高考数学专题 排列组合——选择合适的数学模型
排列组合的常见模型(1)
4 n 4 3 34 排列组合的常见模型(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求 的元素。
例如:用0,1, 2,3, 4 组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是 0,所以先处理首位,共有 4 种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为 N = 4 ⨯ A 4= 96种 2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再 用全部可能的总数减去对立面的个数即可。
例如:在 10 件产品中,有 7 件合格品,3 件次品。
从这 10 件产品中任意抽出 3 件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少 1 件次品”包含 1 件,2 件,3 件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。
N = C 3 - C 3 = 85 (种)1073、先取再排(先分组再排列):排列数 A m是指从 n 个元素中取出 m 个元素,再将这 m 个元素进行排列。
但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。
例如:从 4 名男生和 3 名女生中选 3 人,分别从事 3 项不同的工作,若这 3 人中只有一名女生,则选派方案有多少种。
解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生, 共有 C 2C 1 种可能, 然后将选出的三个人进行排列: A 34 33C 2C 1 A 3 = 108 种方案(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。
例如:5 个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余 3 个元素排列,则共有 A 4种位置,第二步考虑。
高中数学排列组合中几种常见的数学模型-文档资料
高中数学排列组合中几种常见的数学模型排列组合问题是高考中必考的一个类型题,常常单独命题或与概率内容等相结合,一般以较容易题出现,但由于解这类问题时方法灵活,切人点多,且抽象性极强,在解题过程中发生重复或遗漏现象不易被发现,所以又成为高中学生学习的难点之一。
故在解题过程中通过分类、分步把复杂问题分解,找出问题的切入点,建立合理的数学模型,将问题简单化、常规化。
一、特殊元素优先数学模型对于存在特殊元素或特殊位置的排列组合问题,我们可以从这些“特殊”入手,先满足特殊元素或特殊位置,再去满足其他元素或其他位置,这种模型称为“特殊元素优先数学模型”。
例1.用0,1,2,3,4,5这六个数字可组成无重复数字的四位偶数____个。
(用数字作答)解:先安排四位偶数的个位上的数字(优先考虑)。
无重复数字的四位偶数中如果个位数是0共有C■A■个,同时如果个位数是2或4共有C■C■A■=96个,所以,重复数字的四位偶数共有60+96=156个。
点评:特殊元素优先法是比较容易入手的一种方法,在处理此类问题时一是要注意优先考虑有要求的特殊位置的元素,二是要注意与分步计数原理结合运用。
二、捆绑式数学模型对于某些元素要求相邻排列的问题,可先将相邻元素捆绑并看作一个元素再与其它元素进行排列,同时对相邻元素进行自排,这种模型称为“捆绑式数学模型”。
这种模型分为两种,一种是相邻元素要全排列,一种是相邻元素是组合问题,不用排列。
例2.四个工人去住旅店,旅店只剩下三个房间,要求四人中必须有两个住在一个房间,另两个房间各住一人,问共有多少种不同的安排方法?解:第一步:把四个工人中的二个捆绑在一起,共有C■=6种方法;第二步:把四个工人看成三个工人进行排列,共有A■=6种方法。
所以共有36种不同的安排方法。
点评:由于两个工人在同一个房间没有排列问题,所以不能自排。
还有一种典型的错误排法,先在四个人中选出三个工人入住三个房间,有24种方法,再把剩下一个人放下四个房间中的任意一个,共有4种方法,故共有96种方法。
2024年高考数学专项排列组合专题16 分解法模型和最短路径问题(解析版)
专题16分解法模型和最短路径问题类型1:分解模型例1.对33000分解质因数得=⨯⨯⨯333300023511,则33000的正偶数因数的个数是()A.48B.72C.64D.96例2.5400的正约数有()个A.48B.46C.36D.38例3.30030能被多少个不同的偶数整除类型2:最短路径问题例1.有一种走“方格迷宫”游戏,游戏规则是每次水平或竖直走动一个方格,走过的方格不能重复,只要有一个方格不同即为不同走法.现有如图的方格迷宫,图中的实线不能穿过,则从入口走到出口共有多少种不同走法?()A.6B.8C.10D.12例2.如图,某城市中,M、N两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从M到N不同的走法共有()2024年高考数学专项排列组合专题16 分解法模型和最短路径问题(解析版)A.10B.13C.15D.25例3.如图,蚂蚁从A沿着长方体的棱以的方向行走至B,不同的行走路线有()A.6条B.7条C.8条D.9条例4.如图所示为某市各旅游景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A到H可走的不同的旅游路线的条数为()A.14B.15C.16D.17例5.小张从家出发去看望生病的同学,他需要先去水果店买水果,然后去花店买花,最后到达医院.相关的地点都标在如图所示的网格纸上,网格线是道路,则小张所走路程最短的走法的种数为()A.72B.56C.48D.40例6.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i i,则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次次骰子后棋子恰好又(1,2,,6)=⋅⋅⋅回到点A处的所有不同走法共有()A.21种B.24种C.25种D.27种例7.如下图,从A点出发每次只能向上或者向右走一步,则到达B点的路径的条数为________.例8.如图,甲从A到B,乙从C到D,两人每次都只能向上或者向右走一格,如果两个人的线路不相交,则称这两个人的路径为一对孤立路,那么不同的孤立路一共有________对.(用数字作答)例9.如图所示线路图,机器人从A地经B地走到C地,最近的走法共有________种.(用数字作答)例10.如图所示,机器人明明从A地移到B地,每次只移动一个单位长度,则明明从A移到B最近的走法共有____种.例11.如图所示,机器人明明从A地移到B地,每次只移动一个单位长度,则明明从A移到B最近的走法共有_____种.例12.如图,机器人亮亮沿着单位网格,从A地移动到B地,每次只移动一个单位长度,则亮亮从A移动到B最近的走法共有____种.例13.某城市街区如下图所示,其中实线表示马路,如果只能在马路上行走,则从A点到B点的最短路径的走法有___种.例14.某游戏中,一个珠子从如图所示的通道由上至下滑下,从最下面的六个出口出来,规定猜中出口者为胜.如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为()A.516B.532C.16D.以上都不对例15.如图所示,某城镇由7条东西方向的街道和6条南北方向的街道组成,其中有一个池塘,街道在此变成一个菱形的环池大道.现要从城镇的A处走到B处,使所走的路程最短,最多可以有45种不同的走法.例16.如图所示,某城镇由6条东西方向的街道和6条南北方向的街道组成,其中有一个池塘,街道在此变成一个菱形的环池大道,现要从城镇的A处走到B处,使所走的路程最短,最多可以有35种不同的走法.例17.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果某人在该游戏中,猜得珠子从3号口出来,那么他取胜的概率为516.例18.在⨯n n的方格中进行跳棋游戏.规定每跳一步只能向左,或向右,或向上,不能向下,且一次连续行走的路径中不能重复经过同一小方格.设()f n表示从左下角“〇”位置开始,连续跳到右上角“☆”位置结束的所有不同路径的条数.如图,给出了=3f n.n时的一条路径.则f(3)=9;=()例19.某城市由n条东西方向的街道和m条南北方向的街道组成一个矩形街道网,要从A处走到B处,使所走的路程最短,有多少种不同的走法?专题16分解法模型和最短路径问题类型1:分解模型例1.对33000分解质因数得=⨯⨯⨯333300023511,则33000的正偶数因数的个数是()A .48B .72C .64D .96【解析】33000的因数由若干个2(共有32102,2,2,2四种情况),若干个3(共有03,3两种情况),若干个5(共有32105,5,5,5四种情况),若干个11(共有1011,11两种情况),由分步计数乘法原理可得33000的因数共有⨯⨯⨯=424264,不含2的共有⨯⨯=24216,∴正偶数因数的个数有-=641648个,即33000的正偶数因数的个数是48,故选A.例2.5400的正约数有()个A .48B .46C .36D .38【解析】=⨯⨯3325400235,5400的正约数一定是由2的幂与3的幂和5的幂相乘的结果,所以正约数个数为+⨯+⨯+=(31)(31)(21)48.故选:A .例3.30030能被多少个不同的偶数整除【解析】先把30030分解成质因数的乘积形式30030=2×3×5×7×11×13,依题意可知偶因数必先取2,再从其余5个因数中任取若干个组成乘积,所有的偶因数为:++++=012345555555+32C C C C C C .类型2:最短路径问题例1.有一种走“方格迷宫”游戏,游戏规则是每次水平或竖直走动一个方格,走过的方格不能重复,只要有一个方格不同即为不同走法.现有如图的方格迷宫,图中的实线不能穿过,则从入口走到出口共有多少种不同走法?()A.6B.8C.10D.12【解析】如图,①从入口﹣1﹣3﹣5﹣6﹣0﹣出口,②从入口﹣1﹣3﹣4﹣6﹣0﹣出口,③从入口﹣1﹣3﹣4﹣7﹣8﹣9﹣10﹣6﹣0﹣出口,④从入口﹣1﹣3﹣4﹣9﹣10﹣6﹣0﹣出口,⑤从入口﹣2﹣3﹣4﹣6﹣0﹣出口,⑥从入口﹣2﹣3﹣5﹣6﹣0﹣出口,⑦从入口﹣2﹣3﹣4﹣7﹣8﹣9﹣10﹣6﹣0﹣出口,⑧从入口﹣2﹣3﹣4﹣9﹣10﹣6﹣0﹣出口,共有8种,故选:B.例2.如图,某城市中,M、N两地有整齐的道路网,若规定只能向东或向北两个方向沿途中路线前进,则从M到N不同的走法共有()A.10B.13C.15D.25【解析】因为只能向东或向北两个方向向北走的路有5条,向东走的路有3条走路时向北走的路有5种结果,向东走的路有3种结果根据分步计数原理知共有⨯=3515种结果,选C例3.如图,蚂蚁从A沿着长方体的棱以的方向行走至B,不同的行走路线有()A.6条B.7条C.8条D.9条【解析】共有3个顶点与A点相邻,经过每个相邻顶点,按规定方向都有2条路径到达B点,所以,蚂蚁从A沿着长方体的棱以规定的方向行走至B,不同的行走路线有:⨯=326(条),故选A.例4.如图所示为某市各旅游景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A到H可走的不同的旅游路线的条数为()A.14B.15C.16D.17【解析】要到H点,需从F、E、G走过来,F、E、G各点又可由哪些点走过来,这样一步步倒推,最后归结到A,然后再反推过去得到如下的计算方法:A至B、C、D的路数记在B、C、D的圆圈内,B、C、D分别到F、E、G的路数亦记在圈内,最后F、E、G各路数之和,即得到至H的总路数,如下图所示,易得到17条路线,故选D.例5.小张从家出发去看望生病的同学,他需要先去水果店买水果,然后去花店买花,最后到达医院.相关的地点都标在如图所示的网格纸上,网格线是道路,则小张所走路程最短的走法的种数为()A.72B.56C.48D.40【解析】由题意可得从家到水果店有6种走法,水果店到花店有3种走法,花店到医院有4种走法,因此一共有63472(种)⨯⨯=例6.某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i i,则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次次骰子后棋子恰好又(1,2,,6)=⋅⋅⋅回到点A处的所有不同走法共有()A.21种B.24种C.25种D.27种【解析】由题意知正方形ABCD(边长为3个单位)的周长是12,抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12,列举出在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4;共有6种组合,前三种组合1,5,6;2,4,6;3,4,5;又可以排列出=336A种结果,3,3,6;5,5,2;有6种结果,4,4,4;有1种结果.根据分类计数原理知共有+=24125种结果,故选:C.例7.如下图,从A点出发每次只能向上或者向右走一步,则到达B点的路径的条数为________.【解析】如下图所示从点A到C,D,E,F,G的路径都只有1条从点A到点H的路径有2条,分别为→→A F HA C H,→→从点A到点O的路径有3条,分别为从A经过H到点O有2条和→→→A F G O从点A到点M的路径有3条,分别是从点A经过点H到点M有2条和→→→A C D M从点A到点P的路径有6条,分别是从点A经过点O到点P的3条和从点A经过点M到点P的3条从点A到点N的路径有4条,分别是从点A经过点M到点N的3条和从点A经过点E到点N的1条从点A到点Q的路径有10条,分别是从点A经过点P到点Q的6条和从点A经过点N到点Q的4条从点A到点R的路径有6条,就是从点A经过点P到点R的6条所以从点A到点B的路径有16条,分别是从点A经过点R到点B的6条和从点A经过点Q到点B的10条所以到达B点的路径的条数为16条故答案为:16例8.如图,甲从A到B,乙从C到D,两人每次都只能向上或者向右走一格,如果两个人的线路不相交,则称这两个人的路径为一对孤立路,那么不同的孤立路一共有________对.(用数字作答)【解析】甲从A 到B ,需要向右走4步,向上走4步,共需8步,所以从A 到B 共有48C 种走法,乙从C 到D ,需要向右走4步,向上走4步,共需8步,所以从A 到B 共有48C 种走法,根据分步乘法计数原理可知,共有不同路径⋅4488C C 对,甲从A 到D ,需要向右走6步,向上走4步,共需10步,所以从A 到D 共有410C 种走法,乙从C 到B ,需要向右走2步,向上走4步,共需6步,所以从C 到B 共有26C 种走法,所以相交路径共有⋅42106C C 对,因此不同的孤立路一共有⋅-⋅=⨯-⨯=4442881067070210151750C C C C 对.故答案为:1750例9.如图所示线路图,机器人从A 地经B 地走到C 地,最近的走法共有________种.(用数字作答)【解析】A 到B 共2种走法,从B 到C 共25C 种不同走法,由分步乘法原理,知从A 地经B 地走到C 地,最近的走法共有=25220C 种.故答案为:20例10.如图所示,机器人明明从A 地移到B 地,每次只移动一个单位长度,则明明从A 移到B 最近的走法共有____种.【解析】-A C 有22A 种方法;-C B 有36C 种方法;-D B 有22A 种方法;共有=23226280A C A 例11.如图所示,机器人明明从A 地移到B 地,每次只移动一个单位长度,则明明从A 移到B 最近的走法共有_____种.【解析】分步计算,第一步→A C 最近走法有2种;第二步→C D 最近走法有=3620C 种;第三步→D B 最近走法有2种,故由→A B 最近走法有⨯⨯=220280种.故答案为:80.例12.如图,机器人亮亮沿着单位网格,从A 地移动到B 地,每次只移动一个单位长度,则亮亮从A 移动到B 最近的走法共有____种.【解析】分三步来考查:①从A到C,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有12C种走法;②从C到D,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有36C种走法;③从D到B,由①可知有12C种走法.由分步乘法计数原理可知,共有=13126280C C C种不同的走法.故答案为:80.例13.某城市街区如下图所示,其中实线表示马路,如果只能在马路上行走,则从A点到B点的最短路径的走法有___种.【解析】根据题意,从A到B的最短路程,只能向左、向下运动;从A到B,最短的路程需要向下走2次,向右走3次,即从5次中任取2次向下,剩下3次向右,有=2510C种情况,但图中有空格,故是方法数为-=1037中故答案为:7.例14.某游戏中,一个珠子从如图所示的通道由上至下滑下,从最下面的六个出口出来,规定猜中出口者为胜.如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为()A.516B.532C.16D.以上都不对【解析】我们把从A到3的路线图单独画出来:分析可得,从A 到3总共有=2510C 种走法,每一种走法的概率都是12,∴珠子从出口3出来是=25515()216C .故选:A .例15.如图所示,某城镇由7条东西方向的街道和6条南北方向的街道组成,其中有一个池塘,街道在此变成一个菱形的环池大道.现要从城镇的A 处走到B 处,使所走的路程最短,最多可以有45种不同的走法.【解析】由题意知本题有两种途径是最短的路程,①→→A CF B 其中→A C 有5法.→F B 有1法,共有⨯=515法.②→→A DE B ,从A 到D ,最短的路程需要向下走2次,向右走3次,即从5次中任取2次向下,剩下3次向右,故有=2510C 种,从E 到B ,最短的路程需要向下走3次,向右走1次,即从4次中任取3次向下,剩下1次向右,故有=344C 种,∴从→→A DE B 共有⨯=10440法,∴从A 到B 的短程线总共+=54045种走法.故答案为:45.例16.如图所示,某城镇由6条东西方向的街道和6条南北方向的街道组成,其中有一个池塘,街道在此变成一个菱形的环池大道,现要从城镇的A 处走到B 处,使所走的路程最短,最多可以有35种不同的走法.【解析】由题意知本题有两种大途径是最短的路程,Q ①→→A CD B 其中→A C 有5法.→D B 有1法,共有⨯=515法.②→→A EF B 其中→A E 有10种方法,→F B 有3法,共有⨯=10330法,∴从A 到B 的短程线总共+=53035种走法.故答案为:35.例17.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果某人在该游戏中,猜得珠子从3号口出来,那么他取胜的概率为516.【解析】我们把从顶点A 到3的路线图单独画出来:分析可得,从顶点A 到3总共有=2510C 种走法,每一种走法的概率都是12,∴珠子从出口3出来是=25515()216C .例18.在⨯n n 的方格中进行跳棋游戏.规定每跳一步只能向左,或向右,或向上,不能向下,且一次连续行走的路径中不能重复经过同一小方格.设()f n 表示从左下角“〇”位置开始,连续跳到右上角“☆”位置结束的所有不同路径的条数.如图,给出了=3n 时的一条路径.则f (3)=9;=()f n .【解析】由给出的⨯33方格看出,要从左下角“〇”位置开始,连续跳到右上角“☆”位置,需要先从第一行跳到第二行,共有3种跳法,跳到第二行的每一个方格内要完成到达右上角“☆”位置,又可以看作从该方格有几种到达第三行的方法,所以该题只需思考向上走就行了,从第一行到第二行有3种跳法,从第二行到第三行也有3种跳法,故f (3)==239.由此可推得⨯n n 的方格中从左下角“〇”位置开始,连续跳到右上角“☆”位置的方法种数是-1n 个n 的乘积.即-=1()n f n n .故答案分别为9;-1n n .例19.某城市由n 条东西方向的街道和m 条南北方向的街道组成一个矩形街道网,要从A 处走到B 处,使所走的路程最短,有多少种不同的走法?【解析】由题意知本题是一个分步计数问题,将相邻两个交点之间的街道称为一段,那么从A 到B 需要走+-(2)n m 段,而这些段中,必须有东西方向的-(1)n 段,其余的为南北方向的-(1)m 段,∴共有--+-+-=1122m n m n m n C C 种走法.。
高三数学排列组合20种解题方法汇总(含例题及解析)
高三数学排列组合20种解题方法汇总(含例题及解析)
排列组合是高考必考内容,但却是学生心目中难题,有的学生很难理解,现特附上数学排列组合20种解题方法汇总文档,里面交待了常见的排列组合研究方法,并给以习题练习,希望对于广大考生有帮助。
排列组合常见模型及解题技巧
排列组合常见模型及解题技巧排列组合常见模型及解题技巧___________________________________排列组合是数学中的一个重要概念,其主要用于解决有关物品数量、顺序、种类等问题,十分重要。
尤其在中考、高考中,排列组合模型非常常见。
因此,想要在考试中取得好成绩,需要对排列组合的相关知识有所了解。
### 一、常见的排列组合模型1. 元素排列模型:当有n个元素时,可以有n!种不同的排列方式。
2. 重复的排列模型:当有n个元素中有m个重复的元素时,可以有$\frac{n!}{m!}$种不同的排列方式。
3. 选择排列模型:当从n个元素中选出m个元素进行排列时,可以有$\frac{n!}{(n-m)!}$种不同的排列方式。
4. 组合模型:当从n个元素中选出m个元素进行组合时,可以有$\frac{n!}{m!(n-m)!}$种不同的组合方式。
5. 组合中出现重复的情况:当从n个元素中选出m个元素进行组合时,若有k个重复的元素,可以有$\frac{n!}{(m-k)!(n-m)!}$种不同的组合方式。
### 二、解题技巧1. 明确问题:排列组合问题一般都是要求出物品的总数量或者某一种情况出现的总次数。
因此,在解决这样的问题之前,要明确问题是要计算出总数量还是总次数。
2. 对物品进行分类:在解决排列组合问题时,要明确物品的数量、重复的情况以及可以选择的情况,将物品分成不同的分类。
3. 认真计算:根据不同的情况,选择对应的模型来计算出总数量或者总次数。
在计算之前一定要仔细地去理解问题,以免出错。
4. 熟悉常用公式:在处理排列组合问题时,要能够准确地使用对应的公式来计算出正确的答案。
因此,对于常用的公式一定要牢记于心,并能够准确地使用。
### 三、总结通过本文,我们可以了解到排列组合常见的几个模型以及如何正确地使用它们来解决问题。
排列组合问题是数学考试中常见的问题之一,因此在备考考试时一定要加强对这方面的学习。
高考数学 专题50 排列组合解答策略黄金解题模板-人教版高三全册数学试题
专题50 排列组合解答【高考地位】排列组合问题是高考必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,备考有效方法是题型与解法归类、识别模式、熟练运用,解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析解答。
同时还要注意讲究一些策略和方法技巧,使一些看似复杂的问题迎刃而解。
其考试题型主要有填空题、选择题或者解答题中的应用,其难度不会太大.其试题难度属中高档题.【方法点评】类型一相邻问题捆绑法使用情景:题目中规定相邻的几个元素并为一个组(当作一个元素)参与排列.解题模板:第一步首先将题目中规定相邻的几个元素作为一个整体;第二步然后运用排列组合求出其不同的排列中种数;第三步得出结论.例1.有两排座位,前排个座位,后排个座位,现安排人就座,规定前排中间的个座位不能坐,并且这两人不左右相邻,那么不同的坐法的种数是()A. B. C. D.【答案】D【变式演练1】有6个座位连成一排,现有3人入座,则恰有两个空位相邻的不同坐法的种数是()A.36 B.48C.72 D.120【答案】C【解析】试题分析:根据题意,分两种情况讨论;①两端恰有两个空座位相邻,则必须有一人坐在空座的边上,其余两人在余下的三个座位上任意就座,此时有种坐法;②两个相邻的空座位不在两端,有三种情况,此时这两个相邻的空座位两端必须有两人就座,余下一人在余下的两个座位上任意就座,此时有种坐法.故共有种坐法.考点:排列组合.类型二不相邻问题插空法使用情景:题目中规定相邻的几个元素不相邻.解题模板:第一步可先把无位置要求的几个元素全排列;第二步再把规定相离的几个元素插入上述几个元素间的空位和两端;第三步得出结论.例2 七个人并排站成一行,如果甲乙两个必须不相邻,那么不同排法的种数是[ ] A.1440 B.3600 C.4820 D.4800【答案】B.点评:不相邻问题最有效的方法之一就是插空法.【变式演练2】来自中国、英国、瑞典的乒乓球裁判各两名,执行奥运会的一号、二号和三号场地的乒乓球裁判工作,每个场地由两名来自不同国家的裁判组成,则不同的安排方案总数有A. 种B. 种C. 种D. 种【答案】A【解析】解:每个场地由两名来自不同国家的裁判组成,只能分为:中、英;中、瑞;英、瑞.三组中,中国、英国、瑞典的乒乓球裁判各两名,本国裁判可以互换,进场地全排,不同的安排方案总数有=2×2×2×6=48种.故选A类型三特殊元素“优先安排法”使用情景:对于带有特殊元素的排列组合问题解题模板:第一步一般应先考虑特殊元素,先满足特殊元素的要求;第二步再考虑其它元素;第三步得出结论.例3 . 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有()。
排列组合问题的常见模型(详解)
排列组合问题的常见模型一、相异元素不许重复的排列组合问题这类问题有两个条件限制,一是给出的元素是不同的,即不允许有相同的元素;二是取出的元素也是不同的,即不允许重复使用元素。
这类问题有如下一些常见的模型。
模型1:从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都包含在内,则:组合数:1m k n k N C --= 排列数:2m m k m n k N A C --=例1.全组有12个同学,其中有3个女同学,现要选出5个,如果3个女同学都必须当选,试问在下列情形中,各有多种不同的选法?(1)组成一个文娱小组;(2)分别担任不同的工作.解:(1)由于要选出的5人中,3个女同学都必须当选,因此还需要选2人.这可从9个男同学中选出,故不同的选法有:53112336(N C --==种)(2)在上述组合的基础上,因为还需要考虑选出5人的顺序关系,故不同的选法有:553522512359120364320(N A C A C --===⨯=种)模型2.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都不包含在内,则: 组合数:1m n k N C -= 排列数:2m m m m n k n k N A C A --==例2.某青年突击队有15名成员,其中有5名女队员,现在选出7人,如果5名女队员都不当选,试问下列情形中,各有多少种不同的选法?(1)组成一个抢修小组;(2)分别但任不同的抢修工作.解:(1)由于5名女队员都不当选,因此只能从10名男同学选出,故不同的选法有:77311551010120N C C C -====(种)(2)由于还需考虑选出的7个人的顺序问题,故不同的选法有:7721551010987654604800N A A -===⨯⨯⨯⨯⨯⨯=(种)模型3.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定每一个排列或组合,都只包含某k 个元素中的某s 个元素。
高考数学复习专题——排列组合-概率与统计(教师版)
一、排列组合问题的解题策略一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑〞法解决,先将甲乙二人看作一个元素与其他五人进展排列,并考虑甲乙二人的顺序,所以共有种。
评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑〞法解决,共有种排法。
二、不相临问题——选空插入法例2. 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空〞法,所以甲、乙二人不相邻的排法总数应为:种 .评注:假设个人站成一排,其中个人不相邻,可用“插空〞法解决,共有种排法。
三、复杂问题——总体排除法在直接法考虑比拟难,或分类不清或多种时,可考虑用“排除法〞,解决几何问题必须注意几何图形本身对其构成元素的限制。
例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。
例4. (1995年高考题) 1名教师和4名获奖学生排成一排照像留念,假设教师不排在两端,那么共有不同的排法种.解:先考虑特殊元素〔教师〕的排法,因教师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.〔2000年全国高考题〕乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进展分类讨论,最后总计。
高考数学二轮复习重点难点题型讲解第30讲 排列组合12种题型归纳
2 / 53
故选:B.
3.2021 年 4 月 15 日,是第六个全民国家安全教育日,教育厅组织宣讲团到某市的六个不同高
校进行国家安全知识的宣讲,时间顺序要求是:高校甲必须排在第二或第三个,且高校甲宣讲
结束后需立即到高校丁宣讲,高校乙、高校丙的宣讲顺序不能相邻,则不同的宣讲顺序共有
(
)
A.28 种 B.32 种 C.36 种 D.44 种
故选:C.
【题型三】 人坐座位模型 3:染色(空间):
【典例分析】 如图所示的几何体由三棱锥 P − ABC 与三棱柱 ABC − A1B1C1 组合而成,现用 3 种不同颜色对这个 几何体的表面涂色(底面 A1B1C1 不涂色),要求相邻的面均不同色,则不同的涂色方案共有
(
)
A. 6种 B. 9种 C.12 种 D. 36种
8 / 53
当 AC 不同时:染色方案为 5× 4×3× 2× 2 = 240 不同的染色方案为: 420 种 故答案为 A 2.在如图所示的十一面体 ABCDEFGHI 中,用 3 种不同颜色给这个几何体各个顶点染色,每个顶 点染一种颜色,要求每条棱的两端点异色,则不同的染色方案种数为__________.
)
A.144B.120C.72D.48
【答案】B
【分析】先求出只有 3 个歌舞类节目不相邻的方法,然后求出 3 个歌舞类节目不相邻且 2 个小
品类节目相邻的排法,相减可得.
【详解】 先考虑只有 3 个歌舞类节目不相邻,排法有 A33A43 = 144 种, 再考虑 3 个歌舞类节目不相邻,2 个小品类节目相邻的排法有: A22 A22 A33 = 24 , 因此同类节目不相邻的排法种数是144 − 24 = 120 .
14种策略7大模型绝杀排列组合
14种策略7大模型“绝杀”排列组合排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握模型和解题方法,识别并化归到模式,熟练运用,是解决排列组合应用题的有效途径。
第一部分——组合的常见技巧策略一:合理分类与准确分步策略分类相加:每类方法都能独立地完成这件事 ;分步相乘:只有各个步骤都完成了,才能完成这件事。
【例1】有11名外语翻译人员,其中5名是英语译员,4名是法语译员,另外两名是英、法语均精通,从中找出8人,使他们可以组成翻译小组,其中4人翻译英语,另4人翻译法语,这两个小组能同时工作,问这样的8人名单可以开出几张?【解析】:按只会英语的有4名、3名、2名分类4431422456525524C C C C C C C C ++【例2】见后面【例19】【特别提醒】 在解排列组合问题时,一定要以两个原理为核心。
按元素的性质分类,按事情发生的过程分步。
综合题通常是整体分类再局部分步。
【类题演练】1、360的正约数(包括1和360)共有 个。
(答案24)2、工厂实验生产中需依次投入2种化工原料,现有5种原料可用,但甲、乙两种原料不能同时使用,且依次投料时,若使用甲原料,则甲必须先投放. 那么不同的实验方案共有____种 (答案15);3、公司招聘进8名员工,平均分给下属的甲、乙两个部门.其中两名英语翻译人员不能同给一个部门;另三名电脑编程人员也不能同给一个部门,则不同的分配方案有______种 (答案36);4、f 是集合{}4,5,6M =到集合{}1,0,1N =-的映射。
(答案①7;②9) ①若(4)(5)f f +(6)f =,则映射共有 个 ; ②若()3xf x +为奇数,则映射共有 个。
5、(2010湖南卷理科7)在某种信息传输过程中,用4个数字的一个排列(数字也许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) (答案B )(A )10 (B ) 11 (C )12 (D )156、(2010浙江卷17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复。
备战2019年高考数学大一轮复习 热点聚焦与扩展 专题58 巧选数学模型解排列组合问题
专题58 巧选数学模型解排列组合问题【热点聚焦与扩展】纵观近几年的高考试题,排列组合问题往往以实际问题为背景,考查排列数、组合数、分类分步计数原理,同时考查分类讨论的思想及解决问题的能力.除了以选择、填空的形式考查,也往往在解答题中与古典概型概率计算相结合进行考查.有一些问题如果直接从题目入手,处理起来比较繁琐.但若找到解决问题的合适模型,或将问题进行等价的转化.便可巧妙的解决问题.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明. (一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素. 例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可.3、先取再排(先分组再排列):排列数mn A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列.但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列. (二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可.2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边 (2)要从题目中判断是否需要各自排序3、错位排列:排列好的n 个元素,经过一次再排序后,每个元素都不在原先的位置上,则称为这n 个元素的一个错位排列.例如对于,,,a b c d ,则,,,d c a b 是其中一个错位排列.3个元素的错位排列有2种,4个元素的错位排列有9种,5个元素的错位排列有44种.以上三种情况可作为结论记住4、依次插空:如果在n 个元素的排列中有m 个元素保持相对位置不变,则可以考虑先将这m 个元素排好位置,再将n m -个元素一个个插入到队伍当中(注意每插入一个元素,下一个元素可选择的空1+)5、不同元素分组:将n 个不同元素放入m 个不同的盒中6、相同元素分组:将n 个相同元素放入m 个不同的盒内,且每盒不空,则不同的方法共有11m n C --种.解决此类问题常用的方法是“挡板法”,因为元素相同,所以只需考虑每个盒子里所含元素个数,则可将这n 个元素排成一列,共有()1n -个空,使用()1m -个“挡板”进入空档处,则可将这n 个元素划分为m 个区域,刚好对应那m 个盒子.7、涂色问题:涂色的规则是“相邻区域涂不同的颜色”,在处理涂色问题时,可按照选择颜色的总数进行分类讨论,每减少一种颜色的使用,便意味着多出一对不相邻的区域涂相同的颜色(还要注意两两不相邻的情况),先列举出所有不相邻区域搭配的可能,再进行涂色即可.【经典例题】例1.【2018届湖北省黄冈中学5月三模】对33000分解质因数得,则的正偶数因数的个数是( )A. 48B. 72C. 64D. 96 【答案】A由分步计数乘法原理可得的因数共有,不含的共有,正偶数因数的个数有个,即的正偶数因数的个数是,故选A.例2.【2018届贵州省凯里市第一中学四模】集合,从集合中各取一个数,能组成( )个没有重复数字的两位数? A. 52 B. 58 C. 64 D. 70 【答案】B【解析】分析:分别从集合A ,B 取一个数字,再全排列,根据分步计数原理即可得到答案. 详解:3例3.【2018届四川省 “联测促改”】中国古代十进制的算筹计数法,在世界数学史上是一个伟大的创造,算筹实际上是一根根同样长短的小木棍,如图,算筹表示数1~9的方法的一种.例如:163可表示为“”27可表示为“”问现有8根算筹可以表示三位数的个数(算筹不能剩余)为( )A. 48B. 60C. 96D. 120 【答案】C对于()2,2,4,组合出的可能的算筹为:()()()()()()2,2,4,6,6,4,2,2,8,6,6,8,2,6,4,2,6,8共6种,可以组成的三位数的个数为: 3!23!42⨯+⨯种, 同理()2,3,3可以组成的三位数的个数为: 3!23!42⨯+⨯种, 利用加法原理可得:8根算筹可以表示三位数的个数(算筹不能剩余)为3!123!8163!962⨯+⨯=⨯=. 本题选择C 选项. 例4.已知集合(){}22,|1,,A x y xy x y Z =+≤∈, (){},|2,2,,B x y x y x y Z =≤≤∈,定义集合()()(){}12121122,|,,,A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素个数为( )A. 77B. 49C. 45D. 30例5.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复.若填入A方格的数字大于B方格的数字,则不同的填法共有( )A. 192种B. 128种C. 96种D. 12种【答案】C【解析】试题分析:根据题意,先分析A、B两个方格,由于其大小有序,则可以在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,由组合数公式计算可得其填法数目,对于C、D两个方格,每个方格有4种情况,由分步计数原理可得其填法数目,最后由分步计数原理,计算可得答案.根据题意,对于A、B两个方格,可在l、2、3、4中的任选2个,大的放进A方格,小的放进B方格,有246C=种情况,对于C、D两个方格,每个方格有4种情况,则共有4×4=16种情况,则不同的填法共有16×6=96种,故选C.例6.【2018届黑龙江省牡丹江市第一高级中学高三上期末】将数字1,2,3,4,填入右侧的表格内,要求每行、每列的数字互不相同,如图所示,则不同的填表方式共有()种A. 432B. 576C. 720D. 864【答案】B【解析】对符合题意的一种填法如图,行交换共有4424A=种,列交换共有4424A=种,所以根据分步计数原理得到不同的填表方式共有2424=576⨯种,故选B.5例7. 设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A. 60B. 90C. 120D. 130 【答案】D例8.已知{}1,2,3,,40S =,A S ⊆且A 中有三个元素,若A 中的元素可构成等差数列,则这样的集合A 共有( )个A. 460B. 760C. 380D. 190 【答案】C【解析】思路:设A 中构成等差数列的元素为,,a b c ,则有2b a c =+,由此可得,a c 应该同奇同偶,而当,a c 同奇同偶时,则必存在中间项b ,所以问题转变为只需在140-中寻找同奇同偶数的情况.,a c 同为奇数的可能的情况为220C ,同为偶数的可能的情况为220C ,所以一共有2202380C ⋅=种.例9.【2018届云南省昆明市第二次统考】定义“有增有减”数列{}n a 如下: *t N ∃∈,满足1t t a a +<,且*s N ∃∈,满足1S S a a +>.已知“有增有减”数列{}n a 共4项,若{}(),,1,2,3,4i a x y z i ∈=,且x y z <<,则数列{}n a 共有( )A. 64个B. 57个C. 56个D. 54个 【答案】D例10:方程10x y z w +++=的正整数解有多少组?非负整数解有多少组? 【答案】正整数解有84种,非负整数解有286种【解析】思路:本题可将10理解为10个1相加,而,,,x y z w 相当于四个盒子,每个盒子里装入了多少个1,则这个变量的值就为多少.从而将问题转化为相同元素分组的模型,可以使用挡板法得:3984C =种;非负整数解相当于允许盒子里为空,而挡板法适用于盒子非空的情况,所以考虑进行化归:()()()()10111114x y z w x y z w +++=⇒+++++++=,则1,1,1,1x y z w ++++这四个盒子非空即可.所以使用挡板法得:313286C =种【精选精练】1.【2018届山东省潍坊市二模】中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在前三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同排课顺序共有( ) A.种 B.种 C.种 D.种【答案】A【解析】分析:该题属于有限制条件的排列问题,在解题的过程中,需要分情况讨论,因为“数”必须排在前三节,这个就是不动的,就剩下了五个不同的元素,所以需要对“数”的位置分三种情况,对于相邻元素应用捆绑法来解决即可. 详解:当“数”排在第一节时有排法,当“数”排在第二节时有种排法,当“数”排在第三节时,当“射”和“御”两门课程排在第一、二节时有种排法,当“射”和“御”两门课程排在后三节的时候有种排法,所以满足条件的共有种排法,故选A.点睛:在解决问题时一是注意对“数”的位置分三种情况,二是在“数”排在第三节时,要对两个相邻元7素的位置分类讨论,再者还要注意“数”排在第二节时,两个相邻元只能排在后四节. 2.【2018届北京师范大学附中二模】若自然数使得作竖式加法均不产生进位现象,则称为“开心数”.例如:32是“开心数”.因不产生进位现象;23不是“开心数”,因产生进位现象,那么,小于100的“开心数”的个数为( )A. 9B. 10C. 11D. 12 【答案】D3.【2018届广东省广州市第一次调研】某学校获得5个高校自主招生推荐名额,其中甲大学2名,乙大学2名,丙大学1名,并且甲大学和乙大学都要求必须有男生参加,学校通过选拔定下3男2女共5个推荐对象,则不同的推荐方法共有A. 36种B. 24种C. 22种D. 20种 【答案】B【解析】第一类:男生分为1,1,1,女生全排,男生全排得323212A A ⋅=,第二类:男生分为2,1,所以男生两堆全排后女生全排22232212C A A ⋅=,不同的推荐方法共有121224+= ,故选B.4. 设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是集合A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8S =,则S 的3个元素构成的所有集合中,其元素都是“孤立元”的集合个数是( )A. 6B. 15C. 20D. 25 【答案】C【解析】思路:首先要理解“k A ∈,则1k A -∉且1k A +∉”,意味着“独立元”不含相邻的数,元素均为独立元,则说明3个元素彼此不相邻,从而将问题转化为不相邻取元素问题,利用插空法可得:3620C =种5.一个含有10项的数列{}n a 满足:11010,5,1,(1,2,,9)k k a a a a k +==-==,则符合这样条件的数列{}n a 有( )个A. 30B. 35C. 36D. 40【答案】36种6.【2018届浙江省金丽衢十二校第二次联考】用0,1,2,3,4可以组成的无重复数字的能被3整除的三位数的个数是()A. 20B. 24C. 36D. 48【答案】A【解析】分析:先根据能被3整除的三位数字组成为012,024,123,234四种情况,再分类讨论排列数,最后相加得结果.详解:因为能被3整除的三位数字组成为012,024,123,234四种情况,所以对应排列数分别为因此一共有,选A.7.【2018届上海市松江、闵行区二模】13.设,那么满足的所有有序数组的组数为___________.【答案】【解析】分类讨论:①,则这四个数为或,有组;②,则这四个数为或,有组;③,则这四个数为或或,有组;综上可得,所有有序数组的组数为.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.8.【2018届天津市十二重点中学联考(一)】用0,1,2,3,4组成没有重复数字的五位偶数,要求奇数不相邻,且0不与另外两个偶数相邻,这样的五位数一共有_______个.(用数字作答)【答案】169.对于各数互不相等的整数数组(是不小于的正整数),对于任意的,当时有,则称是该数组的一个“逆序”,一个数组中所有“逆序”的个数称为该数组的“逆序数”,则数组中的逆序数为___________;若数组中的逆序数为,则数组中的逆序数为___________.【答案】 3910.已知集合,集合的所有非空子集依次记为:,设分别是上述每一个子集内元素的乘积.(如果的子集中只有一个元素,规定其积等于该元素本身),那么__________.【答案】5【解析】所有子集的“乘积”之和即展开式中所有项的系数之和T-1,令,则故答案为511.【2018届浙江省嵊州市高三上期末】9某学校要安排2位数学老师、2位英语老师和1位化学老师分别担任高三年级中5个不同班级的班主任,每个班级安排1个班主任.由于某种原因,数学老师不担任A班的班主任,英语老师不担任B班的班主任,化学老师不担C班和D班的班主任,则共有__________种不同的安排方法.(用数字作答).【答案】32【解析】若数学老师分到,B C两班,共有212222=8A A A种分法,若数学老师分到,B D两班,共有212222=8A A A种分法,若数学老师分到,B E两班,共有2222=4A A种分法,若数学老师分到,C D两班,共有2222=4A A种分法,若数学老师分到,C E两班,共有2222=4A A种分法,若数学老师分到,D E两班,共有2222=4A A种分法,共有8+8+4+4+4+4=32种安排方法,故答案为32 .12.圆周上有20个点,过任意两点连接一条弦,这些弦在圆内的交点最多有多少个【答案】4845个11。
高中数学-排列组合21种模型
高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。
(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高考数学《排列组合---寻找合适的模型》典型例题分析
高考数学《排列组合---寻找合适的模型》典型例题分析在排列组合问题中,有一些问题如果直接从题目入手,处理起来比较繁琐。
但若找到解决问题的合适模型,或将问题进行等价的转化。
便可巧妙的解决问题一、典型例题:例1:设集合A 由n 个元素构成,即{}12,,,n A a a a =,则A 所有子集的个数为_______ 思路:可将组成子集的过程视为A 中的元素一个个进行选择,要不要进入到这个子集当中,所以第一步从1a 开始,有两种选择,同样后面的23,,,n a a a 都有两种选择,所以总数2222n n N =⨯⨯⨯=个个答案:2n例2:已知{}1,2,3,,40S =,A S ⊆且A 中有三个元素,若A 中的元素可构成等差数列,则这样的集合A 共有( )个A. 460B. 760C. 380D. 190思路:设A 中构成等差数列的元素为,,a b c ,则有2b a c =+,由此可得,a c 应该同奇同偶,而当,a c 同奇同偶时,则必存在中间项b ,所以问题转变为只需在140−中寻找同奇同偶数的情况。
,a c 同为奇数的可能的情况为220C ,同为偶数的可能的情况为220C ,所以一共有2202380C ⋅=种答案:C例3:设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5iA x x x x x x i ∈−=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A. 60B. 90C. 120D. 130思路:因为0i x =或1i x =,所以若1234513x x x x x ≤++++≤,则在()1,2,3,4,5i x i =中至少有一个1i x =,且不多于3个。
所以可根据i x 中含0的个数进行分类讨论。
① 五个数中有2个0,则另外3个从1,1−中取,共有方法数为23152N C =⋅ ② 五个数中有3个0,则另外2个从1,1−中取,共有方法数为32252N C =⋅ ③ 五个数中有4个0,则另外1个从1,1−中取,共有方法数为4352N C =⋅ 所以共有23324555222130N C C C =⋅+⋅+⋅=种答案:D例4:设集合{1,2,3,,10}A =,设A 的三元素子集中,三个元素的和分别为12,,,n a a a ,求12n a a a +++的值思路:A 的三元子集共有310C 个,若按照题目叙述一个个相加,则计算过于繁琐。
排列组合常见模型及解题技巧
排列组合常见模型及解题技巧■河南省南阳市第二中学校李红勤解排列组合问题常分三步走:首先审题,明确要完成的事件;其次确定是独立完成还是分步完成,是排列还是组合;最后要用计数原理和排列数、组合数公式求解。
一、优先法(先特殊后一般)元素优先法:先考虑有限制条件的元素,再考虑其他元素。
位置优先法:先考虑有限制条件的位置,再考虑其他位置。
f用1,2,3,4,5,6这6个数字组成无重复的五位数,试求满足下列条件的五位数各有多少个。
(1)数字1不在个位和千位;(2)数字1不在个位,数字6不在万位。
解析:(1)位置优先,个位和千位从5个数中选,共有A:种选择方法,其余3位从4个数中选,共有A;种选择方法,由乘法原理知有A[A;=480(个)数满足题意。
(2)元素优先,当1在万位时余下四位有A?=120(种)选法;1不在万位时,万位有A:种选法,个位有A:种选法,余下的有A:种选法,共有A:A;A:=384(种)选法。
所以总共有384+120=504(种)选法。
变式训练1:1名老师和4名获奖同学排成一排照相留念,若老师不站两端,则不同的排法有多少种?(答案:72种)二、捆绑法某些元素必相邻的排列,可以先将相邻的元素绑捆成一个元素,与其他元素进行排列,然后再把捆绑元素松开内部全排列。
侧2某市图书馆要在国庆长假一周内接待5所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观两天,其余只参观一天,则不同的安排方法有多少种?解析:注意连续参观两天,即把7天中的连续两天“捆绑成一天”,有Cj种方法,其余的就是4所学校选5天进行排列,共有C;A:=720(种)方法。
变式训练2:4个不同的小球全部放入3个不同的盒子中,若使每个盒子不空,则不同的放法有____种。
(答案:C:A§=36)三、插空法对于元素不相邻的排列,可以先排其他元素,再让不相邻的元素插空。
若局部元素相邻,可参照“捆绑法”。
高考培优课程数学讲义:排列组合的经典模型及其应用【学生版】
高考培优数学“排列组合的经典模型及其应用”讲义编号:排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?经典方法知识的讲解已结合在下面的例题中。
排列组合中的经典方法(★★☆☆☆)我竟然不知道以下经典方法,太恐怖了!1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A、60种B、48种C、36种D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()A、4441284C C C种 B、44412843C C C种 C、4431283C C A种 D、444128433C C CA种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为()A、480种B、240种C、120种D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。
排列组合23种模型大全
排列组合23种模型大全1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一种个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( )A 、60种B 、48种C 、36种D 、24种2.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种例3.已知集合{1,2,3,,19,20}A =,集合1234{,,,}B a a a a =,且B A ⊂,若||1(,1,2,3,4)i j a a i j -≠=,则满足条件的集合B 有多少个?3.定序问题缩倍法:在排列问题中限制某几个元素保持一定的顺序,可用缩小倍数的方法. 例4.(1)A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( )A 、24种B 、60种C 、90种D 、120种(2)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A 、210种B 、300种C 、464种D 、600种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例5.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例6.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种6.全员分配问题分组法: 例7.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( ) A 、480种 B 、240种 C 、120种 D 、96种7.名额分配问题隔板法:例8.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?例9.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?8.方程的正整数解的个数问题隔板法 例10.方程12n x x x k +++=(,*k n N ∈,k n ≥)的正整数解有多少个?有多少非负整数解个?例11.将20个完全相同的球放入编号为1,2,3,4,5的五个盒子中. (1)若要求每个盒子至少放一个球,则一共有多少种放法? (2)若每个盒子可放任意个球,则一共有多少种放法?(3)若要求每个盒子放的球的个数不小于其编号数,则一共有多少种放法?9.限制条件的分配问题分类法:例12.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是A.152 B.126 C.90 D.5410.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加.例13(1)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(2)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?11.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式n A B n A n B n A B⋃=+-⋂()()()()例15.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?12.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素.例16.现1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?13.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.例17(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?14.“至少”“至多”问题用间接排除法或分类法:例18.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有()A、140种B、80种C、70种D、35种15.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例19(1)四个不同小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?(2)9名乒乓球运动员,其中男5名,女4名,现在要从中选4人进行混合双打训练,有多少种不同的选法?16.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置约m种方法.束,可逐一安排元素位置,一般地,n个不同元素排在m个不同位置的排列数有n例20.把6名实习生分配到7个车间实习共有多少种不同方法?17.元素个数较少的排列组合问题可以考虑枚举法:例21.某电脑用户计划使用不超过500元的资金购买单价分别60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方法有()18.复杂的排列组合问题也可用分解与合成法:例23.30030能被多少个不同偶数整除?19.配对(配凑)问题:例24.5双相异的鞋共10只,现随机地取出6只,恰好能配成2双鞋的取法是多少?例25.50名选手参加乒乓球淘汰赛比赛,需要打多少场才能产生冠军? 淘汰赛比赛规则是:要淘汰1名选手必须进行1场比赛;反之,每进行1场比赛则淘汰1名选手.例26.有11名翻译人员,其中5名是英语翻译人员,4名是日语翻译人员,另2人英、日语均精通.现从中选出8人组成两个翻译小组,其中4人翻译英语,另4人翻译日语,则有多少种不同的选派方式?20.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.例27(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点最多有多少个?(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A到B的最短路径有多少种?21.全错位排列问题公式法:全错位排列问题(贺卡问题,信封问题)记住公式即可瑞士数学家欧拉按一般情况给出了一个递推公式:用A、B、C……表示写着n位友人名字的信封,a、b、c……表示n份相应的写好的信纸.把错装的总数为记作f(n).假设把a错装进B里了,包含着这个错误的一切错装法分两类:(1)b装入A里,这时每种错装的其余部分都与A、B、a、b无关,应有f(n-2)种错装法.(2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的)n-1个信纸b、c……装入(除B以外的)n-1个信封A、C……,显然这时装错的方法有f(n-1)种.总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种.a装入C,装入D……的n-2种错误之下,同样都有f(n-2)+f(n-1)种错装法,因此得到一个递推公式:f(n)=(n-1) ⋅[f(n-1)+f(n-2)],分别带入n=2、3、4等可推得结果.也可用迭代法推导出一般公式:1111 ()![1(1)]1!2!3!!nf n nn =⋅-+-+⋅⋅⋅⋅⋅⋅+-例28.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?22.几何问题:例30(1)以正方体的顶点为顶点的四面体共有()A、70种B、64种C、58种D、52种(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有()A、150种B、147种C、144种D、141种23.染色问题:例32.在如图所示的六个空格里涂上红黄蓝三种颜色,每种颜色只能涂两次,要求相邻空格不同色,请问一共有多少种涂法?例33.某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,则不同的栽种方法有多少种?123456排列组合经典题型及方法的综合应用1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,则不同的排法有( )A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .例3.已知集合{1,2,3,,19,20}A =,集合1234{,,,}B a a a a =,且B A ⊂,若||1(,1,2,3,4)i j a a i j -≠=,则满足条件的集合B 有多少个?解析:易知1234,,,a a a a 互不相等且不相邻,则有4172380C =.3.定序问题缩倍法:在排列问题中限制某几个元素保持一定的顺序,可用缩小倍数的方法. 例4.(1)A ,B ,C ,D ,E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法有( )A 、24种B 、60种C 、90种D 、120种(2)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A 、210种B 、300种C 、464种D 、600种 解析:(1)B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . (2)由题意,个位数字只可能是0,1,2,3,4共5种情况,分别有55A 个,1131131131343333323333,,,A A A A A A A A A A A 个,合并总计300个,选B (65651()3002A A -=种) 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例5.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例6.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A 、1260种B 、2025种C 、2520种D 、5040种(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、4441284C C C种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 解析:(1)先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)答案:A .6.全员分配问题分组法: 例7.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( ) A 、480种 B 、240种 C 、120种 D 、96种 解析:(1)234336C A =(2)2454240C A =,答案:B .7.名额分配问题隔板法:例8.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.例9.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?解析:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯35C 种方法,所以满足条件的关灯方案有10种.说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决.8.方程的正整数解的个数问题隔板法 例10.方程12n x x x k +++=(,*k n N ∈,k n ≥)的正整数解有多少个?有多少非负整数解个?29.解析:11n k C --;11n k n C -+-例11.将20个完全相同的球放入编号为1,2,3,4,5的五个盒子中. (1)若要求每个盒子至少放一个球,则一共有多少种放法? (2)若每个盒子可放任意个球,则一共有多少种放法?(3)若要求每个盒子放的球的个数不小于其编号数,则一共有多少种放法?解析:(1)4193876C =;(2)424C ;(3)先在编号为1,2,3,4,5的五个盒子中依次放入0,1,2,3,4个球,再只要保证余下的10个球每个盒子至少放一个,则49126C =.9.限制条件的分配问题分类法:例12.现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜四项工作,则不同安排方案的种数是A . 152B . 126C . 90D . 5410.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加.例13(1)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (2)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:(1)解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I ,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(2)解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有2112252525251225C C C C ++=种.11.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ⋃=+-⋂例15.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A ={甲跑第一棒的排列},B ={乙跑第四棒的排列},则参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.12.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素.例16.现1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?解析:老师在中间三个位置上选一个有13A 种,4名同学在其余4个位置上有44A 种方法;所以共有143472A A =种.13.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理.例17(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( ) A 、36种 B 、120种 C 、720种 D 、1440种(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法? 解析:(1)前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共66720A =种,选C .(2)解析:看成一排,某2个元素在前半段四个位置中选排2个,有24A 种,某1个元素排在后半段的四个位置中选一个有14A 种,其余5个元素任排5个位置上有55A 种,故共有1254455760A A A =种排法.14.“至少”“至多”问题用间接排除法或分类法:例18.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,则不同的取法共有( ) A 、140种 B 、80种 C 、70种 D 、35种 解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有33394570C C C --=种,选.C解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有2112545470C C C C +=台,选C .15.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例19(1)四个不同小球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?(2)9名乒乓球运动员,其中男5名,女4名,现在要从中选4人进行混合双打训练,有多少种不同的选法?解析:(1)先取四个球中二个为一组,另二组各一个球的方法有24C 种,再排:在四个盒中每次排3个有34A 种,故共有2344144C A =种.(2)先取男女运动员各2名,有2254C C 种,这四名运动员混和双打练习有22A 中排法,故共有222542120C C A =种.16.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置约束,可逐一安排元素位置,一般地,n 个不同元素排在m 个不同位置的排列数有n m 种方法. 例20.把6名实习生分配到7个车间实习共有多少种不同方法?解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.17.元素个数较少的排列组合问题可以考虑枚举法:例21.某电脑用户计划使用不超过500元的资金购买单价分别60元、70元的单片软件和盒装磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方法有( )A .5种B .6种C .7种D .8种解析:C .设购买软件x 片、磁盘y 盒,则3,26070500,x y x y x y N ≥≥⎧⎪+≤⎨⎪∈⎩,所以3,2,3,4x y ==;4x =,2,3,4y =;5,2x y ==.故共7种.18.复杂的排列组合问题也可用分解与合成法:例23.30030能被多少个不同偶数整除?解析:先把30030分解成质因数的形式:30030=2×3×5×7×11×13;依题意偶因数2必取,3,5,7,11,13这5个因数中任取若干个组成成积,所有的偶因数为01234555555532C C C C C C +++++=个(或51232⋅=).19.配对(配凑)问题:例24.5双相异的鞋共10只,现随机地取出6只,恰好能配成2双鞋的取法是多少?解析:222532120C C ⋅⋅=例25.50名选手参加乒乓球淘汰赛比赛,需要打多少场才能产生冠军? 淘汰赛比赛规则是:要淘汰1名选手必须进行1场比赛;反之,每进行1场比赛则淘汰1名选手. 解析:49.例26.有11名翻译人员,其中5名是英语翻译人员,4名是日语翻译人员,另2人英、日语均精通.现从中选出8人组成两个翻译小组,其中4人翻译英语,另4人翻译日语,则有多少种不同的选派方式?解析:44314224474264253512030185C C C C C C C C ++=++=.20.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.例27(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点最多有多少个?(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A 到B 的最短路径有多少种?解析:(1)因为圆的一个内接四边形的两条对角线相交于圆内一点,一个圆的内接四边形就对应着两条弦相交于圆内的一个交点,于是问题就转化为圆周上的10个点可以确定多少个不同的四边形,显然有410C 个,所以圆周上有10点,以这些点为端点的弦相交于圆内的交点有410210C =个.(2)解析:可将图中矩形的一边叫一小段,从A 到B 最短路线必须走7小段,其中:向东4段,向北3段;而且前一段的尾接后一段的首,所以只要确定向东走过4段的走法,便能确定路径,因此不同走法有4735C =种.21.全错位排列问题公式法:全错位排列问题(贺卡问题,信封问题)记住公式即可 瑞士数学家欧拉按一般情况给出了一个递推公式:用A 、B 、C ……表示写着n 位友人名字的信封,a 、b 、c ……表示n 份相应的写好的信纸.把错装的总数为记作f (n ).假设把a 错装进B 里了,包含着这个错误的一切错装法分两类:(1)b 装入A 里,这时每种错装的其余部分都与A 、B 、a 、b 无关,应有f (n -2)种错装法.(2)b 装入A 、B 之外的一个信封,这时的装信工作实际是把(除a 之外的)n -1个信纸b 、c ……装入(除B 以外的)n -1个信封A 、C ……,显然这时装错的方法有f (n -1)种.总之在a 装入B 的错误之下,共有错装法f (n -2)+f (n -1)种.a 装入C ,装入D ……的n -2种错误之下,同样都有f (n -2)+f (n -1)种错装法,因此得到一个递推公式: f (n )=(n -1) ⋅[f (n -1)+f (n -2)],分别带入n =2、3、4等可推得结果.也可用迭代法推导出一般公式:1111()![1(1)]1!2!3!!n f n n n =⋅-+-+⋅⋅⋅⋅⋅⋅+- 例28.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?解析:从5个球中取出2个与盒子对号有25C 种,还剩下3个球与3个盒子序号不能对应,利用枚举法分析,如果剩下3,4,5号球与3,4,5号盒子时,3号球不能装入3号盒子,当3号球装入4号盒子时,4,5号球只有1种装法,3号球装入5号盒子时,4,5号球也只有1种装法,所以剩下三球只有2种装法,因此总共装法数为25220C =种.22.几何问题:例30(1)以正方体的顶点为顶点的四面体共有( )A 、70种B 、64种C 、58种D 、52种(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有( )A 、150种B 、147种C 、144种D 、141种解析:(1)正方体8个顶点从中每次取四点,理论上可构成48C 四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有481258C -=个.(2)解析:10个点中任取4个点共有410C 种,其中四点共面的有三种情况:①在四面体的四个面上,每面内四点共面的情况为46C ,四个面共有464C 个;①过空间四边形各边中点的平行四边形共3个;①过棱上三点与对棱中点的三角形共6个.所以四点不共面的情况的种数是44106436141C C ---=种.23.染色问题:例32.在如图所示的六个空格里涂上红黄蓝三种颜色,每种颜色只能涂两次,要求相邻空格不同色,请问一共有多少种涂法?解析:由题意,红黄蓝三种颜色,每种颜色恰好涂了两次,分为两类:第一类可按一下步骤进行:第1步:涂第一格,有3种方法;第2步:涂第二格,有2种方法;第3步:用与第一格不同的颜色涂第三格,有1种方法;第4步:第四格可以涂与第三格颜色不同的,有2种方法.第5步:用不同的两色涂剩下的两格,有2种方法;所以有3×2×1×2×2=24种第二类可按一下步骤进行:第1步:涂第一格,有3种方法;第2步:涂第二格,有2种方法;第3步:用与第一格相同的颜色涂第三格,有1种方法;第4步:第四格只能用没有用过的颜色涂,有种方法.第5步:第五格只能用涂第二格的颜色,第六格只能用涂第四格的颜色,有1种方法;所以有3×2×1×1×1=6种所以,共有24+6=30种涂法.例33.某城市在中心广场建造一个花圃,花圃分为6个部分(如图),现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,则不同的栽种方法有多少种?解析:注意4种颜色的花都有种上.34(1112)120A+++=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第81炼 排列组合——寻找合适的模型在排列组合问题中,有一些问题如果直接从题目入手,处理起来比较繁琐。
但若找到解决问题的合适模型,或将问题进行等价的转化。
便可巧妙的解决问题一、典型例题:例1:设集合A 由n 个元素构成,即{}12,,,n A a a a =L ,则A 所有子集的个数为_______ 思路:可将组成子集的过程视为A 中的元素一个个进行选择,要不要进入到这个子集当中,所以第一步从1a 开始,有两种选择,同样后面的23,,,n a a a L 都有两种选择,所以总数2222n n N =⨯⨯⨯=L 1442443个个答案:2n例2:已知{}1,2,3,,40S =L ,A S ⊆且A 中有三个元素,若A 中的元素可构成等差数列,则这样的集合A 共有( )个A. 460B. 760C. 380D. 190思路:设A 中构成等差数列的元素为,,a b c ,则有2b a c =+,由此可得,a c 应该同奇同偶,而当,a c 同奇同偶时,则必存在中间项b ,所以问题转变为只需在140-中寻找同奇同偶数的情况。
,a c 同为奇数的可能的情况为220C ,同为偶数的可能的情况为220C ,所以一共有2202380C ⋅=种 答案:C例3:设集合(){}{}{}12345,,,,|1,0,1,1,2,3,4,5i A x x x x x x i ∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A. 60B. 90C. 120D. 130 思路:因为0i x =或1i x =,所以若1234513x x x x x ≤++++≤,则在()1,2,3,4,5i x i =中至少有一个1i x =,且不多于3个。
所以可根据i x 中含0的个数进行分类讨论。
① 五个数中有2个0,则另外3个从1,1-中取,共有方法数为23152N C =⋅② 五个数中有3个0,则另外2个从1,1-中取,共有方法数为32252N C =⋅③ 五个数中有4个0,则另外1个从1,1-中取,共有方法数为4352N C =⋅所以共有23324555222130N C C C =⋅+⋅+⋅=种答案:D例4:设集合{1,2,3,,10}A =L ,设A 的三元素子集中,三个元素的和分别为12,,,n a a a L ,求12n a a a +++L 的值思路:A 的三元子集共有310C 个,若按照题目叙述一个个相加,则计算过于繁琐。
所以不妨换个思路,考虑将这些子集中的1,2,,10L 各自加在一起,再进行汇总。
则需要统计这310C 个子集中共含有多少个1,2,,10L 。
以1为例,含1的子集可视为集合中有元素1,剩下两个元素从9个数中任取,不同的选取构成不同的含1的子集,共有29C 个,所以和为291C ⨯,同理,含2的集合有29C ,其和为292C ⨯……,含10的集合有29C 个,其和为2910C ⨯所以()212912101980n a a a C +++=+++=L L答案:1980例5:身高互不相同的6个人排成2横行3纵列,在第一行的每个人都比他同列的身后的个子矮,则所有不同的排法种数是多少思路:虽然表面上是排队问题,但分析实质可发现,只需要将这六个人平均分成三组,并且进行排列,即可完成任务。
至于高矮问题,在分组之后只需让个子矮的站在前面即可。
从而将问题转化为分组问题。
则222364233390C C C N A A =⋅=(种) 答案:90例6:四面体的顶点和各棱中点共10个点,则由这10点构成的直线中,有( )对异面直线A. 450B. 441C. 432D. 423思路:首先要了解一个结论,就是在一个三棱锥中存在3对异面直线,而不共面的四个点便可构成一个三棱锥,寻找不共面的四点只需用总数减去共面的四点即可。
所以将问题转化为寻找这10个点中共面四点的情况。
首先4个面上共面的情况共有46460C ⨯=,每条棱与对棱中点共面情况共有6种,连结中点所成的中位线中有3对平行关系,所以共面,所以四点共面的情况共有4646369C ++=种,所以四点不共面的情况有41069141C -=种,从而异面直线的对数为1413423N =⨯=种答案:D小炼有话说:要熟悉异面直线问题的转化:即异面→三棱锥→四点不共面→四点共面,从而将所考虑的问题简单化例7:设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么称k 是集合A 的一个“孤立元”,给定{}1,2,3,4,5,6,7,8S =,则S 的3个元素构成的所有集合中,其元素都是“孤立元”的集合个数是( )A. 6B. 15C. 20D. 25思路:首先要理解“k A ∈,则1k A -∉且1k A +∉”,意味着“独立元”不含相邻的数,元素均为独立元,则说明3个元素彼此不相邻,从而将问题转化为不相邻取元素问题,利用插空法可得:3620C =种答案:C例8:圆周上有20个点,过任意两点连接一条弦,这些弦在圆内的交点最多有多少个思路:本题可从另一个角度考虑交点的来源,一个交点由两条弦构成,也就用去圆上4个点,而这四个点可以构成一个四边形,在这个四边形中,只有对角线的交点是在圆内,其余均在圆上,所以有多少个四边形就会有多少个对角线的交点,从而把交点问题转化为圆上的点可组成多少个四边形的问题,所以共有4204845C =个答案:4845个例9:一个含有10项的数列{}n a 满足:11010,5,1,(1,2,,9)k k a a a a k +==-==L ,则符合这样条件的数列{}n a 有( )个A. 30B. 35C. 36D. 40 思路:以11k k a a +-=为入手点可得:11k k a a +=±,即可视为在数轴上,k a 向左或向右移动一个单位即可得到1k a +,则问题转化为从10a =开始,点向左或向右移动,总共9次达到105a =,所以在这9步中,有且只有2步向左移动1个单位,7步向右移动1个单位。
所以不同的走法共有2936C =种,即构成36种不同的数列答案:36种例10:方程10x y z w +++=的正整数解有多少组?非负整数解有多少组?思路:本题可将10理解为10个1相加,而,,,x y z w 相当于四个盒子,每个盒子里装入了多少个1,则这个变量的值就为多少。
从而将问题转化为相同元素分组的模型,可以使用挡板法得:3984C =种;非负整数解相当于允许盒子里为空,而挡板法适用于盒子非空的情况,所以考虑进行化归:()()()()10111114x y z w x y z w +++=⇒+++++++=,则1,1,1,1x y z w ++++这四个盒子非空即可。
所以使用挡板法得:313286C =种 答案:正整数解有84种,非负整数解有286种二、历年好题精选1、在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A 只能出现在第一步或最后一步,程序B 和C 在实施时必须相邻,则在该实验中程序顺序的编排方法共有( )A .144种B .96种C .48种D .34种2、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为 ( )A. 232B. 252C.472D. 4843、在1,2,3,4,5这五个数字所组成的允许有重复数字的三位数中,其各个数字之和为9的三位数共有( )A. 16个B. 18个C.19个D.21个4、把座位号为1、2、3、4、5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,且分给同一人的多张票必须连号,那么不同的分法种数为( )A .96B .240C .48D .405、某班组织文艺晚会,准备从,A B 等8个节目中选出4个节目演出,要求:,A B 两个节目至少有一个选中,且,A B 同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的和数为( )A .1860B .1320C .1140D .10206、某班一天中有6节课,上午3节课,下午3节课,要排出此班一天中语文、数学、英语、物理、体育、艺术6堂课的课程表,要求数学课排在上午,艺术课排在下午,不同排法种数为( )A .72B .216C .320D .7207、用0、1、2、3、4这五个数字组成无重复数字的五位数,其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是( )A .48B .36C .28D .128、某宾馆安排A 、B 、C 、D 、E 五人入住3个房间,每个房间至少住1人,且A 、B 不能住同一房间,则不同的安排方法有( )种A .24B .48C .96D .1149、(2014重庆八中一月考,2)要从10名男生和5名女生中选出6人组成啦啦队,若按性别分层抽样且甲男生担任队长,则不同的抽样方法数是A .2539C CB .25310C C C .25310A AD .25410C C10、(2015,广东文),若集合:(){},,,|04,04,04,,,,E p q r s p s q s r s p q r s N =≤<≤≤<≤≤<≤∈ ,(){},,,|04,04,,,,F t u v w t u v w t u v w N =≤<≤≤<≤∈,用()card X 表示集合X 中的元素个数,则()()card E card F +=( )A. 50B. 100C. 150D. 20011、(2014,浙江)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种12、(2014,安徽)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A .24对B .30对C .48对D .60对13、(2014,重庆)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A .72B .120C .144D .16814、(2014,广东)设集合(){}{}12345,,,,|1,0,1,1,2,3,4,5i A x x x x x x i =∈-=,那么集合A 中满足条件“1234513x x x x x ≤++++≤”的元素个数为( )A. 60B. 90C. 144D. 16815、(2016,哈尔滨六中上学期期末考试)高一学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为 ( )A. 484B. 472C. 252D. 23216、集合{}1,2,3,,20S =L 的4元子集{}1234,,,T a a a a =中,任意两个元素差的绝对值都不为1,这样的4元子集T 的个数有_____个习题答案:1、答案:B解析:,B C 相邻则考虑使用整体法,程序A 有要求所以先确定A 的位置,共有2种选法,然后排剩下的元素44A ,再排,B C 间的顺序22A ,所以总数为4242296N A A ==2、答案:C解析:考虑使用间接法,16张卡片任取3张共有316C 种,然后三张卡片同色则不符合要求,共有344C ⋅种,然后若红色卡片有2张则不符合要求,共有21412C C 种,所以不同的取法种数为:33211644124472N C C C C =--= 3、答案:A解析:可按重复数字个数进行分类讨论,若没有重复数字,则数字只能是1,3,5或2,3,4,三位数共有332A 个;若有两个重复数字,则数字为2,2,5和1,4,4,三位数有1326C =个;若三个数字相同,则只有333,所以313322119N A C =++=4、答案:A解析:5张票分给4个人,则必有一人拿两张票,所以先确定哪个人有两张票,共14C 种选择,然后确定给哪两张连号的票,共4种情况,剩下的票分给3人即可。