,得:x−3x+9x=−567,解得:x=−81.故答案为:−81.设这三个数中的第一个数为x,则另外两个数分别为−3x,9x,根据三个数之和为−567,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用以及数字的变化规律,找准等量关系,正确列出一元一次方程是解题的关键.13.【答案】(53√3−1.6)【解析】解:如图,在Rt△DEA中,∵cos∠EDA=DEDA,∴DA=5cos45∘=5√2(m);在Rt△BCF中,∵cos∠BCF=CFCB,∴CB=5cos30∘=10√33(m),∴BF=12BC=5√33(m),∵AB+AE=EF+BF,∴AB=3.4+5√33−5=5√33−1.6(m).答:AB的长为(53√3−1.6)m.故答案为:(53√3−1.6),如图,在Rt△DEA中,利用45°的余弦可计算出DA=5√2m;在Rt△BCF中利用30度的余弦可计算出CB10√33m,则BF=12BC=5√33m,然后利用AB+AE=EF+BF计算AB的长.本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).14.【答案】√3−12【解析】解:设直角三角形另一条直角边为x,依题意有2x2=12m2,解得x=12m,由勾股定理得(12m)2+(n+12m)2=m2,m2−2mn−2n2=0,解得m1=(−1−√3)n(舍去),m2=(−1+√3)n,则nm 的值为√3−12.故答案为:√3−12.可设直角三角形另一条直角边为x,根据S1=S2,可得2x2=12m2,则x=√22m,再根据勾股定理得到关于m,n的方程,可求nm的值.本题考查了勾股定理的证明,根据正方形的面积公式和三角形形的面积公式得出它们之间的关系是解题的关键.15.【答案】132【解析】解:作AM⊥x轴于M,DN⊥x轴于N,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOM+∠DON=∠ODN+DON=90°,∴∠AOM=∠ODN,∵∠AMO=∠OND=90°,∴△AOM∽△ODN,∴S△AOMS△ODN =(OAOD)2,∵A点在双曲线y=4x ,ACBD=23,∴S△AOM=12×4=2,OAOD=23,∴2S△ODN =(23)2,∴S△ODN=92,∵D点在双曲线y=kx(k<0)上,∴12|k|=92,∴k=−9,∵平行于x轴的直线与两双曲线分别交于点E,F,∴S△OEF=12×4+12×9=132,故答案为132.作AM⊥x轴于M,DN⊥x轴于N,易证得△AOM∽△ODN,根据系数三角形的性质即可求得k的值,然后根据反比例函数系数k的几何意义即可求得△OEF的面积.本题考查了反比例函数系数k的几何意义,菱形的性质,作出辅助线构建相似三角形是解题的关键.16.【答案】336【解析】解:本次抽取的学生有:10÷10%=100(人),B类学生有:100−10−41−100×21%=28(人),1200×28100=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人,故答案为:336.根据A类学生的人数和所占的百分比,可以求得本次抽取的学生,然后即可计算出B类学生,从而可以计算出该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有多少人.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:原式=−2+√3−1−√3+1=−2.【解析】分别根据立方根的定义,绝对值的定义,特殊角的三角函数值以及任何非零数的零次幂定义1计算即可.本题主要考查了实数的运算,熟记相应定义以及特殊角的三角函数值是解答本题的关键.18.【答案】证明:∵四边形ABCD是平行四边形,∴AB//CD,∠ABC=∠CDA,∴∠EBG=∠FDH,∠E=∠F,在△BEG与△DFH中,{∠E=∠FBE=DF∠EBG=∠FDH,∴△BEG≌△DFH(ASA),∴EG=FH.【解析】根据平行四边形的性质和全等三角形的判定和性质定理即可得到结论.本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.19.【答案】12【解析】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为24=12,故答案为:12;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种,∴P(差的绝对值大于3)=616=38.用列表法列举出所有可能出现的结果,从中找出“两数之差绝对值大于3”的结果数,进而求出概率.考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.20.【答案】(2,−4)√55(0,4)【解析】解:(1)如图所示,线段CD即为所求,点D的坐标为(2,−4);(2)如图所示,线段AE即为所求,cos∠BCE=CEBC =√10√50=√55;(3)如图所示,点F即为所求,点F的坐标为(0,4).故答案为:(2,−4);√55;(0,4).(1)根据点A平移到点C,即可得到平移的方向和距离,进而画出平移后所得的线段CD;(2)根据线段AB绕点A逆时针旋转90°,即可画出旋转后所得的线段AE;(3)先作出点A关于y轴的对称点A′,连接A′B交y轴于点F,依据两点之间,线段最短,即可得到此时△ABF的周长最小,根据待定系数法即可得出直线A′B的解析式,令x=0,进而得到点F的坐标.本题主要考查了利用平移变换和旋转变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.21.【答案】解:(1)∵△=[−(2k+1)]2−4×1×(12k2−2)=4k2+4k+1−2k2+8=2k2+4k+9=2(k+1)2+7>0,∵无论k为何实数,2(k+1)2≥0,∴2(k+1)2+7>0,∴无论k为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x1+x2=2k+1,x1x2=12k2−2,∵x1−x2=3,∴(x1−x2)2=9,∴(x1+x2)2−4x1x2=9,∴(2k+1)2−4×(12k2−2)=9,化简得k2+2k=0,解得k=0或k=−2.【解析】(1)根据根的判别式得出△=[−(2k+1)]2−4×1×(12k2−2)=2(k+1)2+ 7>0,据此可得答案;(2)先根据根与系数的关系得出x1+x2=2k+1,x1x2=12k2−2,由x1−x2=3知(x1−x2)2=9,即(x1+x2)2−4x1x2=9,从而列出关于k的方程,解之可得答案.本题主要考查根与系数的关系、根的判别式,解题的关键是掌握x1,x2是方程x2+px+ q=0的两根时,x1+x2=−p,x1x2=q.22.【答案】解:(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg 丙产品的售价为3x元,根据题意,得:270 3x =60x+5×3,解得:x=5,经检验,x=5既符合方程,也符合题意,∴x+5=10,3x=15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40−3m)kg,∴40−3m+m≤2m×3,∴m≥15,设按此方案购买40kg农产品所需费用为y元,根据题意,得:y=5(40−3m)+20m+15m=20m+200,∵20>0,∴y随m的增大而增大,∴m=5时,y取最小值,且y最小=300,答:按此方案购买40kg农产品最少要花费300元.【解析】(1)设1kg甲产品的售价为x元,则1kg乙产品的售价为(x+5)元,1kg丙产品的售价为3x元,根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”列方程解答即可;(2)设40kg的甲、乙、丙三种农产品搭配中丙种产品有xkg,则乙种产品有2mkg,甲乙种产品有(40−3m)kg,根据题意列不等式求出m的取值范围;设按此方案购买40kg 农产品所需费用为y元,根据题意求出y与m之间的函数关系式,再根据一次函数的性质解答即可.本题考查了一次函数的应用、分式方程的应用、一元一次不等式的应用.本题属于中档题,难度不大,解决该体系题目时,找准数量关系是解题的突破点.23.【答案】3√323π【解析】解:(1)如图1,连接OA,AD,∵AF是⊙O的切线,∴∠OAF=90°,∵AB=AC,∠BAC=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵BD平分∠ABC,∴∠ABD=∠CBD=30°,∵∠ADB=∠ACB=60°,∴∠BAD=90°,∴BD是⊙O的直径,∵OA=OB=OD,∴∠ABO=∠OAB=30°,∠OAD=∠ADO=60°,∵∠BDC=∠BAC=60°,∴∠ADF=180°−60°−60°=60°=∠OAD,∴OA//DF,∴∠F=180°−∠OAF=90°,∵∠DAF=30°,∴AD=2DF,∵∠ABD=∠CBD,∴AD⏜=CD⏜,∴AD=CD,∴CD=2DF,∴DFDC =12,故答案为:12;②∵⊙O的半径为2,∴AD=OA=2,DF=1,∵∠AOD=60°,∴阴影部分的面积为:S梯形AODF −S扇形OAD=12⋅AF⋅(DF+OA)−60π×22360=12×√3(1+2)−60π×4360=3√32−23π;故答案为:3√32−23π;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,∴∠DAH+∠DHA=90°,∵AF与⊙O相切,∴∠DAH+∠DAF=∠FAO=90°,∴∠DAF=∠DHA,∵BD平分∠ABC,∴∠ABD=∠CBD,∵AD⏜=CD⏜,∴∠CAD=∠DHA=∠DAF,∵AB=AC,∴∠ABC=∠ACB,∵四边形ABCD内接于⊙O,∴∠ABC+∠ADC=180°,∵∠ADF+∠ADC=180°,∴∠ADF=∠ABC,∵∠ADB=∠ACB=∠ABC,∴∠ADF=∠ADB,在△ADF和△ADE中∵{∠DAF=∠DAE AD=AD∠ADF=∠ADE,∴△ADF≌△ADE(ASA),∴DF=DE=4,∵DFDC =23,∴DC=6,∵∠DCE=∠ABD=∠DBC,∠CDE=∠CDE,∴△CDE∽△BDC,∴CDDB =DECD,即6BD=46,∴BD=9,∴BE=DB−DE=9−5=5.(1)①由切线的性质得:∠OAF=90°,证明△ABC是等边三角形,得∠ABC=∠ACB=∠BAC=60°,根据三角形的内角和定理证明∠BAD=90°,可知BD 是⊙O的直径,由圆周角,弧,弦的关系得AD=CD,说明△ADF是含30度的直角三角形,得AD=CD=2DF,可解答;②根据阴影部分的面积=S梯形AODF−S扇形OAD=代入可得结论;(2)如图2,连接AD,连接AO并延长交⊙O于点H,连接DH,则∠ADH=90°,先证明△ADF≌△ADE(ASA),得DF=DE=4,由已知得DC=6,证明△CDE∽△BDC,列比例式可得BD=9,从而解答即可.本题考查了切线的判定,圆周角定理,三角形内角和定理,等腰三角形的性质,相似三角形的性质和判定,全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.24.【答案】(−3,0) (−1,0) (0,18) (−2,−6)【解析】解:(1)当a =6时,抛物线的表达式为:y =6x 2+24x +18, 令y =0,则x =−1或−3;当x =0时,y =18,函数的对称轴为x =−2, 故点A 、B 、C 、D 的坐标分别为(−3,0)、(−1,0)、(0,18)、(−2,−6); 故答案为:(−3,0)、(−1,0)、(0,18)、(−2,−6);(2)y =ax 2+4ax +4a −6,令x =0,则y =4a −6,则点C(0,4a −6), 函数的对称轴为x =−2,故点D 的坐标为(−2,−6),由点C 、D 的坐标得,直线CD 的表达式为:y =2ax +4a −6, 令y =0,则x =3a −2,故点E(3a −2,0),则OE =3a −2, tan∠AED =OCOE =4a−63a−2=43,解得:a =23,故点C 、E 的坐标分别为(0,−103)、(52,0), 则CE =√(103)2+(52)2=256;(3)①如图,作PF 与ED 的延长线交于点J ,由(2)知,抛物线的表达式为:y =23x 2+83x −103,故点A 、C 的坐标分别为(−5,0)、(0,−103),则点N(0,−53), 由点A 、N 的坐标得,直线AN 的表达式为:y =−13x −53; 设点P(t,23t 2+83t −103),则点F(t,−13t −53); 则PF =−23t 2−3t +53,由点E(52,0)、C 的坐标得,直线CE 的表达式为:y =43x −103,则点J(t,43t −103),故FJ =−53t +53, ∵FH ⊥DE ,JF//y 轴,故∠FHJ=∠EOC=90°,∠FJH=∠ECO,∴△FJH∽△ECO,故FHOE =FJCE,则FH=OECE×FJ=−t+1,f=PF+FH=−23t2−3t+53+(−t+1)=−23t2−4t+83;②f=−23t2−4t+83=−23(t+3)2+263(−5<t≤m且m<0);∴当−5<m<−3时,f max=−23m2−4m+83;当−3≤m<0时,f max=263.(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,即可求解;(2)由点C、D的坐标得,直线CD的表达式为:y=2ax+4a−6,进而求出点E(3a−2,0),利用tan∠AED=OCOE=4a−63a−2=43,即可求解;(3)①证明△FJH∽△ECO,故FHOE =FJCE,则FH=OECE×FJ=−t+1,即可求解;②f=−23(t+3)2+263(−5<t≤m且m<0),即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、三角形相似等,综合性较强,难度较大.。

湖北省孝感市2020年中考数学试题(解析版)

湖北省孝感市2020年中考数学试题(解析版)

湖北省孝感市2020年中考数学试题─、精心选一选,相信自己的判断!1.如果温度上升3℃,记作3+℃,那么温度下降2℃记作( ) A. 2-℃ B. 2+℃C. 3+℃D. 3-℃【答案】A 【解析】 【分析】根据具有相反意义的量进行书写即可. 【详解】由题知:温度上升3℃,记作3+℃, ∴温度下降2℃,记作2-℃, 故选:A .【点睛】本题考查了具有相反意义的量的书写形式,熟知此知识点是解题的关键.2.如图,直线AB ,CD 相交于点O ,OE CD ⊥,垂足为点O .若40BOE ∠=︒,则AOC ∠的度数为( )A. 40︒B. 50︒C. 60︒D. 140︒【答案】B 【解析】 【分析】已知OE CD ⊥,40BOE ∠=︒,根据邻补角定义即可求出AOC ∠的度数. 【详解】∵OE CD ⊥ ∴90COE ∠=︒ ∵40BOE ∠=︒∴180?180904050AOC COE EOB ∠=-∠-∠=︒-︒-︒=︒ 故选:B【点睛】本题考查了垂直的性质,两条直线垂直,形成的夹角是直角;利用邻补角的性质求角的度数,平角度数为180°.3.下列计算正确是( )A. 235a b ab +=B. ()2239ab ab =C. 236a b ab ⋅=D. 222ab b b ÷=【答案】C 【解析】 【分析】据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变和单项式的乘法法则,逐一判断即可.【详解】A :2a 和3b 不是同类项,不能合并,故此选项错误; B :()22239ab a b =故B 错误; C :236a b ab ⋅=正确; D :222ab b ab =÷故D 错误.【点睛】本题考查了合并同类项以及单项式的乘法的知识,解答本题的关键是熟练掌握合并同类项的法则. 4.如图是由5个相同的正方体组成的几何体,则它的左视图是( )A. B. C. D.【答案】C 【解析】 【分析】从左面看,所得到的图形形状即为所求答案.【详解】从左面可看到第一层为2个正方形,第二层为1个正方形且在第一层第一个的上方, 故答案为:C .【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图. 5.某公司有10名员工,每人年收入数据如下表: 年收入/万元 4 6 8 10 人数/人 3421则他们年收入数据的众数与中位数分别为( ) A. 4,6 B. 6,6C. 4,5D. 6,5【答案】B 【解析】 【分析】数据出现最多的为众数;将数据从小到大排列,最中间的2个数的平均数为中位数. 【详解】6出现次数最多, 故众数为: 6, 最中间的2个数为6和6,中位数为6+6=62, 故选: B .【点睛】本题考查众数和中位数,需要注意,求解中位数前,一定要将数据进行排序.6.已知51x =-,51y =+,那么代数式()32x xy x x y --的值是( )A. 2B.5C. 4D. 25【答案】D 【解析】 【分析】先按照分式四则混合运算法则化简原式,然后将x 、y 的值代入计算即可.【详解】解:()32x xy x x y --=()()()x x y x y x x y +--=x+y=51-+51+=25. 故答案为D .【点睛】本题考查了分式的化简求值,根据分式四则混合运算法则化简分式是解答本题的关键. 7.已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示.则这个反比例函数的解析式为( )A. 24I R=B. 36I R=C. 48I R=D. 64I R=【答案】C 【解析】【分析】根据题意,电流与电阻是反比例函数关系,根据图中给出的坐标即可求出该反比例函数解析式. 【详解】根据题意,电流与电阻是反比例函数关系,在该函数图象上有一点(6,8), 故设反比例函数解析式为I=k R, 将(6,8)代入函数解析式中, 解得k=48, 故I=48R故选C .【点睛】本题主要考查反比例函数解析式的求解方法,掌握求解反比例函数解析式的方法是解答本题的关键.8.将抛物线21:23C y x x =-+向左平移1个单位长度,得到抛物线2C ,抛物线2C 与抛物线3C 关于x 轴对称,则抛物线3C 的解析式为( ) A. 22y x =-- B. 22y x =-+ C. 22y x =- D. 22y x =+【答案】A 【解析】 【分析】利用平移的规律:左加右减,上加下减.并用规律求函数解析式2C ,再因为关于x 轴对称的两个抛物线,自变量x 的取值相同,函数值y 互为相反数,由此可直接得出抛物线3C 的解析式.【详解】解:抛物线21:23C y x x =-+向左平移1个单位长度,得到抛物线2C :()()2+12+13=-+y x x ,即抛物线2C :22y x =+;由于抛物线2C 与抛物线3C 关于x 轴对称,则抛物线3C 的解析式为:22y x =--.故选:A .【点睛】主要考查了函数图象的平移、对称,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式以及关于x 轴对称的两个抛物线,自变量x 的取值相同,函数值y 互为相反数.9.如图,在四边形ABCD 中,AD BC ∥,90D ∠=︒,4AB =,6BC =,30BAD ∠=︒.动点P 沿路径A B C D →→→从点A 出发,以每秒1个单位长度的速度向点D 运动.过点P 作PH AD ⊥,垂足为H .设点P 运动的时间为x (单位:s ),APH 的面积为y ,则y 关于x 的函数图象大致是( )A. B.C. D.【答案】D 【解析】 【分析】分点P 在AB 边上,如图1,点P 在BC 边上,如图2,点P 在CD 边上,如图3,利用解直角三角形的知识和三角形的面积公式求出相应的函数关系式,再根据相应函数的图象与性质即可进行判断. 【详解】解:当点P 在AB 边上,即0≤x ≤4时,如图1, ∵AP=x ,30BAD ∠=︒, ∴13,22PH x AH x ==, ∴2113322y x x x =⋅⋅=;当点P 在BC 边上,即4<x ≤10时,如图2, 过点B 作BM ⊥AD 于点M ,则132,23,42PH BM AB AM AB MH BP x =======-, ∴()11234223422y AH PH x x =⋅=-⨯=+;当点P 在CD 边上,即10<x ≤12时,如图3, AD =236+,12PH x =-, ∴()()()()12361233122y x x =⨯+⨯-=+-;综上,y 与x的函数关系式是:()()()()()230423441033121012y x x y x x y x x ⎧=≤≤⎪⎪⎪=+-<≤⎨⎪=+-<≤⎪⎪⎩,其对应的函数图象应为:.故选:D .【点睛】本题以直角梯形为载体,主要考查了动点问题的函数图象、一次函数和二次函数的图象与性质以及解直角三角形等知识,属于常考题型,正确分类、列出相应的函数关系式是解题的关键.10.如图,点E 在正方形ABCD 的边CD 上,将ADE 绕点A 顺时针旋转90︒到ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若3BG =,2CG =,则CE 的长为( )A.54B.154C. 4D.92【答案】B 【解析】 【分析】根据正方形性质和已知条件可知BC=CD=5,再由旋转可知DE=BF,设DE=BF=x ,则CE=5-x ,CF=5+x ,然后再证明△ABG ∽△CEF ,根据相似三角形的性质列方程求出x ,最后求CE 即可. 【详解】解:∵3BG =,2CG = ∴BC=BG+GC=2+3=5 ∵正方形ABCD ∴CD=BC=5设DE=BF=x ,则CE=5-x ,CF=5+x ∵AH ⊥EF ,∠ABG=∠C=90°∴∠HFG+∠AGF=90°,∠BAG+∠AGF=90° ∴∠HFG=∠BAG ∴△ABG ∽△CEF∴CE BG FC AB = ,即5355x x -=+,解得x=54∴CE=CD-DE=5-54=154.故答案为B .【点睛】本题考查了正方形的性质和相似三角形的判定与性质,根据相似三角形的性质列方程求出DE 的长是解答本题的关键.二、细心填一填,试试自己的身手!11.原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为______. 【答案】6110⨯ 【解析】 【分析】先将100万写成1000000,然后再写成a×10n 的形式,其中1≤|a|<10,n 为1000000写成a 时小时点向左移动的位数.【详解】解:100万=1000000=6110⨯ 故答案为6110⨯.【点睛】本题考查了科学记数法,将1000000写成a×10n 的形式,确定a 和n 的值是解答本题的关键. 12.有一列数,按一定的规律排列成13,1-,3,9-,27,-81,….若其中某三个相邻数的和是567-,则这三个数中第一个数是______. 【答案】81- 【解析】 【分析】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设三个数为n ,-3n ,9n ,据题意列式即可求解. 【详解】题中数列的绝对值的比是-3,由三个相邻数的和是567-,可设第一个数是n ,则三个数为n ,-3 n ,9n由题意:()n 3n 9n 567+-+=-, 解得:n=-81, 故答案为:-81.【点睛】此题主要考查数列的规律探索与运用,一元一次方程与数字的应用,熟悉并会用代数式表示常见的数列,列出方程是解题的关键.13.某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为______m .(结果保留根号)【答案】531.6) 【解析】 【分析】如图(见解析),先在Rt BCF 中,解直角三角形可求出CF 的长,再根据等腰直角三角形的判定与性质可得DE 的长,从而可得CE 的长,然后根据线段的和差即可得.【详解】如图,过A 作//AE BF ,交DF 于点E ,则四边形ABFE 是矩形,5,AB EF AE BF m AE EF ∴===⊥由图中数据可知, 3.4CD m =,30CBF ∠=︒,45DAE ∠=︒,90F ∠=︒ 在Rt BCF 中,tan CF CBF BF ∠=,即3tan 3053CF =︒=解得53()3CF m =,45AE EF DAE ⊥∠=︒Rt ADE ∴是等腰三角形 5DE AE m ∴==5 3.4 1.6()CE DE CD m ∴=-=-=531.6()3EF CF CE m ∴=-=- 则AB 的长为53(1.6)m - 故答案为:53(1.6)-.【点睛】本题考查了解直角三角形的应用、等腰三角形的判定与性质等知识点,掌握解直角三角形的方法是解题关键.14.在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A 类:总时长5≤分钟;B 类:5分钟<总时长10≤分钟;C 类:10分钟<总时长15≤分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如下两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有______人. 【答案】336 【解析】 【分析】先根据A 类的条形统计图和扇形统计图信息求出调查抽取的总人数,再求出每天做眼保健操总时长超过5分钟且不超过10分钟的学生的占比,然后乘以1200即可得. 【详解】调查抽取的总人数为1010%100÷=(人) C 类学生的占比为41100%41%100⨯= B 类学生的占比为100%10%41%21%28%---= 则120028%336⨯=(人)即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人 故答案为:336.【点睛】本题考查了条形统计图和扇形统计图的信息关联等知识点,掌握理解统计调查的相关知识是解题关键.15.如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为1S ,空白部分的面积为2S ,大正方形的边长为m ,小正方形的边长为n ,若12S S ,则n m的值为______.【答案】312【解析】 【分析】如图(见解析),设AB CD a ==,先根据直角三角形的面积公式、正方形的面积公式求出12,S S 的值,再根据12S S 建立等式,然后根据212S S m 建立等式求出a 的值,最后代入求解即可.【详解】如图,由题意得:AC m =,BD n =,AB CD =,ABC 是直角三角形,且,m n 均为正数 则大正方形的面积为22AC m 小正方形的面积为22BD n设(0)AB CD a a ==> 则222114422Rt ABDS S n AB BD n an n2214422ACDS SCD AB a 12S S2222an n a又212S S m ,即222S m224a m解得2m a =或2ma (不符题意,舍去) 将2ma =代入2222an n a 得:222m mn n 两边同除以22m 得:222()1n n m m 令0n x m则2221x x解得312x -=或3102x (不符题意,舍去) 即n m 的值为312- 故答案为:312-.【点睛】本题考查了一元二次方程与几何图形、勾股定理、三角形全等的性质等知识点,理解题意,正确求出12,S S 的值是解题关键.16.如图,已知菱形ABCD 的对角线相交于坐标原点O ,四个顶点分别在双曲线4y x=和()0ky k x =<上,23AC BD =.平行于x 轴的直线与两双曲线分别交于点E ,F ,连接OE ,OF ,则OEF 的面积为______.【答案】132【解析】 【分析】先作AG x ⊥轴于点G ,作BH x ⊥轴于点H ,证明AOG OBH △△,利用23AC BD =,同时设出点A 的坐标,表示出OH ,BH 的长度,求出k 的值,设直线EF 的解析式为y n =,表示点E ,F 的坐标,求出EF 的长度,可求得OEF 的面积.【详解】作AG x ⊥轴于点G ,作BH x ⊥轴于点H ,如图所示:∵AOG OAG AOG BOG ∠+∠=∠+∠即OAG BOH ∠=∠ ∴AOG OBH △△ ∴23AO OG AG AC OB BH OH BD ==== 设点A 的坐标为4(,)m m则4,OG m AG m==∴63,2mOH BH m ==∴63||92mk OH BH m =⋅=⋅= ∵ky x=的图象在第二,四象限 ∴9k=-设直线EF 的解析式为:y n =则94(,),(,)F n E n n n -∴4913()EF n n n =--=∴111313||222OEF F S EF y n n =⋅=⨯⨯=△故答案为:132.【点睛】本题考查了反比例函数与几何图形的综合,快速找到相似三角形求出k 的值,是解题的关键.三、用心做一做,显显自己的能力!17.0318312sin 604⎛⎫--︒+ ⎪⎝⎭【答案】2-.【解析】 【分析】先计算立方根、绝对值运算、特殊角的三角函数值、零指数幂,再计算实数的混合运算即可. 【详解】原式3231212-+--⨯+= 23131=-+--+2=-.【点睛】本题考查了立方根、绝对值运算、特殊角的三角函数值、零指数幂等知识点,熟记各运算法则是解题关键.18.如图,在ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE DF =.连接EF ,分别与BC ,AD 交于点G ,H .求证:EG FH =.【答案】证明见解析. 【解析】 分析】先根据平行四边形的性质可得//AB CD ,ABC CDA ∠=∠,再根据平行线的性质、邻补角的定义可得E F ∠=∠,EBG FDH ∠=∠,然后根据三角形全等的判定定理与性质即可得证.【详解】∵四边形ABCD 为平行四边形 ∴//AB CD ,ABC CDA ∠=∠∴E F ∠=∠,180180ABC CDA ︒-∠=︒-∠EBG FDH ∴∠=∠在BEG 和DFH 中,E F BE DFEBG FDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()BEG DFH ASA ≅∴EG FH=.【点睛】本题考查了平行四边形的性质、平行线的性质、邻补角的定义、三角形全等的判定定理与性质等知识点,熟练掌握平行四边形的性质,正确找出全等三角形是解题关键.19.有4张看上去无差别的卡片,上面分别写有数1-,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为______;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.【答案】(1)12;(2)38【解析】【分析】(1)直接利用概率公式进行计算即可;(2)列表展示所有16种等可能的结果数,再找出两次抽取的卡片上两数之差的绝对值大于3结果数,然后根据概率公式求解.【详解】解:(1)抽取到的数为偶数的概率为P=21 42 =.(2)列表如下:1,2)∵差的绝对值有16种可能,绝对值大于3的有6种可能,∴差的绝对值大于3的概率63168 P==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.如图,在平面直角坐标系中,已知点()1,5A -,()3,1B -和()4,0C ,请按下列要求画图并填空. (1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为______; (2)将线段AB 绕点A 逆时针旋转90︒,画出旋转后所得的线段AE ,并直接写出cos BCE ∠的值为______;(3)在y 轴上找出点F ,使ABF 的周长最小,并直接写出点F 的坐标为______.【答案】(1)(2,-4) (25(3)(0,4) 【解析】 【分析】(1)平移线段AB ,使A 点平移到C 点,可以知道A 点是向右平移5个单位,向下平移5个单位,故可以确定D 点坐标.(2)根据B 、C 、E 三点坐标,连接BE ,可以判断出△BCE 为直角三角形,故可求解cos BCE∠的值.(3)过A 点做y 轴的对称点A’,连接A’B ,与y 轴的交点即为F 点.此时△ABF 的周长最小,通过求解函数解析式确认点F的坐标.【详解】解:(1)如图所示:平移线段AB ,使A 点平移到C 点,可以知道A 点是向右平移5个单位,再向下平移5个单位,根据题意可知,B 点(-3,1)平移到D 点,故可以确定点D 的坐标. 点D 的坐标为()2,4-; (2)如图所示:根据题意,AE 是线段AB 围绕点A 逆时针旋转90°得到,故AB=AE ,不难算出点E 的坐标为(3,3).连接BE ,根据B 、C 、E 三点坐标算出BC=5210、BE=10,故222BE EC BC +=,可以判断出△BEC 为直角三角形. 故5cos 5BCE EC BC ==∠ (3)如图所示:过A 点做y 轴的对称点A’,连接A’B ,与y 轴的交点即为F 点.故可知A’的坐标为(1,5),点B 的坐标为(-3,1),设A ’B 的函数解析式为y=kx+b ,将(1,5),(-3,1)代入函数解析中解得k=1,b=4,则函数解析式为y=x+4,则F 点坐标为(0,4), 故点F 的坐标为(0,4).【点睛】(1)本题主要考查平移,洞察点A 是如何平移到点C ,是求出D 点坐标的关键.(2)连接BE ,根据B 、C 、E 三点坐标判断出△BCE 是直角三角形,就不难算出cos BCE ∠的值.(3)本题通过做A 点的对称点A’,连接A’B ,找到A’B 与y 轴的交点F 是解答本题的关键. 21.已知关于x 的一元二次方程()22121202x k x k -++-=. (1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根1x ,2x 满足123x x -=,求k 的值. 【答案】(1)见解析 (2)0,-2 【解析】 【分析】(1)根据根的判别式即可求证出答案;(2)可以根据一元二次方程根与系数的关系得k 与的1x 、2x 的关系式,进一步可以求出答案. 【详解】(1)证明:∵()222121422492k k k k ⎛⎫∆=+-⨯-=++ ⎪⎝⎭()2217k =++, ∵无论k 为何实数,()2210k +≥, ∴()22170k +∆=+>,∴无论k 为何实数,方程总有两个不相等的实数根; (2)由一元二次方程根与系数的关系得:1221x x k +=+,212122x x k =-,∵123x x -=, ∴()2129x x -=, ∴()2121249x x x x +-=, ∴()221214292k k ⎛⎫+-⨯-=⎪⎝⎭,化简得:220k k +=, 解得0k =,2-.【点睛】本题主要考查根的判别式和根与系数的关系,熟练掌握概念和运算技巧即可解题.22.某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品.已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?【答案】(1)甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)按此方案购买40kg 农产品最少要花费300元. 【解析】 【分析】(1)设1kg 甲产品的售价为x 元,先表示出1kg 乙产品的售价和1kg 丙产品的售价,再根据“用270元购买丙产品的数量是用60元购买乙产品数量的3倍”建立方程,然后求解即可得;(2)设40kg 的甲、乙、丙三种农产品搭配中,丙种农产品有mkg ,先求出乙种农产品的数量和甲种农产品的数量,再根据题干三种农产品间的数量关系列出不等式求出m 的取值范围,然后根据(1)的结论得出所需费用关于m 的函数关系式,最后利用一次函数的性质即可得.【详解】(1)设1kg 甲产品的售价为x 元,则1kg 乙产品的售价为()5+x 元,1kg 丙产品的售价为3x 元 由题意得:27060335x x =⨯+ 解得:5x =经检验,5x =是所列分式方程的解,也符合题意 则510+=x ,315x =答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg 的甲、乙、丙三种农产品搭配中,丙种农产品有mkg ,则乙种农产品有2mkg ,甲种农产品有()403m kg -由题意得:40332m m m -+≤⨯ 解得5m ≥设按此销售方案购买40kg 农产品所需费用y 元 则()54031021520200y m m m m =-+⨯+=+ ∵在5m ≥范围内,y 随m 的增大而增大∴当5m =时,y 取得最小值,最小值为205200300⨯+=(元) 答:按此方案购买40kg 农产品最少要花费300元.【点睛】本题考查了分式方程的实际应用、一次函数的实际应用、一元一次不等式的应用等知识点,依据题意,正确列出方程和函数的解析式是解题关键. 23.已知ABC 内接于O ,AB AC =,ABC ∠的平分线与O 交于点D ,与AC 交于点E ,连接CD并延长与O 过点A 的切线交于点F ,记BAC α∠=.(1)如图1,若60α=︒, ①直接写出DF DC的值为______;②当O 的半径为2时,直接写出图中阴影部分的面积为______;(2)如图2,若60α<︒,且23DF DC =,4DE =,求BE 的长.【答案】(1)①12; ②33223π- ;(2)5 【解析】 【分析】(1)①连接AD ,连接AO 并延长交BC 于H 点,根据题意先证明△ABC 是等边三角形,再得到∠AFD 为直角,利用含30°的直角三角形即可求解;②根据割补法即可求解阴影部分面积; (2)连接AD ,连接AO 并延长交O 于点H ,连接DH ,根据题意先证明ADF ADE ≌,得到4DF DE ==,再求出6DC =,根据DCE DBC △△∽,得到CD DEDB CD=,即可求出BD ,从而求出BE 的长.【详解】解:(1)①60BAC α∠==︒,AB AC = ∴△ABC 是等边三角形, ∵BD 平分∠ABC , ∴∠DBC=12∠ABC=30°, ∵∠BDC=∠BAC=60°∴∠BCD=180°-∠DBC-∠BDC=90° ∴BD 是直径, ∴∠BAD=90°,CD=AD连接AO 并延长交BC 于H 点, ∵AO=BO∴∠BAH=∠ABO=30°,∴∠AHB=180°-∠BAH-∠ABC=90° ∴AH ⊥BC ∵AF 是O 的切线∴AF ⊥AH∴四边形AHCF 是矩形 ∴AF ⊥CF∵∠ADB=∠BDC=60°∴∠ADF=180°-∠ADB-∠BDC=60° ∴∠FAD=90°-∠ADF=30°∴12DF DF DC AD ==; ②∵半径为2, ∴AO=OD=2, ∵∠DBC=30°,∴CD=12BD=2=AD , ∴DF=12AD=1,∴AF=2222213AD DF -=-=,∵∠AOB=180°-2∠ABO=120°, ∴∠AOD=180°-∠AOB=60°, ∴221601602332()(21)3236023603AODF AODAO S S S AO DF AF πππ⋅⋅⋅⋅=-=+⋅-=⨯+⨯-=-梯形扇形阴影﹔故答案为:①12; ②33223π-;(2)如图,连接AD ,连接AO 并延长交O 于点H ,连接DH ,则90ADH ∠=︒,∴90DAH DHA ∠+∠=︒. ∵AF 与O 相切,∴90DAH DAF FAO ∠+∠=∠=︒. ∴DAF DHA ∠=∠. ∵BD 平分ABC ∠, ∴ABD CBD ∠=∠. ∴DHA DAC ∠=∠, ∴DAF DAC ∠=∠. ∵AB AC =,∴A ABC CB =∠∠. ∵四边形ABCD 内接于O ,∴180ABC ADC ∠+∠=︒. 又∵180ADF ADC ∠∠=+︒, ∴ADF ABC ∠=∠.又∵ADB ACB ABC ∠=∠=∠, ∴ADF ADB ∠=∠. 又∵AD 公共,∴()ASA ADF ADE ≌△△, ∴4DF DE ==. ∵23DF DC =, ∴6DC =.∵DCE ABD DBC ∠=∠=∠,CDE ∠公共, ∴DCE DBC △△∽. ∴CD DE DB CD=,即646DB =, ∴9DB =.∴5BE DB DE =-=.【点睛】此题主要考查切线的判定与性质综合,解题的关键是熟知切线的性质、等边三角形的判定与性质及相似三角形的判定与性质.24.在平面直角坐标系中,已知抛物线()24460y ax ax a a =++->与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当6a =时,直接写出点A ,B ,C ,D 的坐标:A ______,B ______,C ______,D ______;(2)如图1,直线DC 交x 轴于点E ,若4tan 3AED =∠,求a 的值和CE 的长;(3)如图2,在(2)的条件下,若点N 为OC 的中点,动点P 在第三象限的抛物线上,过点P 作x 轴的垂线,垂足为Q ,交AN 于点F ;过点F 作FH DE ⊥,垂足为H .设点P 的横坐标为t ,记f FP FH =+. ①用含t 的代数式表示f ;②设()50t m m -<≤<,求f 的最大值.【答案】(1)()3,0-,()1,0-,()0,18,()2,6--;(2)23;256;(3)①228433f t t =--+;②263.【解析】 【分析】(1)求出0y =时,x 的值可得点A 、B 的坐标,求出0x =时,y 的值可得点C 的坐标,将二次函数的解析式化为顶点式即可得点D 的坐标;(2)先求出顶点D 的坐标,从而可得DK 、OK 的长,再利用正切三角函数可得EK 、OE 、OC 的长,从而可得出点C 的坐标,然后将点C 的坐标代入二次函数的解析式可得a 的值,利用勾股定理可求出CE 的长; (3)①如图,先利用待定系数法求出直线AN 的解析式,从而可得点F 的坐标,由此可得出PF 的长,再利用待定系数法求出直线CE 的解析式,从而可得点J 的坐标,由此可得出FJ 的长,然后根据相似三角形的判定与性质可得FH FJOE CE=,从而可得FH 的长,最后根据f 的定义即可得; ②先将f 的表达式化为顶点式,从而得出其增减性,再利用二次函数的性质即可得. 【详解】(1)当6a =时,262418y x x =++当0y =时,2624180x x ++=,解得1x =-或3x =- 则点A 的坐标为(3,0)A -,点B 的坐标为(1,0)B - 当0x =时,18y = 则点C 的坐标为(0,18)C中考数学将262418y x x =++化成顶点式为26()62y x =+- 则点D 的坐标为(2,6)D --故答案为:()3,0-,()1,0-,()0,18,()2,6--; (2)如图,作DK x ⊥轴于点K将2446y ax ax a =++-化成顶点式为2(2)6y a x =+- 则顶点D 的坐标为(2,6)D -- ∴6DK =,2OK = 在Rt DKE 中,tan DK AED EK ∠=,即643EK = 解得92EK =95222K OE EK O =--=∴= 在Rt COE △中,tan OC AED OE=∠,即4532OC =解得103OC =10(0,)3C ∴-,2222105()()32256CE OC OE =+=+= 将点10(0,)3C -代入2446y ax ax a =++-得:10463a -=- 解得23a =;(3)①如图,作FP 与ED 的延长线交于点J 由(2)可知,23a =,100,3C ⎛⎫- ⎪⎝⎭中考数学∴22810333y x x =+- 当0y =时,228100333x x +-=,解得5x =-或1x = ∴()5,0A -,()10B , N 为OC 的中点∴50,3N ⎛⎫- ⎪⎝⎭设直线AN 的解析式为11y k x b =+将点()5,0A -,50,3N ⎛⎫- ⎪⎝⎭代入得:1115053k b b -+=⎧⎪⎨=-⎪⎩,解得111353k b ⎧=-⎪⎪⎨⎪=-⎪⎩则直线AN 的解析式为1533y x =-- ∵22810,333P t t t ⎛⎫+-⎪⎝⎭∴15,33F t t ⎛⎫-- ⎪⎝⎭∴2215281025()33333333PF t t t t t =---+-=--+ 由(2)知,25OE =∴5,02E ⎛⎫ ⎪⎝⎭,100,3C ⎛⎫- ⎪⎝⎭设直线CE 的解析式为22y k x b =+将点5,02E ⎛⎫ ⎪⎝⎭,100,3C ⎛⎫- ⎪⎝⎭代入得:222502103k b b ⎧+=⎪⎪⎨⎪=-⎪⎩,解得2243103k b ⎧=⎪⎪⎨⎪=-⎪⎩则直线CE 的解析式为41033y x =- ∴410,33J t t ⎛⎫-⎪⎝⎭中考数学∴1541055()333333FJ t t t =----=-+ ∵FH DE ⊥,//JF y 轴∴90FHJ EOC ∠=∠=︒,FJH ECO ∠=∠ ∴FJH ECO ~∴FH FJOE CE=,即553226535t FH -+= 解得1FH t =-+∴()2253133f PF FH t t t =+=--++-+ 即228433f t t =--+; ②将228433f t t =--+化成顶点式为()2226333t f =-++由二次函数的性质可知,当3t <-时,f 随t 的增大而增大;当3t ≥-时,f 随t 的增大而减小()50t m m -<≤< 50m ∴-<<因此,分以下两种情况: 当53m -<<-时在5t m -<≤内,f 随t 的增大而增大 则当t m =时,f 取得最大值,最大值为()2226333m -++ 又当53m -<<-时,()20233m -+< ()2226263333m -++<∴ 当30m -≤<时在53t -<<-内,f 随t 的增大而增大;在3t m -≤≤内,f 随t 的增大而减小 则当3t =-时,f 取得最大值,最大值为263综上,f 的最大值为263.中考数学【点睛】本题考查了利用待定系数法求二次函数的表达式、二次函数的图象与性质、正切三角函数、相似三角形的判定与性质等知识点,较难的是题(3)①,通过作辅助线,构造相似三角形求出FH的长是解题关键.。

中考数学试题及解析 湖北孝感-解析版

中考数学试题及解析 湖北孝感-解析版

湖北省孝感市中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.)1、(•孝感)﹣2的倒数是( )A 、2B 、﹣2C 、12D 、﹣12 考点:倒数。

分析:根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:∵﹣2×(﹣12)=1,∴﹣2的倒数是﹣12.故选D .点评:主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2、(•孝感)某种细胞的直径是5×10﹣4毫米,这个数是( )A 、0.05毫米B 、0.005毫米C 、0.0005毫米D 、0.00005毫米考点:科学记数法—原数。

分析:科学记数法a×10n ,n=﹣4,所以小数点向前移动4位.解答:解:5×10﹣4=0.0005,故选:C .点评:此题主要考查了把科学记数法还原原数,还原原数时,关键是看n ,n <0时,|n|是几,小数点就向前移几位.3、(•孝感)如图,直线AB 、CD 交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT 等于( )A 、30°B 、45°C 、60°D 、120°考点:平行线的性质。

分析:由CE ∥AB ,根据两直线平行,同位角相等,即可求得∠BOD 的度数,又由OT ⊥AB ,求得∠BOT 的度数,然后由∠DOT=∠BOT ﹣∠DOB ,即可求得答案.解答:解:∵CE ∥AB ,∴∠DOB=∠ECO=30°, ∵OT ⊥AB , ∴∠BOT=90°, ∴∠DOT=∠BOT ﹣∠DOB=90°﹣30°=60°.故选C .点评:此题考查了平行线的性质,垂直的定义.解题的关键是注意数形结合思想的应用,注意两直线平行,同位角相等.4、(•孝感)下列计算正确的是( )A 、√8﹣√2=√2B 、√2+√3=√5C 、√2×√3=6D 、√8÷√2=4 考点:二次根式的混合运算。

2023年湖北孝感中考数学真题及答案

2023年湖北孝感中考数学真题及答案

2023年湖北孝感中考数学真题及答案一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一项是符合题目要求的.清在答题卡上把正确答案的代号涂黑)1. 的相反数是( )2-A. B. C. D. 2-212-122. 2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为( )A. B. C. D.71.15810⨯81.15810⨯31.15810⨯4115810⨯3. 下列几何体中,三视图都是圆的是( )A. 长方体B. 图柱C. 圆锥D. 球4. 不等式的解集为( ) 1010x x -<⎧⎨+>⎩A. B. C. D. 无解1x >-1x <11x -<<5. 如图,的直角顶点A 在直线a 上,斜边在直线b 上,若,则Rt ABC △BC 155a b ∠=︒A ,2∠=( )A. B. C. D.55︒45︒35︒25︒6. 如图,在中,直径与弦相交于点P ,连接,若,O A AB CD AC AD BD ,,20C ∠=︒70BPC ∠=︒,则( )ADC ∠=A. B. C. D.70︒60︒50︒40︒7. 如图,矩形中,,以点B 为圆心,适当长为半径画弧,分别交,于点ABCD 34AB BC ==,BC BD E ,F ,再分别以点E ,F 为圆心,大于长为半径画弧交于点P ,作射线,过点C 作的垂线分12EF BP BP 别交于点M ,N ,则的长为( ),BD AD CNC. D. 48. 已知二次函数的图象与x 轴的一个交点坐标为,对称轴为直线,下2(0)y ax bx c a =++<(1,0)-1x =列论中:①;②若点均在该二次函数图象上,则;③若m 0a b c -+=()()()1233,,2,,4,y y y -123y y y <<为任意实数,则;④方程的两实数根为,且,则24am bm c a ++≤-210ax bx c +++=12,x x 12x x <.正确结论的序号为( )121,3x x <->A . ①②③ B. ①③④ C. ②③④ D. ①④二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线)9. 计算;_____________. ()02113⎛⎫-+= ⎪⎝⎭10. 请写出一个正整数m _____________.m =11. 若正n 边形的一个外角为,则_____________.72︒n =12. 已知一元二次方程的两个实数根为,若,则实数230x x k -+=12,x x 1212221x x x x ++=k =_____________.13. 眼睛是心灵的窗户为保护学生视力,启航中学每学期给学生检查视力,下表是该校某班39名学生右眼视力的检查结果,这组视力数据中,中位数是_____________. 视力 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 50人数 12 63 34 1 25 7 514. 综合实践课上,航模小组用航拍无人机进行测高实践.如图,无人机从地面的中点A 处竖直上升CD 30米到达B 处,测得博雅楼顶部E 的俯角为,尚美楼顶部F 的俯角为,己知博雅楼高度为1545︒30︒CE 米,则尚美楼高度为_____________米.(结果保留根号) DF15. 如图,是我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”,它是由四个全等的直角三角形和一个小正方形组成的一个大正方形.设图中,,连接,若AF a =DF b =,AE BE ADEV 与的面积相等,则___________. BEH △2222b a a b+=16. 如图,已知点,点B 在y 轴正半轴上,将线段绕点A 顺时针旋转到线段,若点(3,0)A AB 120︒AC C 的坐标为,则___________.(7,)h h =三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17. 化简:. 21211x x x x +---18. 创建文明城市,构建美好家园.为提高垃圾分类意识,幸福社区决定采购A ,B 两种型号的新型垃圾桶.若购买3个A 型垃圾桶和4个B 型垃圾桶共需要580元,购买6个A 型垃圾桶和5个B 型垃圾桶共需要860元.(1)求两种型号垃圾桶的单价;(2)若需购买A ,B 两种型号的垃圾桶共200个,总费用不超过15000元,至少需购买A 型垃圾桶多少个?19. 打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的________,________,文学类书籍对应扇形圆心角等于________度;m =n =(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.20. 如图,中,以为直径的交于点,是的切线,且,垂足为ABC A AB O A BC D DE O A DEAC ⊥E,延长交于点. CA O A F(1)求证:;AB AC =(2)若,求的长.3,6AE DE ==AF 21. 如图,一次函数与函数为的图象交于两点. 1(0)y kx b k =+≠2(0)m y x x =>1(4,1),,2A B a ⎛⎫ ⎪⎝⎭(1)求这两个函数的解析式;(2)根据图象,直接写出满足时x 的取值范围;120y y ->(3)点P 在线段上,过点P 作x 轴的垂线,垂足为M ,交函数的图象于点Q ,若面积为AB 2y POQ △3,求点P 的坐标.22. 加强劳动教育,落实五育并举.孝礼中学在当地政府的支持下,建成了一处劳动实践基地.2023年计划将其中的土地全部种植甲乙两种蔬菜.经调查发现:甲种蔬菜种植成本y (单位;元/)与21000m 2m 其种植面积x (单位:)的函数关系如图所示,其中;乙种蔬菜的种植成本为50元/2m 200700x ≤≤.2m(1)当___________时,元/;x =2m 35y =2m (2)设2023年甲乙两种蔬菜总种植成本为W 元,如何分配两种蔬菜的种植面积,使W 最小?(3)学校计划今后每年在这土地上,均按(2)中方案种植蔬菜,因技术改进,预计种植成本逐21000m 年下降,若甲种蔬菜种植成本平均每年下降,乙种蔬菜种植成本平均每年下降,当a 为何值时,10%%a 2025年的总种植成本为元?2892023. 【问题呈现】和都是直角三角形,,连接,,CAB △CDE A 90,,ACB DCE CB mCA CE mCD ∠=∠=︒==AD BE 探究,的位置关系.AD BE(1)如图1,当时,直接写出,的位置关系:____________;1m =AD BE (2)如图2,当时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.1m ≠【拓展应用】(3)当时,将绕点C 旋转,使三点恰好在同一直线上,求4m AB DE ===CDE A ,,A D E 的长.BE24. 已知抛物线与x 轴交于两点,与y 轴交于点,点P 为第一象限抛212y x bx c =-++,(4,0)A B (0,2)C 物线上的点,连接.,,,CA CB PB PC(1)直接写出结果;_____,_____,点A 的坐标为_____,______;b =c =tan ABC ∠=(2)如图1,当时,求点P 的坐标;2PCB OCA ∠=∠(3)如图2,点D 在y 轴负半轴上,,点Q 为抛物线上一点,,点E ,F 分别为OD OB =90QBD ∠=︒的边上的动点,,记的最小值为m .BDQ △,DQ DB QE DF =BE QF +①求m 的值;②设的面积为S ,若,请直接写出k 的取值范围. PCB A 214S m k =-黄冈市2023年初中学业水平考试数学试卷(满分:120分,考试用时:120分钟)一、精心选一选(本大题共8小题,每小题3分,满分24分,在每小题给出的四个选项中只有一项是符合题目要求的.清在答题卡上把正确答案的代号涂黑)【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】B二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线)【9题答案】【答案】2【10题答案】【答案】8【11题答案】【答案】5【12题答案】【答案】5-【13题答案】【答案】4.6【14题答案】【答案】##30-30-+【15题答案】【答案】3【16题答案】三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)【17题答案】【答案】1x -【18题答案】【答案】(1)A ,B 两种型号的单价分别为60元和100元(2)至少需购买A 型垃圾桶125个【19题答案】【答案】(1)18,6,72︒(2)480人 (3)29【20题答案】【答案】(1)见解析 (2)9AF =【21题答案】【答案】(1), 129y x =-+24(0)y x x =>(2) 142x <<(3)点P 的坐标为或 ()2,55,42⎛⎫⎪⎝⎭【22题答案】 【答案】(1)500(2)当甲种蔬菜的种植面积为,乙种蔬菜的种植面积为时,W 最小;2400m 2600m (3)当a 为时,2025年的总种植成本为元.2028920【23题答案】【答案】(1)BE AD ⊥(2)成立;理由见解析(3)BE =【24题答案】 【答案】(1),2,,32()1,0-12(2)()2,3(3), m =1317k ≤≤。

(中考精品卷)湖北省孝感市中考数学试卷(解析版)

(中考精品卷)湖北省孝感市中考数学试卷(解析版)

2022年湖北省黄冈市中考数学试卷一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卡上把正确答案的代号涂黑)1. ﹣5的绝对值是()A. 5B. ﹣5C.15D.15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A.2. 某几何体的三视图如图所示,则该几何体是()A. 圆锥B. 三棱锥C. 三棱柱D. 四棱柱【答案】C【解析】【分析】由主视图和左视图得出该几何体是柱体,再结合俯视图可得答案.【详解】解:由三视图知,该几何体是三棱柱,故选:C.【点睛】本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.3. 北京冬奥会开幕式的冰雪五环由我国航天科技建造,该五环由21000个LED灯珠组成,夜色中就像闪闪发光的星星,把北京妆扮成了奥运之城,将数据21000用科学记数法表示为()A. 21×103B. 2.1×104C. 2.1×105D.0.21×106【答案】B【解析】【分析】首先思考科学记数法表示数的形式,再确定a,n的值,即可得出答案.【详解】21000=2.1×104.故选:B.【点睛】本题主要考查了科学记数法表示绝对值大于1的数,掌握形式解题的关键.即a×10n,其中1≤|a|<10,n为正整数.4. 下列图形中,对称轴最多的是()A. 等边三角形B. 矩形C. 正方形D. 圆【答案】D【解析】【详解】试题分析:因为等边三角形有三条对称轴;矩形有两条对称轴;正方形有四条对称轴;圆有无数条对称轴.一般地,正多边形的对称轴的条数等于边数.故选D.考点:轴对称图形的对称轴.5. 下列计算正确的是()A. a2•a4=a8B. (-2a2)3=-6a6C. a4÷a=a3D. 2a+3a =5a2【答案】C【解析】【分析】根据同底数幂的乘法、积的乘方、同底数幂的除法、合并同类项逐个选项判断即可.【详解】A、a2•a4=a6,故A错误;B、(-2a2)3=-8a6,故B错误;C、a4÷a=a3,故C正确;D、2a+3a=5a,故D错误,故选:C.【点睛】本题考查了同底数幂的乘法、积的乘方、同底数幂的除法、合并同类项,熟记法则并根据法则计算是解题关键.6. 下列调查中,适宜采用全面调查方式的是()A. 检测“神舟十四号”载人飞船零件的质量B. 检测一批LED灯的使用寿命C. 检测黄冈、孝感、咸宁三市的空气质量D. 检测一批家用汽车的抗撞击能力【答案】A【解析】【分析】根据全面调查与抽样调查的特点,逐一判断即可解答.【详解】解:A 、检测“神舟十四号”载人飞船零件质量,适宜采用全面调查的方式,故A 符合题意;B 、检测一批LED 灯的使用寿命,适宜采用抽样调查的方式,故B 不符合题意;C 、检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C 不符合题意;D 、检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D 不符合题意. 故选:A .【点睛】本题主要考查了全面调查和抽样调查,熟练掌握全面调查与抽样调查的特点是解题的关键.7. 如图,在Rt △ABC 中,∠C =90°,∠B =30°,AB =8,以点C 为圆心,CA 的长为半径画弧,交AB 于点D ,则弧AD 的长为( )A. πB.43π C.53π D. 2π【答案】B 【解析】【分析】连接CD ,根据∠ACB =90°,∠B =30°可以得到∠A 的度数,再根据AC =CD 以及∠A 的度数即可得到∠ACD 的度数,最后根据弧长公式求解即可. 【详解】解:连接CD ,如图所示:∵ACB =90°,∠B =30°,AB =8, ∴∠A =90°-30°=60°,AC =12AB =4, 由题意得:AC =CD , ∴△ACD 为等边三角形, ∴∠ACD =60°, ∴ AD 的长为:604180π⨯=43π,的故选:B .【点睛】本题考查了弧长公式,解题的关键是:求出弧所对应的圆心角的度数以及弧所在扇形的半径.8. 如图,在矩形ABCD 中,AB <BC ,连接AC ,分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧交于点M ,N ,直线MN 分别交AD ,BC 于点E ,F .下列结论: ①四边形AECF 是菱形; ②∠AFB =2∠ACB ; ③AC •EF =CF •CD ;④若AF 平分∠BAC ,则CF =2BF . 其中正确结论的个数是( )A. 4B. 3C. 2D. 1【答案】B 【解析】【分析】根据作图可得MN AC ⊥,且平分AC ,设AC 与MN 交点为O ,证明四边形AECF 为菱形,即可判断①,进而根据等边对等角即可判断②,根据菱形的性质求面积即可求解.判断③,根据角平分线的性质可得BF FO =,根据含30度角的直角三角形的性质,即可求解.【详解】如图,设AC 与MN 的交点为O ,根据作图可得MN AC ⊥,且平分AC ,AO OC ∴=,的四边形ABCD 是矩形,AD BC ∴∥,EAO OCF ∴∠=∠,又AOE COF ∠=∠ ,AO CO = ,AOE COF ∴ ≌, AE FC ∴=, AE CF ∥ ,∴四边形AECF 是平行四边形,MN 垂直平分AC ,EA EC ∴=,∴四边形AECF 是菱形,故①正确;②FA FC = ,∴ACB FAC ∠=∠,∴∠AFB =2∠ACB ;故②正确;③由菱形的面积可得12AC •EF =CF •CD ;故③不正确, ④ 四边形ABCD 是矩形,90ABC ∴∠=︒,若AF 平分∠BAC ,,FB AB FO AC ⊥⊥, 则BF FO =,BAF FAC ∴∠=∠, FAC FCA ∠=∠ ,90BAF FAC FCA ∠+∠+∠=︒ ,30ACB ∴∠=︒,12FO FC ∴=, FO BF = ,∴CF =2BF .故④正确;故选B【点睛】本题考查了菱形的性质与判定,矩形的性质,平行四边形的性质与判定,含30度角的直角三角形的性质,角平分线的性质,综合运用以上知识是解题的关键.二、细心填一填(本大题共8小题,每小题3分,满分24分.请把答案填在答题卡相应题号的横线上)9. 若分式21x -有意义,则x 的取值范围是________. 【答案】1x ≠ 【解析】【分析】根据分式有意义的条件即可求解. 【详解】解:∵分式21x -有意义, ∴10x -≠, 解得1x ≠. 故答案为:1x ≠.【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键. 10. 如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=54°,则∠3=________度.【答案】54 【解析】【分析】根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解. 【详解】因为a ∥b , 所以23∠=∠, 因为12∠∠,是对顶角, 所以12∠=∠, 所以31∠=∠, 因为154∠=︒, 所以354∠=︒, 故答案为:54.【点睛】本题考查了平行线的性质和对顶角的性质,熟练掌握对顶角相等,两直线平行同位角相等、内错角相等,加以灵活运用求解相关角的度数是解题关键.11. 已知一元二次方程x 2﹣4x +3=0的两根为x 1、x 2,则x 1•x 2=_____. 【答案】3 【解析】【分析】直接根据一元二次方程ax 2+bx +c =0(a ≠0)的根与系数的关系求解即可. 【详解】解:∵一元二次方程x 2﹣4x +3=0的两根为x 1、x 2, ∴x 1•x 2=31=3. 故答案为3.【点睛】此题考查了一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握若方程的两根分别为x 1,x 2,则x 1+x 2=-12•c x x baa=,.12. 如图,已知AB DE ∥,AB DE =,请你添加一个条件________,使ABC DEF △≌△.【答案】A D ∠=∠或BC EF =或ACB F ∠=∠ 【解析】【分析】先根据平行线的性质得到B DEF ∠=∠,然后根据全等三角形的判定方法添加条件.【详解】解:∵AB DE ∥, ∴B DEF ∠=∠, ∵AB DE =,∴当添加A D ∠=∠时,根据ASA 可判断ABC DEF △≌△; 当添加BC EF =时,根据SAS 可判断ABC DEF △≌△; 当添加ACB F ∠=∠时,根据AAS 可判断ABC DEF △≌△. 故答案为:A D ∠=∠或BC EF =或ACB F ∠=∠.【点睛】本题考查了全等三角形的判定和平行线的性质.熟练掌握全等三角形的判定方法(一般三角形全等的判定有:SSS 、ASA 、SAS 、AAS 共四种;直角三角形全等的判定有:SSS 、ASA 、SAS 、AAS 、HL 共五种)是解决问题的关键.选用哪一种判定方法,取决于题目中的已知条件.13. 小聪和小明两个同学玩“石头,剪刀、布“的游戏,随机出手一次是平局的概率是________.【答案】13【解析】【分析】列表表示所有可能出现的结果,再确定符合条件的结果,根据概率公式计算即可.【详解】解:列表如下: 石头剪子布石头 (石头,石头) (石头,剪子) (石头,布) 剪子 (剪子,石头) (剪子,剪子) (剪子,布) 布(布,石头)(布,剪子)(布,布)一共有9种可能出现的结果,每种结果出现的可能性相同,出手相同的时候即为平局,有3种,所以随机出手一次平局的概率是3193=, 故答案为:13. 【点睛】本题主要考查了列表求概率,掌握概率计算公式是解题的关键.14. 如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为________m sin 580.85︒≈,cos580.53︒≈,tan 58 1.60︒≈,结果保留整数).【答案】16 【解析】【分析】过D 点作DE AB ⊥于点E ,则6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,设AE x =,则DE x =,BC x =,6AB AE BE x =+=+,在Rt ABC 中,6tan tan 58 1.60AB x ACB BC x+∠=︒==≈,解得10x ≈,进而可得出答案.【详解】解:如图,过D 点作DE AB ⊥于点E ,设AE x =, 根据题意可得:AB BC ⊥,DC BC ⊥, ∴90AED BED ABC DCB ∠=∠=∠=∠=︒, ∴四边形BCDE 是矩形,∵从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离,乙建筑物的高度CD 为6, ∴6BE CD ==,45ADE ∠=︒,58ACB ∠=︒, 在Rt ADE △中,45ADE ∠=︒, ∴9045EAD ADE ∠=︒-∠=︒, ∴EAD ADE ∠=∠, ∴DE AE x ==, ∴BC DE x ==, ∴6AB AE BE x =+=+, 在Rt ABC 中,tan ∠=AB ACB BC即6tan 58 1.60x x+︒=≈, ∴6tan tan 58 1.60AB x ACB BC x+∠=︒==≈ 解得10x ≈,经检验10x ≈是原分式方程的解且符合题意, ∴()616AB x m =+≈. 故答案为:16.【点睛】本题考查解直角三角形应用一仰角俯角问题,涉及到锐角三角函数,矩形的判定和性质,等腰三角形的性质,直角三角形两锐角互余,分式方程等知识.熟练掌握锐角三角函数的定义是解答本题的关键.15. 勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相的差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m ≥3,m 为正整数),则其弦是________(结果用含m 的式子表示). 【答案】m 2-1 【解析】【分析】2m 为偶数,设其股是a ,则弦为a +2,根据勾股定理列方程即可得到结论. 【详解】∵2m 为偶数, ∴设其股是a ,则弦为a +2,根据勾股定理得,(2m )2+a 2=(a +2)2, 解得a =m 2-1, 故答案为:m 2-1.【点睛】本题考查了勾股数,勾股定理,熟练掌握勾股定理是解题的关键.16. 如图1,在△ABC 中,∠B =36°,动点P 从点A 出发,沿折线A →B →C 匀速运动至点C 停止.若点P 的运动速度为1cm /s ,设点P 的运动时间为t (s ),AP 的长度为y (cm ),y 与t 的函数图象如图2所示.当AP 恰好平分∠BAC 时,t 的值为________.【答案】2+## 【解析】【分析】根据函数图像可得AB =4=BC ,作∠BAC 的平分线AD ,∠B =36°可得∠B =∠DAC =36°,进而得到ADC BAC △△,由相似求出BD 的长即可. 【详解】根据函数图像可得AB =4,AB +BC =8, ∴BC =AB =4, ∵∠B =36°,∴72BCA BAC ∠∠︒==, 作∠BAC 的平分线AD ,∴∠BAD =∠DAC =36°=∠B ,∴AD =BD ,72BCA DAC ∠∠︒==,∴AD =BD =CD ,设AD BD CD x ===,∵∠DAC =∠B =36°,∴ADC BAC △△, ∴AC DC BC AC=, ∴x 4x 4x -=, 解得:12x =-+,22x =--(舍去),∴2AD BD CD ===-,此时21AB BD t +==+(s ), 故答案:2+.【点睛】此题考查了图形与函数图象间关系、相似三角形的判定与性质、解一元二次方程,关键是证明ADC BAC △△.三、专心解一解(本大题共8小题,满分72分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卡相应题号的位置)17. 先化简,再求值:4xy -2xy -(-3xy ),其中x =2,y =-1.【答案】5xy ,10-【解析】【分析】根据整式的加减运算化简,然后将字母的值代入即可求解.【详解】解:原式=4xy -2xy +3xy=()423xy -+=5xy ;为当x =2,y =-1时,原式=()52110⨯⨯-=-.【点睛】本题考查了整式加减的化简求值,正确的计算是解题的关键.18. 某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元.(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?【答案】(1)买一份甲种快餐需30元,一份乙种快餐需20元(2)至少买乙种快餐37份【解析】【分析】(1)设一份甲种快餐需x 元,一份乙种快餐需y 元,根据题意列出方程组,解方程即可求解;(2)设购买乙种快餐a 份,则购买甲种快餐()55a -份,根据题意列出一元一次不等式,解不等式即可求解.【小问1详解】解:设一份甲种快餐需x 元,一份乙种快餐需y 元,根据题意得, 27023120x y x y +=⎧⎨+=⎩解得3020x y =⎧⎨=⎩答:买一份甲种快餐需30元,一份乙种快餐需20元;【小问2详解】设购买乙种快餐a 份,则购买甲种快餐()55a -份,根据题意得,()3055201280a a -+≤解得37a ≥∴至少买乙种快餐37份答:至少买乙种快餐37份.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,根据题意列出方程组和不等式是解题的关键.19. 为落实“双减”政策,优化作业管理,某中学从全体学生中随机抽取部分学生,调查他们每天完成书面作业的时间t (单位:分钟).按照完成时间分成五组:A 组“t ≤45”,B 组“45<t ≤60”,C 组“60<t ≤75”,D 组“75<t ≤90”,E 组“t >90”.将收集的数据整理后,绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)这次调查的样本容量是,请补全条形统计图;(2)在扇形统计图中,B组的圆心角是度,本次调查数据的中位数落在组内;(3)若该校有1800名学生,请你估计该校每天完成书面作业不超过90分钟的学生人数.【答案】(1)100,图形见解析(2)72,C;(3)估计该校每天完成书面作业不超过90分钟的学生有1710人.【解析】【分析】(1)根据C组的人数和所占的百分比,可以计算出本次调查的人数,然后即可计算出D组的人数,从而可以将条形统计图补充完整;(2)根据统计图中的数据,可以计算出B组的圆心角的度数,以及中位数落在哪一组;(3)根据题意和统计图中的数据,可以计算出该校每天完成书面作业不超过90分钟的学生人数.【小问1详解】这次调查的样本容量是:25÷25%=100,D组的人数为:100-10-20-25-5=40,补全的条形统计图如图所示:故答案为:100;【小问2详解】在扇形统计图中,B组的圆心角是:360°×20100=72°,∵本次调查了100个数据,第50个数据和51个数据都在C组,∴中位数落在C组,故答案为:72,C;【小问3详解】1800×1005100-=1710(人),答:估计该校每天完成书面作业不超过90分钟的学生有1710人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.20. 如图,已知一次函数y1=kx+b的图像与函数y2=mx(x>0)的图像交于A(6,-1 2),B(12,n)两点,与y轴交于点C,将直线AB沿y轴向上平移t个单位长度得到直线DE,DE与y轴交于点F.(1)求y1与y2的解析式;(2)观察图像,直接写出y1<y2时x的取值范围;(3)连接AD,CD,若△ACD的面积为6,则t的值为.【答案】(1)113 2y x-=,23 (0)y xx=->;(2)16 2x<<;(3)2.【解析】【分析】(1)将两函数A 、B 的坐标值分别代入两个函数解析式求出未知系数即可; (2)由图像可知当x 在A 、B 两点之间时y 1<y 2,,所以x 取值在A 、B 两点横坐标之间; (3)根据平移性质可知DE AB ∥,CF =t ,求出两直线之间的距离即为△ACD 的高CG ,通过A 、C 坐标求出线段AC 长,列出△ACD 面积=1·2AC CG 的代数式求解即可. 【小问1详解】∵一次函数y 1=kx +b 的图像与函数y 2=m x(x >0)的图像交于A (6,-12),B (12,n )两点, ∴16212k b k b n ⎧+=-⎪⎪⎨⎪+=⎪⎩, 1262mn m⎧-=⎪⎨⎪=⎩, 解得:1132k b =⎧⎪⎨=-⎪⎩, 36m n =-⎧⎨=-⎩,∴y 1、y 2的解析式为:1132y x -=,23(0)y x x =->;【小问2详解】从图像上可以看出,当x 在AB 两点之间时,y 1<y 2,∴x 的取值范围为:162x <<;【小问3详解】作CG ⊥DE 于G ,如图,∵直线DE 是直线AB 沿y 轴向上平移t 个单位长度得到,∴DE AB ∥,CF =t ,∵直线AB 的解析式为1132y x -=, ∴直线AB 与y 轴的交点为C 130,2⎛⎫- ⎪⎝⎭,与x 轴的交点为13,02⎛⎫ ⎪⎝⎭, 即直线AB 与x 、y 坐标轴的交点到原点O 的距离相等,∴∠FCA =45°,∵CG ⊥DE , DE AB ∥,∴CG ⊥AC ,CG 等于平行线AB 、DE 之间的距离,∴∠GCF =∠GFC =45°,∴CG, ∵A 、C 两点坐标为:A (6,-12),C 130,2⎛⎫- ⎪⎝⎭, ∴线段AC=,∴11322ACD S AC CG t =⋅=⨯= , ∵△ACD 面积为6,∴3t =6,解得:t =2.【点睛】本题综合考查了一次函数、反比例函数,熟练掌握通过已知函数图像上的点的坐标求函数解析式,通过图像查看自变量取值范围,灵活运用平移的性质是解题关键. 21. 如图,O 是ABC 的外接圆,AD 是O 的直径,BC 与过点A 的切线EF 平行,BC ,AD 相交于点G .(1)求证:AB AC =;(2)若16DG BC ==,求AB 的长.【答案】(1)证明见解析(2)的【解析】【分析】(1)由切线的性质和BC EF ∥可得AD BC ⊥,由垂径定理可得BG CG =,从而得到AD 垂直平分BC ,最后利用垂直平分线的性质即可得证;(2)先利用勾股定理得到BD =AGB BGD △∽△,从而得到AB BG BD DG=,代入数据计算即可. 【小问1详解】 证明:∵直线EF 切O 于点A ,AD 是O 的直径,∴AD EF ⊥,∴90DAE DAF ∠=∠=︒,∵BC EF ∥,∴90DGB DAE ∠=∠=︒,∴AD BC ⊥,∴BG CG =,∴AD 垂直平分BC ,∴AB AC =;【小问2详解】如图,连接BD ,由(1)知:AD BC ⊥,BG CG =,∴90DGB AGB ∠=∠=︒,∵16DG BC ==, ∴182BG BC ==,在Rt DGB 中,BD ===, ∵AD 是O 的直径,∴90ABD ∠=︒,∴90ABG DBG ∠+∠=︒,又∵90BDG DBG Ð+Ð=°,∴ABG BDG ∠=∠,又∵90DGB AGB ∠=∠=︒∴AGB BGD △∽△, ∴AB BG BD DG=,816=,∴AB=,即AB的长为.【点睛】本题考查了切线的性质,垂径定理,圆周角定理,垂直平分线的性质,平行线的性质,三角形相似的判定和性质,勾股定理,直角三角形的两锐角互余等知识.通过作辅助线构造相似三角形是解答本题的关键.22. 为增强民众生活幸福感,市政府大力推进老旧小区改造工程.和谐小区新建一小型活动广场,计划在360m2的绿化带上种植甲乙两种花卉.市场调查发现:甲种花卉种植费用y(元/m2)与种植面积x(m2)之间的函数关系如图所示,乙种花卉种植费用为15元/m2.(1)当x≤100时,求y与x的函数关系式,并写出x的取值范围;(2)当甲种花卉种植面积不少于30m2,且乙种花卉种植面积不低于甲种花卉种植面积的3倍时.①如何分配甲乙两种花卉的种植面积才能使种植的总费用w(元)最少?最少是多少元?②受投入资金的限制,种植总费用不超过6000元,请直接写出甲种花卉种植面积x的取值范围.【答案】(1)()30(040)140401004y xy x x=<≤⎧⎪⎨=-+≤⎪⎩<;(2)①甲种花卉种植90m2,乙种花卉种植270m2时,种植的总费用w最少,最少为5625元;②40x ≤或60360x ≤≤.【解析】【分析】(1)根据函数图像分两种情况,40x ≤时y 为常数,0x 40≤≤10时y 为一次函数,设出函数解析式,将两端点值代入求出解析式,将两种情况汇总即可;(2)①设甲种花卉种植面积为m ,则乙种花卉种植面积为360m -,根据乙的面积不低于甲的3倍可求出90m 30≤≤,利用总费用等于两种花卉费用之和,将m 分不同范围进行讨论列出总费用代数式,根据m 的范围解出最小值进行比较即可;②将x 按图像分3种范围分别计算总费用的取值范围即可.【小问1详解】由图像可知,当甲种花卉种植面积40x ≤m 2时,费用y 保持不变,为30(元/m 2), 所以此区间的函数关系式为:30(040)y x ≤=<,当甲种花卉种植面积0x 40≤≤10m 2时,函数图像为直线,设函数关系式为:(0)y kx b x =+40≤≤10,∵当x =40时,y =30,当x =100时,y =15,代入函数关系式得:304015100k b k b=+⎧⎨=+⎩, 解得:1,404k b =-=, ∴140(0)4y x x =-+40≤≤10 ∴当100x ≤时,y 与x 的函数关系式应为:()30(040)140401004y x y x x =<≤⎧⎪⎨=-+≤⎪⎩<; 【小问2详解】①设甲种花卉种植面积为30m m ≥(),则乙种花卉种植面积为360m -,∵乙种花卉种植面积不低于甲种花卉种植面积的3倍,∴3603m m -≥,解得:90m ≤,∴m 的范围为:90m 30≤≤当3040m ≤≤时,3015(360)155400w m m m =+-=+,此时当m 最小时,w 最小,即当m =30时,w 有最小值153054005850⨯+=(元),当400m <≤9时,211(40)15(360)(50)602544w m m m m =-++-=--+,此时当m =90时,离对称轴m =50最远,w 最小,即当m =90时,w 有最小值21(9050)602556254--+=(元) ∵5625<5850,∴当m =90时种植的总费用w 最少,为5625元,此时乙种花卉种植面积为360m -=270, 故甲种花卉种植90m 2, 乙种花卉种植270m 2时,种植的总费用w 最少,最少为5625元. ②由以上解析可知:(1)当40x ≤时,总费用=155400154054006000x +⨯+=≤(元),(2)当40100x <≤时,总费用=21(50)60254x --+, 令21(50)602560004x --+≤, 解得:40x ≤或60x ≥,又∵40100x <≤,∴60100x ≤≤(3)当100360x <≤时,总费用=360155400⨯=(元),综上,在40x ≤、60100x ≤≤和100360x <≤时种植总费用不会超过6000元, 所以甲种花卉种植面积x 的取值范围为:40x ≤或60360x ≤≤.【点睛】本题考查一次函数的实际应用,解题关键是根据函数图像获取自变量的取值范围,仔细分情况讨论,掌握二次函数在自变量取值范围内求最小值的方法.23. 问题背景:一次数学综合实践活动课上,小慧发现并证明了关于三角形角平分线的一个结论.如图1,已知AD 是△ABC 的角平分线,可证AB AC =BD CD.小慧的证明思路是:如图2,过点C 作CE ∥AB ,交AD 的延长线于点E ,构造相似三角形来证明AB AC =BD CD .(1)尝试证明:请参照小慧提供的思路,利用图2证明AB AC =BD CD ;(2)应用拓展:如图3,在Rt △ABC 中,∠BAC =90°,D 是边BC 上一点.连接AD ,将△ACD 沿AD 所在直线折叠,点C 恰好落在边AB 上的E 点处.①若AC =1,AB =2,求DE 的长;②若BC =m ,∠AED =α,求DE 的长(用含m ,α的式子表示).【答案】(1)详见解析(2)①DE ;②tan 1m DE α=+ 【解析】【分析】(1)利用AB ∥CE ,可证得ABD ECD ,即AB CE BD CD =,由AD 平分∠BAC ,可知AC =EC ,即可证得结果;(2)利用(1)中的结论进行求解表示即可.【小问1详解】解:∵AB ∥CE ,∴∠BAD =∠DEC ,∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∴∠CAD =∠DEC ,∴AC =EC ,∵∠BDA =∠CDE ,∴ABD ECD , ∴AB CE BD CD=, 即AB AC BD CD =, ∴AB BD AC CD=; 【小问2详解】①由折叠可知,AD 平分∠BAC ,CD =DE ,由(1)得,AB BD AC CD=, ∵AC =1,AB =2,∴BC ===∴21=解得:CD ,∴DE = CD ②由折叠可知∠AED =∠C =α, ∴tan AB ACα=, 由①可知AB BD m CD AC CD CD-==, ∴tan m CD CDα-=, ∴tan 1m CD α=+, 即:tan 1mDE CD α==+.【点睛】本题主要考查的是相似三角形的综合运用,灵活转化比例关系是解题的关键. 24. 抛物线y =x 2-4x 与直线y =x 交于原点O 和点B ,与x 轴交于另一点A ,顶点为D .(1)直接写出点B 和点D 的坐标;(2)如图1,连接OD ,P 为x 轴上的动点,当tan ∠PDO =12时,求点P 的坐标;(3)如图2,M 是点B 关于抛物线对称轴的对称点,Q 是抛物线上的动点,它的横坐标为m (0<m <5),连接MQ ,BQ ,MQ 与直线OB 交于点E .设△BEQ 和△BEM 的面积分别为S 1和S 2,求12S S 的最大值. 【答案】(1)B (5,5),D (2,-4);(2)1(2,0)P ,210(,0)3P -; (3)2524; 【解析】【分析】(1)将两函数解析式联立可求得B 点坐标,将一般式转换为顶点式可求出D 点坐标;(2)如图所示,过D 作DE ⊥x 轴与点E ,则E (2,0),则tan ∠EDO =2412OE DE ==,当P 在E 上时,则满足tan ∠PDO =12,则1(2,0)P ,如图所示,当2ODPODE ∠=∠时,过D 作2OG P D ⊥于点G ,由2ODP ODE ∠=∠,可得OG =OE =2,DG =DE =4,设2P G n =,则24P D n =+,24sin 4OP D n ∠==+ ,解出可得n 的值进而可求出P 的坐标; (3)由题易得:M (-1,5),2(,4)Q m m m -,直线MQ 的解析式为:(5)y m x m =-+,令(5)x m x m =-+,解得6m x m =-,则(,66m m E m m--,由BM =6,可知1221MBQ S S S S =- ,()26542BMQ m m S ⋅-+= ,26562m m S ⎛⎫⋅- ⎪-⎝⎭=,则2121566S m m S =-+,求出此二次函数的最值即可. 【小问1详解】解:将y =x 2-4x 与y =x 联立得:x =x 2-4x ,解得:x =5或x =0(舍去),将x =5代入y =x 得y =5,故B 点坐标为(5,5),将函数y =x 2-4x 转换为顶点式得()224y x =--,故顶点D 为(2,-4),故B (5,5),D 为(2,-4);【小问2详解】如图所示,过D 作DE ⊥x 轴与点E ,则E (2,0),则tan ∠EDO =2412OE DE ==,当P 在E 上时,则满足tan ∠PDO =12, 则1(2,0)P , 如图所示,当2ODP ODE ∠=∠时,过O 作2OG P D ⊥于点G ,∵2ODP ODE ∠=∠,∴OG =OE =2,DG =DE =4,设2P G n =,则24P D n =+,则24sin 4OP D n ∠==+, 则83n =或n =0(舍去),则2103OP =,则210(,0)3P - 综上所述1(2,0)P ,210(,0)3P -; 【小问3详解】解:由题易得:M (-1,5),2(,4)Q m m m -,则直线MQ 的解析式为:(5)y m x m =-+,令(5)x m x m =-+,解得6m x m =-, ∴(,)66m m E m m--, ∵BM =6, ∴212221MBQ MBQ S S S S S S S -==- , 且()26542BMQ m m S ⋅-+= ,26562m m S ⎛⎫⋅- ⎪-⎝⎭=, ∴()()2212165415116(5)6666m m S m m m m m S m+--+=-=-=-+--, ∵106-<,函数开口向下, 当5561226m -==⎛⎫⨯- ⎪⎝⎭时,12S S 取最大值为2524. 【点睛】本题考查二次函数的综合,三角函数,数形结合思想,能够根据需要构造适合的辅助线是解决本题的关键。

2020年孝感市中考数学试题、试卷(解析版)

2020年孝感市中考数学试题、试卷(解析版)

2020年孝感市中考数学试题、试卷(解析版)一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)(2020•孝感)如果温度上升3℃,记作+3℃,那么温度下降2℃记作( )A .﹣2℃B .+2℃C .+3℃D .﹣3℃2.(3分)(2020•孝感)如图,直线AB ,CD 相交于点O ,OE ⊥CD ,垂足为点O .若∠BOE=40°,则∠AOC 的度数为( )A .40°B .50°C .60°D .140°3.(3分)(2020•孝感)下列计算正确的是( )A .2a +3b =5abB .(3ab )2=9ab 2C .2a •3b =6abD .2ab 2÷b =2b4.(3分)(2020•孝感)如图是由5个相同的正方体组成的几何体,则它的左视图是( )A .B .C .D .5.(3分)(2020•孝感)某公司有10名员工,每人年收入数据如下表:年收入/万元4 6 8 10 人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为( )A .4,6B .6,6C .4,5D .6,56.(3分)(2020•孝感)已知x =√5−1,y =√5+1,那么代数式x 3−xy 2x(x−y)的值是( ) A .2 B .√5 C .4D .2√57.(3分)(2020•孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=24R B.I=36R C.I=48R D.I=64R8.(3分)(2020•孝感)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+29.(3分)(2020•孝感)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH 的面积为y,则y关于x的函数图象大致是()A.B.C .D .10.(3分)(2020•孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154C .4D .92 二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)(2020•孝感)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为 .12.(3分)(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 .13.(3分)(2020•孝感)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为m .(结果保留根号)14.(3分)(2020•孝感)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A类:总时长≤5分钟;B类:5分钟<总时长≤10分钟;C类:10分钟<总时长≤15分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有人.15.(3分)(2020•孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S1,空白部分的面积为S2,大正方形的边长为m,小正方形的边长为n,若S1=S2,则nm的值为.16.(3分)(2020•孝感)如图,已知菱形ABCD的对角线相交于坐标原点O,四个顶点分别在双曲线y=4x和y=kx(k<0)上,ACBD=23,平行于x轴的直线与两双曲线分别交于点E,F,连接OE,OF,则△OEF的面积为.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(6分)(2020•孝感)计算:√−83+|√3−1|﹣2sin60°+(14)0. 18.(8分)(2020•孝感)如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF .连接EF ,分别与BC ,AD 交于点G ,H .求证:EG =FH .19.(7分)(2020•孝感)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8.(1)随机抽取一张卡片,则抽取到的数是偶数的概率为 ;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.20.(8分)(2020•孝感)如图,在平面直角坐标系中,已知点A (﹣1,5),B (﹣3,1)和C (4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为 ;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos ∠BCE 的值为 ;(3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为 .21.(10分)(2020•孝感)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0.(1)求证:无论k 为何实数,方程总有两个不相等的实数根;(2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.22.(10分)(2020•孝感)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍.(1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?23.(10分)(2020•孝感)已知△ABC 内接于⊙O ,AB =AC ,∠ABC 的平分线与⊙O 交于点D ,与AC 交于点E ,连接CD 并延长与⊙O 过点A 的切线交于点F ,记∠BAC =α.(1)如图1,若α=60°,①直接写出DF DC 的值为 ;②当⊙O 的半径为2时,直接写出图中阴影部分的面积为 ;(2)如图2,若α<60°,且DF DC =23,DE =4,求BE 的长.24.(13分)(2020•孝感)在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)当a=6时,直接写出点A,B,C,D的坐标:A,B,C,D;(2)如图1,直线DC交x轴于点E,若tan∠AED=43,求a的值和CE的长;(3)如图2,在(2)的条件下,若点N为OC的中点,动点P在第三象限的抛物线上,过点P作x轴的垂线,垂足为Q,交AN于点F;过点F作FH⊥DE,垂足为H.设点P 的横坐标为t,记f=FP+FH.①用含t的代数式表示f;②设﹣5<t≤m(m<0),求f的最大值.2020年湖北省孝感市中考数学试卷参考答案与试题解析一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项符合题目要求,不涂,错涂或多涂的,一律得0分)1.(3分)(2020•孝感)如果温度上升3℃,记作+3℃,那么温度下降2℃记作()A.﹣2℃B.+2℃C.+3℃D.﹣3℃【解答】解:“正”和“负”相对,如果温度上升3℃,记作+3℃,温度下降2℃记作﹣2℃.故选:A.2.(3分)(2020•孝感)如图,直线AB,CD相交于点O,OE⊥CD,垂足为点O.若∠BOE =40°,则∠AOC的度数为()A.40°B.50°C.60°D.140°【解答】解:∵OE⊥CD,∴∠EOD=90°,∵∠BOE=40°,∴∠BOD=90°﹣40°=50°,∴∠AOC=∠BOD=50°.故选:B.3.(3分)(2020•孝感)下列计算正确的是()A.2a+3b=5ab B.(3ab)2=9ab2C.2a•3b=6ab D.2ab2÷b=2b【解答】解:2a和3b表示同类项,不能计算,因此选项A不符合题意;(3ab)2=9a2b2,因此选项B不符合题意;2a•3b=6ab,因此选项C符合题意;2ab 2÷b =2ab ,因此选项D 不符合题意;故选:C .4.(3分)(2020•孝感)如图是由5个相同的正方体组成的几何体,则它的左视图是( )A .B .C .D .【解答】解:从左侧看到的是两列两层,其中左侧的一列是两层,因此选项C 的图形符合题意,故选:C .5.(3分)(2020•孝感)某公司有10名员工,每人年收入数据如下表:年收入/万元4 6 8 10 人数/人 3 4 2 1则他们年收入数据的众数与中位数分别为( )A .4,6B .6,6C .4,5D .6,5【解答】解:10名员工的年收入出现次数最多的是6万元,共出现4次,因此众数是6, 将这10名员工的年收入从小到大排列,处在中间位置的数是6万元,因此中位数是6, 故选:B .6.(3分)(2020•孝感)已知x =√5−1,y =√5+1,那么代数式x 3−xy 2x(x−y)的值是( ) A .2B .√5C .4D .2√5【解答】解:原式=x(x+y)(x−y)x(x−y) =x +y当x =√5−1,y =√5+1,原式=√5−1+√5+1=2√5.故选:D .7.(3分)(2020•孝感)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A )与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为()A.I=24R B.I=36R C.I=48R D.I=64R【解答】解:设I=KR,把(8,6)代入得:K=8×6=48,故这个反比例函数的解析式为:I=48 R.故选:C.8.(3分)(2020•孝感)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.9.(3分)(2020•孝感)如图,在四边形ABCD中,AD∥BC,∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿路径A→B→C→D从点A出发,以每秒1个单位长度的速度向点D运动.过点P作PH⊥AD,垂足为H.设点P运动的时间为x(单位:s),△APH 的面积为y,则y关于x的函数图象大致是()A.B.C.D.【解答】解:①当点P在AB上运动时,y=12AH×PH=12×AP sin A×AP cos A=12×x2×√34=√38x2,图象为二次函数;②当点P在BC上运动时,如下图,由①知,BH ′=AB sin A =4×12=2,同理AH ′=2√3, 则y =12×AH ×PH =12(2√3+x ﹣4)×2=2√3−4+x ,为一次函数; ③当点P 在CD 上运动时,同理可得:y =12×(2√3+6)×(4+6+2﹣x )=(3+√3)(12﹣x ),为一次函数; 故选:D .10.(3分)(2020•孝感)如图,点E 在正方形ABCD 的边CD 上,将△ADE 绕点A 顺时针旋转90°到△ABF 的位置,连接EF ,过点A 作EF 的垂线,垂足为点H ,与BC 交于点G .若BG =3,CG =2,则CE 的长为( )A .54B .154C .4D .92【解答】解:如图所示,连接EG ,由旋转可得,△ADE ≌△ABF , ∴AE =AF ,DE =BF , 又∵AG ⊥EF , ∴H 为EF 的中点, ∴AG 垂直平分EF , ∴EG =FG ,设CE =x ,则DE =5﹣x =BF ,FG =8﹣x , ∴EG =8﹣x , ∵∠C =90°,∴Rt △CEG 中,CE 2+CG 2=EG 2,即x 2+22=(8﹣x )2,解得x =154, ∴CE 的长为154,故选:B .二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)11.(3分)(2020•孝感)原子钟是北斗导航卫星的“心脏”,北斗卫星上的原子钟的精度可以达到100万年以上误差不超过1秒.数据100万用科学记数法表示为 1×106 . 【解答】解:100万=1000000=1×106, 故答案:1×106.12.(3分)(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 ﹣81 . 【解答】解:设这三个数中的第一个数为x ,则另外两个数分别为﹣3x ,9x , 依题意,得:x ﹣3x +9x =﹣567, 解得:x =﹣81. 故答案为:﹣81.13.(3分)(2020•孝感)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为 (53√3−1.6)m .(结果保留根号)【解答】解:如图,在Rt △DEA 中,∵cos ∠EDA =DEDA , ∴DA =5cos45°=5√2(m ); 在Rt △BCF 中,∵cos ∠BCF =CFCB , ∴CB =5cos30°=10√33(m ),∴BF =12BC =5√33(m ), ∵AB +AE =EF +BF ,∴AB =3.4+5√33−5=5√33−1.6(m ). 答:AB 的长为(53√3−1.6)m .故答案为:(53√3−1.6),14.(3分)(2020•孝感)在线上教学期间,某校落实市教育局要求,督促学生每天做眼保健操.为了解落实情况,学校随机抽取了部分学生进行调查,调查结果分为四类(A 类:总时长≤5分钟;B 类:5分钟<总时长≤10分钟;C 类:10分钟<总时长≤15分钟;D 类:总时长>15分钟),将调查所得数据整理并绘制成如图两幅不完整的统计图.该校共有1200名学生,请根据以上统计分析,估计该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有 336 人.【解答】解:本次抽取的学生有:10÷10%=100(人), B 类学生有:100﹣10﹣41﹣100×21%=28(人), 1200×28100=336(人),即该校每天做眼保健操总时长超过5分钟且不超过10分钟的学生约有336人, 故答案为:336.15.(3分)(2020•孝感)如图1,四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我国汉代赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图2的图案,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m ,小正方形的边长为n ,若S 1=S 2,则nm的值为√3+12.【解答】解:设直角三角形另一条直角边为x ,依题意有 2x 2=12m 2, 解得x =12m ,由勾股定理得(12m )2+(n +12m )2=m 2,m 2﹣2mn ﹣2n 2=0,解得m 1=(﹣1−√3)n (舍去),m 2=(﹣1+√3)n , 则nm 的值为√3+12. 故答案为:√3+12. 16.(3分)(2020•孝感)如图,已知菱形ABCD 的对角线相交于坐标原点O ,四个顶点分别在双曲线y =4x 和y =kx (k <0)上,AC BD=23,平行于x 轴的直线与两双曲线分别交于点E ,F ,连接OE ,OF ,则△OEF 的面积为 132.【解答】解:作AM ⊥x 轴于M ,DN ⊥x 轴于N , ∵四边形ABCD 是菱形, ∴AC ⊥BD ,∴∠AOM +∠DON =∠ODN +DON =90°, ∴∠AOM =∠ODN , ∵∠AMO =∠OND =90°,∴△AOM ∽△ODN , ∴S △AOM S △ODN=(OAOD)2,∵A 点在双曲线y =4x ,AC BD=23,∴S △AOM =12×4=2,OA OD =23, ∴2S △ODN=(23)2,∴S △ODN =92,∵D 点在双曲线y =k x(k <0)上, ∴12|k |=92,∴k =﹣9,∵平行于x 轴的直线与两双曲线分别交于点E ,F , ∴S △OEF =12×4+12×9=132, 故答案为132.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上) 17.(6分)(2020•孝感)计算:√−83+|√3−1|﹣2sin60°+(14)0.【解答】解:原式=﹣2+√3−1−√3+1 =﹣2.18.(8分)(2020•孝感)如图,在▱ABCD 中,点E 在AB 的延长线上,点F 在CD 的延长线上,满足BE =DF .连接EF ,分别与BC ,AD 交于点G ,H . 求证:EG =FH .【解答】证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,∠ABC =∠CDA , ∴∠EBG =∠FDH ,∠E =∠F ,在△BEG 与△DFH 中,{∠E =∠FBE =DF ∠EBG =∠FDH ,∴△BEG ≌△DFH (ASA ), ∴EG =FH .19.(7分)(2020•孝感)有4张看上去无差别的卡片,上面分别写有数﹣1,2,5,8. (1)随机抽取一张卡片,则抽取到的数是偶数的概率为12;(2)随机抽取一张卡片后,放回并混在一起,再随机抽取一张,请用画树状图或列表法,求抽取出的两数之差的绝对值大于3的概率.【解答】解:(1)4张卡片,共4种结果,其中是“偶数”的有2种,因此抽到偶数的概率为24=12,故答案为:12;(2)用列表法表示所有可能出现的结果情况如下:共有16种可能出现的结果,其中“两数差的绝对值大于3”的有6种, ∴P (差的绝对值大于3)=616=38.20.(8分)(2020•孝感)如图,在平面直角坐标系中,已知点A (﹣1,5),B (﹣3,1)和C (4,0),请按下列要求画图并填空.(1)平移线段AB ,使点A 平移到点C ,画出平移后所得的线段CD ,并写出点D 的坐标为 (2,﹣4) ;(2)将线段AB 绕点A 逆时针旋转90°,画出旋转后所得的线段AE ,并直接写出cos ∠BCE 的值为√55; (3)在y 轴上找出点F ,使△ABF 的周长最小,并直接写出点F 的坐标为 (0,4) .【解答】解:(1)如图所示,线段CD 即为所求,点D 的坐标为(2,﹣4); (2)如图所示,线段AE 即为所求,cos ∠BCE =CE BC =√1050=√55; (3)如图所示,点F 即为所求,点F 的坐标为(0,4).故答案为:(2,﹣4);√55;(0,4). 21.(10分)(2020•孝感)已知关于x 的一元二次方程x 2﹣(2k +1)x +12k 2﹣2=0. (1)求证:无论k 为何实数,方程总有两个不相等的实数根; (2)若方程的两个实数根x 1,x 2满足x 1﹣x 2=3,求k 的值.【解答】解:(1)∵△=[﹣(2k +1)]2﹣4×1×(12k 2﹣2)=4k 2+4k +1﹣2k 2+8 =2k 2+4k +9=2(k +1)2+7>0,∵无论k 为何实数,2(k +1)2≥0, ∴2(k +1)2+7>0,∴无论k 为何实数,方程总有两个不相等的实数根;(2)由根与系数的关系得出x 1+x 2=2k +1,x 1x 2=12k 2﹣2, ∵x 1﹣x 2=3, ∴(x 1﹣x 2)2=9, ∴(x 1+x 2)2﹣4x 1x 2=9, ∴(2k +1)2﹣4×(12k 2﹣2)=9,化简得k 2+2k =0, 解得k =0或k =﹣2.22.(10分)(2020•孝感)某电商积极响应市政府号召,在线销售甲、乙、丙三种农产品,已知1kg 乙产品的售价比1kg 甲产品的售价多5元,1kg 丙产品的售价是1kg 甲产品售价的3倍,用270元购买丙产品的数量是用60元购买乙产品数量的3倍. (1)求甲、乙、丙三种农产品每千克的售价分别是多少元?(2)电商推出如下销售方案:甲、乙、丙三种农产品搭配销售共40kg ,其中乙产品的数量是丙产品数量的2倍,且甲、丙两种产品数量之和不超过乙产品数量的3倍.请你帮忙计算,按此方案购买40kg 农产品最少要花费多少元?【解答】解:(1)设1kg 甲产品的售价为x 元,则1kg 乙产品的售价为(x +5)元,1kg 丙产品的售价为3x 元,根据题意,得:2703x=60x+5×3,解得:x =5,经检验,x =5既符合方程,也符合题意, ∴x +5=10,3x =15.答:甲、乙、丙三种农产品每千克的售价分别是5元、10元、15元;(2)设40kg 的甲、乙、丙三种农产品搭配中丙种产品有xkg ,则乙种产品有2mkg ,甲乙种产品有(40﹣3m )kg , ∴40﹣3m +m ≤2m ×3, ∴m ≥15,设按此方案购买40kg 农产品所需费用为y 元,根据题意,得: y =5(40﹣3m )+20m +15m =20m +200, ∵20>0,∴y 随m 的增大而增大,∴m =5时,y 取最小值,且y 最小=300,答:按此方案购买40kg 农产品最少要花费300元.23.(10分)(2020•孝感)已知△ABC 内接于⊙O ,AB =AC ,∠ABC 的平分线与⊙O 交于点D ,与AC 交于点E ,连接CD 并延长与⊙O 过点A 的切线交于点F ,记∠BAC =α. (1)如图1,若α=60°, ①直接写出DF DC的值为12;②当⊙O 的半径为2时,直接写出图中阴影部分的面积为 3√32−23π ;(2)如图2,若α<60°,且DF DC=23,DE =4,求BE 的长.【解答】解:(1)如图1,连接OA ,AD ,∵AF 是⊙O 的切线,∴∠OAF =90°,∵AB =AC ,∠BAC =60°,∴△ABC 是等边三角形,∴∠ABC =∠ACB =∠BAC =60°,∵BD 平分∠ABC ,∴∠ABD =∠CBD =30°,∵∠ADB =∠ACB =60°,∴∠BAD =90°,∴BD 是⊙O 的直径,∵OA =OB =OD ,∴∠ABO =∠OAB =30°,∠OAD =∠ADO =60°,∵∠BDC =∠BAC =60°,∴∠ADF =180°﹣60°﹣60°=60°=∠OAD ,∴OA ∥DF ,∴∠F =180°﹣∠OAF =90°,∵∠DAF =30°,∴AD =2DF ,∵∠ABD =∠CBD ,∴AD̂=CD ̂, ∴AD =CD ,∴CD =2DF ,∴DF DC =12,故答案为:12; ②∵⊙O 的半径为2,∴AD =OA =2,DF =1,∵∠AOD =60°,∴阴影部分的面积为:S 梯形AODF ﹣S 扇形OAD =12⋅AF ⋅(DF +OA)−60π×22360=12×√3(1+2)−60π×4360=3√32−23π;故答案为:3√32−23π; (2)如图2,连接AD ,连接AO 并延长交⊙O 于点H ,连接DH ,则∠ADH =90°,∴∠DAH +∠DHA =90°,∵AF 与⊙O 相切,∴∠DAH +∠DAF =∠F AO =90°,∴∠DAF =∠DHA ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∵AD̂=CD ̂, ∴∠CAD =∠DHA =∠DAF ,∵AB =AC ,∴∠ABC =∠ACB ,∵四边形ABCD 内接于⊙O ,∴∠ABC +∠ADC =180°,∵∠ADF +∠ADC =180°,∴∠ADF =∠ABC ,∵∠ADB =∠ACB =∠ABC ,∴∠ADF =∠ADB ,在△ADF 和△ADE 中∵{∠DAF =∠DAE AD =AD ∠ADF =∠ADE,∴△ADF ≌△ADE (ASA ),∴DF =DE =4,∵DF DC =23, ∴DC =6,∵∠DCE =∠ABD =∠DBC ,∠CDE =∠CDE ,∴△CDE ∽△BDC ,∴CD DB =DE CD ,即6BD =46, ∴BD =9,∴BE =DB ﹣DE =9﹣5=5.24.(13分)(2020•孝感)在平面直角坐标系中,已知抛物线y =ax 2+4ax +4a ﹣6(a >0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当a =6时,直接写出点A ,B ,C ,D 的坐标:A (﹣3,0) ,B (﹣1,0) ,C (0,18) ,D (﹣2,﹣6) ;(2)如图1,直线DC 交x 轴于点E ,若tan ∠AED =43,求a 的值和CE 的长;(3)如图2,在(2)的条件下,若点N 为OC 的中点,动点P 在第三象限的抛物线上,过点P 作x 轴的垂线,垂足为Q ,交AN 于点F ;过点F 作FH ⊥DE ,垂足为H .设点P 的横坐标为t ,记f =FP +FH .①用含t 的代数式表示f ;②设﹣5<t ≤m (m <0),求f 的最大值.【解答】解:(1)当a=6时,抛物线的表达式为:y=6x2+24x+18,令y=0,则x=﹣1或﹣3;当x=0时,y=18,函数的对称轴为x=﹣2,故点A、B、C、D的坐标分别为(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);故答案为:(﹣3,0)、(﹣1,0)、(0,18)、(﹣2,﹣6);(2)y=ax2+4ax+4a﹣6,令x=0,则y=4a﹣6,则点C(0,4a﹣6),函数的对称轴为x=﹣2,故点D的坐标为(﹣2,﹣6),由点C、D的坐标得,直线CD的表达式为:y=2ax+4a﹣6,令y=0,则x=3a−2,故点E(3a−2,0),则OE=3a−2,tan∠AED=OCOE=4a−63a−2=43,解得:a=23,故点C、E的坐标分别为(0,−103)、(52,0),则CE=√(103)2+(52)2=256;(3)①如图,作PF与ED的延长线交于点J,由(2)知,抛物线的表达式为:y =23x 2+83x −103, 故点A 、C 的坐标分别为(﹣5,0)、(0,−103),则点N (0,−53),由点A 、N 的坐标得,直线AN 的表达式为:y =−13x −53; 设点P (t ,23t 2+83t −103),则点F (t ,−13t −53); 则PF =−23t 2﹣3t +53,由点E (52,0)、C 的坐标得,直线CE 的表达式为:y =43x −103, 则点J (t ,43t −103),故FJ =−53t +53, ∵FH ⊥DE ,JF ∥y 轴,故∠FHJ =∠EOC =90°,∠FJH =∠ECO ,∴△FJH ∽△ECO ,故FH OE =FJ CE , 则FH =OE CE×FJ =−t +1, f =PF +FH =−23t 2﹣3t +53+(﹣t +1)=−23t 2﹣4t +83;②f =−23t 2﹣4t +83=−23(t +3)2+263(﹣5<t ≤m 且m <0); ∴当﹣5<m <﹣3时,f max =−23m 2﹣4m +83;当﹣3≤m <0时,f max =263.。

孝感中考数学试题及答案2022-图文

孝感中考数学试题及答案2022-图文

孝感中考数学试题及答案2022-图文2022年孝感市初中升学考试数学试题一、精心选一选(本大题共12小题,每小题3分,满分36分)1.(-1)2022的值是()A.1B.-1C.2022D.-20222.将一副三角板按如图所示的方式摆放在一起,则∠1的度数是()A.55oB.65oC.75oD.85o3.如图,数轴上点A、B分别表示实数a、b,则下列四个数中最大的数是()11A.aB.bC.D.ab1AB-101董永孝感4.如图,将正方体的平面展开图重新折成正方体后,“董”字对面的字是()A.孝B.感C.动D.天5.一只蚂蚁在如图所示的树枝上寻找食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得食物的概率是()1111A.B.C.D.2346动天食物食物蚂蚁B6.如图,△ABC的三个顶点都在正方形网格的格点上,则tan∠A=()65A.B.56C.210310D.320CA7.均匀地向如图所示的容器注水,最后把容器注满.在注水过程中,能大致反映水面高度h随时间t变化的图象是()注水hhhhOAtOBtOCtODt428.双曲线y=与y=在第一象限内的图象如图所示,作一条平行于y 轴的直线分别交双曲线于A、B两某某y点,连接OA、OB,则△AOB的面积为()A.1B.2C.3D.4A9.设方程某2―2某―2=0的较小根为某1,下面对的估计正确的是()BA.―2<某1<―1B.―1<某1<0O某C.0<某1<1D.1<某1<210.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A出发沿圆锥的侧面爬行一周后回到点A处的最短路程是()A.8B.102C.152D.20211.有四个命题:①两条直线被第三条直线所截,同旁内角互补;②有两边A和其中一边的对角相等的两个三角形全等;③菱形既是轴对称图形又是中心对称图形;④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1<d<7.其中正确的命题有()A.1个B.2个C.3个D.4个12.若直线某+2y=2m与直线2某+y=2m+3(m为常数)的交点在第四象限,则整数m的值为()A.―3,―2,―1,0B.―2,―1,0,1C.―1,0,1,2D.0,1,2,3二、细心填一填(本大题共6小题,每小题3分,满分18分)AD13.使12n是整数的最小正整数n=.14.如图,长方形ABCD中,AB=4,BC=3,以AB所在直线为轴,BC将长方形旋转一周后所得几何体的主视图的面积是.15.对红星学校某年级学生的体重(单位:kg,精确到1kg)情况进行了抽查,将所得数据处理后分成A、B、C三组(每组含最低值,不含最高值),并制成图表(部分数据未填).在被抽查的学生中偏瘦和偏胖的学生共有人.分组体重人数结论A30~35偏瘦B35~4032正常C40~45偏胖BA16%C20%16.P为⊙O外一点,PA、PB分别切⊙O于点A、B,∠APB=50o,点C为⊙O上一点(不与A、B重合),则∠ACB的度数为.北S60o17.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30o的方向上,航行12海里B到达B处,在B处看到灯塔S在船的北偏东60o的方向上.在此船继续沿正北方向航行30o的过程中,距灯塔S的最近距离是海里(不作近似计算).18.如图,用“○”摆图案,按照同样的方式构造图案,第100个图案需个“○”.A第一个图案第二个图案第三个图案第四个图案三、用心做一做(本大题共7小题,满分66分)2某110.19.(6分)解方程:某33某20.(8分)某市为了节约生活用水,计划制定每位居民统一的月用水量标准,然后根据标准实行分段收费.为此,对居民上年度的月均用水量进行了抽样调查,并根据调查结果绘制了上年度月均用水量的频数分布直方图(图中分组含最低值,不含最高值),请根据图中信息解答下列问题:(1)本次调查的居民人数为人;(2)本次调查的居民月均用水量的中位数落在频数分布直方图中的第小组内(从左至右);(3)当地政府希望让85%左右居民的月均用水量低于制定的月用水量标准,根据上述调查结果,你认为月用水量标准(取整数)定为多少吨较为合适?人数252215812821.(10分)『问题情境』勾股定理是一条古老的数学定理,它有多种证明方法,我国汉代数学家赵爽根据弦图,利用面积法进行了证明.著名数学家华罗庚曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言.『定理表述』请你根据图1中的直角三角形叙述勾股定理(用文字及符号语言叙述).cab图1『尝试证明』以图1中的直角三角形为基础,可以构造出以a、b为底,以a+b为高的直角梯形(如图D2),请你利用图2,验证勾股定理.AbccaBCba图2a+b『知识拓展』利用图2中的直角梯形,我们可以证明<2.其证明步骤如下:c∵BC=a+b,AD=,又在直角梯形ABCD中,BCAD(填大小关系),即.∴a+b<2.c22.(10分)关于某的一元二次方程某2―某+p―1=0有两实数根某1、某2.(1)求p的取值范围;(2)[2+某1(1―某2)][2+某2(1―某1)]=9,求p的取值.23.(10分)如图1,⊙O是边长为6的等边△ABC的外接圆,点D在⌒BC上运动(不与点B、C重合),过点D作DE∥BC交AC的延长线于点E,连接AD、CD.(1)在图1中,当AD=210时,求AE的长.AA⌒(2)如图2,当点D为BC的中点时:①DE与⊙O的位置关系是;②求△ACD的内切圆半径r.OOBCBCEDED图1图224.(10分)某市与W市之间的城际铁路正在紧张有序地建设中.在建成通车前,进行了社会需求调查,得到一列火车一天往返次数m与该列车每次拖挂车厢节数n的部分数据如下:车厢节数n往返次数m416710104k(1)请你根据上表数据,在三个函数模型:①y=k某+b(k、b为常数,k≠0);②y=(k为常数,k≠0);某③y=a某2+b某+c(a、b、c为常数,a≠0)中,选取一个适合的函数模型,求出的m关于n的函数关系式是m=(不写n的取值范围);(2)结合你求出的函数,探究一列火车每次挂多少节车厢,一天往返多少次时,一天的设计运营人数Q最多(每节车厢载客量设定为常数p).25.(12分)如图,已知二次函数的图象顶点坐标为(2,0),直线y=某+1与二次函数的图象交于A、B两点,其中点A在y轴上.(1)二次函数的解析式为y=.(2)证明点(―m,2m―1)不在(1)中所求的二次函数的图象上.(3)C为线段AB的中点,过点C作CE⊥某轴于点E,CE与二次函数的图象交于点D.①y轴上存在点K,使以K、A、D、C为顶点的四边形是平行四边形,则点K的坐标是;②二次函数的图象上是否存在点P,使得S△POE=2S△ABD?若存在,求出点P的坐标;若不存在,请说明理由.yBCAD2EO某。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省孝感市2013年中考数学试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.(3分)(2013•孝感)计算﹣32的值是()A.9B.﹣9 C.6D.﹣6考点:有理数的乘方.分析:根据有理数的乘方的定义解答.解答:解:﹣32=﹣9.故选B.点评:本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.2.(3分)(2013•孝感)太阳的半径约为696000km,把696000这个数用科学记数法表示为()A.6.96×103B.69.6×105C.6.96×105D.6.96×106考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将696000用科学记数法表示为6.96×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2013•孝感)如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°考点:平行线的判定与性质.分析:首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.解答:解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.点评:此题主要考查了平行线的性质与判定,关键是掌握同位角相等,两直线平行;两直线平行,同位角相等.4.(3分)(2013•孝感)下列计算正确的是()A.a3÷a2=a3•a﹣2B.C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式;负整数指数幂;二次根式的性质与化简.分析:根据合并同类项的法则、同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.解答:解:A、a3÷a2=a3•a﹣2,计算正确,故本选项正确;B、=|a|,计算错误,故本选项错误;C、2a2+a2=3a2,计算错误,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,计算错误,故本选项错误;故选A.点评:本题考查了同底数幂的乘除、合并同类项的知识,解答本题的关键是掌握各部分的运算法则.5.(3分)(2013•孝感)为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:169141112101681719则这组数据的中位数和极差分别是()A.13,16 B.14,11 C.12,11 D.13,11考点:极差;中位数.分析:根据中位数及极差的定义,结合所给数据即可作出判断.解答:解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;极差=19﹣8=11.故选D.点评:本题考查了极差及中位数的定义,在求中位数的时候,注意将所给数据从新排列.6.(3分)(2013•孝感)下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交考点:圆与圆的位置关系;垂径定理;圆心角、弧、弦的关系;圆周角定理.分析:利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可解答:解:A、平分弦(不是直径)的直径垂直于弦,故本选项错误;B、半圆或直径所对的圆周角是直角,故本选项正确;C、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D、两圆有两个公共点,两圆相交,故本选项错误,故选B.点评:本题考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键.7.(3分)(2013•孝感)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在考点:一元一次不等式组的整数解.分析:先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x的整数解即可.解答:解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故选A.点评:此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(3分)(2013•孝感)式子的值是()A.B.0C.D.2考点:特殊角的三角函数值.分析:将特殊角的三角函数值代入后,化简即可得出答案.解答:解:原式=2×﹣1﹣(﹣1)=﹣1﹣+1=0.故选B.点评:本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.9.(3分)(2013•孝感)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O 为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)考点:位似变换;坐标与图形性质.专题:作图题.分析:根据题意画出相应的图形,找出点E的对应点E′的坐标即可.解答:解:根据题意得:则点E的对应点E′的坐标是(﹣2,1)或(2,﹣1).故选D.点评:此题考查了位似图形,以及坐标与图形性质,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.(3分)(2013•孝感)如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是()A.B.C.D.考点:由三视图判断几何体;简单组合体的三视图.分析:根据该组合体的主视图和俯视图及正方形的个数确定每层的小正方形的个数,然后确定其左视图即可;解答:解:∵该组合体共有8个小正方体,俯视图和主视图如图,∴该组合体共有两层,第一层有5个小正方体,第二层有三个小正方形,且全位于第二层的最左边,∴左视图应该是两层,每层两个,故选B.点评:考查由视图判断几何体;用到的知识点为:俯视图中正方形的个数是组合几何体最底层正方体的个数;组合几何体的最少个数是底层的正方体数加上主视图中第二层和第3层正方形的个数.11.(3分)(2013•孝感)如图,函数y=﹣x与函数的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为()A.2B.4C.6D.8考点:反比例函数与一次函数的交点问题.分析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOC=S△ODB=2,再根据反比例函数的对称性可知:OC=OD,AC=BD,即可求出四边形ACBD的面积.解答:解:∵过函数的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D,∴S△AOC=S△ODB=|k|=2,又∵OC=OD,AC=BD,∴S△AOC=S△ODA=S△ODB=S△OBC=2,∴四边形ABCD的面积为:S△AOC+S△ODA+S△ODB+S△OBC=4×2=8.故选D.点评:本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|;图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,是经常考查的一个知识点;同时考查了反比例函数图象的对称性.12.(3分)(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.分析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,解得:CD=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)13.(3分)(2013•孝感)分解因式:ax2+2ax﹣3a=a(x+3)(x﹣1).考点:因式分解-十字相乘法等;因式分解-提公因式法.专题:计算题.分析:原式提取a后利用十字相乘法分解即可.解答:解:ax2+2ax﹣3a=a(x2+2x﹣3)=a(x+3)(x﹣1).故答案为:a(x+3)(x﹣1)点评:此题考查了因式分解﹣十字相乘法与提公因数法,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2013•孝感)在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取1瓶,取到已过保质期饮料的概率为(结果用分数表示).考点:概率公式.分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:∵在5瓶饮料中,有2瓶已过了保质期,∴从这5瓶饮料中任取1瓶,取到已过保质期饮料的概率为;故答案为:.点评:此题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)(2013•孝感)如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).考点:解直角三角形的应用-仰角俯角问题.分析:首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt△ADE中,利用正切函数的知识,求得AB与AE的长,继而可求得答案.解答:解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DE=BE=AB﹣AE=18﹣6=12(m).故答案为:12.点评:本题考查俯角的知识.此题难度不大,注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.16.(3分)用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为8 cm.考点:圆锥的计算.专题:计算题.分析:根据圆的周长公式和扇形的弧长公式解答.解答:解:如图:圆的周长即为扇形的弧长,列出关系式解答:=2πx,又∵n=216,r=10,∴(216×π×10)÷180=2πx,解得x=6,h==8.故答案为:8cm.点评:考查了圆锥的计算,先画出图形,建立起圆锥底边周长和扇形弧长的关系式,即可解答.17.(3分)(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51.考点:规律型:图形的变化类.专题:规律型.分析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解答:解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.18.(3分)(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起8分钟该容器内的水恰好放完.考点:一次函数的应用.分析:先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.解答:解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.故答案为:8.点评:本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.解答写在答题卡上)19.(6分)(2013•孝感)先化简,再求值:,其中,.考点:分式的化简求值;二次根式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x与y的值代入进行计算即可.解答:解:原式===,当,时,原式=.点评:本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.20.(8分)(2013•孝感)如图,已知△ABC和点O.(1)把△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;(2)用直尺和圆规作△ABC的边AB,AC的垂直平分线,并标出两条垂直平分线的交点P(要求保留作图痕迹,不写作法);指出点P是△ABC的内心,外心,还是重心?考点:作图-旋转变换;作图—复杂作图.分析:(1)分别得出△ABC绕点O顺时针旋转90°后的对应点坐标,进而得到△A1B1C1,(2)根据垂直平分线的作法求出P点即可,进而利用外心的性质得出即可.解答:解:(1)△A1B1C1如图所示;(2)如图所示;点P是△ABC的外心.点评:此题主要考查了复杂作图,正确根据垂直平分线的性质得出P点位置是解题关键.21.(10分)(2013•孝感)如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?考点:条形统计图;列表法与树状图法;游戏公平性.分析:(1)假设出去B地的人数为x,根据去B地参加夏令营活动人数占总人数的40%,进而得出方程求出即可;(2)根据已知列表得出所有可能,进而利用概率公式求出即可.解答:解:(1)设去B地的人数为x,则由题意有:;解得:x=40.∴去B地的人数为40人.(2)列表:4 (1,4)(2,4)(3,4)(4,4)3 (1,3)(2,3)(3,3)(4,3)2 (1,2)(2,2)(3,2)(4,2)1 (1,1)(2,1)(3,1)(4,1)1 2 3 4∴姐姐能参加的概率,弟弟能参加的概率为,∵<,∴不公平.点评:此题主要考查了条形统计图以及列表法求出概率和游戏公平性等知识,正确列举出所有可能是解题关键.22.(10分)(2013•孝感)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P 最大?考点:二次函数的应用;一次函数的应用.分析:(1)设y与x满足的函数关系式为:y=kx+b.,由题意可列出k和b的二元一次方程组,解出k和b的值即可;(2)根据题意:每天获得的利润为:P=(﹣3x+108)(x﹣20),转换为P=﹣3(x﹣28)2+192,于是求出每天获得的利润P最大时的销售价格.解答:解:(1)设y与x满足的函数关系式为:y=kx+b.由题意可得:解得故y与x的函数关系式为:y=﹣3x+108.(2)每天获得的利润为:P=(﹣3x+108)(x﹣20)=﹣3x2+168x﹣2160=﹣3(x﹣28)2+192.故当销售价定为28元时,每天获得的利润最大.点评:本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质以及最值得求法,此题难度不大.23.(10分)(2013•孝感)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD 延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.考点:切线的判定.分析:(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.解答:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.点评:本题考查了切线的判定及圆周角定理,解答本题的关键是掌握切线的判定定理、圆周角定理及含30°直角三角形的性质.24.(10分)(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得≥0成立?若存在,请求出k的值;若不存在,请说明理由.考点:根与系数的关系;根的判别式.分析:(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.25.(12分)(2013•孝感)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.考点:二次函数综合题.专题:综合题.分析:(1)取AB的中点G,连接EG,利用SSS能得到△AGE与△ECF全等;(2)①在AB上截取AM=EC,证得△AME≌△ECF即可证得AE=EF;②过点F作FH⊥x轴于H,根据FH=BE=CH设BH=a,则FH=a﹣1,然后表示出点F的坐标,根据点F恰好落在抛物线y=﹣x2+x+1上得到有关a的方程求得a值即可求得点F 的坐标;解答:(1)解:如图1,取AB的中点G,连接EG.△AGE与△ECF全等.(2)①若点E在线段BC上滑动时AE=EF总成立.证明:如图2,在AB上截取AM=EC.∵AB=BC,∴BM=BE,∴△MBE是等腰直角三角形,∴∠AME=180°﹣45°=135°,又∵CF平分正方形的外角,∴∠ECF=135°,∴∠AME=∠ECF.而∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,∴△AME≌△ECF.∴AE=EF.②过点F作FH⊥x轴于H,由①知,FH=BE=CH,设BH=a,则FH=a﹣1,∴点F的坐标为F(a,a﹣1)∵点F恰好落在抛物线y=﹣x2+x+1上,∴a﹣1=﹣a2+a+1,∴a2=2,(负值不合题意,舍去),∴.∴点F的坐标为.点评:本题考查了二次函数的综合知识,题目中涉及到了全等的知识,还渗透了方程思想,是一道好题.。

相关文档
最新文档