万有引力、重力和向心力关系习题

合集下载

高中物理万有引力定律的应用题20套(带答案)含解析

高中物理万有引力定律的应用题20套(带答案)含解析

高中物理万有引力定律的应用题20套(带答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v=- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用2.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。

若近似认为月球绕地球作匀速圆周运动,地球绕太阳也作匀速圆周运动,它们的绕行方向一致且轨道在同一平面内。

(1)已知地球表面处的重力加速度为g ,地球半径为R ,月心地心间的距离为r ,求月球绕地球一周的时间T m ;(2)如图是相继两次满月时,月球、地球和太阳相对位置的示意图。

已知月球绕地球运动一周的时间T m =27.4d ,地球绕太阳运动的周期T e =365d ,求地球上的观察者相继两次看到满月满月的时间间隔t 。

【答案】(1) 322m r T gR= (2)29.6 【解析】 【详解】(1)设地球的质量为M ,月球的质量为m ,地球对月球的万有引力提供月球的向心力,则222m MmG mr r T π⎛⎫=⋅ ⎪⎝⎭地球表面的物体受到的万有引力约等于重力,则02GMm m g R= 解得 322m r T gRπ= (2)相继两次满月有,月球绕地心转过的弧度比地球绕日心转过的弧度多2π,即2m e t t ωπω=+而2m mT πω=2e eT πω=解得 29.6t =天3.某课外小组经长期观测,发现靠近某行星周围有众多卫星,且相对均匀地分布于行星周围,假设所有卫星绕该行星的运动都是匀速圆周运动,通过天文观测,测得离行星最近的一颗卫星的运动半径为R 1,周期为T 1,已知万有引力常量为G 。

万有引力定律的应用练习题含答案及解析

万有引力定律的应用练习题含答案及解析

万有引力定律的应用练习题含答案及解析一、高中物理精讲专题测试万有引力定律的应用1.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r,周期为T,引力常量为G,行星半径为求:(1)行星的质量M;(2)行星表面的重力加速度g;(3)行星的第一宇宙速度v.【答案】(1)(2)(3)【解析】【详解】(1)设宇宙飞船的质量为m,根据万有引力定律求出行星质量(2)在行星表面求出:(3)在行星表面求出:【点睛】本题关键抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.2.在地球上将一轻弹簧竖直固定在水平桌面上,把质量为m的物体P置于弹簧上端,用力压到弹簧形变量为3x0处后由静止释放,从释放点上升的最大高度为4.5x0,上升过程中物体P的加速度a与弹簧的压缩量x间的关系如图中实线所示。

若在另一星球N上把完全相同的弹簧竖直固定在水平桌面上,将物体Q在弹簧上端点由静止释放,物体Q的加速度a与弹簧的压缩量x间的关系如图中虚线所示。

两星球可视为质量分布均匀的球体,星球N半径为地球半径的3倍。

忽略两星球的自转,图中两条图线与横、纵坐标轴交点坐标为已知量。

求:(1)地球表面和星球N 表面重力加速度之比; (2)地球和星球N 的质量比;(3)在星球N 上,物体Q 向下运动过程中的最大速度。

【答案】(1)2:1(2)2:9(3)0032v a x = 【解析】 【详解】(1)由图象可知,地球表面处的重力加速度为 g 1=a 0 星球N 表面处的重力加速度为 g 2=00.5a 则地球表面和星球N 表面重力加速度之比为2∶1 (2)在星球表面,有2GMmmg R = 其中,M 表示星球的质量,g 表示星球表面的重力加速度,R 表示星球的半径。

则M =2gR G因此,地球和星球N 的质量比为2∶9(3)设物体Q 的质量为m 2,弹簧的劲度系数为k 物体的加速度为0时,对物体P :mg 1=k·x 0对物体Q :m 2g 2=k ·3x 0联立解得:m 2=6m在地球上,物体P 运动的初始位置处,弹簧的弹性势能设为E p ,整个上升过程中,弹簧和物体P 组成的系统机械能守恒。

万有引力、重力、向心力三者关系剖析

万有引力、重力、向心力三者关系剖析
万有引力、重力、向心力三者关系剖析
王小爱 ( 陕西乾县第二中学 )
学 习 了 天 体 运 动 以后 .同 学 们 不 断 所 受 万 有 引 力 。 地 遇 到 万 有 引 力 .重 力 .向 心 力这 三 个 力 , 由于 不 明 确 这 三 力 之 间 的 关 系 .容
C.1 2 F D f 3 1 F >F= 3 2 >f >f
部 分是 使 物体 随地 球 自转 所 需 的 向心 力 , 向心 力 来源 于 引力但 却 不等 于 引 力。
不 同 .三 力 关 系 不 同 .在 处 理 这 类 问 题

G Mm/( +h R )=mV /(+h) R
时~定要具体 问题具体分析。
例 :有 三 颗 质 量 相 等 人 造 卫 星 1 、


待 发 的卫 星 1 1 Mm, :F =G
所 以 ,F>F f 3 3l <f
在 赤道 处 :万 有 引力=重 力+向心
力;
3 1 放 在 赤 道 发 射 的 卫 星 ,2 靠 是 是
近 地 卫 星 2 同步 卫 星 3 和
在两极处 : 有 引力= 力 此 时 向 万 重 近 地 面 做 匀 速 圆 周 运 动 的近 地 卫 星 ,3 卫 星 做 匀 速 圆 周 运 动 所 需 向 心 力 等于 零 ; 是 高 空 的 一 颗 地 球 同 步 卫 星 。 试 比 较 球 对 它 的 万 有 引 力 不 同 的

易将 三者混 淆 .出现诸 多错误 。要 弄清 它们之 间关系 ,首先要 明确万有 引力为
重 力 、 向心 力 之 源 ;其 次 要 分 清 在 哪种 情况 下。

于 物 体 重 力 , 引 力提 供 物 体 做 圆 周 运 动 周 运 动 所 需 向 心 力 等 于 地 球 引 力 .待 发 的 卫 星 1 地 球 随 的 向 心 力 ,所 以三 者 相 等 .但 要 明 白 , 向心 力 只是 从 效 果 上 的命 名 。

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析

高考物理万有引力定律的应用解题技巧及经典题型及练习题(含答案)含解析一、高中物理精讲专题测试万有引力定律的应用1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求:(1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F Rm-(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】(1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l在最高点:222mv F mg l += ① 在最低点:211mv F mg l-= ② 由机械能守恒定律,得221211222mv mg l mv =⋅+ ③ 由①②③,解得126F F g m-= (2)2GMmmg R= 2GMm R =2mv R两式联立得:12()6F F Rm-(3)在星球表面:2GMmmg R = ④ 星球密度:MVρ=⑤ 由④⑤,解得128F F GmRρπ-=点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度.2.已知地球的自转周期和半径分别为T 和R ,地球同步卫星A 的圆轨道半径为h .卫星B 沿半径为r (r <h )的圆轨道在地球赤道的正上方运行,其运行方向与地球自转方向相同.求:(1)卫星B 做圆周运动的周期;(2)卫星A 和B 连续地不能直接通讯的最长时间间隔(信号传输时间可忽略).【答案】(1)3/2()r T h (2)3/23/23/2π()r h r -(arcsin R h+arcsin Rr )T 【解析】试题分析:(1)设卫星B 绕地心转动的周期为T′,地球质量为M ,卫星A 、B 的质量分别为m 、m′,根据万有引力定律和圆周运动的规律有:2Mm G h =mh 224T π① 2Mm G r '=m′r 224T π'② 联立①②两式解得:T′=3/2()rT h③(2)设卫星A 和B 连续地不能直接通讯的最长时间间隔t ,在时间间隔t 内,卫星A 和B 绕地心转过的角度分别为α和β,则:α=t T ×2π,β=tT '×2π ④ 若不考虑卫星A 的公转,两卫星不能直接通讯时,卫星B 的位置应在下图中B 点和B′点之间,图中内圆表示地球的赤道.由图中几何关系得:∠BOB′=2(arcsinR h+arcsin Rr ) ⑤由③式知,当r <h 时,卫星B 比卫星A 转得快,考虑卫星A 的公转后应有:β-α=∠BOB′ ⑥由③④⑤⑥式联立解得:t =3/23/23/2()r h r π-(arcsin R h+arcsin Rr )T 考点:本题主要考查了万有引力定律的应用和空间想象能力问题,属于中档偏高题.3.地球的质量M=5.98×1024kg ,地球半径R=6370km ,引力常量G=6.67×10-11N·m 2/kg 2,一颗绕地做圆周运动的卫星环绕速度为v=2100m/s ,求: (1)用题中的已知量表示此卫星距地面高度h 的表达式 (2)此高度的数值为多少?(保留3位有效数字) 【答案】(1)2GMh R v=-(2)h=8.41×107m 【解析】试题分析:(1)万有引力提供向心力,则解得:2GMh R v =- (2)将(1)中结果代入数据有h=8.41×107m 考点:考查了万有引力定律的应用4.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求:(1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期.【答案】(1) R=m M M +L, r=m Mm+L,(2)()3L G M m +【解析】(1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+两星做圆周运动时的向心力由万有引力提供,则有:2222244mM G mR Mr L T Tππ==可得 R Mr m=,又因为L R r =+ 所以可以解得:M R L M m =+,mr L M m=+; (2)根据(1)可以得到:2222244mM MG m R m L L T T M m ππ==⋅+则:2T == 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径.5.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。

星球表面上万有引力、重力、向心力的关系与解题应用

星球表面上万有引力、重力、向心力的关系与解题应用



当物体在两极 的极点 时, 此时 F = 0 , F=G ,, 此 最 大 值 为G ~= G 警
』L
当物体由赤道 向两极移动的过程中 , 向心力减小 , 重力
增大 , 只 有 物体 在 两极 时物体 所受 的万 有引 力等于 重 力.

嚣 g 地 地 = ・ ( R , 9 8 1 … 8 一 5 . 6
即g 月= 1
9. 8 n 1 /2
地 =

: m月 ( ) z
—1 . 7 5 m/s 2
所 以物体在月 球上 空 5 0 0 m处 自由落 下到 达月 球表
整 理 i 导 r = √ : √ . 代 人 数 据 , 地 球 表 面 的 重 力
( 1 ) G Mm= , 一g: 求 重力加速度
在地球表 面 G M m= m g g= G M

技法攻略 ①设星球的质量为 , 在星球两极 匕 测得的重 力即为物体与星球问的万有引力的大小 G ] l l / m= G 2 解得 M =

在距地球 表面 高 h
力为 G , 物体受到的万有引力为 , 所 以在赤道上 , 物体受到的

向 心 力 的 大 小 为 : G 2 一 G = m R o ) 2 , 解 得 ∞ = √ .
解题秘籍 在地球表面上 的物 体所受的万有引力 F可以分解成物 体所受到的重力 G和随地球 自转而
加速度 g= 9 . 8 m / s , 月 球的运动周期 T= 3 0 d= 3 0× 2 4×
3 6 0 0 s 得r = 4×1 0 m .
面 所 需 要 的 时
= √ 2 4 ) 1

万有引力定律的练习题

万有引力定律的练习题

四、万有引力定律的练习题一、选择题1、关于地球同步通讯卫星,下列说法中正确的是[]A.它一定在赤道上空运行B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间2、设地面附近重力加速度为g0,地球半径为R0,人造地球卫星圆形运行轨道半径为R,那么以下说法正确的是[]3、人造地球卫星绕地球做匀速圆周运动,其轨道半径为R,线速度为v,周期为T,若要使卫星的周期变为2T,可能的办法是[]A.R不变,使线速度变为 v/2B.v不变,使轨道半径变为2RD.无法实现4、两颗靠得较近天体叫双星,它们以两者重心联线上的某点为圆心做匀速圆周运动,因而不至于因引力作用而吸引在一起,以下关于双星的说法中正确的是[]A.它们做圆周运动的角速度与其质量成反比B.它们做圆周运动的线速度与其质量成反比C.它们所受向心力与其质量成反比D.它们做圆周运动的半径与其质量成反比5、由于地球的自转,地球表面上各点均做匀速圆周运动,所以[]A.地球表面各处具有相同大小的线速度B.地球表面各处具有相同大小的角速度C.地球表面各处具有相同大小的向心加速度D.地球表面各处的向心加速度方向都指向地球球心6、以下说法中正确的是[]A.质量为m的物体在地球上任何地方其重力都一样B.把质量为m的物体从地面移到高空中,其重力变小C.同一物体在赤道上的重力比在两极处重力大D.同一物体在任何地方质量都是相同的7、假设火星和地球都是球体,火星的质量M火和地球的质量M地之比M火/M地=p,火星的半径R火和地球的半径R地之比R火/R地=q,那么火星表面处的重力加速度g火和地球表面处的重力的加速度g地之比等于[]A.p/q2B.pq2C.p/qD.pq8、假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则[]A.根据公式v=ωr,可知卫星的线速度将增大到原来的2倍9.如图为某行星绕太阳运动的轨道,下列关于太阳位置的描述正确的是 ( )A .太阳的位置在O 点B .太阳的位置一定在C .太阳的位置一定在C 1、C 2两点中的一点D .太阳的位置可以在C 1、O 、C 2任意一点 10. 地球绕太阳的运行轨道是椭圆形,因而地球与太阳之间的距离岁季节变化。

高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析

高考必备物理万有引力定律的应用技巧全解及练习题(含答案)含解析

高考必备物理万有引力定律的应用技巧全解及练习题( 含答案 ) 含分析一、高中物理精讲专题测试万有引力定律的应用1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地址与抛出点的水平距离为x 和落地时间t,又已知该星球的半径为 R,己知万有引力常量为G,求:(1)小球抛出的初速度 v o(2)该星球表面的重力加快度g(3)该星球的质量 M(4)该星球的第一宇宙速度 v(最后结果一定用题中己知物理量表示)【答案】 (1) v0=x/t (2) g=2h/t 2(3) 2hR2/(Gt 2) (4)2hRt【分析】(1)小球做平抛运动,在水平方向: x=vt,解得从抛出到落地时间为: v0=x/t(2)小球做平抛运动时在竖直方向上有:1h= gt2,2解得该星球表面的重力加快度为:g=2h/t 2;(3)设地球的质量为M ,静止在地面上的物体质量为m,由万有引力等于物体的重力得:mg= GMmR2因此该星球的质量为:M= gR2= 2hR2/(Gt 2);G(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v,由牛顿第二定律得:G Mm m v2R2R重力等于万有引力,即mg= G MmR2,解得该星球的第一宇宙速度为:v2hR gRt2.“嫦娥一号”的成功发射,为实现中华民族几千年的奔月梦想迈出了重要的一步.已知“嫦娥一号”绕月飞翔轨道近似为圆形,距月球表面高度为H,飞翔周期为T,月球的半径为R,引力常量为G.求:(1)嫦“娥一号”绕月飞翔时的线速度大小;(2)月球的质量;(3)若发射一颗绕月球表面做匀速圆周运动的飞船,则其绕月运转的线速度应为多大.【答案】(1)2R H(2)42R H32RHRH( 3)T GT2T R【分析】( 1) “嫦娥一号 ”绕月飞翔时的线速度大小2π(R H )v 1.T( 2 )设月球质量为M . “嫦娥一号 ”的质量为 m .Mm2H )依据牛二定律得Gm 4π (RH )2T 2(R23解得 M4π (R H ) .GT 2( 3)设绕月飞船运转的线速度为 V,飞船质量为Mm 0V 2又m 0 ,则 Gm 023M4π (R H ) .GT 2联立得 V2π RHRHT R3. 一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为 r ,周期为 T ,引力常量为 G ,行星半径为 求:(1) 行星的质量 M ;(2) 行星表面的重力加快度g ; (3) 行星的第一宇宙速度v .【答案】 (1) ( 2) ( 3)【分析】【详解】(1)设宇宙飞船的质量为 m ,依据万有引力定律求出行星质量(2)内行星表面求出 :(3)内行星表面求出 :【点睛】此题重点抓住星球表面重力等于万有引力,人造卫星的万有引力等于向心力.4.万有引力定律揭露了天体运动规律与地上物体运动规律拥有内在的一致性.(1)用弹簧测力计称量一个相关于地球静止的物体的重力,随称量地点的变化可能会有不 同结果.已知地球质量为M ,自转周期为 T ,引力常量为 G .将地球视为半径为R 、质量分布平均的球体,不考虑空气的影响.设在地球北极地面称量时,弹簧测力计的读数是F 0.① 若在北极上空超出地面h 处称量,弹簧测力计读数为 F 1,求比值 的表达式,并就h=1.0%R 的情况算出详细数值(计算结果保存两位有效数字); ② 若在赤道表面称量,弹簧测力计读数为F 2 ,求比值的表达式.( 2)假想地球绕太阳公转的圆周轨道半径为 r 、太阳半径为 R s 和地球的半径 R 三者均减小为此刻的 1 .0%,而太阳和地球的密度平均且不变.仅考虑太阳与地球之间的互相作用, 以现实地球的 1 年为标准,计算 “假想地球 ”的 1 年将变成多长?2 3【答案】( 1) ① 0.98,②F 214R2F 0GMT( 2) “假想地球 ”的 1 年与现实地球的 1 年时间同样【分析】试题剖析:( 1)依据万有引力等于重力得出比值的表达式,并求出详细的数值.在赤道,因为万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力,依据该规律求出比值的表达式( 2)依据万有引力供给向心力得出周期与轨道半径以及太阳半径的关系,进而进行判断.解:( 1)在地球北极点不考虑地球自转,则秤所称得的重力则为其万有引力,于是①②由公式 ①② 能够得出:=0.98.③由① 和③ 可得:(2)依据万有引力定律,有又因为,解得从上式可知,当太阳半径减小为此刻的 1.0%时,地球公转周期不变.答:(1)=0.98.比值(2)地球公转周期不变.仍旧为 1 年.【评论】解决此题的重点知道在地球的两极,万有引力等于重力,在赤道,万有引力的一个分力等于重力,另一个分力供给随处球自转所需的向心力.5.天文学家将相距较近、仅在相互的引力作用下运转的两颗恒星称为双星.双星系统在银河系中很广泛.利用双星系统中两颗恒星的运动特点可计算出它们的总质量.已知某双星系统中两颗恒星环绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试计算这个双星系统的总质量.(引力常量为G)【答案】【分析】设两颗恒星的质量分别为m1、m2,做圆周运动的半径分别为r1、 r2,角速度分别为w1,w 2.依据题意有w1=w2①(1分)r1+r2=r② (1分)依据万有引力定律和牛顿定律,有G③(3分)G④(3分)联立以上各式解得⑤ (2分)依据解速度与周期的关系知⑥ (2分)联立 ③⑤⑥ 式解得(3 分)此题考察天体运动中的双星问题,两星球间的互相作使劲供给向心力,周期和角速度同样,由万有引力供给向心力列式求解6. 假定在半径为 R 的某天体上发射一颗该天体的卫星 ,若这颗卫星在距该天体表面高度为 h 的轨道做匀速圆周运动 ,周期为 T ,已知万有引力常量为 G ,求 : (1)该天体的质量是多少 ? (2)该天体的密度是多少 ?(3)该天体表面的重力加快度是多少? (4)该天体的第一宇宙速度是多少 ?【答案】 (1)4 2 (R h)3;3 (R h) 34 2 (R h)3;4 2 (R h)3GT(2)2R 3; (3)(4)RT 22GT R 2T2【分析】【剖析】( 1)卫星做匀速圆周运动,万有引力供给向心力,依据牛顿第二定律列式求解; ( 2)依据密度的定义求解天体密度;( 3)在天体表面,重力等于万有引力,列式求解;( 4)该天体的第一宇宙速度是近地卫星的环绕速度.【详解】(1)卫星做匀速圆周运动 ,万有引力供给向心力 ,依据牛顿第二定律有 :Mm22G( R h)2 =m T(R+h)解得 : M= 4 2 (R h)3①GT 2(2)天体的密度 :42(R h)3 3M GT 2 3 ( R h)ρ= =4=GT 2R 3 .V3R3(3)在天体表面 ,重力等于万有引力,故 :Mm ②mg=GR 2联立①②解得 : g=4 2 (R h)3③R 2T 2(4)该天体的第一宇宙速度是近地卫星的环绕速度 ,依据牛顿第二定律 ,有:mg=m④联立③④解得 : v= gR = 4 2( R h)3.RT 2【点睛】此题重点是明确卫星做圆周运动时,万有引力供给向心力,而地面邻近重力又等于万有引力,基础问题.v 2R24-1122,一7.地球的质量 M=5.98 × 10kg ,地球半径 R=6370km ,引力常量 G=6.67 × 10 N ·m /kg 颗绕地做圆周运动的卫星环绕速度为 v=2100m/s ,求:(1)用题中的已知量表示此卫星距地面高度 h 的表达式(2)此高度的数值为多少?(保存3 位有效数字)【答案】( 1 ) GM 7hR ( 2) h=8.41 × 10mv 2【分析】试题剖析:( 1 )万有引力供给向心力,则GM解得:hv 2R×7( 2)将( 1)中结果代入数占有 h=8.41 10m 考点:考察了万有引力定律的应用8.“嫦娥一号 ”探月卫星在空中的运动可简化为如图 5 所示的过程,卫星由地面发射后,经过发射轨道进入停靠轨道,在停靠轨道经过调速后进入地月转移轨道,再次调速后进入工 作轨道 .已知卫星在停靠轨道和工作轨道运转的半径分别为R 和 R 1,地球半径为 r ,月球半径为 r 1,地球表面重力加快度为g ,月球表面重力加快度为 .求:(1)卫星在停靠轨道上运转的线速度大小;(2)卫星在工作轨道上运转的周期.【答案】 (1) (2)【分析】(1)卫星停靠轨道是绕地球运转时,依据万有引力供给向心力:解得:卫星在停靠轨道上运转的线速度;物体在地球表面上,有,获得黄金代换 ,代入解得 ;(2)卫星在工作轨道是绕月球运转,依据万有引力供给向心力有,在月球表面上,有,得 ,联立解得:卫星在工作轨道上运转的周期.9. 侦探卫星在经过地球两极上空的圆轨道上运转,它的运转轨道距地面高为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件下的状况所有都拍摄下来 ,卫星在经过赤道上空时,卫星上的拍照像机起码应拍地面上赤道圆周的弧长是多少?设地球半径为,R 地面处的重力加快度为 g,地球自转的周期为 T .4 2 ( h R) 3【答案】 lgT【分析】 【剖析】【详解】设卫星周期为 T 1 ,那么 :Mm 4 2m( R h), ①G2T 12( R h)又MmG R 2mg , ②由①②得T 12 ( h R) 3R.g设卫星上的摄像机起码能拍摄地面上赤道圆周的弧长为 l ,地球自转周期为 T ,要使卫星在一天(地球自转周期 )的时间内将赤道各处的状况全都拍摄下来,则Tl 2 R .T 1因此2 RT 14 2 (h R)3lT.Tg【点睛】摄像机只需将地球的赤道拍摄全,便能将地面各处所有拍摄下来;依据万有引力供给向心力和万有引力等于重力争出卫星周期 ;由地球自转角速度求出卫星绕行地球一周的时间内,地球转过的圆心角,再依据弧长与圆心角的关系求解.10. 今年 6 月 13 日,我国首颗地球同步轨道高分辨率对地观察卫星高分四号正式投入使 用,这也是世界上地球同步轨道分辨率最高的对地观察卫星.如下图,卫星,已知地球半径为R ,地球自转的周期为T ,地球表面的重力加快度为A 是地球的同步g,求:( 1)同步卫星离地面高度 h( 2)地球的密度 ρ(已知引力常量为 G)2 23g【答案】( 1) 3gR TR (2)4 24 GR【分析】【剖析】【详解】( 1)设地球质量为 M ,卫星质量为 m ,地球同步卫星到地面的高度为 h ,同步卫星所受万有引力等于向心力为G mM4 2 R hm( R h)2T2在地球表面上引力等于重力为MmGR2mg故地球同步卫星离地面的高度为h3gR 2T242R(2)依据在地球表面上引力等于重力MmGR2mg联合密度公式为gR 2MG3gV4R 3 4GR3。

万有引力题型归类

万有引力题型归类

万有引力定律的应用归纳为三大类的问题第一类问题:涉及重力加速度“g 〞的问题解题思想:G F =万,即万有引力等于重力G 2rMm =mg 表述方式一般表达两种:〔1〕在星体外表或外表附近〔2〕不考虑星体自转说明:上式中的“M 〞表示所涉及重力加速度的星球,“m 〞表示任意假设的一个物体,“r 〞表示所问及处加速度g 与球心的距离题型分析:题型一:两星球外表重力加速度的比较〔外表问题〕 外表重力加速度:2002RGM g mg R Mm G =∴= 1、一个行星的质量是地球质量的8倍,半径是地球质量的4倍,这颗行星外表的重力加速度是地球外表重力加速度的多少倍.2、地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a ,要使赤道上的物体“飘〞起来,则地球转动的角速度应为原来的( ) A.g a B.a a g + C.a a g - D. ag 题型二:非星球外表重力加速度的计算〔高空问题〕轨道重力加速度:()()22h R GMg mg h R GMmh h +=∴=+1、地球半径为R ,地球附近的重力加速度为0g ,则在离地面高度为h 处的重力加速度是〔 〕A.()202h R g h + B.()202h R g R + C.()20h R Rg + D.()20h R g +2、万有引力常量G ,地球半径R ,月球和地球之间的距离r ,同步卫星距地面的高度h ,月球绕地球的运转周期T 1,地球的自转周期T 2,地球外表的重力加速度g 。

*同学根据以上条件,提出一种估算地球质量M 的方法: 同步卫星绕地球作圆周运动,由h T m h Mm G 222⎪⎭⎫ ⎝⎛=π得2324GT h M π= ⑴请判断上面的结果是否正确,并说明理由。

如不正确,请给出正确的解法和结果。

⑵请根据条件再提出两种估算地球质量的方法并解得结果。

题型三:与运动学相结合的计算1、*星球质量为地球质量的9倍,半径为地球半径的一半,在该星球外表从*一高度以10 m/s 的初速度竖直向上抛出一物体,从抛出到落回原地需要的时间为多少.〔g 地=10 m/s 2〕2、我国在2021年实现探月方案——“嫦娥工程〞.同学们也对月球有了更多的关注.假设地球半径为R ,地球外表的重力加速度为g ,假设宇航员随登月飞船登陆月球后,在月球外表*处以速度v 0竖直向上抛出一个小球,经过时间t ,小球落回抛出点.月球半径为r ,万有引力常量为G ,试求出月球的质量M 月.3、宇航员在地球外表以一定初速度竖直上抛一小球,经过时间t 小球落回原处;假设他在*星球外表以一样的初速度竖直上抛同一小球,需经过时间5t 小球落回原处。

(word完整版)高中物理万有引力经典习题30道带答案

(word完整版)高中物理万有引力经典习题30道带答案

一.选择题(共30小题)1.(2014•浙江)长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19600km,公转周期T1=6.39天.2006年3月,天文学家发现两颗冥王星的小卫星,其中一颗的公转半径r2=48000km,则它的公转周期T2,最接近于()A.15天B.25天C.35天D.45天2.(2014•海南)设地球自转周期为T,质量为M,引力常量为G,假设地球可视为质量均匀分布的球体,半径为R.同一物体在南极和赤道水平面上静止时所受到的支持力之比为()A.B.C.D.3.(2014•广东)如图所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器的张角为θ,下列说法正确的是()A.轨道半径越大,周期越长B.轨道半径越大,速度越大C.若测得周期和张角,可得到星球的平均密度D.若测得周期和轨道半径,可得到星球的平均密度4.(2014•江苏)已知地球的质量约为火星质量的10倍,地球的半径约为火星半径的2倍,则航天器在火星表面附近绕火星做匀速圆周运动的速率约为()A.3.5km/s B.5.0km/s C.17.7km/s D.35.2km/s 5.(2014•福建)若有一颗“宜居”行星,其质量为地球的p倍,半径为地球的q倍,则该行星卫星的环绕速度是地球卫星环绕速度的()A.倍B.倍C.倍D.倍6.(2014•天津)研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时,假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比()A.距地面的高度变大B.向心加速度变大C.线速度变大D.角速度变大7.(2013•安徽)质量为m的人造地球卫星与地心的距离为r时,引力势能可表示为E p=﹣,其中G为引力常量,M为地球质量.该卫星原来在半径为R1的轨道上绕地球做匀速圆周运动,由于受到极稀薄空气的摩擦作用,飞行一段时间后其圆周运动的半径变为R2,此过程中因摩擦而产生的热量为()A.GMm(﹣)B.GMm(﹣)C.(﹣)D.(﹣)8.(2013•江苏)火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知()A.太阳位于木星运行轨道的中心B.火星和木星绕太阳运行速度的大小始终相等C.火星与木星公转周期之比的平方等于它们轨道半长轴之比的立方D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积9.(2013•山东)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化.若某双星系统中两星做圆周运动的周期为T,经过一段时间演化后,两星总质量变为原来的k倍,两星之间的距离变为原来的n倍,DC运动的周期为()A.B.C.D.10.(2013•四川)迄今发现的二百余颗太阳系外行星大多不适宜人类居住,绕恒星“Gliese581”运行的行星“G1﹣58lc”却很值得我们期待.该行星的温度在O℃到40℃之间、质量是地球的6倍、直径是地球的1.5倍、公转周期为13个地球日.“Gliese581”的质量是太阳质量的0.31倍.设该行星与地球均视为质量分布均匀的球体,绕其中心天体做匀速圆周运动,则()A.在该行星和地球上发射卫星的第一宇宙速度相同B.如果人到了该行星,其体重是地球上的倍C.该行星与“Gliese581”的距离是日地距离的倍D.由于该行星公转速率比地球大,地球上的米尺如果被带上该行星,其长度一定会变短11.(2013•上海)小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动.则经过足够长的时间后,小行星运动的()A.半径变大B.速率变大C.角速度变大D.加速度变大12.(2013•浙江)如图所示,三颗质量均为m的地球同步卫星等间隔分布在半径为r的圆轨道上,设地球质量为M,半径为R.下列说法正确的是()A.地球对一颗卫星的引力大小为B.一颗卫星对地球的引力大小为C.两颗卫星之间的引力大小为D.三颗卫星对地球引力的合力大小为13.(2013•海南)“北斗”卫星导航定位系统由地球静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.地球静止轨道卫星和中轨道卫星都在圆轨道上运行,它们距地面的高度分别约为地球半径的6倍和3.4倍,下列说法中正确的是()A.静止轨道卫星的周期约为中轨道卫星的2倍B.静止轨道卫星的线速度大小约为中轨道卫星的2倍C.静止轨道卫星的角速度大小约为中轨道卫星的D.静止轨道卫星的向心加速度大小约为中轨道卫星的14.(2012•浙江)如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均小于一年C.小行星带内侧小行星的向心加速度大于外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值15.(2012•重庆)冥王星与其附近的另一星体卡戎可视为双星系统.质量比约为7:1,同时绕它们连线上某点O做匀速圆周运动.由此可知,冥王星绕O点运动的()A.轨道半径约为卡戎的B.角速度大小约为卡戎的C.线速度大小约为卡戎的7倍D.向心力大小约为卡戎的7倍16.(2012•山东)2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R1、R2,线速度大小分别为v1、v2.则等于()A.B.C.D.17.(2012•福建)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为v.假设宇航员在该行星表面上用弹簧测力计测量一质量为m的物体重力,物体静止时,弹簧测力计的示数为N.已知引力常量为G,则这颗行星的质量为()A.B.C.D.18.(2012•江苏)2011年8月,“嫦娥二号”成功进入了环绕“日地拉格朗日点”的轨道,我国成为世界上第三个造访该点的国家.如图所示,该拉格朗日点位于太阳和地球连线的延长线上,一飞行器处于该点,在几乎不消耗燃料的情况下与地球同步绕太阳做圆周运动.则此飞行器的()A.线速度大于地球的线速度B.向心加速度大于地球的向心加速度C.向心力仅有太阳的引力提供D.向心力仅由地球的引力提供19.(2012•天津)一人造地球卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,动能减小为原来的,不考虑卫星质量的变化,则变轨前后卫星的()A.向心加速度大小之比为4:1 B.角速度大小之比为2:1C.周期之比为1:8 D.轨道半径之比为1:220.(2012•北京)关于环绕地球运动的卫星,下列说法中正确的是()A.分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期B.沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率C.在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同D.沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合21.(2012•广东)如图所示,飞船从轨道1变轨至轨道2.若飞船在两轨道上都做匀速圆周运动,不考虑质量变化,相对于在轨道1上,飞船在轨道2上的()A.动能大B.向心加速度大C.运行周期长D.角速度小22.(2012•四川)今年4月30日,西昌卫星发射中心发射的中圆轨道卫星,其轨道半径为2.8×l07m.它与另一颗同质量的同步轨道卫星(轨道半径为4.2×l07m)相比()A.向心力较小B.动能较大C.发射速度都是第一宇宙速度D.角速度较小23.(2011•重庆)某行星和地球绕太阳公转的轨道均可视为圆.每过N年,该行星会运行到日地连线的延长线上,如图所示.该行星与地球的公转半径比为()A.()B.()C.()D.()24.(2011•广东)已知地球质量为M,半径为R,自转周期为T,地球同步卫星质量为m,引力常量为G,有关同步卫星,下列表述正确的是()A.卫星距地面的高度为B.卫星的运行速度小于第一宇宙速度C.卫星运行时受到的向心力大小为D.卫星运行的向心加速度小于地球表面的重力加速度25.(2011•天津)质量为m的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M,月球半径为R,月球表面重力加速度为g,引力常量为G,不考虑月球自转的影响,则航天器的()A.线速度v=B.角速度ω=C.运行周期T=2πD.向心加速度a=26.(2011•浙江)为了探测X星球,载着登陆舱的探测飞船在以该星球中心为圆心,半径为r1的圆轨道上运动,周期为T1.总质量为m1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r2的圆轨道上运动,此时登陆舱的质量为m2则()A.X星球的质量为M=B.X星球表面的重力加速度为g X=C.登陆舱在r1与r2轨道上运动时的速度大小之比为=D.登陆舱在半径为r2轨道上做圆周运动的周期为T2=T127.(2011•江苏)一行星绕恒星作圆周运动.由天文观测可得,其运动周期为T,速度为v,引力常量为G,则()A.恒星的质量为B.行星的质量为C.行星运动的轨道半径为D.行星运动的加速度为28.(2011•山东)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是()A.甲的周期大于乙的周期B.乙的速度大于第一宇宙速度C.甲的加速度小于乙的加速度D.甲在运行时能经过北极的正上方29.(2011•北京)由于通讯和广播等方面的需要,许多国家发射了地球同步轨道卫星,这些卫星的()A.质量可以不同B.轨道半径可以不同C.轨道平面可以不同D.速率可以不同30.(2010•福建)火星探测项目是我国继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目.假设火星探测器在火星表面附近圆形轨道运行的周期T1,神舟飞船在地球表面附近的圆形轨道运行周期为T2,火星质量与地球质量之比为p,火星半径与地球半径之比为q,则T1与T2之比为()A.B.C.D.一.选择题(共30小题)1.B 2.A 3.AC 4.A 5.C 6.A 7.C 8.C 9.B 10.B 11.A 12.BC 13.A 14.C 15.A 16.B 17.B 18.AB 19.C 20.B 21.CD 22.B 23.B 24.BD 25.AC 26.AD 27.ACD 28.AC 29.A 30.D。

物理必修2第三章万有引力定律的应用知识点例题练习

物理必修2第三章万有引力定律的应用知识点例题练习

《万有引力与航天》万有引力定律的应用1.研究天体运动的基本方法:研究人造卫星、行星等天体的运动时,我们进行了以下近似:中心天体是不动的,绕行天体以中心天体的球心为圆心做匀速圆周运动;绕行天体只受到中心天体的万有引力作用。

(1)中心天体对绕行天体的引力充当绕行天体的向心力: F 引=F n即 2rMm G = ma n = m υ2r = m ω2r = r T m 224π① 中心天体质量:2323224GT r G r G r v M πω=== (公转周期易于测量,常用含周期的表达式) 密度: 又ρπ⋅=34R M 得 3233r πρ= (r 为公转轨道半径,R 为中心天体球体半径)② 卫星(行星)的线速度υ、角速度ω、加速度a n 、周期T 和轨道半径r 的关系 ①υ=GM r , 线速度 υ∝1r ; ②ω =GM r 3, 角速度 ω∝1r 3③T = GMr 324π,周期T ∝r 3,2234πGM T r k ==,(即开普勒第三定律k 由中心天体质量决定)④a n = GMr2, 向心加速度a n ∝1r 2(与距离成“平方反比”关系)(2)将重力看成与万有引力相等(忽略星球自转): F 引=mg地球质量:地球表面物体 G gR M mg RMm G 22=∴=重要代换式: 在星球表面:GM gR mg RMmG=∴=22 行星表面重力加速度g 、距地表一定高度处重力加速度h g 地表重力加速度: 22RGMg mg R Mm G=∴= 距地表一定高度处重力加速度: ()()g h R R h R GMg mg h R GMmh h 2222)(+=+=∴=+第一宇宙速度:v 1=gR R GM =/(最小发射速度,圆周运动最大绕行速度,近地卫星速度)2.课堂延伸:“双星”是两颗相距较近,它们之间的万有引力对两者运动都有显著影响,而其他天体的作用力影响可以忽略的特殊天体系统.它们之所以没有被强大的引力吸引到一起而保持距离L 不变,是因为它们绕着共同“中心”以相同的角速度做匀速圆周运动,它们之间的万有引力提供它们做圆周运动的向心力. “黑洞”是近代引力理论预言..的一种特殊天体,它的质量十分巨大,以致于其逃逸速度有可能超过真空中的光速,因此任何物体都不能脱离它的束缚,即光子也不能射出.已知物体从星球上的逃逸速度(即第二宇宙速度)是υ=2GMR,故一个质量为M 的天体,若它是一个黑洞,则其半径R 应有:R ≤2GMc2.假如把地球变成黑洞,那么半径就要缩小到几毫米。

地球的重力与万有引力练习题

地球的重力与万有引力练习题

地球的重力与万有引力练习题在我们生活的地球上,重力和万有引力是两个非常重要的物理概念。

理解它们不仅有助于我们更好地理解日常生活中的许多现象,也是深入学习物理学的基础。

接下来,让我们通过一系列练习题来加深对地球的重力与万有引力的理解。

一、选择题1、关于万有引力和重力的关系,下列说法正确的是()A 重力就是万有引力B 重力是万有引力的一个分力C 万有引力是重力的一个分力D 两者没有关系答案:B解析:在地球上,物体受到的万有引力可以分解为两个分力,一个是随地球自转所需的向心力,另一个就是重力。

由于地球自转所需的向心力相对较小,所以通常情况下可以认为重力近似等于万有引力。

2、假设地球的自转角速度突然增大,对于赤道上的一个物体来说,其重力将()A 增大C 不变D 无法确定答案:B解析:当地球自转角速度增大时,赤道上物体随地球自转所需的向心力增大,而万有引力不变,所以重力减小。

3、在地球表面上,重力加速度的值约为 98m/s²。

在离地面高度为地球半径一半的地方,重力加速度的值约为()A 245m/s²B 49m/s²C 98m/s²D 196m/s²答案:A解析:根据万有引力定律,重力加速度 g 与距离地心的距离 r 的平方成反比。

在离地面高度为地球半径一半的地方,距离地心的距离为15 倍地球半径,所以重力加速度变为原来的 4/9,约为 245m/s²。

4、一个物体在地球上重 60N,若将它拿到月球上,其质量将()A 变大B 变小D 无法确定答案:C解析:质量是物体的固有属性,不随位置的改变而改变。

在地球上重 60N 的物体,其质量在月球上仍然不变。

二、填空题1、地球的半径约为 6400km,地球表面的重力加速度约为 98m/s²,地球的质量约为_____kg。

(G=667×10⁻¹¹N·m²/kg²)答案:598×10²⁴kg解析:根据万有引力定律$mg = G\frac{Mm}{R²}$,可得$M =\frac{gR²}{G}$,代入数据计算即可。

地球赤道附近的重力、向心力、万有引力是什么关系?

地球赤道附近的重力、向心力、万有引力是什么关系?

地球赤道附近的重力、向心力、万有引力是什么关系?在学习高中物理的时候往往会遇到很多关于物理问题,上课觉着什幺都懂了,可等到做题目时又无从下手。

以至于对于一些意志薄弱、学习方法不对的同学就很难再坚持下来。

过早的对物理没了兴趣,伤害了到高中的学习信心。

收集整理下面的这几个问题,是一些同学们的学习疑问,小编做一个统一的回复,有同样问题的同学,可以仔细看一下。

【问:地球赤道附近的重力、向心力、万有引力是什幺关系?】答:万有引力是力的源泉,是合力。

万有引力作用有两个效果,其一,提供物体自由下落的重力,另一个是提供物体绕地轴旋转的向心力。

从力的合成与分解来看,万有引力是合力,万有引力等于重力与向心力的矢量和。

当然,大部分情况下重力都被支持力或拉力抵消掉了。

【问:什幺是反冲现象?】答:反冲现象是指在系统内力作用下,构成系统的部分物体向某方向发生运动(动量变化)时,其余部分物体会向相反的方向运动的现象。

火箭发射、喷气式飞机运行等,都是利用反冲运动作业的。

很显然,在反冲运动过冲中,系统的总动量是守恒的。

【问:什幺时候用动量守恒定律?】答:动量守恒不能乱用,守恒的前提条件是系统在研究的方向上不受外力,只有内部“内力”作用,使得系统不同部分动量进行了“迁移”。

碰撞过程,人船模型,弹簧连接的两球,子弹穿透木块等等,这些都是动量守恒的典型应用模型。

【问:法拉第电磁感应定律内容?】答:法拉第电磁感应定律描述的是磁生电的关系与规律,也叫发电机定律。

法拉第电磁感应定律的内容是:任何封闭电路中感应电动势的大小,等于穿过这一电路磁通量的变化率值。

对应的公式为:e=△Φ/△t;【问:物理内容记得不牢固,总是忘,怎幺办?】答:知识容易忘,记忆不牢固,这说明你课下。

万有引力定律练习题(含答案)

万有引力定律练习题(含答案)

万有引力定律练习题(含答案) 第七章万有引力与宇宙航行第2节万有引力定律1.下列现象中,不属于由万有引力引起的是……答案:C解析:A选项是由星球之间的万有引力作用而聚集不散,B选项是由地球的引力提供向心力,使月球绕地球做圆周运动,D选项是由地球的引力作用,使树上的果子最终落向地面。

只有C选项是电子受到原子核的吸引力而绕核旋转不离去,不是万有引力。

2.均匀小球A、B的质量分别为m、5m,球心相距为R,引力常量为G,则A球受到B球的万有引力大小是……答案:A解析:根据万有引力定律可得:F=G×m×5m/(2R)²,化简得F=G×m²/(2R²),即A球受到B球的万有引力大小为G×m²/(2R²)。

3.两个质点的距离为r时,它们间的万有引力为2F,现要使它们间的万有引力变为F,将距离变为……答案:B解析:根据万有引力定律,距离为r时,它们间的万有引力为2F,则2F=G×m×m/r²,将万有引力变为F,则F=G×m×m/r'²,联立可得:r' = 2r,即将距离变为原来的二分之一。

4.假设地球是一半径为R,质量分布均匀的球体。

已知质量分布均匀的球壳对壳内物体引力为零,地球表面处引力加速度为g。

则关于地球引力加速度a随地球球心到某点距离r的变化图像正确的是……答案:B解析:当距离大于地球半径时,根据万有引力提供重力可得加速度g'=GM/r²,范围内的球壳随距离增大,加速度变小。

当距离小于地球半径时,此时距离地心对物体没有引力,那么对其产生引力的就是半径为R的中心球体的引力,因此加速度与距离成正比,选项B正确。

之间的引力与它们的距离成反比,与它们的质量成正比D.万有引力只存在于地球和其他星球之间,不存在于地球和其他物体之间答案】A、C解析】A。

高中物理天体运动经典习题

高中物理天体运动经典习题

第三讲知识点梳理一、开普勒三大定律1、第一:2、第二:3、第三:二、万有引力定律三、万有引力和重力的关系四、解决天体问题的两条主线1、万有引力等于重力2、万有引力提供向心力五、“开三”推导及比例问题速算1、开普勒第三定律的推导2、比例问题速算六、三大宇宙速度1、第一宇宙速度2、第二宇宙速度3、第三宇宙速度七、卫星问题1、近地卫星2、同步卫星(六一定)3、赤道表面物体、近地卫星和同步卫星向心加速度大小比较八、卫星的对接及对接1、卫星对接2、卫星变轨九、双星问题经典习题练习一、选择题1、关于行星运动的规律,下列说法符合史实的是()A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律2、理论和实践证明,开普勒定律不仅适用于太阳系中的天体运动,而且对一切天体(包括卫星绕行星的运动)都适用。

下面对于开普勒第三定律的公式,下列说法正确的是:()A.公式只适用于轨道是椭圆的运动B.式中的K值,对于所有行星(或卫星)都相等C.式中的K值,只与中心天体有关,与绕中心天体旋转的行星(或卫星)无关D.若已知月球与地球之间的距离,根据公式可求出地球与太阳之间的距离3、如图所示,椭圆为某行星绕太阳运动的轨道,A、B分别为行星的近日点和远日点,行星经过这两点时的速率分别为v A和v B;阴影部分为行星与太阳的连线在相等时间内扫过的面积,分别用S A和S B表示.根据开普勒第二定律可知()A.v A>v BB.v A<v BC.S A>S BD.S A<S B4、如图所示,在火星与木星轨道之间有一小行星带.假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动.下列说法正确的是()A.太阳对小行星的引力相同B.各小行星绕太阳运动的周期小于一年C.小行星带内侧小行星的向心加速度值大于小行星带外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值5、如图,a、b两颗人造地球卫星分别在如图所示的两个不同的轨道上运行,下列说法中正确的是()A.a卫星的运行速度比第一宇宙速度大B.b卫星的运行速度较小C.b卫星受到的向心力较大6、探测器绕月球做匀速圆周运动,变轨后在周期较大的轨道上仍做匀速圆周运动,则变轨后与变轨前相比()A.轨道半径变小B.向心加速度变小C.线速度变大D.角速度变大7、天宫一号是中国第一个目标飞行器,已于2011年9月29日21时16分3秒在酒泉卫星发射中心发射成功,它的发射标志着中国迈入中国航天“三步走”战略的第二步第二阶段.21时25分,天宫一号进入近地点约200公里,远地点约346.9公里,轨道倾角为42.75度,周期为5382秒的运行轨道.由此可知()A.天宫一号在该轨道上的运行周期比同步卫星的运行周期长B.天宫一号在该轨道上任意一点的运行速率比同步卫星的运行速率小C.天宫一号在该轨道上任意一点的运行加速度比同步卫星的运行加速度小D.天宫一号在该轨道上远地点距地面的高度比同步卫星轨道距地面的高度小8、地球质量大约是月球质量的81倍,在登月飞船通过月、地之间的某一位置时,月球和地球对它的引力大小相等,该位置到月球中心和地球中心的距离之比为()A.1:81 B.1:27 C.1:9 D.1:39、宇航员在地球表面,以一定初速度竖直上抛一小球,测得小球从抛出到返回的时间为t;若他在某星球表面以相同的初速度竖直上抛同一小球,小球从抛出到返回时间为25t。

(完整word版)万有引力与重力的关系习题

(完整word版)万有引力与重力的关系习题

万有引力与重力的关系要点:(1)一、若考虑地球自转时, 在地球表面的物体, 角速度都相同, 所以向心力公式: _____________(2)在赤道上, 万有引力、重力、向心力的关系: _____________________ 在两极时, 向心力为_______,万有引力和重力的关系式: ___________在其他位置时, 万有引力、重力、向心力(是、否)在同一直线上。

结论:从赤道向两极, 重力加速度____________(增大、减小)若不考虑地球自转, 在地球表面的物体, 万有引力和重力的关系: _____________黄金公式: ___________在距地球表面高为的山顶上, 重力加速度的公式:____________(用...表示)随着高度变大, 重力加速度______________(增大、减小)1.习题:某行星的质量与地球的质量比为, 半径比为, 则该行星表面与地球表面的重力加速度之比多少?火星半径为地球半径的一半, 火星质量约为地球质量的.一位宇航员连同宇航服在地球上的质量为100 kg, 则在火星上其质量为________kg, 重力为________ N. (g 取9.8 m/s2)航天员王亚平在天宫一号飞船内进行了我国首次天空授课, 演示了一些完全失重状态下的物理现象。

若飞船质量为, 距地球表面高度为, 地球质量为,半径为, 引力常量为, 则飞船所在处的重力加速度大小为( )A.0B.()2h R GM + C.()2h R GMm + D.2h GM地球半径为,地球表面的重力加速度为,若高空中某处的重力加速度为, 则该处距地球表面的高度为( ) A.()R 12- B.R C.R 2 D.R 2。

高三物理专题六万有引力律典型例题

高三物理专题六万有引力律典型例题

咐呼州鸣咏市呢岸学校专题六 万有引力律【题型总结】一、万有引力律在自然界中的用: 〔1〕割补法:例:如下图,半径为r 的铅球内有一半径为r2的球形空腔,其外表与球面相切,此铅球的质量为M ,在铅球和空腔的中心连线上,距离铅球中心L 处有一质量为m 的小球〔可以看成质点〕,求铅球小球的引力。

解:设想把挖去用与铅球同密度的材料填充,填充铅球的质量为M 1 。

为了抵消填充球体产生的引力,在右边距离处又放置一个质量的球体,如下图。

设放置的球体的质量为M 1 ,那么: M 1 = ρ1⋅43π r 23 =18M 0 =17M填补后的铅球质量: M 0 = M + M 1 =87M 原铅球对小球引力:F = F 0-F 1 =02GM m L -12GM m r (L )2-=28GMm 7L -24GMm 7(2L r)-=4GMm7[22L -21(2L r)-] 练习:如下图,一个质量为M 的匀质实心球,半径为R ,如果从球上挖去一个直径为R 的球,放在距离为d 的地方。

求以下两种情况下,两球之间的万有引力是多大? 〔1〕从球的心挖去〔2〕从与球相切处挖去解:〔1〕22222264764181dM G d M G d M G F ⋅⋅=⋅-⋅= 〔2〕))2(811(81)2()81(812222222R d d M G R d M G d M G F --⋅⋅=-⋅-⋅=当d>>R 时,计算结果相同。

〔2〕效法例:在密度为0ρ的无限大的液体中,有两个半径为R 、密度为ρ的球,相距为d ,且ρ>0ρ 。

求两球受到的万有引力。

解析:设两球的球心分别是O O ', ,球O 的质量为ρπ3034R m = ,如果去掉球O ' ,只有球O 单度处于无限大的液体中,由于四周液体对它的引力具有对称性,各质元对它的引力相互平衡,故球O 受到的合外力为零,将球O '放回原处后,相当于用密度为ρ的球代替了密度为0ρ的同体积液体球,因为ρ>0ρ ,我们可以用“效〞的观点,将这个代替过程视为O '处的质量增加了)(3403ρρπ-=∆R m ,所以,根据万有引力律,两球受到的万有引力是2062203320916)(3434d )(R G d R R G d m m G F ρρρπρρπρπ-⋅=-⋅=∆= 。

万有引力、向心力、重力的关系(原创,看了就知道是精品!)

万有引力、向心力、重力的关系(原创,看了就知道是精品!)

万有引力、向心力、重力的关系 1. [知识精要] ①.万有引力、向心力、重力的关系要分为两种情况讨论:地上和天上: 地上:三者关系如图 1.地球表面各处万有引力大小都相等;2.赤道地区:θ=0°,自转向心力最大,则重力最小,且 22Mm G m R mg Rω=+; 3.两个极点:θ=90°,自转向心力为零,重力最大,且2Mm G mg R =; 4.一般纬度:0°<θ<90°,万有引力、自转向心力、重力满足普通的平行四边形定则,大小介于前两种情况之间;且纬度θ越大,自转向心力越小、重力越大。

5.如果在星球的赤道和两极测得重力相差百分之几,则这百分之几就是赤道的自转向心力:x%F 万=F 向;6.赤道上的重力加速度严格的说:22GM g R Rω=-,只是这个由于向心力只占万有引力的1/290(约0.345%),所以在一般的问题中没有考虑这种差异;所以说黄金代换2gR GM =只是一个近似规律(即在22MmG m R R ω 时,2Mm G mg R ≈)。

天上:三者关系如图22'()GMm GMm mg R h r ==+,随高度平方反比规律减少。

222'()()GM gR g R h R h ==++,随高度平方反比规律减少。

注意:黄金代换是近似规律,而金三角关系是一个严格成立的关系式。

天上运转的卫星受到的万有引力全部提供向心力了,所以重力虽然有,但是重力的实际力:万有引力 大小:2Mm F G R= 方向:指向地心 分力1:(提供)自转向心力大小:2212()cos cos F m R m R Tπθωθ== 方向:垂直指向该处的地轴 分力2:(剩余)重力大小:21||F F F =-方向:平行四边形邻边F 2的方向 万有引力 向心力重力 (金三角关系)力学效果全部为零(完全失重)。

②.③.2. [模板例题]例1.例2.例3.3. [针对训练]练1.练2.练3.4. [综合练习]1.2.3.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知地球质量为M ,自转周期为T ,引力常量为G ,将地球视为半径为R 、质量均匀分布的球体.科考队员在南极发现一小块陨石,用弹簧秤称量时示数为 F.将其带回赤道地面再次称量,则弹簧秤示数应为( )
A .F R GMT )14(322-π
B .F GMT R )41(232π-
C .F GMT R )14(232-π
D .F R
GMT )41(322
π- 2.西昌卫星发射中心的火箭发射架上,有一待发射的卫星,它随地球自转的加速度为1a ;发射升空后在近地轨道上做匀速圆周运动,加速度为2a ;实施变轨后,使其在同步卫星轨道上做匀速圆周运动,加速度为3a 。

则1a 、2a 、3a 的大小关系是 。

3.某球形行星“一昼夜”时间为T 6h =,在该行星上用弹簧秤称同一物体的重量,发现在其“赤道”上的读数比在其“南极”处小9%;若设想该行星自转速度加快,在其“赤道”上的物体会自动“漂浮”起来,这时该行星的自转周期为多大?
4.组成星球的物质是靠引力吸引在一起的,这样的星球有一个最大的自转速率.如果超过了该速率,星球的万有引力将不足以维持其赤道附近的物体做圆周运动.由此能得到半径为R 、密度为ρ、质量为M 且均匀分布的星球的最小自转周期T .则最小自转周期T 的下列表达式中正确的是( )
A .
B .
C .
D .
5.万有引力定律揭示了天体运动规律与地上物体运动规律具有内在的一致性。

用弹簧秤称量一个相对于地球静止的小物体的重量,随称量位置的变化可能会有不同的结果。

已知地球质量为M ,自转周期为T ,万有引力常量为G 。

将地球视为半径为R 、质量均匀分布的球体,不考虑空气的影响。

设在地球北极地面称量时,弹簧秤的读数是F 0.
1. 若在北极上空高出地面h 处称量,弹簧秤读数为F 1,求比值 的表达式,并就h =1.0%R 的情形算出具体数值(计算结果保留两位有效数字);
2. 若在赤道地面称量,弹簧秤读数为F 2,求比值
的表达式。

参考答案
1.【答案】B
【解析】:在南极处,万有引力和重力相等,有:2R Mm G F =,
在赤道处,万有引力的一个分力等于重力,另一个分力提供向心力,有:R T m F R Mm G 22'22⎪⎭
⎫ ⎝⎛=-π,联立两式解得弹簧秤示数F GMT R R T m F F )41(42
3
222'ππ-=-=故B 正确,A 、C 、D 错误.故选:B .
2.【答案】
【解析】根据,可得,可知,同步卫星和地球具有相同的角速度,
,可得,综合可知
3.【答案】0T 1.8h.=
【解析】:设该星球质量为M ,半径为R ,物体质量为m ,若“赤道”上物体
“漂浮”时星球自转周期为
0T 则有222mM 4mR G 9%R T π⨯=①,2220mM 4mR G R T π=②。

解①②式可得:0T 1.8h.=
4.【答案】 1. 0.98 2.
【解析】:1.物体处于北极以及北极
上方时,万有引力等于重力,, 在北极上空h 处
可得
当时,
2.在赤道上弹簧秤的读数表示重力的大小,即,可以求得
5.【答案】AD
【解析】:如果万有引力不足以充当向心力,星球就会解体,据万有引力定律和牛顿第二定律得:G R得T=2π,又因为
M=πρR3,所以T=
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档