重庆中考18题专题训练.(1)

合集下载

重庆中考数学18题

重庆中考数学18题

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载重庆中考数学18题地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1、如图,正方形ABCD的边长为3,延长CB至点M,使BM=1,连接AM,过点B作BN⊥AM,垂足为N,O是对角线AC、BD的交点,连接ON,则ON的长为 .2、.如图,在中,,是中点,把一三角尺的直角顶点放在点处,以为旋转中心,旋转三角尺,三角尺的两直角边与的两直角边分别交于点.连接,在旋转三角尺的过程中,则的周长的最小值是.ABCDFHQGE3、如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B,C均在第一象限,OA=2,∠AOC=60°.点D在边AB上,将四边形OABC沿直线OD翻折,使点B和点C分别落在这个坐标平面的点B′和C′处,且∠BDB′=120°.若某反比例函数的图象经过点B′,则这个反比例函数的解析式为 .4、如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是cm。

5、如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC 上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G 处,有以下四个结论:①四边形CFHE是菱形;②EC平分∠DCH;③线段BF的取值范围为3≤BF≤4;④当点H与点A重合时,EF=2.以上结论中,你认为正确的是.(填空编号)6、如图,正方形ABCD的对角线AC、BD相交于点O,∠BAC的平分线交BD于点E,交BC于点F,点G是AD的中点,连接CG交BD于点H,连接FO并延长FO交CG于点P,则PG:PC的值为_____________.yDOAxCB7题图7、如图,菱形OABC的面积为3,顶点O 的坐标为(0,0),顶点A的坐标为(3,0),顶点B在第一象限, 边BC与轴交于点D,点E在边OA上.将四边形ABDE沿直线DE翻折,使点A落在第四限象的点F处,且FE⊥EA.则直线OF 的解析式为..8、如图,在△ABC中,4AB=5AC,AD为△ABC的角平分线,点E在 BC的延长线上,EF⊥AD于点F,点G在AF上,FG=FD,连接EG交AC于点H,若点H 是AC的中点,则的值为.9、10、11、如图,矩形ABCD中,AB=,BC=6,将该矩形沿对角线BD翻折,使△DBG与△DBC在同一平面内,C的对应点为G,BG交AD于点E,以BE为边作等边三角形PEF(P与B重合),点E、F位于AB两侧,将△PAF沿射线BD方向平移,当P到达点D时停止平移。

2020年重庆中考18题不定方程类

2020年重庆中考18题不定方程类

不定方程题型一:利润率问题解题步骤:1. 审题列表,根据题意列出商品组成、成本、售价、利润、利润率、数量2.找等量关系,列关系式,利用已知条件求出其他变量3.计算求解【例题】(18年中考A卷)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮、1千克B粗粮、1千克C粗粮;乙种粗粮每袋装有1千克A粗粮、2千克B粗粮、2千克C粗粮。

甲、乙两种袋装粗粮每袋成本价分别为袋中A、B、C三种粗粮的成本价之和.已知A粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是▲。

【答案】8:9【随堂练习】(18年中考B卷)为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种粗粮每袋装有1千克A粗粮,2千克B粗粮,2千克C粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中A、B、C三种粗粮的成本价之和.已知每袋甲中粗粮成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比甲种粗粮售价高20%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是▲。

【答案】4:7【培优训练】1、为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5颗.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是▲ .【答案】5:92、“双十一”来临,为促进销售,某面包店将A、B、C三种面包以甲、乙两种方式进行搭配销售,两种方式均配成本价为5元的包装箱,甲方式每箱含A面包1千克,B面包1千克,C面包3千克;乙方式每箱含A面包3千克,B面包1千克,C面包1千克。

重庆中考19题典型例题(计算专练题)---重点中学考题

重庆中考19题典型例题(计算专练题)---重点中学考题

17、重庆南开中学初2013级初三(下)3月月考计算:()020132111 3.1442()22π--+---++。

18、重庆南开中学初2013级初三(下)3月月考 解方程组:11233210x y x y +⎧-=⎪⎨⎪+=⎩19.重庆市巴蜀中学2012-2013学年度第二学期第一次定时作业 计算:︒------+-45tan 9)21(364)2012(230||π19.重庆市巴蜀中学2012-2013学年度第二学期第一次模拟考试 计算:︒+--+⨯----45tan 438)31()5()1(3202π.17.重庆巴蜀中学2012级初三下第五次6月考试押题题卷 9)21(364)2012(130----+--||π18.重庆巴蜀中学2012级初三下第五次6月考试押题题卷解分式方程:451+=x x17.计算: 45sin 424)1(1810---+---π① ②17、计算:0220131(3.142)9()7(1)2----+---。

18、解不等式2151132x x -+-≤,并把它的解集在数轴上表示出来。

17、计算:()020132111 3.1442()22π--+---++18、解方程组:11233210x y x y +⎧-=⎪⎨⎪+=⎩17、重庆巴蜀中学初2012级第二次模拟考试 计算:1011812()(31)2-+-----18、重庆巴蜀中学初2012级第二次模拟考试 解方程:121x x x x ++=-①②17、重庆南开中学初2013级初三上学期半期考试计算:()()102012311527212-⎛⎫---++-- ⎪⎝⎭。

18、重庆南开中学初2013级初三上学期半期考试 解方程:35122x x x--=--。

19.重庆南开中学初2013级初三升学模拟测试(二) 计算:︒+-÷---+-+-45tan 2)23(12)31()1(8015317、重庆南开中学初2012级毕业暨高中招生模拟试题(最后一次模拟考试)计算:()302012311 3.1433272π-⎛⎫-+-⨯---+ ⎪⎝⎭。

重庆中考历史历年真题含答案 (18)

重庆中考历史历年真题含答案 (18)

中考历史历年真题含答案1.太平天国运动中,规定不分男女,按人口和年龄平均分配土地的纲领是A.《天朝田亩制度》B.《资政新篇》C.《劝世良言》D.《海国图志》【答案】A【解析】依据所学可知,1853年,太平天国定都天京后,颁布了《天朝田亩制度》,规定不分男女,按人口和年龄平均分配土地。

太平天国想通过这个方案,建立“有田同耕,有饭同食,有衣同穿,有钱同使,无处不均匀,无人不饱暖”的理想社会,所以A项符合题意;B项是洪仁玕写成《资政新篇》,提出向西方学习、改革内政等一系列政治、经济、文化、外交主张,具有鲜明的ZBZY色彩,排除;C项与太平天国运动无关,排除;D项是魏源所写,提出“师夷长技以制夷”的主张,排除。

故选A。

2.日本明治维新后,在社会上出现了兴建洋房洋楼的热测,这源于明治维新A.加强中央集权,废藩置县B.实行征兵制,建立新式军队C.发展近代工业,改革地税D.提倡文明开化,向西方学习【答案】D【解析】结合所学知识可知,明治维新在社会生活方面,提倡文明开化,向西方学习,改造日本的教育、文化和生活方式。

日本明治维新后,在社会上出现了兴建洋房洋楼的热测,这源于明治维新提倡文明开化,向西方学习。

故D符合题意;加强中央集权,废藩置县属于明治维新政治方面的措施,与题干信息不符,排除A;实行征兵制,建立新式军队属于明治维新军事方面的措施,与题干信息不符,排除B;发展近代工业,改革地税促进了日本经济的发展,排除C。

故选D。

3.《礼记·礼运》认为,在“天下为公”的“大同”之世之后,社会进入“天下为家”的“小康”之世。

“大人世及以为礼,城郭沟池以为固,礼义以为纪。

”中国最早具备以上“小康”之世特征的王朝是A.夏朝B.商朝C.周朝D.秦朝【答案】A【解析】依据题干信息“社会进入‘天下为家’的‘小康’之世”,结合所学可知,约公元前2070年,禹建立夏朝,禹死后,他的儿子启继承王位,从此世袭制代替了禅让制,公天下变为了家天下,故中国最早具备以上“小康”之世特征的王朝是夏朝。

2021重庆中考复习数学第18题专题训练一(含答案解析) (1)(1)

2021重庆中考复习数学第18题专题训练一(含答案解析) (1)(1)

2021 重庆中考复习数学第 18 题专题训练一(含答案解析)一、线段最小值问题例1、(2016•内乡县二模)如图,边长为6 的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC,将线段EC 绕点C 逆时针转60°得到FC,连接DF.则在点E 运动过程中,DF 的最小值是练习:如图,在△ABC 中,∠BAC=90°,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC,将线段EC 绕点 C 逆时针旋转45°得到FC,连接DF,则在点 E 运动过程中,DF 的最小值是.例2、如图,边长为8 的正方形ABCD 中,动点P 在CD 边上,以AP 为直角边向上作等腰Rt△APE,边PE 与BC 交于点F,连接BE.则线段BE 在运动过程的最小值为.练习:如图,正方形ABCD 的边长为2,点E、F 分别是边AB、CD 上的动点,且AE=CF,连接EF,将线段EF 绕点E 逆时针旋转90°得到线段EG,连接DG,则线段DG 长的最小值为.例3、(2019 春•鄞州区期末)如图,矩形ABCD 中,AB=2,BC=4,点E 是矩形ABCD 的边AD 上的一动点,以CE 为边,在CE 的右侧构造正方形CEFG,连结AF,则AF 的最小值为.练习:(2019 春•梁溪区期末)如图,正方形ABCD 中,AB=4,点E 为边AD 上一动点,连接CE,以CE 为边,作正方形CEFG(点D、F 在CE 所在直线的同侧),H 为CD 中点,连接FH.点E 在运动过程中,HF 的最小值为.AGE DH例4、(2019•惠山区一模)如图,正方形ABCD 中,O 是BC 边的中点,点 E 是正方形内一动点,OE=2,连接DE,将线段DE 绕点D 逆时针旋转90°得DF,连接AE,CF,OF.则线段OF 长的最小值练习:(2019•南充模拟)如图,正方形ABCD 的边长为,O 是BC 边的中点,P 是正方形内一动点,且OP =2,连接DP,将线段DP 绕点D 逆时针旋转90°到DQ,连接AP,CQ,PQ,则线段PQ 的最小值为.例5、(2019•宿迁)如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE=1,F 为AB 边上的一个动点,连接EF,以EF 为边向右侧作等边△EFG,连接CG,则CG 的最小值为.练习:1、(2019 秋•东台市期中)如图,正方形ABCD 中边长为6,E 为BC 上一点,且BE=1.5,F 为AB 边上的一个动点,连接EF,以EF 为边向右侧作等边△EFG,连接CG,则CG 的最小值为.2、如图,长方形ABCD 中,AB=6,BC=8,E 为BC 上一点,且BE=2,F 为AB 边上的一个动点,连接EF,将EF 绕着点 E 顺时针旋转45˚到EG 的位置,连接FG 和CG,则CG的最小值为.例6、(2019•锡山区一模)在平面直角坐标系中,已知A(2,4)、P(1,0),B 为y 轴上的动点,以AB 为边构造△ABC,使点C 在x 轴上,∠BAC=90°.M 为BC 的中点,则PM 的最小值为.练习:在平面直角坐标系中,已知A(4,8)、P(2,0),B 为y 轴上的动点,以AB 为边构造△ABC,使点C 在x 轴上,∠BAC=90°.M 为BC 的中点,则PM 的最小值为.例7、(2017 秋•上虞区期末)如图,矩形ABCD 中,已知AB=6,BC=8,点E 是边AD 上一点,以CE 为直角边在与点D 的同侧作等腰直角△CEG,连结BG,当点E 在边AD 上运动时,线段BG 长度的最小值是练习:(2017•龙华区二模)如图,在平面直角坐标系中,已知矩形OABC 的顶点A 在x 轴上,OA=4,OC=3,点D 为BC 边上一点,以AD 为一边在与点B 的同侧作正方形ADEF,连接OE.当点D 在边BC 上运动时,OE 的长度的最小值是.例8、如图,线段AB=8,D 为AB 的中点,点E 是平面内一动点,且满足DE=2,连接BE,将BE 绕点E 逆时针旋转90°得到EC,连接AC、BC,则线段AC 长度的最大值为.二、线段和最小值问题例1、如图,在正方形ABCD 中,AB=6,E 是BC 边的中点,F 是CD 边上的一点,且DF=2,若M、N 分别是线段AD、AE 上的动点,则MN+MF 的最小值为.练习:如图,矩形ABCD 中,AB=4,AD=6,点E,F 分别是AB,BC 边上的两动点,且EF=2,点G 为EF 的中点,点H 为AD 边上一动点,连接CH,GH,则GH+CH 的最小值为9 .例2、(2016 春•青山区期中)如图,在矩形ABCD 中,AB=2,BC=4,点E 和点F 分别是AC 和BC 上的动点,在点E 和点F 运动的过程中,BE+EF 的最小值为练习:1、(2017 春•东西湖区期中)如图,在▱ABCD 中,AB=2,AB AC ,∠D=60°,点P、Q 分别是AC和BC 上的动点,在点P 和点Q 运动的过程中,PB+PQ 的最小值2、如图,矩形ABCD 中,AB=3,BC=4,点M、点N 分别在BD、BC 上,则CM+MN 的最小值为.例3、(2019 春•新吴区期末)如图,菱形ABCD 的边长为4,∠A=60°,E 是边AD 的中点,F 是边AB 上的一个动点将线段EF 绕着点E 逆时针旋转60°得到EG,连接BG、CG,则BG+CG 的最小值为.练习:如图,在平行四边形ABCD 中,M 是AD 边的中点,N 是AB 边上一动点,将线段MN 绕点M 逆时针旋转90 至MN′,连接N′B,N′C,则N′B+N′C 的最小值是.例4、(2015•石家庄模拟)如图,已知在矩形ABCD 中,AB=4,BC=2,点M,E 在AD 上,点F 在边AB 上,并且DM=1,现将△AEF 沿着直线EF 折叠,使点A 落在边CD 上的点P 处,则当PB+PM 最小时,ME 的长度为例5、(2019 春•张家港市期末)如图,矩形ABCD 中,AB=8,BC=4,P,Q 分别是直线AB,AD 上的两个动点,点E 在边CD 上,DE=2,将△DEQ 沿EQ 翻折得到△FEQ,连接PF,PC,则PF+PC 的最小值为练习:(2019 春•邗江区校级月考)如图,矩形ABCD 中,AB=2,BC=4,P,Q 分别是BC,AB 上的两个动点,AE=1,△AEQ 沿EQ 翻折形成△FEQ,连接PF,PD,则PF+PD 的最小值是.例6、(2018•朝阳区二模)如图,在矩形ABCD 中,AB=1,AD=2,E 是边AD 的中点,F 是边AB 上的一个动点,连结EF,过点E 作EG⊥EF 交BC 于点G.则AF+EF+CG 的最小值为 2 .练习:如图,在矩形ABCD 中,AB=4,AD=8,E 是边AD 的中点,F 是边AB 上的一个动点,连结EF,过点E 作EG⊥EF 交BC 于点G.则AF+EF+CG 的最小值为.例7、如图,在平面直角坐标系xOy 中,已知点A(1,0),点C 是y 轴上的动点,线段CA 绕着点C 按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA 的最小值是.例8、如图,矩形ABCD 中,AB=3,AD=4,点E、F 分别是边BC 和对角线BD 上的动点,且BE=DF,则AE+AF 的最小值是.例1、(2018 秋•成都期末)如图,在矩形ABCD 中,AB=6,AD=3,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A'MN,连接A'C.在MN 上存在一动点P.连接A'P、CP,则△A'PC 周长的最小值是.例2、(2019 春•雨花区校级期中)如图,在平行四边形ABCD 中,AB=10,AD=16,∠A=60°,P 是射线AD 上一点,连接PB,沿PB 将△APB 折叠,得△A'PB.当点P 为AD 中点时,点F 是边AB 上不与点A,B 重合的一个动点,将△APF 沿PF 折叠,得到△A'PF,连接BA',则△BA'F 周长的最小值为.练习:如图,在平行四边形ABCD 中,AB=8,AD=12,∠A=60°,P 是射线AD 上一点,连接PB,沿PB 将△APB 折叠,得△A'PB.当点P 为AD 中点时,点F 是边AB 上不与点A,B 重合的一个动点,将△APF 沿PF 折叠,得到△A'PF,连接BA',则△BA'F 周长的最小值为.例1、如图,已知,在矩形ABCD 中,AD=2,AB=4,点E,F 是边CD 上的动点(点F 在点E 右侧),且EF=1,则四边形ABFE 周长的最小值为.练习:1、(2018 秋•金牛区校级月考)在矩形ABCD 中,AB=8,BC=10,G 为AD 边的中点.如图,若E、F为边AB 上的两个动点,且EF=4,当四边形CGEF 的周长最小时,则求AF 的长为.G例2、(2019•长丰县二模)如图,矩形ABCD 中,AB=5,AD=10,点E,F,G,H 分别在矩形各边上,点F,H 为不动点,点E,G 为动点,若要使得AF=CH,BE=DG,则四边形EFGH 周长的最小值为练习:(2018•保定一模)如图,矩形ABCD 中,AB=8,BC=6,点E,F,G,H 分别在矩形ABCD 各边上,且AE=CG,BF=DH,则四边形EFGH 周长的最小值为五、三角形面积最小值问题例1、(2018•无锡)如图,矩形ABCD 中,AB=4,AD=2,E 为边AD 上一个动点,连结BE,取BE 的中点G,点G 绕点E 逆时针旋转90°得到点F,连结CF,则△CEF 面积的最小值是例2、(2016•江东区一模)如图,点E 为正方形ABCD 中AD 边上的动点,AB=2,以BE 为边画正方形BEFG,连结CF 和CE,则△CEF 面积的最小值为.例3、(八中定时练习六18 题2019•无锡)如图,在△ABC 中,AB =AC = 5, BC = 4 ,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF,连接BE,则∆BDE 面积的最大值为.例4、(2019 秋•青山区期中)如图,在△ABC 中,∠BAC=120°,AB=AC=6,D 为边AB 上一动点(不与B 点重合),连接CD,将线段CD 绕着点D 逆时针旋转90°得到DE,连接BE,则△BDE 的面积的最大值为.5例5、(2018 秋•西安期末)如图,△ABC 中,点 D 是边AB 上任意一点,以CD 为边在AD 的右侧作等边△DCE,连接BE,则△BDE 面积的最大值为.例6、(2013 春•建湖县期中)如图,在△ABC 中,∠BAC=90°,AB=AC,点D 为射线BC 上一动点,以AD 为边作正方形ADEF,连接CF.当点D 在线段BC 上时,若BC=2,CF 交DE 于点P,连接AP,则△ACP 的面积的最大值为.六、四边形面积最小值问题例1、如图,已知在菱形ABCD 中,AB=1,且∠A=30°,E、F、G、H 分别时AB、BC、CD、DA 上的点,且AE=BF=CG=DH.设AE=x(0≤x≤1).则四边形EFGH 的面积的最小值为练习:如图,已知在菱形ABCD 中,AB=4,且∠A=30°,E、F、G、H 分别时AB、BC、CD、DA 上的点,且AE=BF=CG=DH.设AE=x(0≤x≤1).则四边形EFGH 的面积的最小值为例2、如图.矩形ABCD 中,AB=6,BC=8,点E 是AB 边上一点,且AE=4,点F 是EC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G,连接AG、CG,当四边形AGCD 的面积有最小值时,BF 的长度为.练习:1、(2019•龙泉驿区模拟)如图,矩形ABCD 中,AB=3,BC=4,点E 是AB 边上一点,且AE=2,点F是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G,连接AG,CG,则四边形AGCD 的面积的最小值为.2、如图,矩形ABCD 中,AB=3,BC=4,点E 是AB 边上一点,且AE=2,点F 是BC 边上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G,连接AG、CG,当四边形AGCD 的面积最小时,BF 的长度为.2020 重庆中考复习数学第 18 题专题训练一(含答案解析)一、线段最小值问题例1、(2016•内乡县二模)如图,边长为6 的等边三角形ABC 中,E 是对称轴AD 上的一个动点,连接EC,将线段EC 绕点C 逆时针转60°得到FC,连接DF.则在点E 运动过程中,DF 的最小值是解:取线段AC 的中点G,连接EG,如图所示.∵△ABC 为等边三角形,且AD 为△ABC 的对称轴,∴CD=CG=AB=3,∠ACD=60°,∵∠ECF=60°,∴∠FCD=∠ECG.在△FCD 和△ECG 中,,∴△FCD≌△ECG(SAS),∴DF=GE.当EG∥BC 时,EG 最小,∵点G 为AC 的中点,∴此时CD=.练习:如图,在△ABC 中,∠BAC=90°,D 是BC 的中点,E 是直线AD 上的一个动点,连接EC,将线段EC 绕点C 逆时针旋转45°得到FC,连接DF,则在点E 运动过程中,DF 的最小值是2﹣.解:如图,在AC 上取一点G,使CG=CD,连接EG,∵AB=AC=2,∠BAC=90°∴∠ACB=45°,∴CD=2•cos45°=2,∵旋转角为45°,∴∠ECD+∠DCF=45°,又∵∠ECD+∠GCE=∠ACB=45°,∴∠DCF=∠GCE,∵AD 是等腰直角△ABC 的对称轴BC,∵CD=CG,又∵CE 旋转到CF,∴CE=CF,在△DCF 和△GCE 中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD 时,EG 最短,即DF 最短,EN 2 +NB2(8 -x)2 +x22(x - 4)2 ) + 32∵∠CAD=×90°=45°,AG=AC﹣CG=2 ﹣2,∴EG=AG•sin45°=(2 =2﹣,∴DF=2﹣.例2、如图,边长为8 的正方形ABCD 中,动点P 在CD 边上,以AP 为直角边向上作等腰Rt△APE,边PE 与BC 交于点F,连接BE.则线段BE 在运动过程的最小值为.MN解:如图,过点E 作EM⊥CD 于M,过点E 作EN⊥CB 于N.设CP=x,则EN=MC=8﹣x,NB=x,∴BE ===,∴当x = 4 时,BE 的值最小,最小值为.练习:如图,正方形ABCD 的边长为2,点E、F 分别是边AB、CD 上的动点,且AE=CF,连接EF,将线段EF 绕点E 逆时针旋转90°得到线段EG,连接DG,则线段DG 长的最小值为.解:如图,过点F 作FM⊥AB 于M,过点G 作GH⊥AD 于H,GN⊥AB 于N,∵四边形ABCD 是正方形,∴AB=BC=AD=CD=2,∠B=∠C=∠BAD=90°,且FM⊥AB,GH⊥AD,GN⊥AB,∴四边形BCFM,四边形AHGN 是矩形,∴BM=CF,NG=AH,AN=GH,MF=BC=2,∵将线段 EF 绕点 E 逆时针旋转 90°得到线段 EG ,∴EG =EF ,∠GEF =90°,∴∠NEG +∠FEM =90°,且∠NGE +∠NEG =90°,∴∠FEM =∠NGE ,且∠N =∠FME =90°,EF =EG ,∴△EGN ≌△EFM (AAS )∴NE =MF =2,EM =NG ,设 AE =CF =a ,∴EM =2﹣2a =NG =AH ,AN =2﹣a =GH ,∴HD =AD ﹣AH =2﹣(2﹣2a )=2a , ∵GD =∴当 时,GD 有最小值,例 3、(2019 春•鄞州区期末)如图,矩形 ABCD 中,AB =2,BC =4,点 E 是矩形 ABCD 的边 AD 上的一动点,以 CE 为边,在 CE 的右侧构造正方形 CEFG ,连结 AF ,则 AF的最小值为 3.解:过 F 作 FH ⊥ED ,∵正方形 CEFG ,∴EF =EC ,∠FEC =∠FED +∠DEC =90°,∵FH ⊥ED ,∴∠FED +∠EFH =90°,∴∠DEC =∠EFH ,且 EF =EC ,∠FHE =∠EDC =90°,∴△EFH ≌△EDC (AAS ),∴EH =DC =2,FH =ED , ==∴当 AE =1 时,AF 的最小值为 3练习:(2019 春•梁溪区期末)如图,正方形 ABCD 中,AB =4,点 E 为边 AD 上一动点,连接 CE ,以 CE 为边, 作正方形 CEFG (点 D 、F 在 CE 所在直线的同侧),H 为 CD 中点,连接 FH .点 E 在运动过程中, HF 的最小值为.A GBC图 1EDH解:如图1,连接DF,过点F 作FM⊥AD,交AD 延长线于点M,过点F 作FN⊥CD 的延长线于点N,∵△EFM≌△CED,∴CD=EM,DE=FM,∴CD=AD=EM,∴AE=DM,设AE=x=DM,则DE=4﹣x=FM,∵FN⊥CD,FM⊥AD,ND⊥AD,∴四边形FNDM 是矩形,∴FN=DM=x,FM=DN=4﹣x∴NH=4﹣x+2=6﹣x,在Rt△NFH 中==∴当x=3 时,HF 有最小值=3.例4、(2019•惠山区一模)如图,正方形ABCD 中,O 是BC 边的中点,点 E 是正方形内一动点,OE=2,连接DE,将线段DE 绕点D 逆时针旋转90°得DF,连接AE,CF,OF.则线段OF 长的最小值解法一:如图,连接DO,将线段DO 绕点D 逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD 中,AB=2 ,O 是BC 边的中点,∴OC=,∴OM=,∵OF+MF≥OM,∴OF≥.故选:D.解法二:如图,由于OE=2,所以E 点可以看作是以O 为圆心,2 为半径的半圆上运动,延长BA 到P 点,使得AP=OC,连接PE,∵AE=CF,∠PAE=∠OCF,∴△PAE≌△OCF,∴PE=OF,当O、E、P 三点共线时,PE 最小==5 ,∴PE=OF=OP﹣OE=5﹣2,∴OF 的最小值是﹣2.练习:(2019•南充模拟)如图,正方形ABCD 的边长为,O 是BC 边的中点,P 是正方形内一动点,且OP =2,连接DP,将线段DP 绕点D 逆时针旋转90°到DQ,连接AP,CQ,PQ,则线段PQ 的最小值为.解:连接OD,如图所示DP,OD===5,∵OP+DP≥OD,∴DP≥OD﹣OP=5﹣2=3,∴PQ≥3,∴线段PQ 的最小值为.例5、(2019•宿迁)如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE=1,F 为AB 边上的一个动点,连接EF,以EF 为边向右侧作等边△EFG,连接CG,则CG 的最小值为.解:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将△EFB 绕点E 旋转60°,使EF 与EG 重合,得到△EFB≌△EHG,从而可知△EBH 为等边三角形,点G 在垂直于HE 的直线HN 上,作CM⊥HN,则CM 即为CG 的最小值,作EP⊥CM,可知四边形HEPM 为矩形,则EC=1+=,CG 的最小值.练习:1、(2019 秋•东台市期中)如图,正方形ABCD 中边长为6,E 为BC 上一点,且BE=1.5,F 为AB 边上的一个动点,连接EF,以EF 为边向右侧作等边△EFG,连接CG,则CG 的最小值为.解:由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将△EFB 绕点E 旋转60°,使EF 与EG 重合,得到△EFB≌△EHG,从而可知△EBH 为等边三角形,点G 在垂直于HE 的直线HN 上,作CM⊥HN,则CM 即为CG 的最小值,作EP⊥CM,可知四边形HEPM 为矩形,则CM=MP+CP=HE+ EC==,故CG 的最小值为:.2、如图,长方形ABCD 中,AB=6,BC=8,E 为BC 上一点,且BE=2,F 为AB 边上的一个动点,连接EF,将EF 绕着点 E 顺时针旋转45˚到EG 的位置,连接FG 和CG,则CG的最小值为.解析:例6、(2019•锡山区一模)在平面直角坐标系中,已知A(2,4)、P(1,0),B 为y 轴上的动点,以AB 为边构造△ABC,使点C 在x 轴上,∠BAC=90°.M 为BC 的中点,则PM 的最小值为.解:如图,作AH⊥y 轴于H,CE⊥AH 于E.则四边形CEHO 是矩形,OH=CE=4,∵∠BAC=∠AHB=∠AEC=90°,∴∠ABH+∠HAB=90°,∠HAB+∠EAC=90°,∴∠ABH=∠EAC,∴△AHB∽△CEA,∴=,∴=,∴AE=2BH,设BH=x 则AE=2x,∴OC=HE=2+2x,OB=4﹣x,∴B(0,4﹣x),C(2+2x,0)∵BM=CM,∴M(1+x,),∵P(1,0),∴PM==,∴当x=时,PM 有最小值,最小值为.x 2+ (8-x )2 25 x 2 - 4x + 16 4 练习:在平面直角坐标系中,已知 A (4,8)、P (2,0),B 为 y 轴上的动点,以 AB 为边构造△ABC ,使点 C在 x 轴上,∠BAC =90°.M 为 BC 的中点,则 PM 的最小值为.解:如图,作 AH ⊥y 轴于 H ,CE ⊥AH 于 E .则四边形 CEHO 是矩形,OH =CE =8,∵∠BAC =∠AHB =∠AEC =90°,∴∠ABH +∠HAB =90°,∠HAB +∠EAC =90°, ∴∠ABH =∠EAC ,∴△AHB ∽△CEA ,∴ = ,∴ 4 = BH ,8 AE ∴AE =2BH ,设 BH =x 则 AE =2x ,∴OC =HE =4+2x ,OB =8﹣x ,∴B (0,8﹣x ),C (4+2x ,0)∵BM =CM ,∴M (2+x , 8 - x),∵P (2,0),2∴ PM = = =∴当 x = 8 时,PM 有最小值 4 30.5 5例 7、(2017 秋•上虞区期末)如图,矩形 ABCD 中,已知 AB =6,BC =8,点 E 是边 AD 上一点,以 CE 为直角边在与点 D 的同侧作等腰直角△CEG ,连结 BG ,当点 E 在边 AD 上运动时,线段 BG 长度的最小值是解:如图作 GH ⊥BA 交 BA 的延长线于 H ,EM ⊥HG 于 M ,交 BC 于 N .则 MN ⊥BC .设 AE =m .∵∠EMG =∠ENC =∠CEG =90°,∴∠MEG +∠CEN =90°,∠CEN +∠ECN =90°,∴∠MEG =∠ECN ,∵EG =EC ,∴△MEG ≌△NCE (AAS ),∴EM =CN =AH =8﹣m ,MG =EN =6, 在 Rt △BHG 中==,∴当 m =4 时,BG 有最大值,最大值为.5 (x - 8)2 + 96 4 5 5练习:(2017•龙华区二模)如图,在平面直角坐标系中,已知矩形OABC 的顶点A 在x 轴上,OA=4,OC=3,点D 为BC 边上一点,以AD 为一边在与点B 的同侧作正方形ADEF,连接OE.当点D 在边BC 上运动时,OE 的长度的最小值是 5 .解:如图所示:过点D 作DG⊥OA,过点E 作HE⊥DG.∵DG⊥OA,HE⊥DG,∴∠EHD=∠DGA=90°.∴∠GDA+∠DAG=90°.∵四边形ADEF 为正方形,∴DE=AD,∠HDE+∠GDA=90°.∴∠HDE=∠GAD.在△HED 和△GDA 中,∴△HED≌△GDA.∴HE=DG=3,HD=AG.设D(a,3),则DC=a,DH=AG=4﹣a.∴E(a+3,7﹣a).∴OE==.当a=2 时,OE 有最小值,最小值为.例8、如图,线段AB=8,D 为AB 的中点,点E 是平面内一动点,且满足DE=2,连接BE,将BE 绕点E 逆时针旋转90°得到EC,连接AC、BC,则线段AC 长度的最大值为 6 .解:以BD 为直角边在BD 上方作等腰直角三角形BOD,如图,连接CO、AO.则,又.∵E 点运动轨迹是以E 为圆心,DE=2 为半径的圆,∴C 点运动的轨迹是以O 为圆心为半径的圆.∵AC≤AO+OC,AO=4,OC=2.∴AC 最大值为+2=6.二、线段和最小值问题例1、如图,在正方形ABCD 中,AB=6,E 是BC 边的中点,F 是CD 边上的一点,且DF=2,若M、N 分别是线段AD、AE 上的动点,则MN+MF 的最小值为.解:作点F 关于AD 的对称点G,过G 作GN⊥AE 与N,交AD 于M,则GN 的长度等于MN+MF 的最小值,∵△DGM≌△DGF,∴∠DMF=∠GMD,∵∠GMD=∠AMN,∠AMN+∠MAN=∠MAN+∠BAE=90°,∴∠FMD=∠BAE=∠AMN,∴△ABE∽△DMF∽△AMN,∴,∵AB=6,∴BE=3,∵DF=2,∴DM=4,∴AM=2,∵,∴MN=,∵GM=2 ,∴GN=GM+MN=MN+MF=+2 .∴MN+MF 的最小值.练习:如图,矩形ABCD 中,AB=4,AD=6,点E,F 分别是AB,BC 边上的两动点,且EF=2,点G 为EF 的中点,点H 为AD 边上一动点,连接CH,GH,则GH+CH 的最小值为9.解:由已知,点G 在以B 圆心,1 为半径的圆在与长方形重合的弧上运动.作C 关于AD 的对称点C′,连接C′B,交AD 于H,交以D 为圆心,以1 为半径的圆于G 由两点之间线段最短,此时C′B 的值最小,则GH+CH 的最小值C′G=10﹣1=9.例2、(2016 春•青山区期中)如图,在矩形ABCD 中,AB=2,BC=4,点E 和点F 分别是AC 和BC 上的动点,在点E 和点F 运动的过程中,BE+EF 的最小值为AP解:如图,作点B 关于 AC 的对称点 B ′,过点 B ′作 B ′F ⊥BC 于 F ,交 AC 于 E ,连接 CB ′交 AD于 P ,连接 BE ,∵四边形 ABCD 是矩形,∴AD ∥BC ,∴∠BCA =∠PAC ,∵点 B 关于 AC 的对称点是 B ′,∴∠PCA =∠BCA ,∴∠PAC =∠PCA ,∴PA =PC .令 P A =x ,则 PC =x ,PD =4﹣x .在 Rt △CDP 中,∵PC 2=PD 2+CD 2,∴x 2=(4﹣x )2+22,∴x =2.5, ∵co s ∠B ′CF =co s ∠CP D ,∴CF :B ′C =DP :CP ,∴CF :4=1.5:2.5,∴CF =,∴B ′F ==,∴BE +EF 的最小值为. 练习:1、(2017 春•东西湖区期中)如图,在▱ABCD 中,AB =2, AB ⊥ AC ,∠D =60°,点 P 、Q 分别是 AC 和 BC 上的动点,在点 P 和点 Q 运动的过程中,PB +PQ 的最小值FDBC解:作点 B 关于 AC 的对称点 F ,连接 CF ,作 FQ ⊥ BC 交 AC 于点P ,则 FQ 的长即为 PB +PQ 的最小值(垂线 段 最 短 ), 易 知 △BCF 是 等 边 三 角 形 ,∴BP +PQ 的 最 小 值 为. 2 、如图,矩形 ABCD 中,AB =3,BC =4,点 M 、点 N 分别在 BD 、BC 上,则 CM +MN 的最小值为.解:如图,作出点C 关于BD 的对称点E,过点E 作EN⊥BC 于N,交BD 于M,连接CM,此时CM+MN =EN 最小;∵四边形ABCD 是矩形,∴∠BCD=90°,CD=AB=3,根据勾股定理得,BD=5,∵CE⊥BC,∴BD×CF=BC×CD,∴CF==,由对称得,在Rt△BCF 中=,∴sin∠BCF=,在Rt△CEN 中=;即:CM+MN 的最小值;例3、(2019 春•新吴区期末)如图,菱形ABCD 的边长为4,∠A=60°,E 是边AD 的中点,F 是边AB 上的一个动点将线段EF 绕着点E 逆时针旋转60°得到EG,连接BG、CG,则BG+CG 的最小值为.解:如图,取AB 的中点N.连接EN,EC,GN,作EH⊥CD 交CD 的延长线于H.∵四边形ABCD 是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN 是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G 的运动轨迹是射线NG,易知B,E 关于射线NG 对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH 中,∵∠H=90°,DE=2,∠EDH=60°,∴DH=DE=1,EH=,在Rt△ECH 中=2 ,∴GB+GC≥2 ,∴GB+GC 的最小值为.练习:如图,在平行四边形ABCD 中,M 是AD 边的中点,N 是AB 边上一动点,将线段MN 绕点M 逆时针旋转90 至MN′,连接N′B,N′C,则N′B+N′C 的最小值是2 .解:如图,作ME⊥AD 交AB 于E,连接EN′、AC、作CF⊥AB 于F.∵∠MAE=45°,∴△MAE 是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C 共线时,N′B+N′C 的值最小,最小值=AC,在Rt△BCF 中,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF 中=2例4、(2015•石家庄模拟)如图,已知在矩形ABCD 中,AB=4,BC=2,点M,E 在AD 上,点F 在边AB 上,并且DM=1,现将△AEF 沿着直线EF 折叠,使点A 落在边CD 上的点P 处,则当PB+PM 最小时,ME 的长度为解:延长AD 到M′,使得DM′=DM=1,连接PM′,如图.当PB+PM 的和最小时,M′、P、B 三点共线.∵四边形ABCD 是矩形,AB=4,BC=2,∴DC=AB=4,AD=BC=2,AD∥BC,∴△DPM′∽△CPB,∴==,∴DP=PC,∴DP=DC=.设AE=x,则PE=x,DE=2﹣x,在Rt△PDE 中)2=x2,解得,∴ME=AE﹣AM=﹣1=.故选:B.例5、(2019 春•张家港市期末)如图,矩形ABCD 中,AB=8,BC=4,P,Q 分别是直线AB,AD 上的两个动点,点E 在边CD 上,DE=2,将△DEQ 沿EQ 翻折得到△FEQ,连接PF,PC,则PF+PC 的最小值为解:作点C 关于AB 的对称点H,连接PH,EH,如图所示:∵矩形ABCD 中,AB=8,BC=4,DE=2,∴CE=CD﹣DE=AB﹣DE=6,CH=2BC=8,∴EH===10,∵点C 与点P 关于AB 对称,∴CP=PH,∴PF+PC=PF+PH,∵EF=DE=2 是定值,∴当E、F、P、H 四点共线时,PF+PH 值最小,最小值=10﹣2=8,∴PF+PC 的最小值为8.练习:(2019 春•邗江区校级月考)如图,矩形ABCD 中,AB=2,BC=4,P,Q 分别是BC,AB 上的两个动点,AE=1,△AEQ 沿EQ 翻折形成△FEQ,连接PF,PD,则PF+PD 的最小值是 4 .解:如图作点D 关于BC 的对称点D′,连接PD′,ED′.在Rt△EDD′中,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=1 是定值,∴当E、F、P、D′共线时,PF+PD′定值最小,最小值=5﹣1=4,∴PF+PD 的最小值为4,例6、(2018•朝阳区二模)如图,在矩形ABCD 中,AB=1,AD=2,E 是边AD 的中点,F 是边AB 上的一个动点,连结EF,过点E 作EG⊥EF 交BC 于点G.则AF+EF+CG 的最小值为 2 .解:如图,过点E 作EH⊥BC 于点H.∵四边形ABCD 是矩形,∴AB∥BC,∠A=90°.∴AB=EH,∠A=∠EHG=∠AEH=90°.∴∠FEH+∠AEF=90°.∵EG⊥EF,∴∠FEH+∠HEG=90°.∴∠AEF=∠HEG.∵AD=2AB,AD=2AE,∴AE=AB.∴AE=HE 且∠AEF=∠HEG,∠A=∠EHG ∴△AEF≌△HEG.∴EF=GE.∵AB=1,AD=2,∴AE=DE=1∵∠D=∠C=90°,EH⊥BC∴DCHE 是矩形∴DE=CH=1∵△AEF≌△EHG∴AF=HG,EF=EG,EH=AE=1∴AF+EF+CG=HG+CG+EG=CH+EG=1+EG由两平行线之间垂线段最短,当EG⊥BC 时,AF+EF+CG 的值最小,即EG=1 时,AF+EF+CG 的最小值为2练习:如图,在矩形ABCD 中,AB=4,AD=8,E 是边AD 的中点,F 是边AB 上的一个动点,连结EF,过点E 作EG⊥EF 交BC 于点G.则AF+EF+CG 的最小值为.例7、如图,在平面直角坐标系xOy 中,已知点A(1,0),点C 是y 轴上的动点,线段CA 绕着点C 按逆时针方向旋转90°至线段CB,CA=CB,连接BO、BA,则BO+BA 的最小值是.如图作BH⊥OH 于H.设点C 的坐标为(0,m),由(1)知:OC=HB=m,OA=HC=1,则点B(m,1+m),则+,BO+BA 的值,相当于求点P(m,m)到点M(1,﹣1)和点N(0,﹣1)的最小值,相当于在直线y=x 上寻找一点P(m,m),使得点P 到M(0,﹣1),到N(1,﹣1)的距离和最小,作M 关于直线y=x 的对称点M′(﹣1,0),易知PM+PN=PM′+PN≥NM′,M′N=,故:BO+BA 的最小值.例8、如图,矩形ABCD 中,AB=3,AD=4,点E、F 分别是边BC 和对角线BD 上的动点,且BE=DF,则AE+AF 的最小值是.解法一:如图,作点D 关于BC 的对称点G,连接BG,在BG 上截取BH,使得BH=AD,连接AH.作HM⊥AB 交AB 的延长线于M.∵四边形ABCD 是矩形,∴AB=CD=3,BC=AD=4,AD∥BC,∴∠ADF=∠DBC,∵DC=CG,BC⊥DG,∴BD=BG,∴∠DBC=∠CBG,∴∠ADF=∠HBE,∵DA=BH,DF=BE,∴△ADF≌△HBE(SAS),∴AF=EH,∴AE+AF=AE+EH≥AH,在Rt△BCD 中=5,由△BHM∽△DBC,可==,∴==,∴BM=,MH=,∴AM=3+=,在Rt△AMH 中,AH=,∴AE+AF≥,∴AE+AF 的最小值.解法二:如图,作FG⊥AD于G.∵BE=DF,∴设BE=DF=x,∵矩形ABCD,AB=3,AD=4,∴∠BAD=∠ABC=90°根据勾股定理得,∵FG⊥AD,∴∠FGD=90°,∴∠BAD=∠FGD=90°∵∠ADB=∠GDF,∴△BAD∽△FGD,∴即∴GF=x,GD=x,AG=4﹣x在Rt△ABE 中,∠ABE=90°,根据勾股定理得AE=在Rt△AGF 中,∠AGF=90°,根据勾股定理得AF==,AE+AF=+可以看成是在平面直角坐标系里点(x,0)和点(0,3)的距离与点(x,0)和点,﹣)的距离之和.,当点(0,3)、(x,0)、,﹣)三点共线时,AE+AF 值最小,就是点(0,3)、,﹣)之间的距离,=.三、三角形周长最小值问题例1、(2018 秋•成都期末)如图,在矩形ABCD 中,AB=6,AD=3,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A'MN,连接A'C.在MN 上存在一动点P.连接A'P、CP,则△A'PC 周长的最小值是﹣+3 .解:分两步:①连接AP,则AP=AP′,∴△A'PC 周长=A′P+PC+A′C=AP+PC+A′C,∵A′P+PC≥AC,当A、P、C 三点共线时,A′P+PC 有最小值,是AC 的长,∴AC 与MN 的交点就是点P,由勾股定理得=3,②连接CM,∵A′C≥CM﹣A′M,∴当M、A′、C 三点共线时,A′C 有最小值,此时,∵M 是AD 的中点=,由折叠得:AM=A′M=1.5,∴A′C=MC﹣A′M=﹣1.5,∴△A'PC 周长的最小值是:+3 ,例2、(2019 春•雨花区校级期中)如图,在平行四边形ABCD 中,AB=10,AD=16,∠A=60°,P 是射线AD 上一点,连接PB,沿PB 将△APB 折叠,得△A'PB.当点P 为AD 中点时,点F 是边AB 上不与点A,B 重合的一个动点,将△APF 沿PF 折叠,得到△A'PF,连接BA',则△BA'F 周长的最小值为.解:如图,作BH⊥AD 于H,连接,∴PB==,由翻折可知:PA=PA′=8,FA=FA′,∴△BFA′的周长=22 + (4 3)2 E F32 +42FA ′+BF +BA ′=AF +BF +BA ′=AB +BA ′=10+BA ′,∴当 BA ′的周长最小时,△BFA ′的周长最小 ﹣8,∴BA ′的最小值为 ﹣8,∴△BFA ′的周长的最小值为 ﹣8=2+2.练习:如图,在平行四边形 ABCD 中,AB =8,AD =12,∠A =60°,P 是射线 AD 上一点,连接 PB ,沿 PB 将△APB 折叠,得△A 'PB .当点 P 为 AD 中点时,点 F 是边 AB 上不与点 A ,B 重合的一个动点,将△APF 沿 PF 折叠,得到△A 'PF ,连接 BA ',则△BA 'F 周长的最小值为 .解:如图,作 BH ⊥AD 于 H ,连接,∴ PB = = = 2 ,由翻折可知:PA =PA ′=6,FA =FA ′,∴△BFA ′的周长=FA ′+BF +BA ′=AF +BF +BA ′=AB +BA ′=8+BA ′,∴当 BA ′的最小时,△BFA′的周长最小,∵BA ′≥PB ﹣PA ′,∴BA ′≥ 2 ﹣6,∴BA ′的最小值为2 ﹣6,∴△BFA ′的周长的最小值为 8+ 2 ﹣6= 2 +2.四、四边形周长最小值问题例 1、如图,已知,在矩形 ABCD 中,AD =2,AB =4,点 E ,F 是边 CD 上的动点(点 F 在点 E 右侧), 且 EF =1,则四边形 ABFE 周长的最小值为 10 .AMBDCN解:在 AB 上截取 AM =EF ,作点 M 关于直线 DC 的对称点 N ,连接 BN 交 CD 于 F ,此时四边形 AEFB的周长最小.四边形 AEFB 的周长的最小值=AB +EF +AE +BF =AB +EF +MF +BF =AB +EF +NF +BF =AB +EF +NB =4+1+ =10,PH 2 + BH 2 13 13 13 13 13练习:1、(2018 秋•金牛区校级月考)在矩形ABCD 中,AB=8,BC=10,G 为AD 边的中点.如图,若E、F为边AB 上的两个动点,且EF=4,当四边形CGEF 的周长最小时,则求AF 的长为.G解:∵E 为AB 上的一个动点,∴如图,作G 关于AB 的对称点M,在CD 上截取CH=4,然后连接HM 交AB 于E,接着在EB 上截取EF=4,那么E、F 两点即可满足使四边形CGEF 的周长最小.∵在矩形ABCD 中,AB=8,BC=10,G 为边AD 的中点,∴AG=AM=5,MD=15,而CH=4,∴DH=4,而AE∥CD,∴△AEM∽△DHM,∴AE:HD=MA:MD,∴AE===,∴AF=4+=.例2、(2019•长丰县二模)如图,矩形ABCD 中,AB=5,AD=10,点E,F,G,H 分别在矩形各边上,点F,H 为不动点,点E,G 为动点,若要使得AF=CH,BE=DG,则四边形EFGH 周长的最小值为解:作点F 关于CD 的对称点F′,连接F′H 交CD 于点G,此时四边形EFGH 周长取最小值,过点H 作HH′⊥AD 于点H′,如图所示.∵AF=CH,DF=DF′,∴H′F′=AD=10,∵HH′=AB=5,∴F′H==5,∴C 四边形.练习:(2018•保定一模)如图,矩形ABCD 中,AB=8,BC=6,点E,F,G,H 分别在矩形ABCD 各边上,且AE=CG,BF=DH,则四边形EFGH 周长的最小值为解:作点E 关于BC 的对称点E′,连接E′G 交BC 于点F,此时四边形EFGH 周长取最小值,EF=E'F,过点G 作GG′⊥AB 于点G′,如图所示.∵AE=CG,BE=BE′,∴E′G′=AB=8,∵GG′=AD=6,∴E′G==10,∴C 四边形EFGH=2(GF+EF)=2E′G=20.五、三角形面积最小值问题例1、(2018•无锡)如图,矩形ABCD 中,AB=4,AD=2,E 为边AD 上一个动点,连结BE,取BE 的中点G,点G 绕点E 逆时针旋转90°得到点F,连结CF,则△CEF 面积的最小值是解:过点F 作AD 的垂线交AD 的延长线于点H,∵∠A=∠H=90°,∠FEB=90°,∴∠FEH=90°﹣∠BEA=∠EBA,∴△FEH∽△EBA,∴,设x,EH=2,DH=x,∴△CEF 面积=,∴当x=1 时,△CEF 面积的最小值.例2、(2016•江东区一模)如图,点E 为正方形ABCD 中AD 边上的动点,AB=2,以BE 为边画正方形BEFG,连结CF 和CE,则△CEF 面积的最小值为.解:(方法一)过点 F 作FM⊥AD 延长线于点M,令EF 与CD 的交点为N 点,如图所示.则CN•ME.∵四边形ABCD 为正方形,四边形BEFG 为正方形,∴∠A=90°,∠BEF=90°,BE=EF,∴∠AEB+∠ABE=90°,∠MEF+∠MFE=90°,∠AEB+∠BEF+∠MEF=180°,∴∠AEB=∠MFE,∠ABE=∠MEF.在△ABE 和△MEF 中,,∴△ABE≌△MEF(ASA).∴MF=AE,ME=AB.∵CD⊥AD,FM⊥AD,∴ND∥FM,∴△EDN∽△EMF,∴.设AE=x,则ED=AD﹣AE=2﹣x,EM=AB=2,MF=AE=x,∴DN==﹣x2+x=﹣(x﹣1)2+≤.∴CN=CD﹣DN≥2﹣≥.∴△CEF 面积的最小值CN•ME=××2=.(方法二)连接CG,如图所示.在△ABE 和△CBG 中,,∴△ABE≌△CBG(SAS).设AE=x,则BE2=AB2+AE2=4+x2,∴S 正方形BEFG=BE2=4+x2.∴S△CEF+S BCG=S 正方形x2,∴S△CEF=S 正方形x2﹣S△ABE=2+x2﹣x=(x﹣1)2+,当x=1 时,△CEF 面积最小,最小值为.例3、(八中定时练习六18 题2019•无锡)如图,在△ABC 中,AB =AC = 5, BC = 4 ,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF,连接BE,则∆BDE面积的最大值为.解:过点C 作CG⊥BA 于点G,作EH⊥AB 于点H,作AM⊥BC 于点M.∵AB=AC=5,BC=4 ,∴BM=CM=2 ,易证,∴,∴GB=8,设BD=x,则DG=8﹣x,易证△EDH≌△DCG(AAS),∴EH=DG=8﹣x,∴S△BDE===,当x=4 时,△BDE 面积的最大值为8.5。

重庆中考数学第18题专题训练

重庆中考数学第18题专题训练

18题图HGFE DCBA18题1.如图,正方形ABCD 的边长为6,点O 是对角线AC 、BD 的交点,点E 在CD 上,且DE=2CE ,过点C 作CF ⊥BE ,垂足为F ,连接OF ,则OF 的长为 .2.如图,在边长为的正方形ABCD 中,E 是AB 边上一点,G 是AD 延长线上一点,BE =DG ,连接EG ,CF ⊥EG 于点H ,交AD 于点F ,连接CE 、BH 。

若BH =8,则FG = 。

3.如图,矩形ABCD 中,AB=,AD=10,连接BD ,∠DBC 的角平分线BE 交DC 于点E ,现把△BCE 绕点B 逆时针旋转,记旋转后的△BCE 为△BC E '',当射线BE '和射线BC '都与线段AD 相交时,设交点分别F,G ,若△BFD 为等腰三角形,则线段DG 长为 。

4.如图,AC 是矩形ABCD 的对角线,AB=2,BC=点E ,F 分别是线段AB ,AD 上的点,连接CE ,CF ,当∠BCE=∠ACF ,且CE=CF 时,AE+AF=___ ___.18题图5.如图,点E 是正方形ABCD 内一点,连结AE 、BE 、DE ,若AE =2,BE =15,∠AED =135°,则正方形ABCD 的面积为 .6.如图,在正方形ABCD 中,22=AB ,将BAD ∠绕着点A 顺时针旋转α(450<<α),得到//AD B ∠,其中射线/AB 与过点B 且与对角线BD 垂直的直线交于点E ,射线/AD 与对角线BD 交于点F ,连接CF ,并延长交AD 于点M ,作B CM ∠的角平分线交AB 于点N ,当满足CDM AEBF S S ∆=2四边形时,线段BN 的长度为 .7.如图,在矩形ABCD 中,2512AD AB ==,,点E 、F 分别是AD 、BC 上的点,且DE =CF =9,连接EF 、DF 、AF ,取AF 的中点为G ,连接BG ,将BFG ∆沿BC 方向平移,当点F 到达点C 时停止平移,然后将△GFB 绕C 点顺时针旋转α(0°<α<90°),得到11B CG ∆(点G 的对应点为1G ,点B 的对应点为1B ),在旋转过程中,直线11B G 与直线EF 、FD 分别相交于M 、N ,当FMN ∆是等腰三角形,且FM FN =时,线段DN 的长为 .EDCAB18题图18题图18题图A连结EG ,交CA 的延长线于M ,将△AEG 绕点A 逆时针...旋转60°得到''G AE ∆(点E 的对应点为'E ,点G 的对应点为9.如图,ABC ∆中,4AB AC ==,BAC ∠=120°,以A 为一个顶点的等边三角形ADE 绕点A 在BAC ∠内旋转,AD 、AE 所在的直线与BC边分别交于点F 、G ,若点B 关于直线AD 的对称点为'B ,当'FGB ∆是以点G 为直角顶点的直角三角形时,BF 的长为_______10.第18题图 G11.如图,在一张矩形纸片ABCD 中,AB =4,BC =8,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形; ②EC 平分∠DCH ; ③线段BF 的取值范围为3≤BF ≤4; ④当点H 与点A 重合时,EF =2.以上结论中,你认为正确的是 .(填空编号) 12.13.如图,正方形ABCD 的边长为3,延长CB 至点M,使BM=1,连接AM,过点B 作BN ⊥AM,垂足为N ,O 是对角线AC 、BD 的交点,连接ON,则ON 的长为 .14.如图,正方形ABCD 的边长为224 ,点E 在对角线BD 上,且∠BAE=22.5°,EF ⊥AB ,垂足为点F ,则EF 的长是 。

重庆中考数学18题专题训练

重庆中考数学18题专题训练

题型一 方程问题1、某步行街摆放有若干盆甲、乙、丙三种造型的盆景。

甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙咱盆景由10朵红花、18朵黄花和25朵紫花搭配而成。

这些盆景一共用了2900朵红花,3750朵紫花,由黄花一共用了 朵。

2、已知AB 是一段只有3米宽的窄道路,由于一辆小汽车与一辆大卡车在AB 段相遇,必须倒车才能继续通行。

如果小汽车在AB 段正常行驶需10分钟,大卡车在AB 段正常行驶需20分钟,小汽车在AB 段倒车的速度是它正常行驶速度的51,大卡车在AB 段倒车的速度是它正常行驶速度的81,小汽车需倒车的路程是大卡车需倒车的路程的4倍。

问两车都通过AB 这段狭窄路面的最短时间是 分钟。

3、甲、乙、丙三人拿出同样多的钱,合伙订购同种规格的若干件商品,商品买来后,甲、乙分别比丙多拿了11件商品,最后结算时,甲付给丙14元,那么,乙应付给丙 元。

4、山脚下有一个池塘,山泉以固定的流量向池塘里流淌,现在池塘中有一定的水,若一台A 型抽水机1小时刚好抽完,若两台A 型抽水机20分钟刚好抽完,若三台A 型抽水机同时抽 分钟可以抽完。

5、甲、乙两厂生产同一种产品,都计划把全年的产品销往重庆,这样两厂的产品就能占有重庆市场同类产品的43。

然而实际情况并不理想,甲厂仅有21的产品、乙厂仅有31的产品销到了重庆,两厂的产品仅占了重庆市场同类产品的31。

则甲厂该产品的年产量与乙厂该产品的年产量的比为 。

5、我市某县城为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费,如果某居民户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为____________立方米。

6、采石场工人爆破时,为了确保安全,点燃炸药导火线后要在炸药爆破前转移到400米以外的安全区域,导火索燃烧速度是1cm/秒,人离开的速度是5米/秒,至少要导火索的长度是_____________cm 。

重庆中考18题典型例题(综合应用题)---重点中学考题

重庆中考18题典型例题(综合应用题)---重点中学考题

18. 重庆市巴蜀中学2012-2013学年度第二学期第一次定时作业现安排一批工人完成一项工作,如果这批工人同时开始工作,且每个人工作效率相同,则9小时完工;如果开始先安排1人做,以后每隔t小时(t为整数)增加1人,且每个人都一直做到工作完成,结果最后一个人做的时间是第1人时间的15,则第一个人做的时间是小时.18.重庆市巴蜀中学2012-2013学年度第二学期第一次模拟考试H7N9本是一种只在飞禽之间传播的禽流感,但最近已严重威胁到广大人民群众的生命安全。

现在我市有一组检疫工作人员,需对甲、乙两个养殖场的所有养鸡逐一检疫。

已知,甲养殖场的养鸡比乙养殖场的养鸡多一倍。

上午全部工作人员在甲厂检疫,下午一半的工作人员仍留在甲厂(上、下午的工作时间相等),到下班前刚好把甲厂的养鸡检疫完毕,另一半工作人员去乙厂检疫,到下班前还剩下一小部分养鸡未检疫,最后由一人再用两整天的工作时间刚好检疫完。

如果这组工作人员每人每天检疫的效率是相等的,则这组工作人员共有人。

16.重庆巴蜀中学2012级初三下第五次6月考试押题题卷晨光文具店有一套体育用品:1个篮球,1个排球和1个足球,一套售价300元,也可以单独出售,小攀同学共有50元、20元、10元三种面额钞票各若干张.如果单独出售,每个球只能用到同一种面额的钞票去购买.若小面额的钱的张数恰等于另两种面额钱张数的乘积,那么所有可能中单独购买三个球中所用到的钱最少的一个球是元。

18.(重庆八中初2014级初三上入学考试 2013.9)一次数学比赛,有两种给分方法:一种是答对一题给5分, 不答给2分,答错不给分;另外一种先给40分,答对一题给3分,不答不给分,答错扣一分,用这两种方法评分,某考生都得81分,这张试卷共 题。

18.(2013年重庆中考A 卷) 如图,菱形OABC 的顶点O 是坐标圆点,顶点A 在x 轴的正半轴上,顶点B 、C 均在第一象限,OA=2,∠AOC=60°,点D 在边AB 上,将四边形ODBC 沿直线OD 翻折,使点B 和C 分别落在这个坐标平面内的点B ′和点C ′处,且∠C ′DB ′=60°.若某反比例函数的图像经过点B ′,则这个反比例函数的解析式为________。

2023年重庆市中考物理真题训练试卷附解析

2023年重庆市中考物理真题训练试卷附解析

2023年重庆市中考物理真题训练试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、单选题1.如图,原来静止的物体A在水平拉力F作用下沿水平面做直线运动,速度逐渐增大,则拉力F:()A.一定大于阻力B.一定等于阻力C.可能等于阻力D.可能小于阻力2.为了使学生在教室上课时免受周围环境噪声干扰,下面的措施中合理有效的是()A.教室内保持安静,不讲话B.在教室周围植树C.每个学生都戴一个防噪声耳罩D.在教室内安装噪声监测装置.3.今年夏天,由于天气高温少雨、水富营养化严重,导致蓝藻大量繁殖,呈蓝绿色油漆状并发出腥臭味.蓝藻呈蓝绿色是因为.................................................................... ()A.白光照在蓝藻上,蓝光、绿光被反射,其余色光被吸收B.白光照在蓝藻上,蓝光、绿光被吸收,其余色光被反射C.蓝藻是光源,自身能发出蓝光、绿光D.蓝藻是光源,自身能发出除蓝光、绿光以外的其余色光4.在摩擦起电过程中,带正电物体的甲原子与带负电物体的乙原子,它们束缚电子的本领是()A.相同B.甲比乙强 C.乙比甲强D.无法比较5.野外作业时,由于没有220V的照明供电线路,为了应急,有时将两盏额定电压为220V的灯泡串联起来,接到电压为380V的动力线路中,俗称“串联灯”。

如果将“220V、40W”的甲灯和“220V、60W”的乙灯组成“串联灯”使用,那么两灯的亮度相比()A.甲灯较亮。

B.乙灯较亮。

C.一样亮D.条件不足,无法判断。

6.小明同学在家中拍到一张电能表照片,如图所示.他仔细观察照片后,得到下列结论,你认为正确的是()A.电能表的额定电流为10AB.电能表允许通过的最大电流为10AC.电能表的额定功率为2200WD.拍照片时,小明家已消耗的电能为7624J.7.(09湖州)下列装置中,利用电磁铁制成的是A.指南针 B.电铃C.白炽灯D.光盘8.声音在固体、液体中比在空气中传播得()A.快 B.慢C.一样快D.无法比较.9.下列说法,物体运动状态没有发生改变的是.........................................()A.火车启动时,从静止变为运动B.在地面上滚动的小球,速度逐渐变慢C.重物被吊车沿直线向上匀速吊起D.汽车在盘山公路上匀速行驶10.火箭常用液态氢作燃料相同质量的氢和汽油完全燃烧,氢放出的热量约为汽油的3倍,下列说法正确的是................................................................................................................. ()A.火箭发动机是一种热机B.氢的热值约为汽油热值的三分之一C.火箭上升时,以发射塔为参照物,火箭是静止的D.火箭加速上升过程中,机械能保持不变11.某同学站在匀速行驶的车厢中,该同学受到的平衡力为()A.人的重力和车对人的支持力B.人的重力和人对车的压力C.车对人向前的推力和车对人的摩擦力D.人对车的压力和车对人的支持力12.甲起重机用lmin时间将重为9800N的货物吊起5m高,乙起重机用2min将重为8000N的货物吊起8m高。

2020重庆中考复习数学第18题《七类最值问题的求解策略》

2020重庆中考复习数学第18题《七类最值问题的求解策略》

2020重庆中考复习第18题《七类最值问题的求解策略》类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段.EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值.2、(2019秋•海曙区校级月考)如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .A类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .练习如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .练习1、(2019秋•东台市期中)如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG,则 CG 的最小值为.3、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为 .类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为 .A例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为.例5、如图,在△ABC 中,∠BAC =120°,AB =AC =6,D 为边AB 上一动点(不与B 点重合),连接CD ,将线段CD 绕着点D 逆时针旋转90°得到DE ,连接BE ,则S △BDE 的最大值为 .练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.练习如图,在四边形ABCD 中,AB =6,BC =4,若AC =AD ,且∠ACD =60°,则对角线BD 的长的最大值为 .类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD 中,∠ABC =60°,将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',分别连接A 'C ,A 'D ,B 'C ,则A 'C +B 'C 的最小值为 .练习:如图,在矩形ABCD 中,AB =,1BC =,将ABD ∆沿射线DB 平移到A B D '''∆,连接B C D C ''、,则+B C D C ''的最小值为 .类型七:利用基本不等式求最值参考答案类型一:旋转三角形利用三点共线求最值例1、如图,菱形ABCD的边长为4,∠A=60°,E是边AD的中点,F是边AB上的一个动点将线段EF绕着点E逆时针旋转60°得到EG,连接BG、CG,则BG+CG的最小值为.解:如图,取AB的中点N.连接EN,EC,GN,(即将△EAF绕点E逆时针旋转60°得△ENG)作EH ⊥CD交CD的延长线于H.∵四边形ABCD是菱形,∴AD=BD,∵AE=ED,AN=NB,∴AE=AN,∵∠A=60°,∴△AEN是等边三角形,∴∠AEN=∠FEG=60°,∴∠AEF=∠NEG,∵EA=EN,EF=EG,∴△AEF≌△NEG(SAS),∴∠ENG=∠A=60°,∵∠ANE=60°,∴∠GNB=180°﹣60°﹣60°=60°,∴点G的运动轨迹是射线NG,易知B,E关于射线NG对称,∴GB=GE,∴GB+GC=GE+GC≥EC,在Rt△DEH中,∵∠H=90°,DE=2,∠EDH=60°,∴DH=DE=1,EH=,在Rt△ECH中,EC==2,∴GB+GC≥2,∴GB+GC的最小值为2.练习1、如图,在平行四边形ABCD中,∠A=45°,AB=4,AD=2,M是AD边的中点,N是AB边上一动点,将线段MN绕点M逆时针旋转90至MN′,连接N′B,N′C,则N′B+N′C的最小值.解:如图,作ME⊥AD交AB于E,连接EN′、AC、作CF⊥AB于F.∵∠MAE=45°,∴△MAE是等腰直角三角形,∴MA=ME,∵∠AME=∠NMN′=90°,∴∠AMN=∠EMN′,∵MN=MN′,∴△AMN≌△EMN′,∴∠MAN=∠MEN′=45°,∴∠AEN′=90°,∴EN′⊥AB,∵AM=DM=,AB=4,∴AE=2,EB=2,∴AE=EB,∴N′B=N′A,∴N′B+N′C=N′A+N′C,∴当A、N′、C共线时,N′B+N′C的值最小,最小值=AC,在Rt△BCF中,∵BC=AD=2,∠CBF=∠DAB=45°,∴CF=BF=2,在Rt△ACF中,AC ==22、(2019秋•海曙区校级月考)如图,菱形ABCD的边长是6,∠A=60°,E是AD的中点,F是AB边上一个动点,EG=EF且∠GEF=60°,则GB+GC的最小值是 .AA解:取AB的中点H,连接HG、HE、HG、BE、CE,则△AEF≌△HEG∴∠GHE=∠A=60°,∴HG∥AD,可知△BHG≌△EHG,∴BG=GE,∴CE的长就是GB +GC的最小值;在Rt△EBC中,EB=3,BC=6,∴EC=3,∴GB+GC的最小值3.类型二:旋转三角形利用四点共线求最值例2、如图,△ABC中,∠ABC=30°,AB=4,BC=5,P是△ABC内部的任意一点,连接PA,PB,PC,则PA+PB+PC的最小值为 .解析:如图,将△ABP绕着点B逆时针旋转60°,得到△DBE,连接EP,CD,∴△ABP≌△DBE∴∠ABP=∠DBE,BD=AB=4,∠PBE=60°,BE=PE,AP=DE,∴△BPE是等边三角形∴EP=BP∴AP+BP+PC=PC+EP+DE,∴当点D,点E,点P,点C共线时,PA+PB+PC有最小值CD∵∠ABC=30°=∠ABP∠+PBC,∴∠DBE∠+PBC=30°,∴∠DBC=90°,∴CD==.练习如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接PA,PB,PC,则PA+PB+PC的最小值是.解:由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴PA+PB+PC=PA+PF+EF,∴当A、P、F、E共线时,PA+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2.类型三:旋转三角形利用垂线段最短求最值例2、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=1+=,CG的最小值为.练习1、(2019秋•东台市期中)如图,正方形ABCD中边长为6,E为BC上一点,且BE=1.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为 .解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC ==,故答案为:.2、如图,长方形 ABCD 中,AB=3,BC=4,E 为 BC 上一点,且 BE=2,F 为 AB 边上的一个动点,连接 EF,将 EF 绕着点 E 顺时针旋转 45˚到 EG 的位置,连接 FG 和 CG,则 CG 的最小值为.F解析:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转45°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等腰直角三角形,点G在垂直于HE的直线HG上,作CM⊥HG,则CM即为CG的最小值,作EN⊥CM,可知四边形HENM为矩形,则CM=MN+CN=HE EC=123、如图,平行四边形ABCD中,∠B=60°,BC=12,AB=10,点E在AD上,且AE=4,点F是AB 上一点,连接EF,将线段EF绕点E逆时针旋转120°得到EG,连接GD,则线段GD长度的最小值为 .解析:将线段AE绕点E逆时针旋转120°得到EH,连接HG,过点H作HM⊥AD,∵四边形ABCD是平行四边形,∴∠A∠+B=180°,∴∠A=120°,∵将线段AE绕点E逆时针旋转120°得到EH,将线段EF绕点E逆时针旋转120°得到EG,∴EF=EG=4,AE=EH,∠AEH=∠FEG=120°,∴∠DEH =60°,∠AEF =∠HEG ,且EF =EG ,AE =EH ,∴△AEF ≌△HEG (SAS ) ∴∠A =∠EHG =120°=∠AEH ,∴AD ∥HG ,∴点G 的轨迹是过点H 且平行于AD 的直线, ∴当DG ⊥HG 时,线段GD 长度有最小值,∵∠HEM =60°,EH =4,HM ⊥AD , ∴EM =2,MH =EM =2,∴线段GD 长度的最小值为2,类型四:利用二次函数求最值例3、如图,在ABC ∆中,090ACB ∠=,5,2AC BC ==,点D 是AC 边上一点,连接BD ,将线段BD 绕点D 逆时针旋转090得线段ED ,连接AE ,则AE 的最小值为 .AA解:过E 作EF ⊥AC 于点F . 则∠EFD =90°,∵090ACB ∠=,∴∠EFD=∠C ,∵ED=DB ,∠FED =∠CDB ,∴△EFH ≌△EDC , ∴DF =CB =2,EF CD =,设AD x =,则2AF x =+,5EF CD x==-, ∴AE ===32x =时,AE 有最小值2. 例4、(2010秋•东城区期末)如图,在△ABC 中,∠ACB 为锐角,点D 为射线BC 上一动点,连接AD ,将线段AD 绕点A 逆时针旋转90°得到AE ,连接EC .若点D 在线段BC 上运动,DF ⊥AD 交线段CE 于点F ,且∠ACB =45°,,则线段CF 长的最大值为.解:过A 作AM ⊥BC 于M ,EN ⊥AM 于N ,如图,∵线段AD 绕点A 逆时针旋转90°得到AE ,∴∠DAE =90°,AD =AE ,∴∠NAE =∠ADM , 易证得Rt △AMD ≌Rt △ENA ,∴NE =AM ,∵∠ACB =45°,∴△AMC 为等腰直角三角形,∴AM =MC ,∴MC =NE ,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴=,设DC=x,∵∠ACB=45°,,∴AM=CM=3,MD=3﹣x,∴=,∴CF=﹣x2+x,∴当x=1.5时有最大值,最大值为0.75.例5、如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM中∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=AC=6=3,∴BM=AB+AM=6+3=9,设BD=x,则EN=DM=9﹣x,∴S△BDE==(9﹣x)=﹣(x﹣4.5)2+,∴当BD=4,5时,S△BDE有最大值为.练习1、如图,矩形ABCD中,AB=2,BC=4,点E是矩形ABCD的边AD上的一动点,以CE为边,在CE的右侧构造正方形CEFG,连结AF,则AF的最小值为 .解:过F作FH⊥ED,∵正方形CEFG,∴EF=EC,∠FEC=∠FED+∠DEC=90°,∵FH⊥ED,∴∠FED+∠EFH=90°,∴∠DEC=∠EFH,且EF=EC,∠FHE=∠EDC=90°,∴△EFH≌△EDC(AAS),∴EH=DC=2,FH=ED,∴AF===∴当AE=1时,AF的最小值为3 .2、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为 .解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM中,∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=AC=2=1,∴BM=AB+AM=2+1=3,设BD=x,则EN=DM=3﹣x,∴S△BDE==(3﹣x)=﹣(x﹣1.5)2+,∴当BD=1.5时,S△BDE有最大值为,类型五:构造等边三角形求最值例6、如图,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长的最大值为.CA解析:如图,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF ⊥BC,∴BF =BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF ,∴DF =BC=×4=2,∴AC =DE ≤DF+EF=2+2,即AC的最大值为2+2.练习如图,在四边形ABCD中,AB=6,BC=4,若AC=AD,且∠ACD=60°,则对角线BD的长的最大值为 .解析:将AB绕点A顺时针旋转60°得到线段AK,连接BK、DK.则AK=AB=BK=6,∠KAB=60°,∴∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB(SAS)∴DK=BC=4,∵DK+KB≥BD,DK=4,KB=AB=6∴当D、K、B共线时,BD的值最大,最大值为DK+KB=10.类型六:利用对称求最值例7、(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为 .解法一:∵在边长为1的菱形ABCD 中,∠ABC =60°,∴AB =CD =1,∠ABD =30°, ∵将△ABD 沿射线BD 的方向平移得到△A 'B 'D ',∴A ′B ′=AB =1,A ′B ′∥AB ,∵四边形ABCD 是菱形,∴AB =CD ,AB ∥CD ,∴∠BAD =120°,∴A ′B ′=CD ,A ′B ′∥CD , ∴四边形A ′B ′CD 是平行四边形,∴A ′D =B ′C ,∴A 'C +B 'C 的最小值=A ′C +A ′D 的最小值,∵点A ′在过点A 且平行于BD 的定直线上, ∴作点D 关于定直线的对称点E ,连接CE 交定直线于A ′,则CE 的长度即为A 'C +B 'C 的最小值,∵∠A ′AD =∠ADB =30°,AD =1,∴∠ADE =60°,DH =EH =AD =,∴DE =1,∴DE =CD ,∵∠CDE =∠EDB ′+∠CDB =90°+30°=120°,∴∠E =∠DCE =30°,∴CE =2×CD =.解法二:练习:如图,在矩形ABCD 中,AB =,1BC =,将ABD ∆沿射线DB 平移到A B D '''∆,连接B C D C ''、,则+B C D C ''的最小值为 .解法一: 解法一:解法三: 解法四:类型七:利用基本不等式求最值解:原式=1111+12a a++⨯=11+12a a a ++=2222+32a a a a +++=2232+32a a a a a ++-+=21+32aa a -+=112+3a a -+12a a +≥ ,1+35a a ∴+≥,1513a a ∴≤++,1513a a ∴-≥-++, 1142+3a a∴-≥-+.当2a a =,即a =时有最小值4-,此时2b =.。

重庆中考数学第18题专题训练(含答案)

重庆中考数学第18题专题训练(含答案)

重庆中考18题专题训练 1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa -+-+= 去分母()()604060406040x a xb x b xa -+=-+,去括号得:2400606024004040a xa xb b bx xa -+=-+移项得:6060404024002400xa xb bx xa b a -++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。

解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨. , =, 解得x=240.故答案为:240.5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.5.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开分钟.考点:三元一次方程组的应用.解:设出水管比进水管晚开x分钟,进水管的速度为y,出水管的速度为z,则有:,两式相除得:,解得:x=40,即出水管比进水管晚开40分钟.故答案为:40.6.(1)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了.(2)某商品现在的进价便宜20%,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为。

重庆中考数学18题不定方程

重庆中考数学18题不定方程

果小汽车在 AB 段正常行驶需 10 分钟,大卡车在 AB 段正常行驶需 20 分钟,小汽车在 AB 段倒车的速度是它正常
行驶速度的 1 ,大卡车在 AB 段倒车的速度是它正常行驶速度的 1 ,小汽车需倒车的路程是大卡车需倒车的路程的
5
8
4 倍.问两车都通过 AB 这段狭窄路面的最短时间是________分钟.
汽车?
9、小王骑自行车在环城公路上匀速行驶,每隔 6 分钟有一辆公共汽车从对面想后开过,每隔 30 分钟又有一辆公共
汽车从后面向前开过,若公共汽车也是匀速行驶,且不计乘客上、下车的时间,那么公交站每隔多少分钟开出一辆
公交车?
10、某房地产公司销售电梯公寓、花园洋房、别墅三种类型的房屋,在去年的销售中,花园洋房的销售金额占总销
5、甲、乙两厂生产同一种产品,都计划把全年的产品销往重庆,这样两厂的产品就能占有重庆市场同类产品的 3 . 4
然而实际情况并不理想,甲厂仅有 1 的产品、乙厂仅有 1 的产品销到了重庆,两厂的产品仅占了重庆市场同类产品
2
3
的 1 .则甲厂该产品的年产量与乙厂该产品的年产量的比为__________. 3
的件数少 50%时,这个商人得到的总利润率是________
35、某商场销售一批电视机,一月份每台毛利润是售出价的 20%(毛利润=售出价-买入价),二月份该商场将每台
售出价调低 10%(买入价不变),结果销售台数比一月份增加 120%,那么二月份的毛利润总额与一月份毛利润总额
的比是________
37、某公司生产一种饮料是由 A, B 两种原料液按一定比例配制而成,其中 A 原料液的成本价为 15 元/千克, B 原 料液的成本价为 10 元/千克,按现行价格销售每千克获得 70%的利润率.由于市场竞争,物价上涨, A 原料液上涨 20%, B 原料液上涨 10%,配制后的总成本增加了 12%,公司为了拓展市场,打算再投入现总成本的 25%做广告宣

2020重庆中考复习数学第18题专题训练六(含答案解析)

2020重庆中考复习数学第18题专题训练六(含答案解析)

2020重庆中考复习数学第18题专题训练六(含答案解析)例1、(2017春•江汉区期中)如图,△ABC是等边三角形,AB=4,E是AC的中点,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,当点D运动时,AF的最小值是.练习:(2018秋•江阴市期中)如图,△ABC是等边三角形,AB=3,E在AC上且AE=AC,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,当点D运动时,则线段AF的最小值是.例2、(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.例3、(2019春•碑林区校级月考)如图,矩形ABCD中,边AB=5,BC=6点P在边AD上,且PD=2,点M为边AB上的一个动点,以PM为直角边作等腰Rt△PMN,∠MPN=90°,点N在直线NP的右下方连接DN,当点M在边AB上运动时,△PDN周长的最小值为例4、(2018春•青山区期末)如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC的最小值是例5、(2019•鄠邑区校级三模)如图,在Rt△ACB,∠BCA=90°,∠A=30°,AC=,点D在线段AB上,点E在线段AB的延长线上,且BE=AD,则CE+CD的最小值是.例6、如图,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,则线段AN的最大值为.练习:如图,AB=8,点M为线段AB外一个动点,且AM=4,MB=MN,∠BMN=90°,则线段AN的最大值为.例7、在△ABC中,AB=1,BC=2,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为.B CAD练习:在△ABC中,AB=8,BC=15,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为.例8、(2019•天宁区校级模拟)如图,BC=3,⊙B的半径为1,A为⊙B的上动点,连接AC,在AC上方作一个等边三角形ACD,连接BD,则BD的最大值为练习:(2017秋•慈溪市期中)如图,BC=2,A为半径为1的圆B上一点,连接AC,在AC上方作一个正三角形ACD,连接BD,则BD的最大值为.例9、(2010秋•东城区期末)如图,若点D在线段BC上运动,DF⊥AD交线段CE于点F,且∠ACB=45°,,则线段CF长的最大值为.例10、(2018秋•青山区期中)如图,在等腰△ABC中,∠BAC=120°,AB=AC=2,点D在边BC 上,CD=,将线段CD绕点C逆时针旋转α°(其中0<α≤360)到CE,连接AE,以AB,AE为边作ABFE,连接DF,则DF的最大值为例11、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为.练习:(2019秋•青山区期中)如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B 点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为.2020重庆中考复习数学第18题专题训练六答案解析例1、(2017春•江汉区期中)如图,△ABC 是等边三角形,AB =4,E 是AC 的中点,D 是直线BC 上一动点,线段ED 绕点E 逆时针旋转90°,得到线段EF ,当点D 运动时,AF 的最小值是+1.BD AFH CEG PBC ADFMEN解法一:如图,连接BE ,延长EC 到N ,使EN =BE ,连接FN ,过点A 作AG ⊥BC 于G ,过点A 作AH ⊥FN 于H ,∵△ABC 是等边三角形,AB =12,E 是AC 中点,AG ⊥BC , ∴AC =AB =12,AE =EC =6,BE ⊥AC ,∠GAC =∠EBC =30°,BE =2=EN ,∵线段ED 绕点E 逆时针旋转90°,∴DE =EF ,∠DEF =90°,∵∠BEC =∠DEF =90°,∴∠BED =∠FEN ,且DE =EF ,BE =EN ,∴△BED ≌△NEF (SAS ), ∴∠EBC =∠ENF =30°,∴∠GAC =∠ENF ,∴AG ∥NF ,∴点F 在过点N 且平行于AG 的直线上,∴当AF ⊥FN 时,AF 的值最小,∵AH ⊥FN ,∠ENF =30°, ∴AH =AN =(2+2)=1+,∴线段AF 的最小值为1+,解法二:如图所示,过E 作EG ⊥BC 于G ,过A 作AP ⊥EG 于P ,过F 作FH ⊥EG 于H , 则∠DGE =∠EHF =90°,∵∠DEF =90°,∴∠EDG +∠DEG =90°=∠HEF +∠DEG , ∴∠EDG =∠FEH ,又∵EF =DE ,∴△DEG ≌△EFH (AAS ),∴HF =EG , ∵△ABC 是等边三角形,AB =4,AE =AC=2,CE =2,∠AEH =∠CEG =30°, ∴CG =CE =1,AP =AE =1,∴EG =CG =,∴HF =EG =,∴当点D 运动时,点F 与直线GH 的距离始终为个单位, ∴当AF ⊥EG 时,AF 的最小值为AP +HF =1+,解法三:当D 在BC 的延长线上时,作DM ⊥AC 于M ,FN ⊥AC 于N ,如图,设DM =x , 在Rt △CDM 中,CM =DM =x ,∵线段ED 绕点E 逆时针旋转90°得到线段EF ,∴ED=EF,DEF=90°,易得△EDM≌△FEN,∴DM=EN=x,EM=NF=x+2,在Rt△AFN中,AF2=(x+2)2+(2﹣x)2=(x﹣)2+4+2,当x=时,AF2有最小值4+2,∴AF的最小值为=+1.练习:(2018秋•江阴市期中)如图,△ABC是等边三角形,AB=3,E在AC上且AE=AC,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,当点D运动时,则线段AF的最小值是1+.解:如图所示,过E作EG⊥BC于G,过A作AP⊥EG于P,过F作FH⊥EG于H,则∠DGE=∠EHF=90°,∵∠DEF=90°,∴∠EDG+∠DEG=90°=∠HEF+∠DEG,∴∠EDG=∠FEH,又∵EF=DE,∴△DEG≌△EFH(AAS),∴HF=EG,∵△ABC是等边三角形,AB=3,AE=AC,∴AE=2,CE=1,∠AEH=∠CEG=30°,∴CG=CE=,AP=AE=1,∴EG=CG=,∴HF=,∴当点D运动时,点F与直线GH的距离始终为个单位,∴当AF⊥EG时,AF的最小值为AP+HF=1+,例2、(2019•成都)如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.例3、(2019春•碑林区校级月考)如图,矩形ABCD中,边AB=5,BC=6点P在边AD上,且PD=2,点M为边AB上的一个动点,以PM为直角边作等腰Rt△PMN,∠MPN=90°,点N在直线NP的右下方连接DN,当点M在边AB上运动时,△PDN周长的最小值为2+2解:如图,作NH⊥AD交AD的延长线于H,∵四边形ABCD是矩形,∴∠A=90°,AD=BC=6,∵∠H=∠A=∠MPN=90°,∴∠APM+∠HPN=90°,∠APM+∠AMP=90°,∴∠AMP=∠HPN,∵PM=PN,∴△APM≌△HNP(AAS),∴NH=AP=AD=PD=6﹣2=4,∴点N的运动轨迹是直线l(在AH的下方,到直线AH的距离为4),作P关于这条直线l的对称点P′,连接DP′交直线l于N′,连接DN′,此时PN′+DN′D的值最小,最小值=线段DP′的长,在Rt△DPP′中,DP′==2,∴△PDN周长的最小值为2+2,例4、(2018春•青山区期末)如图,矩形ABCD中,AB=2,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC的最小值是()A.4+3B.2C.2+6D.4解:将△BPC绕点C逆时针旋转60°,得到△EFC,连接PF、AE、AC,则AE的长即为所求.由旋转的性质可知:△PFC是等边三角形,∴PC=PF,∵PB=EF,∴P A+PB+PC=P A+PF+EF,∴当A、P、F、E共线时,P A+PB+PC的值最小,∵四边形ABCD是矩形,∴∠ABC=90°,∴tan∠ACB==,∴∠ACB=30°,AC=2AB=4,∵∠BCE=60°,∴∠ACE=90°,∴AE==2,故选:B.例5、(2019•鄠邑区校级三模)如图,在Rt△ACB,∠BCA=90°,∠A=30°,AC=,点D在线段AB上,点E在线段AB的延长线上,且BE=AD,则CE+CD的最小值是.解:如图所示,作点C关于AB的对称点G,连接CG,DG,AG,则CD=GD,AC=AG,∠CAG=2∠CAB=60°,CG⊥AB,∴△ACG是等边三角形,∴CG=AC=,如图,以DE,DG为边作平行四边形DEHG,则DG=EH,HG∥DE,∴EH=CD,CG⊥GH,∴CD+CE=HE+CE,∴当C,E,H在同一直线上时,连接CH,CE+CD的最小值等于CH的长,∵Rt△ACB中,∠BCA=90°,∠A=30°,AC=,∴BC=tan30°×AC=1,AB=2BC=2,∵DA=BE,∴AB=DE=2,∴平行四边形DEHG中,HG=2,∴Rt△CGH中,CH===,∴CE+CD的最小值等于,例6、如图,AB=6,点M为线段AB外一个动点,且AM=2,MB=MN,∠BMN=90°,则线段AN的最大值为.解:如图,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM 是等腰直角三角形,∴MA=MP=2,BP=AN,∴P A=2,∵AB=6,∴线段AN 长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=6+2.练习:如图,AB=8,点M为线段AB外一个动点,且AM=4,MB=MN,∠BMN=90°,则线段AN的最大值为.解:如图,连接BN,∵将△AMN绕着点M顺时针旋转90°得到△PBM,连接AP,则△APM是等腰直角三角形,∴MA=MP=4,BP=AN,∴P A=4,∵AB=8,∴线段AN长的最大值=线段BP长的最大值,∴当P在线段BA的延长线时,线段BP取得最大值最大值=AB+AP=8+4.例7、在△ABC中,AB=1,BC=2,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为.A A解:如图:以AB为边作等边△ABE,∵△ACD,△ABE是等边三角形∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60°∴∠EAC=∠BAD,且AE=AB,AD=AC,∴△DAB≌△CAE(SAS),∴BD=CE若点E,点B,点C不共线时,EC<BC+BE;若点E,点B,点C共线时,EC=BC+BE.∴EC≤BC+BE=3,∴EC的最大值为3,即BD的最大值为3.练习:在△ABC中,AB=8,BC=15,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为.解:以AB为边向外作等边三角形ABE,连接CE,如图,则∠BAE=60°,BE=AB=AE=8,∵AD=CD,∠ADC=60°,∴△ACD是等边三角形,∴∠CAD=60°,AC=AD,∴∠CAD+∠BAC=∠BAE+∠BAC,即∠BAD=∠EAC,在△BAD和△EAC中,,∴△BAD≌△EAC(SAS),∴BD=CE;当C、B、E三点共线时,CE最大=BC+BE=15+8=23,∴BD的最大值为23.例8、(2019•天宁区校级模拟)如图,BC=3,⊙B的半径为1,A为⊙B的上动点,连接AC,在AC上方作一个等边三角形ACD,连接BD,则BD的最大值为()A.4B.5C.2D.3+1解:以BC为边在BC上方构造等边△BCE,连接DE、BD.∵∠ACB=60°﹣∠ECA,∠DCE=60°﹣∠ECA,∴∠ACB=∠DCE.又AC=DC,BC=EC,∴△ABC≌△DEC(SAS).∴DE=AB=1.∴点D运动轨迹是以点E为圆心,1为半径的圆,当B、E、D三点共线(D点在BE的延长线上)时,BD最大为3+1=4.故选:A.练习:(2017秋•慈溪市期中)如图,BC=2,A为半径为1的圆B上一点,连接AC,在AC上方作一个正三角形ACD,连接BD,则BD的最大值为3.解:如图:以AB为边作等边△ABE,连接CE,BD.∵△AEB,△ACD是等边三角形,∴AB=BE=AE,AC=AD,∠EAB=∠DAC=60°∴点E在圆B上,∠EAC=∠DAB,∵∠EAC=∠DAB,AE=AB,AD=AC,∴△ABD≌△AEC(SAS),∴BD=EC,在△BEC中,EC≤BE+BC,∵点E在圆B上,∴点E在线段CB 的延长线上时,CE的值最大,即此时CE=BE+BC=3∴BD的最大值为3.例9、(2010秋•东城区期末)如图,若点D在线段BC上运动,DF⊥AD交线段CE于点F,且∠ACB=45°,,则线段CF长的最大值为.解:过A作AM⊥BC于M,EN⊥AM于N,如图,∵线段AD绕点A逆时针旋转90°得到AE,∴∠DAE=90°,AD=AE,∴∠NAE=∠ADM,易证得Rt△AMD≌Rt△ENA,∴NE=AM,∵∠ACB=45°,∴△AMC为等腰直角三角形,∴AM=MC,∴MC=NE,∵AM⊥BC,EN⊥AM,∴NE∥MC,∴四边形MCEN为平行四边形,∵∠AMC=90°,∴四边形MCEN为矩形,∴∠DCF=90°,∴Rt△AMD∽Rt△DCF,∴=,设DC=x,∵∠ACB=45°,,∴AM=CM=3,MD=3﹣x,∴=,∴CF=﹣x2+x,∴当x=1.5时有最大值,最大值为0.75.例10、(2018秋•青山区期中)如图,在等腰△ABC中,∠BAC=120°,AB=AC=2,点D在边BC 上,CD=,将线段CD绕点C逆时针旋转α°(其中0<α≤360)到CE,连接AE,以AB,AE为边作ABFE,连接DF,则DF的最大值为解:作平行四边形ABPC,连接P A交BC于点O,连接PF.∵四边形ABPC是平行四边形,AB=BC,∴四边形ABPC是菱形,∴P A⊥BC,∵AB=AC=2,∠ABC=120°,∴∠BAO=60°,∴OA=OP=,OB=OC=3,∵CD=,∴OD=2,∴PD==,∵AB∥PC∥FE,AB=PC=FE,∴四边形PCEF是平行四边形,∴PF=CE=CD=,∴点F的运动轨迹是以P为圆心为半径的圆,∴DF的最大值=+.例11、(2019秋•黄陂区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D为AB边上一点(不与点B重合),连接CD,将线段CD绕点D逆时针旋转90°,点C的对应点为E,连接BE.若AB=2,则△BDE面积的最大值为.解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM中∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=AC=2=1,∴BM=AB+AM=2+1=3,设BD=x,则EN=DM=3﹣x,∴S△BDE==(3﹣x)=﹣(x﹣1.5)2+,∴当BD=1.5时,S△BDE有最大值为,练习:(2019秋•青山区期中)如图,在△ABC中,∠BAC=120°,AB=AC=6,D为边AB上一动点(不与B 点重合),连接CD,将线段CD绕着点D逆时针旋转90°得到DE,连接BE,则S△BDE的最大值为.解:作CM⊥AB于M,EN⊥AB于N,∴∠EDN+∠DEN=90°,∵∠EDC=90°,∴∠EDN+∠CDM=90°,∴∠DEN=∠CDM,在△EDN和△DCM中∴△EDN≌△DCM(AAS),∴EN=DM,∵∠BAC=120°,∴∠MAC=60°,∴∠ACM=30°,∴AM=AC=6=3,∴BM=AB+AM=6+3=9,设BD=x,则EN=DM=9﹣x,∴S△BDE==(9﹣x)=﹣(x﹣4.5)2+,∴当BD=4,5时,S△BDE有最大值为,。

10月训练题集 重庆中考数学几何证明题专题训练1 (1)

10月训练题集   重庆中考数学几何证明题专题训练1 (1)
17.如图,在正方形 ABCD 中,点 E、点 F 分别在边 BC、DC 上,BE=DF,∠EAB=15°。 (1)若 AE=3,求 EC 的长; (2)若点 G 在 DC 上,且∠CGA=120°,求证:AG=EG+FG。
18.如图,在等腰三角形 ABC 中,CA = CB,∠ACB = 90°,点 D、E 是直线 BC 上两点且 CD = BE,过点 C 作 CM⊥AE 交 AE 于点 M,交 AB 于点 F,连接 DF 并延长交 AE 于点 N.
(1) 若 AC = 2,CD = 1,求 CM 的值; (2) 求证:∠D =∠E.
10 月训练题集 张勋老师微信 IT101010
19.如图,口 ABCD 中,E 在 AD 边上,AE = DC,F 为口 ABCD 外一点,连接 AF、BF, 连接 EF 交 AB 于 G,且∠EFB = ∠C = 60°.
AC 上一点,
过点 E 作 EF // AB ,交 CD 于点 F,连接 EB,取 EB 的中点 G,连接 DG、FG。 (1)求证: EF CF ; (2)求证: FG DG 。
26、已知:如图,在 ABC 中,点 E、F 分别是 AB、AC 上的点,且 EF//BC,BM 是线段
CF 的垂直平分线,垂足为 M。N 是线段 BM 上一点,且 NC=EF。
10 月训练题集 张勋老师微信 IT101010
16.如图,在□ ABCD 中,O 为对角线 BD 的中点,BE 平分 ABC 且交 AD 于点 P ,交 CD 的延长线于点 E ;作 EO 交 AD 于点 F ,交 BC 于点 G .
(1)求证: DF BG ; (2)若 AB = 6 , AD 9 ,求 DF 的长.
10 月训练题集 张勋老师微信 IT101010

2019重庆中考数学第18题专题练习(精选)

2019重庆中考数学第18题专题练习(精选)

24 万元.已知甲型和乙型机器人每台每小时分拣快递分别是 1200 件和 1000 件,该公司计
划购买这两种型号的机器人共 8 台,总费用不超过 41 万元0 件,则该公司最低购买费用是
万元。
1/3
4.经过一年多的精准帮扶,小明家的网络商店(简称网店)将红枣、小米等优质土特产迅速 销往全国,小明家网店中红枣和小米这两种商品的相关信息如下表:
2/3
8.某超市销售水果时,将 A,B,C 三种水果采用甲、乙、丙三种方式搭配装箱进行销售, 每箱的成本分别为箱中 A,B,C 三种水果的成本之和,箱子成本忽略不计,甲种方式每箱分别 装 A,B,C 三种水果 6kg,3kg,1kg,乙种方式每箱分别装 A,B,C 三种水果 2kg,6kg,2kg,甲每 箱的总成本是每千克 A 成本的 12.5 倍,每箱甲的销售利润为 20%,每箱甲比乙的售价低 25%, 丙每箱在成本上提高 40%标价后打八折销售获利为每千克 A 成本的 1.2 倍,当销售甲、乙、 丙三种方式的水果数量之比为 2:3:3 时,则销售的总利润为______.
3/3
9.小明暑假外出旅行时,准备给朋友们些土特产作为礼物,预先了解到当地最富盛名的 A、B 两种特产的价格之和为 140 元,小明计划购买 B 特产的数量比 A 特产的数量多 5 盒, 但一共不超过 60 盒,小明在土特产商店发现 A 正打九折销售,而 B 的价格提高了 10%,小 明决定将 A、B 特产的购买数量对调,这样,实际花费只比计划多 20 元,已知价格和购买数 量均为整数,则小明购买土特产实际花费为_____元.
元.
5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景。甲种盆景由 15 朵红花、24 朵黄
花和 25 朵紫花搭配而成,乙种盆景由 10 朵红花和 12 朵黄花搭配而成,丙种盆景由 10 朵红

专题18 物质的检验、鉴别与除杂-2021年中考化学真题分类训练(第01期)(教师版含解析)

专题18 物质的检验、鉴别与除杂-2021年中考化学真题分类训练(第01期)(教师版含解析)

专题18 物质的检验、鉴别与除杂1.(2021·江苏盐城)下列实验方案能达到实验目的的是【答案】C【详解】A、检验酒精中是否含有氧元素,在空气中点燃,检验生成物,酒精燃烧,因为氧气中含氧元素,无论酒精是否含氧元素,都能检测到氧元素,A错误。

B、氯化镁和氢氧化钡反应生成氢氧化镁沉淀和氯化钡,引入新杂质,B错误。

C、氢氧化钠溶解放热,硝酸铵溶解吸热,取样,分别溶于水中,观察溶液温度变化,可鉴别氢氧化钠和硝酸铵,C正确。

D、分离Cu粉和Fe粉的混合物,既要得到铜粉还要得到铁粉,加入稀硫酸铁粉反应生成硫酸亚铁和氢气,不符合题意,D错误。

故选:C。

2.(2021·四川南充)下列实验方案设计完全合理的是A.除去NaCl中的少量KNO3,可先加水,并加热溶解,再降温结晶B.除去KCl溶液中的少量K2SO4溶液,加过量BaCl2溶液,过滤C.除去CO中的少量CO2气体,依次通过足量NaOH溶液、浓硫酸D.鉴别硫酸铵和氯化铵,分别加熟石灰、研磨、闻气味【答案】C【详解】A、硝酸钾溶解度受温度影响较大,而氯化钠受温度影响较小,除去NaCl中的少量KNO3,可先加水,蒸发结晶并趁热过滤,说法错误。

B、除去KCl溶液中的少量K2SO4溶液,向溶液中加入过量BaCl2溶液,会引入新的杂质氯化钡,说法错误。

C、二氧化碳能与氢氧化钠反应,除去CO中的少量CO2气体,依次通过足量NaOH溶液、浓硫酸,可除去二氧化碳、水蒸气,达到除杂目的,说法正确。

D、硫酸铵和氯化铵均属于铵态氮肥,与熟石灰混合后研磨,均产生有刺激性气味的气体,不能鉴别,说法错误。

故选:C。

3.(2021·湖南邵阳)下列除杂方法中,错误的是【答案】D【详解】A、氧气通过灼热的铜时可与铜发生反应生成氧化铜,而氮气不与铜反应,能除去杂质且没有引入新的杂质,符合除杂原则,故选项所采取的方法正确。

B、稀硫酸能与适量的氯化钡溶液反应生成硫酸钡沉淀和盐酸水,再过滤,能除去杂质且没有引入新的杂质,符合除杂原则,故选项所采取的方法正确。

备战2023中考英语单选100题分类训练(精选中考真题与模拟题)专题18 非谓语动词之不定式100题

备战2023中考英语单选100题分类训练(精选中考真题与模拟题)专题18 非谓语动词之不定式100题

备战2023中考英语单项选择百题分类训练(中考真题+名校最新模拟题)专题18 非谓语动词之动词不定式100题1.(2022·辽宁大连·中考真题)I hope ________ in my hometown after I finish school.A.work B.works C.working D.to work2.(2022·湖南株洲·中考真题)________ a shared future, we should learn from each other and help each other. A.Create B.To create C.Creating3.(2022·湖南益阳·中考真题)—Tom, do you think reading is important?—Yes, I do. So I decide ________ more time reading from now on.A.spend B.to spend C.spending4.(2022·广西玉林·中考真题)—Safety comes first! Everyone should stop the kids from ________ in the lake or river.—Life is valuable. Kids must remember ________ the school rules.A.swim; to follow B.swim; followingC.swimming; following D.swimming; to follow5.(2022·湖南邵阳·中考真题)— Hou can I prevent COVID-19, Dad?—________ healthy, you should always wear a mask and wash hands frequently.A.Keep B.Keeping C.To keep6.(2022·江苏镇江·中考真题)The high school invited a famous scientist _______ a talk on World Earth Day. A.giving B.to give C.give D.given7.(2022·黑龙江哈尔滨·中考真题)—I often watch talk shows on TV.—I enjoy watching the news. I hope ________ what’s going on around the world.A.find out B.to find out C.finding out8.(2022·广西·中考真题)Our teacher often tells us _________ across the road when the traffic light is red.A.go B.going C.don’t go D.not to go9.(2022·湖南郴州·中考真题)Remember ________ the light when you leave the classroom.A.turn off B.to turn off C.turning off10.(2022·广西贵港·中考真题)— Amy, don’t forget ________ your mask (口罩) when you go out.— Don’t worry, mom. I will.A.wear B.wears C.to wear D.wearing11.(2022·四川雅安·中考真题)Teenagers often listen to pop music _________.A.relax B.to relax C.relaxing D.relaxed12.(2022·黑龙江黑龙江·中考真题)Our school often advises the students, especially teenage girls ________ somechores at home to help busy parents.A.doing B.to do C.do13.(2022·内蒙古包头·中考真题)Nancy didn’t know anyone in the new school, so she decided to join an after-school club ________ some new friends.A.to meet B.meet C.met D.meets14.(2022·黑龙江绥化·中考真题)—We should do what we can ________ the spread of virus (病毒).—You are right. We can often wash hands and wear masks.A.prevent B.to prevent C.preventing15.(2022·黑龙江绥化·中考真题)—It is convenient ________ us ________ things online.—So it is.A.for; to buy B.of; to buy C.for; buy16.(2022·黑龙江齐齐哈尔·中考真题)— Father, I’m afraid I can’t win the English competition.— Believe in yourself, my girl, and tell yourself ________ .A.don’t give up B.not to give up C.to give up17.(2022·贵州毕节·中考真题)Many people have lost their homes because of wars. It’s important for people ________ a peaceful world.A.have B.had C.to have D.to be having18.(2022·海南·中考真题)—Peter always remembers ________ the light off when he leaves the room.—That’s great. It’s a good way to save energy.A.shut B.shutting C.to shut19.(2022·福建·中考真题)It’s important for us ________ hard in order to have a better life.A.work B.to work C.working20.(2022·湖北十堰·中考真题)The teacher told us ________ too much noise because the other students were having an exam.A.to not make B.not to make C.not make D.not making21.(2022·四川广元·中考真题)The Great Wall is so famous that a large number of travellers wish ______ it.A.visit B.visiting C.to visit D.visited22.(2022·天津·中考真题)The painting is really valuable to him. He will never agree ________ it.A.sell B.sells C.sold D.to sell23.(2022·江苏扬州·中考真题)________ the people locked inside, the firemen broke down the door.A.Reach B.To reach C.Reaching D.To reaching24.(2022·江苏宿迁·中考真题)—Miss Li, can you tell me how to improve my writing skills?—Certainly. I advise you ________ a diary in English every day.A.to keep B.keeping C.kept D.keep25.(2022·湖南怀化·中考真题)The teacher told Jack _______ off the light when he left the classroom.A.turn B.turning C.to turn26.(2022·云南昆明·中考真题)Boys and girls, good luck and wish you ________ good grades on your new journey! A.cutting B.to cut C.getting D.to get27.(2022·江苏连云港·中考真题)We learned ________ to work as a team by completing the task.A.what B.which C.how D.who28.(2022·江苏连云港·中考真题)Kitty, these books are ________ heavy for you ________ carry. Let me help you. A.as…as B.too…to C.such…that D.so…that29.(2022·四川达州·中考真题)The local government advises people ________ to other places ________ it is not necessary during the pandemic.A.travel; unless B.to not travel; if C.not to travel; unless D.not to travel; if30.(2022·四川泸州·中考真题)As teenagers, we are not allowed ________ mobile phones into school so that we can focus on our schoolwork.A.bring B.to bring C.bringing D.brought31.(2022·重庆·中考真题)Mr. Brown told his son not ________ the paintings in the museum.A.touch B.to touch C.touching D.touched32.(2022·重庆·中考真题)The new year is coming. Teachers encourage us ________ new hobbies.A.develop B.developing C.to develop D.developed33.(2022·贵州贵阳·模拟预测)In China and some other countries, it is impolite ________ loudly while you are having a meal.A.to speak B.speak C.speaking D.spoke34.(2022·黑龙江·肇东市第十一中学校三模)He used to ________ very late, but now he is used to ________early. A.get up; getting up B.getting up; get up C.get up; get up35.(2022·黑龙江·肇东市第十一中学校三模)He was about ________ to leave when he thought of the lights. He forgot to turn them óff.A.to drive B.driving C.drove36.(2022·甘肃武威·模拟预测)The teacher ________ I like best often encourage me ________ my dream.A.who; fight for B.that; to fight for C.which; to fight for D.which; fight37.(2022·吉林·长春市第一〇八学校二模)______ English better, we should express our ideas in English and don’t be afraid of making mistakes.A.Speak B.Spoke C.Speaking D.To speak38.(2022·吉林长春·一模)________ students’ eyesight, each online class lasts no more than 30 minutes.A.Protect B.To protect C.Protecting D.Protected39.(2022·福建师范大学附属中学初中部二模)The government makes every effort to provide every child with opportunities ________ a meaningful life.A.live B.living C.to live40.(2022·重庆九龙坡·模拟预测)Since a large number of teenagers have poor eyesight (视力) now, their parents should take action _________ the situation from getting worse.A.stop B.stopped C.stopping D.to stop41.(2022·海南海口·二模)—Kate, what’s wrong with you?—Dad promised ________ me to the zoo this afternoon, but he is busy now.A.take B.to take C.taking42.(2022·重庆市开州区德阳初级中学模拟预测)—Let’s go to the movies this weekend.—Sorry, but my parents and I have decided ________ to Mountain Xuebao for camping.A.go B.going C.to go D.went43.(2022·福建省福州延安中学三模)We should do what we can ________ the students safe on their way to school. A.keep B.to keep C.keeping44.(2022·吉林长春·一模)__________ teens to form a good reading habit, we set World Reading Day. A.Encourage B.To encourage C.Encouraged D.Encouraging45.(2022·辽宁盘锦·二模)We were made ________ our temperature at school every day after the epidemic(疫情) broke out.A.take B.taking C.to take D.takes46.(2022·云南·峨山彝族自治县教育科学研究所三模)—Don’t be so shy, Jenny. You are clever enough ________ the question correctly.—OK. I will try my best.A.answer B.to answer C.to answering D.answering47.(2022·四川乐山·模拟预测)________ people travel around the city easily, several new subway lines will be built in 3 years.A.Help B.To help C.Helping48.(2022·重庆市育才中学三模)Sometimes the teacher knocks on the blackboard lightly to catch our_________. A.action B.attention C.information D.suggestion49.(2022·重庆市育才中学三模)More and more people use online shops_________things for daily use.A.buy B.to buy C.bought D.buying50.(2022·重庆一中二模)_________ students know the importance of team spirit, our school has a sports meeting every year.A.Help B.Helping C.To help D.Helped51.(2022·重庆一中一模)To enter a good senior high school, I am trying _______ progress in my study.A.to make B.making C.make D.made52.(2022·重庆一中三模)—The boy in the next-door class likes singing so much that we often hear him _______ all kinds of songs at class recess time.—I know that boy! He is a born singer, I think.A.sing B.sings C.singing D.to sing53.(2022·四川乐山·二模)— Have you finished your book report yet?— No, I haven’t. I plan ________ it this week.A.write B.writing C.to write54.(2022·上海浦东新·模拟预测)The captain interrupted the soldier and ordered him ________ the gate at once. A.open B.opens C.opening D.to open55.(2022·海南省直辖县级单位·二模)—Our school-leavers’ party is coming.—Wow. I can’t wait ________ the exciting day.A.celebrate B.celebrating C.to celebrate56.(2022·重庆南开中学二模)Young people should cut down their time on cellphones ________ healthy.A.keep B.to keep C.keeping D.kept57.(2022·重庆南岸·一模)These days, teachers often tell us not _______ in the rivers or lakes.A.swim B.to swim C.swimming D.to swimming58.(2022·吉林长春·二模)It is necessary________ masks when we go out during the epidemic.A.wear B.to wear C.wore D.wearing59.(2022·吉林长春·二模)________ the students have classes as usual at the facility(方舱医院), the staff and parents proposed (提出)the idea of building a “classroom” for the students there.A.Help B.Helped C.To help D.Helping60.(2022·黑龙江哈尔滨·三模)________ alive, Johnson had to ask the doctor to cut off his left leg.A.To be B.Be C.Being61.(2022·吉林长春·二模)Mike is a new student in our class and I’m the first ________ friends with him.A.make B.to make C.making D.made62.(2022·上海松江·二模)He decided _______ during the “golden week” in May because of the COVID-19 pandemic (新冠流行病).A.to not travel B.not to travel C.not travelling D.travelling63.(2022·天津红桥·模拟预测)Let’s ________ walking, and we’ll stop at noon for our picnic.A.to start B.start C.starting D.started64.(2022·上海松江·二模)The funny short play by the students in Class Two made us ________ last week. A.laugh B.to laugh C.laughing D.laughed65.(2022·上海普陀·二模)Old Eddie told his son ________ a record of how much he spent.A.keep B.keeping C.kept D.to keep66.(2022·黑龙江哈尔滨·三模)—________the spread of COVID-19, everyone should take the vaccine(疫苗) in time.—Yes. It’s also the best way to protect ourselves.A.Stopping B.Stop C.To stop67.(2022·安徽马鞍山·二模)—My family will go on a trip to Beijing this summer, but we haven’t decided ____.—Why not take the high-speed railway?A.when to leaveB.how to get thereC.which hotel to chooseD.how will we get there68.(2022·黑龙江绥化·模拟预测)The boy is often seen ________ football on Sundays.A.play B.plays C.to play69.(2022·黑龙江哈尔滨·二模)The idiom(成语)“Mengzi’s mother makes three moves” tells of a mother who did all she could ________ the best environment for her child.A.to provide B.providing C.provide70.(2022·广西柳州·三模)—Hi! Betty, why are you in such a hurry?—________ my best friend from America at the airport.A.Meet B.To meet C.Meeting71.(2022·四川成都·二模)________ the Chinese in Ukraine, China managed to send planes to take them home. A.To protect B.Protecting C.Protected72.(2022·福建宁德·一模)Fujian held “Fu” Culture Creative Design ________ its culture.A.spreads B.spreading C.to spread73.(2022·云南曲靖·二模)The Olympic spirit encourages players from around the world ________ fighting and never give up.A.keep B.keeps C.keeping D.to keep74.(2022·重庆渝中·二模)—Why are you so excited ?—Peter invited me _________ on a trip to Nanshan Mountain.A.go B.to go C.going D.went75.(2022·上海徐汇·模拟预测)To improve his English, he planned _______ part in a training program in London.A.taking B.taken C.to take D.take76.(2022·四川乐山·一模)—Do you always get up so early?—Yes, _________ the first bus. My home is far away from school.A.catch B.catching C.to catch77.(2022·山东济南·一模)—Jimmy, you must be thirsty. What would you like ________?— Some tea, please.A.drink B.drinking C.drunk D.to drink78.(2022·上海黄浦·二模)When your stomach is empty and your mind is full, it’s hard ________.A.sleep B.sleeping C.to sleep D.to sleeping79.(2022·天津南开·二模)The Science Museum allows people ______ the exhibitions.A.touching B.touched C.to touch D.touch80.(2022·上海浦东新·二模)Frank’s plan is ________ London with his wife and son next year.A.visit B.visiting C.to visit D.to visiting81.(2022·天津河东·二模)She heard the rabbit ________ “Oh dear” .A.say B.to say C.said D.says82.(2022·上海静安·二模)The special effects make the film ________ wonderful.A.seem B.seems C.seemed D.to seem83.(2022·上海金山·二模)Tony invited me ________ them for dinner, and I accepted it with pleasure.A.join B.to join C.joined D.joining84.(2022·上海长宁·二模)My mother expected me ________a key school after graduation from the junior school. A.to enter B.enter C.entering D.entered85.(2022·上海浦东新·二模)You’d better tell the man ________ the bike here. It’s the entrance.A.leave B.to leaveC.not leave D.not to leave86.(2022·天津河西·二模)I saw Betty go into a flower shop ________ some flowers.A.buy B.to buy C.buying D.bought87.(2022·上海长宁·二模)Don’t always tell your partner ____ to do next. Let her solve the problem by herself. A.how B.who C.what D.where88.(2022·内蒙古·呼伦贝尔市海拉尔区教育研修中心一模)—I saw you ________ to the library yesterday.—Well, I am always made ________ books there by my mother on Sundays.A.went; read B.go; to read C.go; read D.to go; to read89.(2022·湖南·隆回县教育科学研究室一模)—Lily, would you like to come to my birthday party this Sunday?—Sorry. I regret _________ you that I have to look after my mother at home.A.to tell B.tell C.telling90.(2022·甘肃·天水市麦积区教学研究室一模)________ is not polite to talk with your mouth full.A.That B.He C.It D.This91.(2022·湖南岳阳·二模)My parents don’t allow me ________ TV on school nights.A.watching B.watch C.to watch92.(2022·辽宁沈阳·二模)Every Saturday, Joe goes to a local hospital ________ after the patients.A.to look B.looking C.looked D.looks93.(2022·辽宁葫芦岛·一模)When I was young, my parents taught me ________ the old people kindly.A.treat B.treated C.to treat D.treating94.(2022·贵州贵阳·二模)We’ll do what we can ________ all subjects well this term.A.study B.to study C.be studied D.be studying95.(2022·广西·藤县教学研究室一模)Miss Brown invited me ______ the hill with her last week.A.climbed B.climbing C.to climb D.climb96.(2022·山东·济南市天桥区教育教学研究中心中学教研科二模)Mary loves to exercise. I often see her _________ running in the morning.A.practice B.practices C.to practice D.practicing97.(2022·江苏盐城·三模)The community volunteer is patient enough ________ to the old how to use Health Code (码).A.explained B.explains C.to explain D.explaining98.(2022·山东济南·三模)Don’t forget ________ me if you need any help.A.call B.to call C.calling D.called99.(2022·江苏南京·二模)In order to make an article organized, the first step is ________ a chart.A.make B.made C.to make D.to be made100.(2022·四川广元·一模)With much homework ________, we can’t go out to play in the snow.A.doing B.to do C.is done D.done参考答案:1.D【解析】句意:我希望毕业后能在家乡工作。

中考数学专题18 概率-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

中考数学专题18 概率-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题18 概率一、单选题1.(2021·广西玉林市·中考真题)一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A .至少有1个白球B .至少有2个白球C .至少有1个黑球D .至少有2个黑球2.(2021·湖北宜昌市·中考真题)在六张卡片上分别写有6,227-,3.1415,π,0机抽取一张,卡片上的数为无理数的概率是( )A .23B .12C .13D .163.(2021·浙江衢州市·中考真题)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是( )A .13B .23C .15D .254.(2021·北京中考真题)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是( )A .14B .13C .12D .235.(2021·湖北随州市·中考真题)如图,从一个大正方形中截去面积为23cm 和212cm 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为( )A .49B .59C .25D .356.(2021·湖南中考真题)下列说法正确的是( )A .“明天下雨的概率为80%”,意味着明天有80%的时间下雨B .经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C .“某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D .小明前几次的数学测试成绩都在90分以上,这次数学测试成绩也一定在90分以上7.(2021·江苏扬州市·中考真题)下列生活中的事件,属于不可能事件的是()A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽8.(2021·湖南长沙市·中考真题)在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是()A.戊同学手里拿的两张卡片上的数字是8和9 B.丙同学手里拿的两张卡片上的数字是9和7C.丁同学手里拿的两张卡片上的数字是3和4 D.甲同学手里拿的两张卡片上的数字是2和9.9.(2021·湖南长沙市·中考真题)有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是()A.19B.16C.14D.1310.(2021·安徽中考真题)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以图成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是()A.14B.13C.38D.4911.(2020·辽宁铁岭市·中考真题)一个不透明的口袋中有4个红球、2个白球,这些球除颜色外无其他差别,从袋子中随机摸出1个球,则摸到红球的概率是()A.16B.13C.12D.2312.(2020·辽宁盘锦市·中考真题)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.8713.(2020·四川绵阳市·中考真题)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.23B.12C.13D.1614.(2020·广西中考真题)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,则它获得食物的概率是()A.16B.14C.13D.1215.(2020·辽宁营口市·中考真题)某射击运动员在同一条件下的射击成绩记录如下:根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是()A.0.90B.0.82C.0.85D.0.8416.(2020·云南中考真题)下列说法正确的是()A.为了解三名学生的视力情况,采用抽样调查B.任意画一个三角形,其内角和是360︒是必然事件C.甲、乙两名射击运动员10次射击成绩(单位:环)的平均数分别为x甲、x乙,方差分别为2S甲、2乙S.若= x x 甲乙,2=0.4S甲,2=2S乙,则甲的成绩比乙的稳定D.一个抽奖活动中,中奖概率为120,表示抽奖20次就有1次中奖17.(2020·山西中考真题)如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A.13B.14C.16D.1818.(2020·湖南邵阳市·中考真题)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.26m B.27m C.28m D.29m19.(2020·湖北武汉市·中考真题)两个不透明的口袋中各有三个相同的小球,将每个口袋中的小球分别标号为1,2,3.从这两个口袋中分别摸出一个小球,则下列事件为随机事件的是()A.两个小球的标号之和等于1B.两个小球的标号之和等于6C.两个小球的标号之和大于1D.两个小球的标号之和大于620.(2020·湖南长沙市·中考真题)一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的球不一定是绿球C.第一次摸出的球是红球,第二次摸出的球不一定是红球D.第一次摸出的球是红球的概率是13;两次摸出的球都是红球的概率是1921.(2019·贵州贵阳市·中考真题)如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A.19B.16C.29D.1322.(2019·江苏泰州市·中考真题)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20B.300C.500D.80023.(2019·辽宁阜新市·中考真题)一个不透明的袋子中有红球、白球共20个这些球除颜色外都相同将袋子中的球搅匀后,从中随意摸出1个球,记下颜色后放回,不断重复这个过程,共摸了100次,其中有30次摸到红球,由此可以估计袋子中红球的个数约为( )A.12B.10C.8D.624.(2019·台湾中考真题)箱子内装有53颗白球及2颗红球,小芬打算从箱子内抽球,以每次抽出一球后将球再放回的方式抽53次球.若箱子内每颗球被抽到的机会相等,且前52次中抽到白球51次及红球1次,则第53次抽球时,小芬抽到红球的机率为何?()A.12B.13C.253D.255二、填空题目25.(2021·湖北宜昌市·中考真题)社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里装有几十个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程.整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象如图所示,经分析可以推断盒子里个数比较多的是___________(填“黑球”或“白球”).26.(2021·湖南岳阳市·中考真题)一个不透明的袋子中装有5个小球,其中3个白球,2个黑球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是白球的概率为_______.27.(2021·上海中考真题)有数据1,2,3,5,8,13,21,34,从这些数据中取一个数据,得到偶数的概率为______.28.(2021·江苏苏州市·中考真题)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是______.29.(2021·浙江台州市·中考真题)一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机模出一个小球,该小球是红色的概率为_____.30.(2021·浙江宁波市·中考真题)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为________.31.(2021·浙江金华市·中考真题)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是____________.32.(2021·浙江温州市·中考真题)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为______.33.(2021·四川南充市·中考真题)在2-,1-,1,2这四个数中随机取出一个数,其倒数等于本身的概率是________.34.(2021·四川资阳市·中考真题)将2本艺术类、4本文学类、6本科技类的书籍混在一起.若小陈从中随机抽取一本,则抽中文学类的概率为__________.35.(2021·重庆中考真题)在桌面上放有四张背面完全一样的卡片.卡片的正面分别标有数字﹣1,0,1,3.把四张卡片背面朝上,随机抽取一张,记下数字且放回洗匀,再从中随机抽取一张.则两次抽取卡片上的数字之积为负数的概率是_______.36.(2021·浙江嘉兴市·中考真题)看了《田忌赛马》故事后,小杨用数学模型来分析齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6则田忌能赢得比赛的概率为__________________.37.(2021·四川泸州市·中考真题)不透明袋子重病装有3个红球,5个黑球,4个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是_________.38.(2021·重庆中考真题)不透明袋子中装有黑球1个、白球2个,这些球除了颜色外无其他差别.从袋子中随机摸出一个球,记下颜色后放回,将袋子中的球摇匀,再随机摸出一个球,记下颜色,前后两次摸出的球都是白球的概率是__________.39.(2021·浙江中考真题)某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是_____.40.(2021·天津中考真题)不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.41.(2020·辽宁锦州市·中考真题)在一个不透明的袋子中装有4个白球,a个红球.这些球除颜色外都相同.若从袋子中随机摸出1个球,摸到红球的概率为23,则a ______.42.(2020·湖南益阳市·中考真题)时光飞逝,十五六岁的我们,童年里都少不了“弹珠”。

2020重庆中考复习数学第18题专题训练二(含答案解析)

2020重庆中考复习数学第18题专题训练二(含答案解析)

2020重庆中考复习数学第18题专题训练二(含答案解析)例1、如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,的值为 .练习:如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为例2、如图,正方形ABCD的边长为2,点M、P、N分别在CD为直径的半圆上、边BC、边AB上运动,并且保持PM⊥PN,PM:PN=2:3则线段PM长的最小值为练习:如图,正方形ABCD的边长为4,点M、P、N分别在CD为直径的半圆上、边BC、边AB上运动,并且保持PM⊥PN,PM:PN=2:3则线段PM长的最小值为例3、(2018•杭州)折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD= .练习:1、(2019•济南)如图,在矩形纸片ABCD中,将AB沿BM翻折,使点A落在BC上的点N处,BM为折痕,连接MN;再将CD沿CE翻折,使点D恰好落在MN上的点F处,CE为折痕,连接EF并延长交BM于点P,若AD=8,AB=5,则线段PE的长等于 .2、(2016•新县校级模拟)如图,将矩形纸片ABCD沿直线AE折叠,点B恰好落在线段CD的中点F上,点G是线段AF上一动点(不与A,F重合),点G过GH⊥AB,垂足为H,将矩形沿直线GH翻折,点A恰好落在线段BH上点A′处.若AB长为8,则当△A′GE为直角三角形时,AH的长.为例4、(2014•锦江区校级自主招生)如图,在△ABC中,∠ABC=45°,∠ACB=60°,BC=2+2,D 是BC边上异于B、C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是 .练习:(2018秋•锦江区校级期末)如图,在△ABC,∠ABC=45°,∠ACB=60°,BC=4+4,D是BC边上异于点B,C的一动点,将三角形ABD沿AB翻折得到△ABD1,将△ACD沿AC翻折得到△ACD2,连接D1D2,则四边形D1BCD2的面积的最大值是 .例5、(2019秋•宿迁期末)如图,在矩形ABCD中,AD=3AB=6.点P是AD的中点,点E在BC 上,CE=2BE,点M、N在线段BD上,若△PMN是等腰三角形且底角与∠DEC相等,则MN= .练习:1、(2019•常州)如图,在矩形ABCD中,AD=3AB=3,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则MN= .2、在矩形ABCD中,AD=3CD=6,点P是AD的中点,点E在BC上,CE=2BE,点M、N在线段BD上.若△PMN是等腰三角形且底角与∠DEC相等,则PN= .例6、如图,在矩形ABCD中,AB=9,AD=3,E为对角线BD上一点,且DE=2BE,过E作FG⊥BD,分别交AB、CD于F、G.将四边形BCGF绕点B旋转180°,在此过程中,设直线GF分别与直线CD、BD交于点M、N,当△DMN是以∠MDN为底角的等腰三角形时,则DN的长是 .练习:如图,在矩形ABCD中,AB=4,BC=3,点E为对角线AC上一动点(不与点A、C重合),过点E作直线MN∥BC,分别交AB、CD于点M、N,将矩形ADNM沿MN折叠,使得点A、D的对应点P、Q分别落在AB、CD所在的直线上,若△ACP为等腰三角形,则BM的长为 .2020重庆中考复习数学第18题专题训练二(含答案解析)例1、如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时,的值为 .解:延长DC与A′D′,交于点M,∵在菱形纸片ABCD中,∠A=60°,∴∠DCB=∠A=60°,AB∥CD,∴∠D=180°﹣∠A=120°,根据折叠的性质,可得∠A′D′F=∠D=120°,∴∠FD′M=180°﹣∠A′D′F=60°,∵D′F⊥CD,∴∠D′FM=90°,∠M=90°﹣∠FD′M=30°,∵∠BCM=180°﹣∠BCD=120°,∴∠CBM=180°﹣∠BCM﹣∠M=30°,∴∠CBM=∠M,∴BC=CM,设CF=x,D′F=DF=y,则BC=CM=CD=CF+DF=x+y,∴FM=CM+CF=2x+y,在Rt△D′FM中,tan∠M=tan30°===,∴x=y,∴==.故答案为:.练习:如图,边长为2的菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A'、D'处,且A'D'经过点B,EF为折痕,当D'F⊥CD时,CF的值为( )A.4﹣2 B.2﹣2 C.﹣1 D.解:延长FC 、A ′D ′交于M ,设CF =x ,FD =2﹣x ,∵四边形ABCD 为菱形,∠A =60°,∴AB ∥CD ,∠DCB =∠A =60°,∴∠A +∠D =180°, ∴∠D =120°,由折叠得:∠BD ′F =∠D =120°,∴∠FD ′M =180°﹣120°=60°, ∵D ′F ⊥CD ,∴∠D ′FC =90°,∴∠M =90°﹣60°=30°,在Rt △FOC 中,∠DCB =60°,∵∠DCB =∠CBM +∠M ,∴∠CBM =60°﹣30°=30°, ∵∠BCD =∠CBM +∠M =60°,∴∠CBM =∠M =30°,∴CB =CM =2,由折叠得:D ′F =DF =2﹣x ,tan M =tan30°===,∴x =4﹣2,∴CF =4﹣2,故选:A .例2、如图,正方形ABCD 的边长为2,点M 、P 、N 分别在CD 为直径的半圆上、边BC 、边AB 上运动,并且保持PM ⊥PN ,PM :PN=2:3则线段PM 长的最小值为K解:取CD 中点O ,NP 中点K ,连接BK 、BO 、MO 、KM 。

重庆中考数学第18题专题训练(含答案)

重庆中考数学第18题专题训练(含答案)

重庆中考18题专题训练1.含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克【分析】典型的浓度配比问题:溶液的浓度=溶质的质量/全部溶液质量.在本题中两种果蔬的浓度不知道,但是因为倒出的和倒入果蔬质量相同,所以原A 种饮料混合的总质量仍然是后40千克,原B 种饮料混合的总质量仍然是后60千克.可设A 种饮料的浓度为a ,B 种饮料的浓度为b ,各自倒出和倒入的果蔬质量相同可设为x 千克,由于混合后的浓度相同,由题意可得:()()40604060x a xb x b xa -+-+= 去分母()()604060406040x a xb x b xa -+=-+,去括号得:2400606024004040a xa xb b bx xa -+=-+移项得:6060404024002400xa xb bx xa b a -++-=-合并得:()()1002400b a x b a -=-所以:24x =2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是 。

解:设切下的一块重量是x 千克,设10千克和15千克的合金的含铜的百分比为a ,b ,= ,整理得(b-a )x=6(b-a ),x=63.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一起,熔炼后两者的含铜百分率相等,则切下的合金重( )A .12公斤B .15公斤C .18公斤D .24公斤 考点:一元一次方程的应用.分析:设含铜量甲为a 乙为b ,切下重量为x .根据设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤,熔炼后两者的含铜百分率相等,列方程求解.解:设含铜量甲为a ,乙为b ,切下重量为x .由题意,有=,解得x=24.切下的合金重24公斤.故选D .4. 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共 吨.解:设货物总吨数为x 吨.甲每次运a 吨,乙每次运3a 吨,丙每次运b 吨.,=,解得x=240.故答案为:240.5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.5.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开分钟.考点:三元一次方程组的应用.解:设出水管比进水管晚开x分钟,进水管的速度为y,出水管的速度为z,则有:,两式相除得:,解得:x=40,即出水管比进水管晚开40分钟.故答案为:40.6.(1)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了.(2)某商品现在的进价便宜20%,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆中考18题专题训练1.含有同种果蔬但浓度不同的A、B两种饮料,A种饮料重40千克,B种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是___24__________千克2. 从两块分别重10千克和15千克且含铜的百分比不同的合金上各切下重量相等的一块,再把切下的每一块与另一块切后剩余的部分合在一起,熔炼后两者含铜的百分比恰好相等,则切下的一块重量是6千克。

3.设有含铜百分率不同的两块合金,甲重40公斤,乙重60公斤.从这两块合金上切下重量相等的一块,并把所切下的每块与另一种剩余的合金加在一,熔炼后两者的含铜百分率相等,则切下的合金重24公斤4.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用,已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车每次运货物的吨数之比为1:3;若甲、丙两车合运相同次数运完这批货物时,甲车共运了120吨,若乙、丙两车合运相同次数运完这批货物时,乙车共运了180吨.则这批货物共240吨.5.某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了4380朵.一个水池装一个进水管和三个同样的出水管,先打开进水管,等水池存一些水后再打开出水管(进水管不关闭).若同时打开2个出水管,那么8分钟后水池空;如果同时打开3个出水管,则5分钟后水池空.那么出水管比进水管晚开40分钟.6.(1)一种商品原来的销售利润率是47%.现在由于进价提高了5%,而售价没变,所以该商品的销售利润率变成了 40%(2)某商品现在的进价便宜20%,而售价未变,则其利润比原来增加了30个百分点,那么原来的利润率为 20%7.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品的件数比甲种商品的件数多50%时,这个商人得到的总利润率是50%;当售出的乙种商品的件数比甲种商品的件数少50%时,这个商人得到的总利润率是 45%8. 某商场销售一批电视机,一月份每台毛利润是售出价的20%(毛利润=售出价-买入价),二月份该商场将每台售出价调低10%(买入价不变),结果销售台数比一月份增加120%,那么二月份的毛利润总额与一月份毛利润总额的比是 11:109.某公司生产一种饮料是由A,B两种原料液按一定比例配制而成,其中A原料液的成本价为15元/千克,B原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是50%10.“节能减排,低碳经济”是我国未来发展的方向,某汽车生产商生产有大、中、小三种排量的轿车,正常情况下的小排量的轿车占生产总量的30%,为了积极响应国家的号召,满足大众的消费需求准备将小排量轿车的生产量提高,受其产量结构调整的影响,大中排量汽车生产量只有正常情况下的90%,但生产总量比原来提高了7.5%,则小排量轿车生产量应比正常情况增加 48.3 %。

11.某公司销售A、B、C三种产品,在去年的销售中,高新产品C的销售金额占总销售金额的40%.由于受国际金融危机的影响,今年A、B两种产品的销售金额都将比去年减少20%,因而高新产品C是今年销售的重点.若要使今年的总销售金额与去年持平,那么今年高新产品C的销售金额应比去年增加 30 %.12.烧杯甲中盛有浓度为a% 的盐水m升,烧杯乙中盛有浓度为 b%的盐水m升(a>b),现将甲中盐水的1/4倒入乙中,混合均匀后再由乙倒回甲,估甲中的盐水恢复为m升,则互掺后甲、乙两烧杯中含有纯盐量的差与互掺前甲、乙两烧杯中含有纯盐量的差之比为______13.市场上一种茶饮料由茶原液与纯净水按一定比例配制而成,其中购买一吨茶原液的钱可以买20吨纯净水。

由于今年以来茶产地云南地区连续大旱,茶原液收购价上涨50%,纯净水价也上涨了8%,导致配制的这种茶饮料成本上涨20%,问这种茶饮料中茶原液与纯净水的配制比例为 2:15.。

14重庆长安汽车公司经销豪华级、中高级、中级、紧凑级四种档次的轿车,在去年的销售中,紧凑级轿车的销售金额占总销售金额的60%,由于受到国际金融危机的影响,今年豪华、中高、中级轿车的销售金额都将比去年减少30%,因而紧凑级轿车是今年销售的重点,若要使今年的总销售额与去年持平,那么今年紧凑级轿车的销售金额应比去年增加 20 %15.某果蔬饮料由果汁、疏菜汁和纯净水按一定质量比配制而成,纯净水、果汁、蔬菜汁的价格比为1:2:2,因市场原因,果汁、蔬菜汁的价格涨了15%,而纯净水的价格降了20%,但并没有影响该饮料的成本(只考虑购买费用),那么该种饮料中果汁与蔬菜汁的质量和与纯净水的质量之比为2:316.(2010巴蜀)超市出售某种蔗糖每袋可获利20%,由于近来西南地区蔗糖产地连续干旱,导致这种蔗糖进价增长了25%,超市将这种蔗糖的售价提高,以保证每袋获利金额不变,则提价后的利润率为16%.17.(巴蜀2010—2011下期二次模)商场购进一种商品若干件,每件按进价加价30元作为标价,可售出全部商品的65%,然后将标价下降10%,这样每件仍可以获利18元,又售出全部商品的25%,为了确保这批商品总的利润不低于25%,则剩余商品的售价最低应为75 元/件.18.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔8分钟开出一辆公共汽车.19小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是4分钟.20小王骑自行车在环城公路上匀速行驶,每隔6分钟有一辆公共汽车从对面想后开过,每隔30分钟又有一辆公共汽车从后面向前开过,若公共汽车也是匀速行驶,且不计乘客上、下车的时间,那么公交站每隔10分钟开出一辆公共汽车,21长江堤边一洼地发生了管涌,江水不断涌出,假定每分钟涌出的水是相等的,如果用两台抽水机抽水,40分钟可以抽完;如果用4台抽水机抽水,16分钟可以抽完;如果要在10分钟内抽完水,那么至少需要抽水机 6 台。

22.在一片牧场,草每天都匀速的生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完草,如果放牧21头牛,则8天吃完草(每头牛每天吃草量相同),为了保护生态环境和可持续发展,不能把牧草吃完,最多可放牧牛的头数为12 。

23.一杯盐水,第一次加入一定量的水后,盐水的含盐百分比变为15%;第二次又加入同样多的水,盐水的含盐百分比变为12%;第三次再加入同样多的水,盐水的食盐百分比将变为10%.24.某班参加一次智力竞赛,共a,b,c三题,每题或者得满分或者得0分,其中题a、题b、题c满分均为20分,每人至少做对一道。

结果,三题全对的有1人,只答对两道的有15人,答对题a与答对题b 的人数之和为29人,答对题a与答对题c的人数之和为25,答对题b与答对题c的人数之和为20,则这个班的平均分为37 。

25.某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润保持不变,则该产品每件的成本价应降低10.4元26.太极药业生产一种新型口服液,这种口服液是由A、B两种原料与纯净水按6:5:13的比例混合而成,其中A原料的市场价格为50元/千克,B原料的市场价格为40元/千克,按最新消息,这两种原料要进行调价,A原料价格上浮10%,B原料价格下降m%,纯净水的价格不变,经核算,该口服液成本仍不变,因而公司对该药品不需调价,则m= 15 。

27甲容器中有纯酒精340克,乙容器有水400克,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合;第二次将乙容器中的一部分混合液倒入甲容器,这时甲容器中纯酒精含量70%,乙容器中纯酒精含量为20%,则第二次从乙容器倒入甲容器的混合液是144克.28甲、乙两种糖果,售价分别为20元/千克和24元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现在糖果的售价有了调整:甲种糖果的售价上涨了8%,乙种糖果的售价下跌了10%.若这种混合糖果的售价恰好保持不变,则甲乙两种糖果的混合比例应为甲:乙=3:2 29有甲乙两容量均为20升(L)的容器,甲容器内装满纯酒精,而乙为空容器.自甲内倒出若干酒精于乙内,再将乙其余部分注满水,将此混合溶液注满甲容器,最后自甲容器回注入乙容器20/3升,则两容器内所含纯酒精量相等,第一次自甲容器倒出10酒精30.有面值为10元、20元、50元的人民币(每种至少一张)共24张,合计1000元,那么其中面值为20元的人民币有4张.31.小明有5张人民币共20元,他来到一个水果店,买了x公斤水果(x是整数),按招标价应该付y元,正好等于小明那5张人民币中的2张面值的和,这时筐里还剩6公斤水果,店主便对小明说:如果你把剩下的都买去,那么连同刚才称的,一共就付10元吧。

小明一想,这样相对于每公斤少了5角钱,本着互利原则,就答应了,聪明的你知道x的值是 4 。

32.某工厂将生产的A、B、C三种零件配套销售,甲搭配:A:6件,B:10件,C:5件;乙搭配:A:8件,C:12件;丙搭配:A:4件,B:10件,C:2件。

刚好搭配完,其中A零件6300个,B零件5500个,则C零件有5900 个。

33.A、B两瓶浓度不同的酒精,A瓶有酒精2千克,B瓶有酒精3千克。

从A瓶倒出15%,从B瓶倒出30%,混合后测得浓度为27.5%,把混合后的酒精再倒回A、B瓶,使它们恢复原来的质量,然后再从A 瓶倒出40%,B瓶倒出40%,混合后测得浓度为26%,那么原来A瓶酒精的浓度为20 % 。

34.2010年云南遭遇百年不遇的大旱灾,重灾区曲靖市某水库每天不断流入定量的水,按原来的放水量,水库中的水可使用80天,但因干旱,现在流入量减少20%,如果在放水量不变的情况下,只能用60天,若仍需要使用80天,则每天的放水量的要减少 12.5 %。

相关文档
最新文档