等腰三角形ppt课件
合集下载
等腰三角形课件ppt
边与角的相互影响
边长变化对角度的影响
当等边的长度增加或减少时,底角α的大小会发生变化。这是因为角度α与基边的长度成 反比。
角度变化对边长的影响
当底角α的大小发生变化时,基边的长度也会相应地增加或减少。这是因为角度的变化会 影响到三角形的周长,从而影响基边的长度。
Part
03
等腰三角形的判定与证明
04
等腰三角形的面积与周长
面积的计算
1 2
面积公式
等腰三角形的面积可以通过底边长度和对应的高 来计算,公式为 (S = frac{1}{2} times text{底边 长度} times text{高})。
面积与底边和高
等腰三角形的面积与底边长度和高有关,当底边 长度和高发生变化时,面积也会相应地变化。
等腰三角形与勾股定理
总结词
勾股定理是几何学中的重要定理之一 ,它可以应用于等腰三角形,特别是 等腰直角三角形。
详细描述
勾股定理表明在一个直角三角形中, 直角边的平方和等于斜边的平方。对 于等腰直角三角形,两条直角边长度 相等,因此它们的平方和等于斜边的 平方。
详细描述
等腰三角形是两边相等的三角形,根据等腰三角形的性质,两个底角相等,并且 三角形的内角和为180度,因此每个底角的大小为(180度 - 顶角度数)/ 2。
等腰三角形的外角和定理
总结词
等腰三角形的外角和定理表明等腰三角形的一个外角等于它 不相邻的两个内角之和。
详细描述
根据三角形外角定理,一个三角形的外角等于它不相邻的两 个内角之和,对于等腰三角形来说,由于两个底角相等,所 以一个底角的外角等于另一个底角。
等腰三角形课件
• 等腰三角形的定义与性质 • 等腰三角形的边与角 • 等腰三角形的判定与证明 • 等腰三角形的面积与周长 • 等腰三角形的拓展知识
等腰三角形课件PPT
等腰三角形中的塞瓦定理与梅涅劳斯定理
在等腰三角形中,若点P位于底边中线上,则AP、BP、CP分别交BC、AC、AB于点D、E 、F时,满足塞瓦定理和梅涅劳斯定理。
挑战性问题:寻找最大面积等腰三角形
问题描述
给定一条长度为L的线段AB,在 AB的同一侧作两个等边三角形 ABC和ABD,连接CD。在AB上 取一点P,连接CP和DP。试找出 使得△CPD面积最大的点P的位置
05
等腰三角形相关定理证明
勾股定理在等腰三角形中证明
01
勾股定理基本内容
在直角三角形中,直角边的平方和等于斜边的平方。
02
等腰三角形与勾股定理关系
当等腰三角形为直角三角形时,其两条腰为直角边,底边为斜边,满足
勾股定理。
03
证明过程
设等腰直角三角形的两条腰为a,底边为c,根据勾股定理有a² + a² =
等角对等边
两个底角相等,且每个 底角都等于顶角的补角
。
对称性
等腰三角形是轴对称图 形,对称轴是底边的垂
直平分线。
等腰三角形与等边三角形关系
等边三角形是特殊的等腰三角形
等边三角形的三边都相等,因此它也满足等腰三角形的定义。
等腰三角形不一定是等边三角形
虽然等腰三角形的两腰相等,但它的底边可以与两腰不等,因此不是所有等腰 三角形都是等边三角形。
c²,化简得2a² = c²,从而证明了在等腰直角三角形中,勾股定理成立
。
射影定理在等腰三角形中证明
射影定理基本内容
在直角三角形中,斜边上的垂线 将斜边分为两段,这两段与直角 边的乘积相等。
等腰三角形与射影定 理关系
当等腰三角形为直角三角形时, 其高线即为斜边上的垂线,满足 射影定理。
在等腰三角形中,若点P位于底边中线上,则AP、BP、CP分别交BC、AC、AB于点D、E 、F时,满足塞瓦定理和梅涅劳斯定理。
挑战性问题:寻找最大面积等腰三角形
问题描述
给定一条长度为L的线段AB,在 AB的同一侧作两个等边三角形 ABC和ABD,连接CD。在AB上 取一点P,连接CP和DP。试找出 使得△CPD面积最大的点P的位置
05
等腰三角形相关定理证明
勾股定理在等腰三角形中证明
01
勾股定理基本内容
在直角三角形中,直角边的平方和等于斜边的平方。
02
等腰三角形与勾股定理关系
当等腰三角形为直角三角形时,其两条腰为直角边,底边为斜边,满足
勾股定理。
03
证明过程
设等腰直角三角形的两条腰为a,底边为c,根据勾股定理有a² + a² =
等角对等边
两个底角相等,且每个 底角都等于顶角的补角
。
对称性
等腰三角形是轴对称图 形,对称轴是底边的垂
直平分线。
等腰三角形与等边三角形关系
等边三角形是特殊的等腰三角形
等边三角形的三边都相等,因此它也满足等腰三角形的定义。
等腰三角形不一定是等边三角形
虽然等腰三角形的两腰相等,但它的底边可以与两腰不等,因此不是所有等腰 三角形都是等边三角形。
c²,化简得2a² = c²,从而证明了在等腰直角三角形中,勾股定理成立
。
射影定理在等腰三角形中证明
射影定理基本内容
在直角三角形中,斜边上的垂线 将斜边分为两段,这两段与直角 边的乘积相等。
等腰三角形与射影定 理关系
当等腰三角形为直角三角形时, 其高线即为斜边上的垂线,满足 射影定理。
《等腰三角形的性质》ppt课件
若只知道一个角为60°,但无法确定该角是顶角还是底角,则不能判定为等边三角形 。
在处理与等腰三角形有关的问题时,常常需要分类讨论,并考虑各种特殊情况。
04
等腰三角形面积计算与应用
面积计算公式推导
1 2
等腰三角形面积公式
S = 1/2 × b × h,其中b为底边长度,h为高。
通过已知两边和夹角求面积
特点
等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平 分线;等腰三角形的两底角相等;等腰三角形底边上的垂直 平分线、底边上的中线、顶角平分线和底边上的高互相重合 ,简称“三线合一”。
与等边三角形关系
区别
等边三角形的三边都相等,而等腰三 角形只有两边相等;等边三角形的三 个内角都是60度,而等腰三角形的 两个底角相等,但不一定都是60度 。
应用举例
利用两边相等定理解决与等腰 三角形相关的问题,如角度计
算、边长求解等。
两角相等定理
两角相等定理内容
等腰三角形的两个底角相 等。
定理证明方法
通过构造高线或利用相似 三角形进行证明。
应用举例
利用两角相等定理解决与 等腰三角形相关的问题, 如角度计算、相似三角形 判定等。
对称性及其推论
对称性
等腰三角形是轴对称图形,其 对称轴是底边的垂直平分线。
若已知等腰三角形的两边a和夹角θ,则面积S = 1/2 × a^2 × sinθ。
3
通过已知三边求面积
应用海伦公式,先求出半周长p = (a + b + c) / 2,再代入公式S = sqrt[p(p - a)(p - b)(p - c)] 。
典型例题解析
例题1
例题3
已知等腰三角形的底边长为10cm, 腰长为8cm,求其面积。
在处理与等腰三角形有关的问题时,常常需要分类讨论,并考虑各种特殊情况。
04
等腰三角形面积计算与应用
面积计算公式推导
1 2
等腰三角形面积公式
S = 1/2 × b × h,其中b为底边长度,h为高。
通过已知两边和夹角求面积
特点
等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平 分线;等腰三角形的两底角相等;等腰三角形底边上的垂直 平分线、底边上的中线、顶角平分线和底边上的高互相重合 ,简称“三线合一”。
与等边三角形关系
区别
等边三角形的三边都相等,而等腰三 角形只有两边相等;等边三角形的三 个内角都是60度,而等腰三角形的 两个底角相等,但不一定都是60度 。
应用举例
利用两边相等定理解决与等腰 三角形相关的问题,如角度计
算、边长求解等。
两角相等定理
两角相等定理内容
等腰三角形的两个底角相 等。
定理证明方法
通过构造高线或利用相似 三角形进行证明。
应用举例
利用两角相等定理解决与 等腰三角形相关的问题, 如角度计算、相似三角形 判定等。
对称性及其推论
对称性
等腰三角形是轴对称图形,其 对称轴是底边的垂直平分线。
若已知等腰三角形的两边a和夹角θ,则面积S = 1/2 × a^2 × sinθ。
3
通过已知三边求面积
应用海伦公式,先求出半周长p = (a + b + c) / 2,再代入公式S = sqrt[p(p - a)(p - b)(p - c)] 。
典型例题解析
例题1
例题3
已知等腰三角形的底边长为10cm, 腰长为8cm,求其面积。
人教版八年级数学上册《等腰三角形》课件(共28张PPT)
轴对称图形
两个底角相等,简称“等边对等角”
顶角平分线、底边上的中线、和底边上
的高互相重合,简称“三线合一”
2. 能根据等腰三角形的概念与性质求等腰三 角形的周长或知道一角求其它两角或证线段、 角相等。
当堂检测
(1)如图,△ABC 中, AB =AC, ∠A =36°,
则∠B =
;
(2)如图,△ABC 中, AB =AC, ∠A =3 ∠B,
A
重合的线段
重合的角
AB=AC BD=CD AD=AD
∠B = ∠C.
∠BAD = ∠CAD
B
∠ADB =∠ADC =90°
D
C
等腰三角形的性质
性质 1 等腰三角形的两个底角相等 (简写成等边对等角)
性质 2 等腰三角形的顶角平分线、底 边上的中线、底边上的高互相重合 (简写成三线合一)
几何语言:
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021
▪7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
B
C
D
已知:△ABC中,AB=AC 求证:∠B=C
如何证明两个三角形全等?
作BC边上的高AD 作BC边上的中线AD 作顶角的平分线 AD
归纳总结
A等腰三角形常见辅助线A NhomakorabeaA
┌
B
D
CB
D
CB
D
C
如图,作△ABC 的中线AD
等腰三角形ppt课件
THANKS
感谢观看
工程绘图
在工程绘图中,等边三角形 可用于表示某些特定的角度 或距离关系,简化绘图过程 。
标志设计
由于等边三角形具有对称性 和稳定性,因此在标志设计 中常被用作基本图形元素, 如交通标志中的警告标志。
数学教育
在数学教育中,等边三角形 常被用作教学工具,帮助学 生理解几何形状、角度和边 长关系等基本概念。
如果一个三角形有两个角相等 ,那么这两个角所对的边也相
等。
等腰三角形性质总结
性质1
等腰三角形的两个底角相等。
性质2
等腰三角形的顶角平分线、底 边上的中线、底边上的高互相 重合,简称“三线合一”。
性质3
等腰三角形的对称轴是底边的 垂直平分线。
性质4
等腰三角形是轴对称图形,只 有一条对称轴。
02 等腰三角形面积 与周长计算
06 课件总结与回顾
关键知识点总结
定义
两边相等的三角形称为等腰三角 形。
性质
等腰三角形的两个底角相等;底 边上的中线、高线和顶角的平分 线三线合一。
关键知识点总结
等腰三角形的判定
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角 对等边)。
推论:三个角都相等的三角形是等边三角形。
特点
等腰三角形是轴对称图形,对称轴是 底边的垂直平分线。
等腰三角形判定定理
01
02
03
04
边边边定理
如果两个三角形的三边分别相 等,则这两个三角形全等。
边角边定理
如果两个三角形有两边和夹角 分别相等,则这两个三角形全
等。
角边角定理
如果两个三角形有两个角和夹 边分别相等,则这两个三角形
等腰三角形ppt课件
何图形的基本性质把复杂作图拆
解成基本作图,逐步操作.
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥
AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求
证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边”
判定等腰三角形,只需证明三
角形两个内角相等即可.
角的度数,再利用三角形的内角和等于18 0 °
列出方程,求出未知数的值即可.
知2-练
感悟新知
解:设∠ A=x°.
知2-练
∵ AD=DE,∴∠ AED= ∠ A=x°.
∵ DE=EB,∴∠ EBD= ∠ BDE= x°.
∴∠ BDC= ∠ A+ ∠ EBD= x°.
∵ BC=BD,∴∠ C= ∠ BDC= x°.
∵ AB=AC,∴∠ ABC= ∠ C= x°.
∴ x+ x+ x =18 0,解得x =4 5 .∴∠
A=45°.
感悟新知
知2-练
5 -1. [新考向知识情境化中考·衢州]“三等分角”大约是在
公元前五世纪由古希腊人提出来的,借助如图所示的
“三等分角仪”能三等分任一角.
感悟新知
知2-练
A. 2
B. 3
C. 4
D. 5
感悟新知
知1-练
1-2.[期末·广州南沙区]若等腰三角形的周长是28 cm,一条
边长为6 cm,则它的腰长为______
11 cm.
感悟新知
知识点 2 等腰三角形的性质
知2-讲
必定是锐角
1. 性质1:等腰三角形的两个底角相等(简写成
解成基本作图,逐步操作.
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥
AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求
证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边”
判定等腰三角形,只需证明三
角形两个内角相等即可.
角的度数,再利用三角形的内角和等于18 0 °
列出方程,求出未知数的值即可.
知2-练
感悟新知
解:设∠ A=x°.
知2-练
∵ AD=DE,∴∠ AED= ∠ A=x°.
∵ DE=EB,∴∠ EBD= ∠ BDE= x°.
∴∠ BDC= ∠ A+ ∠ EBD= x°.
∵ BC=BD,∴∠ C= ∠ BDC= x°.
∵ AB=AC,∴∠ ABC= ∠ C= x°.
∴ x+ x+ x =18 0,解得x =4 5 .∴∠
A=45°.
感悟新知
知2-练
5 -1. [新考向知识情境化中考·衢州]“三等分角”大约是在
公元前五世纪由古希腊人提出来的,借助如图所示的
“三等分角仪”能三等分任一角.
感悟新知
知2-练
A. 2
B. 3
C. 4
D. 5
感悟新知
知1-练
1-2.[期末·广州南沙区]若等腰三角形的周长是28 cm,一条
边长为6 cm,则它的腰长为______
11 cm.
感悟新知
知识点 2 等腰三角形的性质
知2-讲
必定是锐角
1. 性质1:等腰三角形的两个底角相等(简写成
等腰三角形ppt课件
02
等腰三角形的判定
定义与判定方法
定义:有两边长度相等的三角形称为等 腰三角形。
3. 角平分线法:若一个三角形一个角的 平分线等于其对应边的高线,则该三角 形为等腰三角形。
2. 中线法:若一个三角形中线等于其一 半长度,则该三角形为等腰三角形。
判定方法
1. 定义法:根据等腰三角形的定义,只 需判断一个三角形有两边长度相等即可 。
等腰三角形性质定理的推广与拓展主要涉及以下几个方面:一是推广到更复杂的几何图形中,如平行四边形、菱 形等;二是拓展到三角函数中,用于研究三角函数的对称性和周期性等问题;三是拓展到物理学中,用于研究力 矩平衡等问题。
04
等腰三角形的实际应用
建筑中的等腰三角形
总结词
建筑美学与等腰三角形的完美结合
详细描述
性质定理的应用举例
总结词
等腰三角形性质定理的应用场景及实例
详细描述
等腰三角形性质定理的应用场景广泛,例如在几何、三角函数、建筑等领域都有 应用。以几何为例,通过等腰三角形的性质定理可以证明一些重要的几何定理, 如勾股定理、余弦定理等。
性质定理的推广与拓展
总结词
等腰三角形性质定理的推广及拓展方向
详细描述
等腰三角形在实际VS
详细描述
等腰三角形在实际问题中有着广泛的应用 ,它是解决问题的重要工具。例如,在物 理学中,等腰三角形可以用来解决力臂平 衡的问题;在生物学中,可以用来解释 DNA分子的结构;在经济学中,可以用 来分析股票市场的波动等。
05
等腰三角形的相关练习题及 解析
边角关系在判定中的应用
等边对等角
在等腰三角形中,相等的两边所对的角也相等。
三角形内角和定理
等腰三角形的判定课件(共21张PPT)
复习回顾
等腰三角形的性质定理
1、从边看:等腰三角形的两腰相等。 (定义)
2、从角看:等腰三角形的两底角相等。 (性质定理1)
3、从重要线段看:等腰三角形的顶角平分线、 底边上的中线和底边上的高三线合一。 (性质定理2)
如何判定一个三角形是等腰三角形?
定义:有两边相等的三角形是等腰三角形。
还有其他方法吗?
A
B
D C
例2:已知:AD交BC于点O,AB∥CD,OA=OB
求证:OC=OD
问题:
1、若已知AB∥ CD,OC=OD,能
A
否证明OA=OB?
2、若已知OA=OB,OC=OD,能否
证明AB ∥ CD?
C
B O
D
规律:
AB ∥ CD,OA=OB,OC=OD中已知任两 个可推出第三个。
例3、如图,在Rt△ABC和Rt△A’B’C’中,
已知:△ABC中,∠B=∠CBAC的平分线AD
A
在△ BAD和△ CAD中, 1 2
∠B=∠C,
∠1=∠2,
B
AD=AD
C
D
∴ △ BAD≌ △ CAD(AAS)
∴AB=AC(全等三角形的对应边相等)
思考:作底边上的高可以吗?作底边中线呢?
等腰三角形的判定定理:
如果一个三角形有两个角相等,那么这两个 角所对的边也相等(简写成“等角对等边”)
∠ABC= ∠A’B’C’=90°,
AB=A’B’,AC=A’C’,
区别:条件和结论互换。
3、已知:ED ∥ OB,EO=ED
求证:Rt△ABC≌Rt△A’B’C’ 求证:OD平分 AOB。
例1 :已知:如图,∠CAE是△ABC的外角∠1=∠2,
等腰三角形的性质定理
1、从边看:等腰三角形的两腰相等。 (定义)
2、从角看:等腰三角形的两底角相等。 (性质定理1)
3、从重要线段看:等腰三角形的顶角平分线、 底边上的中线和底边上的高三线合一。 (性质定理2)
如何判定一个三角形是等腰三角形?
定义:有两边相等的三角形是等腰三角形。
还有其他方法吗?
A
B
D C
例2:已知:AD交BC于点O,AB∥CD,OA=OB
求证:OC=OD
问题:
1、若已知AB∥ CD,OC=OD,能
A
否证明OA=OB?
2、若已知OA=OB,OC=OD,能否
证明AB ∥ CD?
C
B O
D
规律:
AB ∥ CD,OA=OB,OC=OD中已知任两 个可推出第三个。
例3、如图,在Rt△ABC和Rt△A’B’C’中,
已知:△ABC中,∠B=∠CBAC的平分线AD
A
在△ BAD和△ CAD中, 1 2
∠B=∠C,
∠1=∠2,
B
AD=AD
C
D
∴ △ BAD≌ △ CAD(AAS)
∴AB=AC(全等三角形的对应边相等)
思考:作底边上的高可以吗?作底边中线呢?
等腰三角形的判定定理:
如果一个三角形有两个角相等,那么这两个 角所对的边也相等(简写成“等角对等边”)
∠ABC= ∠A’B’C’=90°,
AB=A’B’,AC=A’C’,
区别:条件和结论互换。
3、已知:ED ∥ OB,EO=ED
求证:Rt△ABC≌Rt△A’B’C’ 求证:OD平分 AOB。
例1 :已知:如图,∠CAE是△ABC的外角∠1=∠2,
2.2 等腰三角形 课件(共24张PPT) 浙教版 八年级上册
活动二:认识等腰三角形
A DE
求证:等腰三角形两腰上的中线相等.
已知:如图,在△ABC中,AB=AC, CD,BE分别是腰AB,AC上的中线.
求证:BE=CD
B
C
活动二:认识等腰三角形
证明:∵CD,BE分别是AB,AC上的中线,
A
∴AD=
1 2
AB
,AE=
1 2
AC,
DE
∵AB = AC, ∴AD = AE.
又∵ ∠A = ∠A,
B
C
∴△ABE ≌△ACD(SAS),
∴BE =CD.
活动二:认识等腰三角形
已知线段a,b (如图),
a
用直尺和圆规作等腰三角形ABC.
b
使AB=AC= b,BC= a .
A
如图所示,
bb
△ABC即为所求作的三角形。
B a CE
活动三:找出等腰三角形
C3 C1 C4
如图,在格点中找一点C,
∴△ADE是以直线AP为对称轴的轴对称图形,
C ∴点D和点E关于AP对称.
活动二:认识等腰三角形
A
如图,在△ABC中,AB=AC,
AP是△ABC的角平分线。
点D、E分别是AB,AC上的点,
D
E
且AD=AE.
(3)DE与BC平行吗?请说明理由。 BP C
活动二:认识等腰三角形
A D BP
解:(3)DE平行于BC,理由如下:
P3 P5
C
课堂小结
轴对称图形
特殊:等边三角形
概念 有两条边相等的三角形叫做等腰三角形。
等腰三角形
对称轴:1条或3条
找等腰三角形
位置分类 上
等腰三角形的PPT课件
详细描述
在力学中,等腰三角形结构可以提供稳定的支撑,如在建筑和桥梁设计中利用等腰三角形来提高结构 的稳定性。在电磁学中,等腰三角形可以用来设计天线和微波暗室等设施,实现电磁波的定向传播和 聚焦。
感谢您的观看
THANKS
判定定理三
如果一个三角形中,有一 个角是另一个角的相等邻 补角,则这个三角形是等 腰三角形。
证明方法
方法一
利用等腰三角形的性质,证明两 腰相等。
方法二
利用全等三角形的性质,证明两 腰相等。
方法三
利用角的性质,证明两腰相等。
应用举例
应用一
在几何图形中,判断哪些图形是等腰三角形。
应用二
在解决实际问题中,利用等腰三角形的性质进行 计算或证明。
等腰三角形在数学中的运用
总结词
等腰三角形是数学中一个重要的基本 图形,具有许多重要的性质和定理。
详细描述
在几何学中,等腰三角形是研究对称 性、全等三角形和三角函数等知识的 重要载体。通过对等腰三角形的研究, 可以推导出许多重要的数学定理和性 质。
等腰三角形在物理学中的应用
总结词
等腰三角形在物理学中也有广泛的应用,特别是在力学和电磁学领域。
元素的值。
边角互换的证明
可以通过三角形的全等定理或相似 定理来证明边角互换定理的正确性。
边角互换的应用
在实际应用中,可以利用边角互换 定理来解决一些几何问题,如计算 角度、长度等。
03
等腰三角形的判定与证明
判定定理
判定定理一
如果一个三角形中,有两 边相等,则这个三角形是 等腰三角形。
判定定理二
如果一个三角形中,有一 个角对应的两边相等,则 这个三角形是等腰三角形。
应用三
在力学中,等腰三角形结构可以提供稳定的支撑,如在建筑和桥梁设计中利用等腰三角形来提高结构 的稳定性。在电磁学中,等腰三角形可以用来设计天线和微波暗室等设施,实现电磁波的定向传播和 聚焦。
感谢您的观看
THANKS
判定定理三
如果一个三角形中,有一 个角是另一个角的相等邻 补角,则这个三角形是等 腰三角形。
证明方法
方法一
利用等腰三角形的性质,证明两 腰相等。
方法二
利用全等三角形的性质,证明两 腰相等。
方法三
利用角的性质,证明两腰相等。
应用举例
应用一
在几何图形中,判断哪些图形是等腰三角形。
应用二
在解决实际问题中,利用等腰三角形的性质进行 计算或证明。
等腰三角形在数学中的运用
总结词
等腰三角形是数学中一个重要的基本 图形,具有许多重要的性质和定理。
详细描述
在几何学中,等腰三角形是研究对称 性、全等三角形和三角函数等知识的 重要载体。通过对等腰三角形的研究, 可以推导出许多重要的数学定理和性 质。
等腰三角形在物理学中的应用
总结词
等腰三角形在物理学中也有广泛的应用,特别是在力学和电磁学领域。
元素的值。
边角互换的证明
可以通过三角形的全等定理或相似 定理来证明边角互换定理的正确性。
边角互换的应用
在实际应用中,可以利用边角互换 定理来解决一些几何问题,如计算 角度、长度等。
03
等腰三角形的判定与证明
判定定理
判定定理一
如果一个三角形中,有两 边相等,则这个三角形是 等腰三角形。
判定定理二
如果一个三角形中,有一 个角对应的两边相等,则 这个三角形是等腰三角形。
应用三
17.1 等腰三角形 - 第1课时课件(共23张PPT)
等边三角形的性质定理
等边三角形的三个角都相等,并且每一个角都等于60°.
例题解析
例1已知:如图,在△ABC中,AB=BC,BD,CE分别为∠ABC,∠ACB的平分线.求证:BD=CE.
证明:∵BD,CE分别为∠ABC,∠ACB的平分线,∴∠ABD=½∠ABC,∠ACE=½∠ACB.∵∠ABC=∠ACB(等边对等角)∴∠ABD=∠ACE(等量代换).∵AB=AC(已知),∠A=∠A(公共角),∴△ABD≌△ACE( ASA ).∴BD=CE(全等三角形的对应边相等).
2.如图,在△ABC中,AB=AC,∠B=50°,则∠C的度数为( ).A.80° B.60°C.50° D.40°
C
3.如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为( )A.25° B.60° C.85° D.95°
(1)证明:∵△ABC和△ECD都是等边三角形,∴AC =BC,CD =CE,∠ACB =∠DCE=60°,又∵∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DBC,∴∠ACD=∠BCE,在△ACD和△BCE中,AC =BC,∠ACD=∠BCE,CD =CE,∴△ACD≌△BCE(SAS).∴AD=BE.
三边都相等的三角形叫做等边三角形.等边三角形是等腰三角形的特例.
定义
知识点3 等边三角形的定义及性质定理
已知:如图,在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.
证明:∵在△ABC中,AB=BC=AC,∴∠A=∠B=∠C(等边对等角).∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.
(2)解:在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC-∠CED=120°-60°=60°.
等边三角形的三个角都相等,并且每一个角都等于60°.
例题解析
例1已知:如图,在△ABC中,AB=BC,BD,CE分别为∠ABC,∠ACB的平分线.求证:BD=CE.
证明:∵BD,CE分别为∠ABC,∠ACB的平分线,∴∠ABD=½∠ABC,∠ACE=½∠ACB.∵∠ABC=∠ACB(等边对等角)∴∠ABD=∠ACE(等量代换).∵AB=AC(已知),∠A=∠A(公共角),∴△ABD≌△ACE( ASA ).∴BD=CE(全等三角形的对应边相等).
2.如图,在△ABC中,AB=AC,∠B=50°,则∠C的度数为( ).A.80° B.60°C.50° D.40°
C
3.如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为( )A.25° B.60° C.85° D.95°
(1)证明:∵△ABC和△ECD都是等边三角形,∴AC =BC,CD =CE,∠ACB =∠DCE=60°,又∵∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DBC,∴∠ACD=∠BCE,在△ACD和△BCE中,AC =BC,∠ACD=∠BCE,CD =CE,∴△ACD≌△BCE(SAS).∴AD=BE.
三边都相等的三角形叫做等边三角形.等边三角形是等腰三角形的特例.
定义
知识点3 等边三角形的定义及性质定理
已知:如图,在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.
证明:∵在△ABC中,AB=BC=AC,∴∠A=∠B=∠C(等边对等角).∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.
(2)解:在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC-∠CED=120°-60°=60°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周期为T,如果飞船要返回地面,可在轨道上的某 一点A处,将速率降低到适当数值,从而使飞船 沿着以地心为焦点的特殊椭圆轨道运动,椭圆和 地球表面在B点相切,如图所示,如果地球半径 为R,求飞船由A点到B点所需的时间。
R
B
R0
A
27.322
K值
3.36×1018 3.35×1018 3.31×1018 3.36×1018
结论
k值与中心天体有关, 而与环绕天体无关
观察九大行星图思考
1、冥王星离太阳 “最远”,绕太阳运 动的公转周期最长, 对吗?
2、金星与地球都在 绕太阳运转,那么金 星上的一天肯定比24 小时短吗?
实际上行星绕太阳的运动很 接近圆,在中学阶段,可近似 看成圆来处理问题,那么开普 勒三定律的形式又如何?
• 教学难点 • 对开普勒行星运动定律的理解和应用,通过本节的学习
可以澄清人们对天体运动神秘、模糊的认识.
• 教学方法 • 探究、讲授、讨论、练习 • 教具准备 • 挂图、多媒体课件
太阳系
古人对天体运动有 哪些看法?
科学的足迹
1、地心说
代表人物:托勒密
观点: 地球是宇宙的中心, 是静止不动的,太阳、月 亮以及其他行星都绕地球 运动。
又∵MP是AB的垂直平分线(已知)M
N
∴∠B=∠BAP=x°,
B
C
∵NQ是AC的垂直平分线,
P
Q
∴∠C=∠CAQ=y°,
∴x°+y°=180°-∠BAC=50°
∴∠PAQ=∠BAC-x°-y°=80°
答: ∠PAQ=80°
小结:遇到有复杂的角或者线段 之间的关系,弄清它们之间的关 系,通过设未知数去解决。
1、多数行星绕太阳运动的轨道十分 接近圆,太阳处在圆心;
2、对某一行星来说,它绕太阳做圆 周运动的角速度(或线速度大小) 不变,即行星做匀速圆周运动;
3、所有行星轨道半径的三次方跟它 的公转周期的二次方的比值都相等。
• [课堂训练]
• 1.下列说法正确的 是…………………………(பைடு நூலகம்)
• A.地球是宇宙的中心,太阳、月亮及其他行 星都绕地球运动
开普勒行星运动规律
开普勒第一定律:
所有行星绕太阳的轨道都是 椭圆,太阳处在椭圆的一个焦 点上。
太阳
●
焦点
焦点
开普勒行星运动规律
开普勒第二定律:
对任意一个行星来说,它与太阳 的连线在相等的时间内扫过相等的面 积。
近处速 度快
远处速 度慢
开普勒第三定律:
所有行星的椭圆轨道的半 长轴的三次方跟它的公转周期 的二次方的比值都相等。
证:∠ACB=90°
A
证明:设∠A=x°,∠B=y° ∵AD=DC=DB ∴∠ACD=∠A=x°; ∠DCB=∠B=y° ∴2x°+2y°=180° ∴x°+y°=90° 即:∠ACB=90°
D
C
B
问:在这里,x、y的大小能具体的求出来吗? 不能,因为,x、y的大小可以变化。
但x、y的和能够求出来,它就是我们需要的结论。
答: ∴∠A=45°
点评:在纷繁复杂的各种关系中, 要善于迅速的弄清情况,用我们 的规律解决。
例3:如图,AA1、BB1分别是∠EAB、∠DBC的平
E A分线,若ABCA1=BD BB11解=:A设∵∴∴B,∠A∠∠BCBB求=11A=A∠BBD∠B=B=1C=xA2°AxCA°BA的=1 度x°数。
①由相等的线段,根据“等边对等角”得出 相应相等的角,弄清各角之间关系;
②设最小的角为x,其余各角用含x的式子表 示出来;(想想:为什么要设最小的角为x呢? 使其它角与最小的角用倍数关系表达。)
③找一个合适的三角形,用三角形的内角和 定理列方程解之。
例2:如图,在ΔABC中,AB=AC,BC=BD,AD
学习重点:一类与计算有关的问题与解决方法。 学习难点:分析归纳出解题方法,解决问题。
一、复习提问: 等腰三角形的判定定理有哪些? 等腰三角形的性质定理有哪些?
例1:已知:如图,在ΔABC中,AB=AC,点D在AC上,
且BD=BC=AD。求:ΔABC的各角的度数。A
解:∵AB=AC,BD=BC=AD
冬90天
若是匀速圆 周运动……
开普勒(德国)
第 谷(丹麦)
↓
↓
四年多的刻苦计算 → 8分的误差 ←二十年的精心观测
↓
否定19 种假设
↓
行星轨道为椭圆
假设地球绕太阳的运动是一个椭 圆运动,太阳在焦点上,根据曲线运动的 特点,得在秋分到冬至再到春分的时 间比从春分到夏至再到秋分的时间短, 所以秋冬两季比春夏两季要短。
科学的足迹
2、日心说
哥白尼:拦住了太阳,推动了地球
观点:太阳是静止不动的,地球和其他行 星都在绕太阳做匀速圆周运动。
科学的足迹
3、日心说的进一步完善
(1)天才观察者: 第谷·布拉赫
第 谷(丹麦)
把天体位置测量的误差由10/ 减少到2/
科学的足迹
3、日心说的进一步完善
• (2) 开普勒: • 真理超出希望
作业
高中物理新人教版 必修2系列课件
6.1《行星的运动》
教学目标
• 知识与技能 • 1.知道地心说和日心说的基本内容. • 2.知道所有行星绕太阳运动的轨道都是椭圆,太阳处在
椭圆的一个焦点上. • 3.知道所有行星的轨道的半长轴的三次方跟它的公转周
期的二次方的比值都相等,且这个比值与行星的质量无关, 但与太阳的质量有关. • 4.理解人们对行星运动的认识过程是漫长复杂的,真理 是来之不易的. • 过程与方法 • 通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科 学家对行星运动的不同认识,了解人类认识事物本质的曲 折性并加深对行星运动的理解.
10.3等腰三角形 (等腰三角形中有关通过计算来解的题)
• 学习目标: 1、知识与技能目标:通过学生积极参与思考、练习、
掌握一类有关通过计算去证明、解决的题目,进 一步熟悉等腰三角形的性质与判定。
2、过程与方法目标:讲练结合,以练为主,学生归 纳解题中的规律,在解题中培养学生的能力。
3、情感与态度目标:体会数学内在的和谐美、感受 自身能力增长的快乐。
表达式: a3 T2
半长轴
=k
行星绕太阳公转 的周期
探究2:
行星 半长轴(x106km) 公转周期(天)
水星
57
87.97
金星
108
225
地球
149
365
火星
228
687
木星
778
4333
土星
1426
10759
天王星
2869
30686
海王星
4495
60188
同步卫星 0.0424
1
月球
0.3844
②如图,B、D、F在AN上,C、E在AG上,且AB
=BC=CD,EC=ED=EF,∠A=20°,求
∠FEG的大小。
A
B
DF N
答:100°
C EG
例4:如图,在ΔABC中,∠ACB=90°,若AE= AC,BD=BC,求:∠ECD的度数。
解:设∠A=x°, ∵AE=AC,
∴∠ECA=
180-x 2
A
∠B=90°-∠A=90°-x°
又∵BD=BC,
EB D
C
∴∠BDC=∠BCD=
180-(90-x) 2
=
90+x 2
∴∠ECD=180°-∠BDC-∠AEC=180°-135°=45°
答: ∠ECD=45°
练习:如图,∠BAC=130°,若MP和NQ分别垂
直平分AB和AC,求∠PAQ的度数。
解:设∠BAP=x°,∠QAC=y° A
• 情感、态度与价值观 • 1.澄清对天体运动裨秘、模糊的认识,掌握人类认识
自然规律的科学方法.
• 2.感悟科学是人类进步不竭的动力. • 教学重点 • 理解和掌握开普勒行星运动定律,认识行星的运动.学
好本节有利于对宇宙中行星的运动规律的认识,掌握人类 认识自然规律的科学方法,并有利于对人造卫星的学习.
=DE=EB。求∠A的度数。
A
解:设∠EBD=x°。
∵BE=ED=AD ∴∠EBD=∠EDB=x°,
D E
∴∠A=∠AED=∠EBD+∠EDB=2x°
∵AB=AC,BD=BC, ∴∠ABC=∠ACB=∠BDC=3x°
B
C
又∵∠A+∠ABC+∠ACB=180°
∴2x°+3x°+3x°=180°
∴∠A=2x=45°
又∵BB1平分∠DBC
A1
∴∠CBD=4x° ∴∠AA1B=∠ABA1=∠CBD=4x°
又∵A1A平分∠EAB,
∴∠A1AB=
180-x 2
∵∠A1AB+∠AA1B+∠ABA1=180°
∴
180-x 2
+4x°+4x°=180°
答:∴∠BAC=12°
∴∠BAC=x°=12°
练习:①已知:如图,在ΔABC中,AD=DB=DC。求
• B.太阳是宇宙的中心,所有天体都绕太阳运动
• C.太阳是静止不动的,地球和其他行星都绕太 阳运动
• D.“地心说”和哥白尼提出的“日心说”现 在看来都是不正确的
• 分析;“地心说”是错误的,所以A不正 确.太阳系在银河系中运动,银河系也在 运动,所以,B、C不正确,D正确.
课堂训练
2、神舟六号沿半径为R的圆周绕地球运动,其
开普勒行星运动三定律
[探究1] 行星运动绕太阳运动的轨道是
什么形状?
圆?
地球
年份 春分 夏至 秋分 冬至 2004 3/20 6/21 9/23 12/21 2005 3/20 6/21 9/23 12/21 2006 3/21 6/21 9/23 12/21
R
B
R0
A
27.322
K值
3.36×1018 3.35×1018 3.31×1018 3.36×1018
结论
k值与中心天体有关, 而与环绕天体无关
观察九大行星图思考
1、冥王星离太阳 “最远”,绕太阳运 动的公转周期最长, 对吗?
2、金星与地球都在 绕太阳运转,那么金 星上的一天肯定比24 小时短吗?
实际上行星绕太阳的运动很 接近圆,在中学阶段,可近似 看成圆来处理问题,那么开普 勒三定律的形式又如何?
• 教学难点 • 对开普勒行星运动定律的理解和应用,通过本节的学习
可以澄清人们对天体运动神秘、模糊的认识.
• 教学方法 • 探究、讲授、讨论、练习 • 教具准备 • 挂图、多媒体课件
太阳系
古人对天体运动有 哪些看法?
科学的足迹
1、地心说
代表人物:托勒密
观点: 地球是宇宙的中心, 是静止不动的,太阳、月 亮以及其他行星都绕地球 运动。
又∵MP是AB的垂直平分线(已知)M
N
∴∠B=∠BAP=x°,
B
C
∵NQ是AC的垂直平分线,
P
Q
∴∠C=∠CAQ=y°,
∴x°+y°=180°-∠BAC=50°
∴∠PAQ=∠BAC-x°-y°=80°
答: ∠PAQ=80°
小结:遇到有复杂的角或者线段 之间的关系,弄清它们之间的关 系,通过设未知数去解决。
1、多数行星绕太阳运动的轨道十分 接近圆,太阳处在圆心;
2、对某一行星来说,它绕太阳做圆 周运动的角速度(或线速度大小) 不变,即行星做匀速圆周运动;
3、所有行星轨道半径的三次方跟它 的公转周期的二次方的比值都相等。
• [课堂训练]
• 1.下列说法正确的 是…………………………(பைடு நூலகம்)
• A.地球是宇宙的中心,太阳、月亮及其他行 星都绕地球运动
开普勒行星运动规律
开普勒第一定律:
所有行星绕太阳的轨道都是 椭圆,太阳处在椭圆的一个焦 点上。
太阳
●
焦点
焦点
开普勒行星运动规律
开普勒第二定律:
对任意一个行星来说,它与太阳 的连线在相等的时间内扫过相等的面 积。
近处速 度快
远处速 度慢
开普勒第三定律:
所有行星的椭圆轨道的半 长轴的三次方跟它的公转周期 的二次方的比值都相等。
证:∠ACB=90°
A
证明:设∠A=x°,∠B=y° ∵AD=DC=DB ∴∠ACD=∠A=x°; ∠DCB=∠B=y° ∴2x°+2y°=180° ∴x°+y°=90° 即:∠ACB=90°
D
C
B
问:在这里,x、y的大小能具体的求出来吗? 不能,因为,x、y的大小可以变化。
但x、y的和能够求出来,它就是我们需要的结论。
答: ∴∠A=45°
点评:在纷繁复杂的各种关系中, 要善于迅速的弄清情况,用我们 的规律解决。
例3:如图,AA1、BB1分别是∠EAB、∠DBC的平
E A分线,若ABCA1=BD BB11解=:A设∵∴∴B,∠A∠∠BCBB求=11A=A∠BBD∠B=B=1C=xA2°AxCA°BA的=1 度x°数。
①由相等的线段,根据“等边对等角”得出 相应相等的角,弄清各角之间关系;
②设最小的角为x,其余各角用含x的式子表 示出来;(想想:为什么要设最小的角为x呢? 使其它角与最小的角用倍数关系表达。)
③找一个合适的三角形,用三角形的内角和 定理列方程解之。
例2:如图,在ΔABC中,AB=AC,BC=BD,AD
学习重点:一类与计算有关的问题与解决方法。 学习难点:分析归纳出解题方法,解决问题。
一、复习提问: 等腰三角形的判定定理有哪些? 等腰三角形的性质定理有哪些?
例1:已知:如图,在ΔABC中,AB=AC,点D在AC上,
且BD=BC=AD。求:ΔABC的各角的度数。A
解:∵AB=AC,BD=BC=AD
冬90天
若是匀速圆 周运动……
开普勒(德国)
第 谷(丹麦)
↓
↓
四年多的刻苦计算 → 8分的误差 ←二十年的精心观测
↓
否定19 种假设
↓
行星轨道为椭圆
假设地球绕太阳的运动是一个椭 圆运动,太阳在焦点上,根据曲线运动的 特点,得在秋分到冬至再到春分的时 间比从春分到夏至再到秋分的时间短, 所以秋冬两季比春夏两季要短。
科学的足迹
2、日心说
哥白尼:拦住了太阳,推动了地球
观点:太阳是静止不动的,地球和其他行 星都在绕太阳做匀速圆周运动。
科学的足迹
3、日心说的进一步完善
(1)天才观察者: 第谷·布拉赫
第 谷(丹麦)
把天体位置测量的误差由10/ 减少到2/
科学的足迹
3、日心说的进一步完善
• (2) 开普勒: • 真理超出希望
作业
高中物理新人教版 必修2系列课件
6.1《行星的运动》
教学目标
• 知识与技能 • 1.知道地心说和日心说的基本内容. • 2.知道所有行星绕太阳运动的轨道都是椭圆,太阳处在
椭圆的一个焦点上. • 3.知道所有行星的轨道的半长轴的三次方跟它的公转周
期的二次方的比值都相等,且这个比值与行星的质量无关, 但与太阳的质量有关. • 4.理解人们对行星运动的认识过程是漫长复杂的,真理 是来之不易的. • 过程与方法 • 通过托勒密、哥白尼、第谷·布拉赫、开普勒等几位科 学家对行星运动的不同认识,了解人类认识事物本质的曲 折性并加深对行星运动的理解.
10.3等腰三角形 (等腰三角形中有关通过计算来解的题)
• 学习目标: 1、知识与技能目标:通过学生积极参与思考、练习、
掌握一类有关通过计算去证明、解决的题目,进 一步熟悉等腰三角形的性质与判定。
2、过程与方法目标:讲练结合,以练为主,学生归 纳解题中的规律,在解题中培养学生的能力。
3、情感与态度目标:体会数学内在的和谐美、感受 自身能力增长的快乐。
表达式: a3 T2
半长轴
=k
行星绕太阳公转 的周期
探究2:
行星 半长轴(x106km) 公转周期(天)
水星
57
87.97
金星
108
225
地球
149
365
火星
228
687
木星
778
4333
土星
1426
10759
天王星
2869
30686
海王星
4495
60188
同步卫星 0.0424
1
月球
0.3844
②如图,B、D、F在AN上,C、E在AG上,且AB
=BC=CD,EC=ED=EF,∠A=20°,求
∠FEG的大小。
A
B
DF N
答:100°
C EG
例4:如图,在ΔABC中,∠ACB=90°,若AE= AC,BD=BC,求:∠ECD的度数。
解:设∠A=x°, ∵AE=AC,
∴∠ECA=
180-x 2
A
∠B=90°-∠A=90°-x°
又∵BD=BC,
EB D
C
∴∠BDC=∠BCD=
180-(90-x) 2
=
90+x 2
∴∠ECD=180°-∠BDC-∠AEC=180°-135°=45°
答: ∠ECD=45°
练习:如图,∠BAC=130°,若MP和NQ分别垂
直平分AB和AC,求∠PAQ的度数。
解:设∠BAP=x°,∠QAC=y° A
• 情感、态度与价值观 • 1.澄清对天体运动裨秘、模糊的认识,掌握人类认识
自然规律的科学方法.
• 2.感悟科学是人类进步不竭的动力. • 教学重点 • 理解和掌握开普勒行星运动定律,认识行星的运动.学
好本节有利于对宇宙中行星的运动规律的认识,掌握人类 认识自然规律的科学方法,并有利于对人造卫星的学习.
=DE=EB。求∠A的度数。
A
解:设∠EBD=x°。
∵BE=ED=AD ∴∠EBD=∠EDB=x°,
D E
∴∠A=∠AED=∠EBD+∠EDB=2x°
∵AB=AC,BD=BC, ∴∠ABC=∠ACB=∠BDC=3x°
B
C
又∵∠A+∠ABC+∠ACB=180°
∴2x°+3x°+3x°=180°
∴∠A=2x=45°
又∵BB1平分∠DBC
A1
∴∠CBD=4x° ∴∠AA1B=∠ABA1=∠CBD=4x°
又∵A1A平分∠EAB,
∴∠A1AB=
180-x 2
∵∠A1AB+∠AA1B+∠ABA1=180°
∴
180-x 2
+4x°+4x°=180°
答:∴∠BAC=12°
∴∠BAC=x°=12°
练习:①已知:如图,在ΔABC中,AD=DB=DC。求
• B.太阳是宇宙的中心,所有天体都绕太阳运动
• C.太阳是静止不动的,地球和其他行星都绕太 阳运动
• D.“地心说”和哥白尼提出的“日心说”现 在看来都是不正确的
• 分析;“地心说”是错误的,所以A不正 确.太阳系在银河系中运动,银河系也在 运动,所以,B、C不正确,D正确.
课堂训练
2、神舟六号沿半径为R的圆周绕地球运动,其
开普勒行星运动三定律
[探究1] 行星运动绕太阳运动的轨道是
什么形状?
圆?
地球
年份 春分 夏至 秋分 冬至 2004 3/20 6/21 9/23 12/21 2005 3/20 6/21 9/23 12/21 2006 3/21 6/21 9/23 12/21