八年级数学下册第一次月考测试卷
八年级数学下册第一次月考试卷(含答案)
八年级下学期第一次月考数学试卷范围:第一章~第二章满分:150分考试用时:120分钟题号一二三总分得分一、选择题(本大题共15小题,共45.0分)1.如图,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=12cm,则AB等于()A. 6cmB. 7cmC. 8cmD. 9cm2.在锐角△ABC内一点P满足PA=PB=PC,则点P是△ABC()A. 三条角平分线的交点B. 三条中线的交点C. 三条高的交点D. 三边垂直平分线的交点3.如图,点D在△ABC的边AC上,将△ABC沿BD翻折后,点A恰好与点C重合.若BC=5,CD=3,则BD的长为()A. 1B. 2C. 3D. 44.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A. M点B. N点C. P点D. Q点5.由下列条件不能判定△ABC是直角三角形的是()A. ∠A=37°,∠C=53°B. ∠A−∠C=∠BC. ∠A:∠B:∠C=3:4:5D. ∠A:∠B:∠C=2:3:56. 如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于点D ,CE 平分∠ACD 交AB 于点E ,则下列结论一定成立的是( )A. BC =ECB. EC =BEC. BC =BED. AE =EC7. 已知a // b ,某学生将一直角三角板如图所示放置.如果∠1=35°,那么∠2的度数为( )A. 35°B. 55°C. 56°D. 65°8. 下列说法:①若直线PE 是线段AB 的垂直平分线,则EA =EB ;②若PA =PB ,EA =EB ,则直线PE 是线段AB 的垂直平分线;③若EA =EB ,则直线EP 是线段AB 的垂直平分线;④若PA =PB ,则点P 在线段AB 的垂直平分线上.其中正确的有( )A. 1个B. 2个C. 3个D. 4个9. 不等式组{2x +9>6x +1x −k <1的解集为x <2,则k 的取值范围为( )A. k >1B. k <1C. k ≥1D. k ≤110. 不等式组{2x >1−12x +1≥0的整数解x 的值为( )A. 0、1、2B. 1、2C. 2D. 111. 已知关于x 的不等式组{x >2a −3,2x ≥3(x −2)+5仅有三个整数解,则a 的取值范围是 ( )A. 12≤a <1B. 12≤a ≤1C. 12<a ≤1D. a <112. 商店里有如表两种节能灯:功率(kw)单价(元/只) 白炽灯 0.1 2 节能灯0.0432经了解知,这两种灯的使用寿命相同.已知王阿姨家所在地的电价为0.50元/kW·ℎ.如果仅考虑费用支出[用电量(kW·ℎ)=功率(kW)×时间(ℎ)],且节能灯较合算,则这两种灯的使用寿命需超过()A. 1000hB. 900hC. 1100hD. 800h13.某市自来水公司按如下标准收取水费:若每户每月用水不超过5m3,则每立方米收费1.5元;若每户每月用水超过5m3,则超过部分每立方米收费2元,小颖家某月的水费不少于15元,那么她家这个月的用水量(吨数为整数)至少是()A. 10.75m3B. 9m3C. 8m3D. 8.75m314.某人从一鱼摊上买了三条鱼,平均每条a元,又从另一个鱼摊上买了两条鱼,平均元的价格把鱼全部卖给了乙,结果发现赚了钱,原每条b元,后来他又以每条a+b2因是()A. a<bB. a>bC. a=bD. 与a、b大小无关15.已知a,b为常数,ax+b>0的解集为x<1,则bx−a<0的解集是()5A. x>−5B. x<−5C. x>5D. x<5二、填空题(本大题共5小题,共25.0分)16.三角形三边长分别为3,4,5,那么最长边上的中线长等于______.17.如图,某失联客机从A地起飞,飞行1000km到达B地,再折返飞行1000km到达C地后在雷达上消失,已知∠ABC=60°,则失联客机消失时离起飞地A地的距离为km.18.如图,∠MON=30°,点B1在边OM上,且OB1=2,过点B1作B1A1⊥OM交ON于点A1,以A1B1为边在A1B1右侧作等边三角形A1B1C1;过点C1作OM的垂线分别交OM、ON于点B2、A2,以A2B2为边在A2B2的右侧作等边三角形A2B2C2;过点C2作OM的垂线分别交OM、ON于点B3、A3,以A3B3为边在A3B3的右侧作等边三角形A3B3C3,…;按此规律进行下去,则△A n A n+1C n的面积为___________.(用含正整数n的代数式表示)19. 我们定义|a b cd|=ad −bc ,例如|2345|=2×5−3×4=10−12=−2,则不等式组1<|1x34|<3的解集是 . 20. 若关于x 的不等式组{x−24<x−13,2x −m ≤2−x 有且只有三个整数解,则m 的取值范围是 .三、解答题(本大题共7小题,共80.0分)21. (8分)解不等式组{3x −2>1,①x +9<3(x +1),②并把解集在数轴上表示出来.22. (8分)我们定义一个关于实数m ,n 的新运算,规定:m※n =4m −3n ,例如:5※2=4×5−3×2=14,若m 满足m※2<0,求m 的取值范围.23. (10分)解不等式:2x −1>3x−12.解:去分母,得2(2x−1)>3x−1.…(1)请完成上述解不等式的余下步骤;(2)解题回顾:本题“去分母”这一步的变形依据是_____________(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变B.不等式两边都乘(或除以)同一个负数,不等号的方向改变24.(12分)如图,在Rt△ABC中,∠C=90°,AB边的垂直平分线DE交BC于点E,垂足为D.求证:∠CAB=∠AED.25. (12分)解不等式组:{3x ≤2x +1,①2x +5≥−1.②请结合题意填空,完成本题的解答. (1)解不等式①,得____________; (2)解不等式②,得____________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为___________.26. (14分)在△ABC 中,AB 、AC 边的垂直平分线分别交BC 边于点M 、N .(1)如图①,若△AMN 是等边三角形,则∠BAC =______°; (2)如图②,若∠BAC =135°,求证:BM 2+CN 2=MN 2.(3)如图③,∠ABC 的平分线BP 和AC 边的垂直平分线相交于点P ,过点P 作PH 垂直BA 的延长线于点H.若AB =4,CB =10,求AH 的长.27.(16分)如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=∠DBO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长;(3)在(1)中,过D作DF⊥AC于F点,点H为FC上一动点,点G为OC上一动点,(如图3),当H在FC上移动、点G点在OC上移动时,始终满足∠GDH=∠GDO+∠FDH,试判断FH、GH、OG这三者之间的数量关系,写出你的结论并加以证明.答案1.C2.D3.D4.A5.C6.C7.B8.C9.C 10.B 11.A 12.A 13.B 14.A 15.B 16.2.5 17.100018.(32)2n−2×√3319.13<x <1 20.1≤m <421.解:x >3.解集在数轴上表示略. 22.解:∵m※2=4m −3×2=4m −6,∴由m※2<0可得4m −6<0, 解得:m <32.23.解:(1)去括号,得4x −2>3x −1.移项,得4x −3x >2−1. 合并同类项,得x >1.(2)A24.证明:∵DE 是AB 的垂直平分线,∴EA =EB .∴∠EAB=∠B.∵∠C=90°,∴∠CAB+∠B=90°.又∵∠AED+∠EAB=90°,∴∠CAB=∠AED.25.(1)x≤1(2)x≥−3(3)略(4)−3≤x≤126.(1)120(2)如图①,连接AM、AN∵∠BAC=135°∴∠B+∠C=45°,又∵点M在AB的垂直平分线上∴AM=BM∴∠BAM=∠B,同理AN=CN,∠CAN=∠C∴∠BAM+∠CAN=45°∴∠MAN=90°,∴AM2+AN2=MN2;∴BM2+CN2=MN2;(3)如图②,连接AP、CP,过点P作PE⊥BC于点E ∵BP平分∠ABC,PH⊥BA,PE⊥BC∴PH=PE∵点P在AC的垂直平分线上∴AP=CP在Rt△APH和Rt△CPE中{AP=CPPH=PE∴Rt△APH≌Rt△CPE∴AH=CE,∵BP平分∠ABC,PH⊥BA,PE⊥BC∴∠HBP=∠CBP,∠BHP=∠BEP=90°∵BP=BP∴Rt△BPH≌Rt△BPE∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH ∴AH=(BC−AB)÷2=3.27.解:(1)∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△BCD中,{∠CAO=∠DBO ∠ACD=∠BCD CD=CD,∴△ACD≌△BCD(AAS),∴AC=BC;(2)如图2,过点D作DM⊥AC于M,∵CD平分∠ACB,OD⊥BC,∴DO=DM,在△BOD和△AMD中,{∠DBO=∠DAM∠BOD=∠AMD=90°DO=DM,∴△BOD≌△AMD(AAS),∴OB=AM,在Rt△DOC和Rt△DMC中,{DO=DMDC=DC,∴Rt△DOC≌Rt△DMC(HL),∴OC=MC,∵∠CAO=∠DBO,∠DEA=∠DBO,∴∠DAE=∠DEA,∵DM⊥AC,∴AM=EM,∴OB=EM,∵C(4,0),∴OC=4,∴BC+CE=OB+OC+MC−EM=2OC=8;(3)GH=OG+FH;证明:如图3,在GO的延长线上取一点N,使ON=FH,∵CD平分∠ACO,DF⊥AC,OD⊥OC,∴DO=DF,在△DON和△DFH中,{DO=DF∠DON=∠DFH=90°ON=FH,∴△DON≌△DFH(SAS),∴DN=DH,∠ODN=∠FDH,∵∠GDH=∠GDO+∠FDH,∴∠GDH=∠GDO+∠ODN=∠GDN,在△DGN和△DGH中,{DN=DH∠GDN=∠GDH DG=DG,∴△DGN≌△DGH(SAS),∴GH=GN,∵ON=FH,∴GH=GN=OG+ON=OG+FH.11。
八年级(下)学期 第一次月考数学试卷含答案
一、选择题1.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( )A .4或14B .10或14C .14D .10 2.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( )A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形3.在直角三角形中,自两锐角所引的两条中线长分别为5和210,则斜边长为( ) A .10 B .410 C .13 D .213 4.直角三角形的面积为 S ,斜边上的中线为 d ,则这个三角形周长为 ( ) A .22d S d ++B .2d S d --C .22d S d ++D .()22d S d ++ 5.如图,设正方体ABCD-A 1B 1C 1D 1的棱长为1,黑、白两个甲壳虫同时从点A 出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA 1→A 1D 1→…,白甲壳虫爬行的路线是AB→BB 1→…,并且都遵循如下规则:所爬行的第n+2与第n 条棱所在的直线必须既不平行也不相交(其中n 是正整数).那么当黑、白两个甲壳虫各爬行完第2017条棱分别停止在所到的正方体顶点处时,它们之间的距离是( )A .0B .1C .3D .26.如图,在△ABC 中,∠ACB =90°,AB 的中垂线交AC 于D ,P 是BD 的中点,若BC =4,AC =8,则S △PBC 为( )A .3B .3.3C .4D .4.57.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是一根竹子,原高一丈(一丈=10尺)一阵风将竹子折断,某竹梢恰好抵地,抵地处离竹子底部6尺远,则折断处离地面的高度是( )A .5.3尺B .6.8尺C .4.7尺D .3.2尺8.如图,正方体的棱长为4cm ,A 是正方体的一个顶点,B 是侧面正方形对角线的交点.一只蚂蚁在正方体的表面上爬行,从点A 爬到点B 的最短路径是( )A .9B .210C .326+D .12 9.如图,∠ACB =90°,AC =BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD =3,BE =1,则BC 的长是( )A .32B .2C .22D .1010.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25 B .111,4,5222 C .3,4,5 D .114,7,822二、填空题11.如图,RT ABC ,90ACB ∠=︒,6AC =,8BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点B '处,两条折痕与斜边AB 分别交于点E 、F ,则B FC '△的面积为______.12.我国古代数学名著《九章算术》中有云:“今有木长二丈,围之三尺.葛生其下,缠木七周,上与木齐.问葛长几何?”大意为:有一根木头长2丈,上、下底面的周长为3尺,葛生长在木下的一方,绕木7周,葛梢与木头上端刚好齐平,则葛长是______尺.(注:l 丈等于10尺,葛缠木以最短的路径向上生长,误差忽略不计)13.如图在三角形纸片ABC 中,已知∠ABC =90º,AC =5,BC=4,过点A 作直线l 平行于BC ,折叠三角形纸片ABC ,使直角顶点B 落在直线l 上的点P 处,折痕为MN ,当点P 在直线l 上移动时,折痕的端点M 、N 也随之移动,若限定端点M 、N 分别在AB 、BC 边上(包括端点)移动,则线段AP 长度的最大值与最小值的差为________________.14.如图,在Rt ABC ∆中,90ABC ∠=,DE 垂直平分AC ,垂足为F ,//AD BC ,且3AB =,4BC =,则AD 的长为______.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.16.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.17.如图,在△ABC 中,∠C =90°,∠ABC =45°,D 是BC 边上的一点,BD =2,将△ACD 沿直线AD 翻折,点C 刚好落在AB 边上的点E 处.若P 是直线AD 上的动点,则△PEB 的周长的最小值是________.18.如图所示,四边形ABCD 是长方形,把△ACD 沿AC 折叠到△ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.19.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.20.如图,直线423y x =+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.三、解答题21.如图,在两个等腰直角ABC 和CDE △中,∠ACB = ∠DCE=90°.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的数量关系是 ,位置关系是 ;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE △绕点C 在平面内自由旋转,若AC = BC=10,DE=12,当A 、E 、D 三点在直线上时,请直接写出 AD 的长.22.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.23.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =;(2)延长BD 与EF 交于点G .①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.24.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述);(2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.25.如图,己知Rt ABC ∆,90ACB ∠=︒,30BAC ∠=︒,斜边4AB =,ED 为AB 垂直平分线,且23DE =,连接DB ,DA .(1)直接写出BC =__________,AC =__________;(2)求证:ABD ∆是等边三角形;(3)如图,连接CD ,作BF CD ⊥,垂足为点F ,直接写出BF 的长;(4)P 是直线AC 上的一点,且13CP AC =,连接PE ,直接写出PE 的长. 26.如图1,在平面直角坐标系中,直线AB 经过点C (a ,a ),且交x 轴于点A (m ,0),交y 轴于点B (0,n ),且m ,n 满足6m -+(n ﹣12)2=0.(1)求直线AB 的解析式及C 点坐标;(2)过点C 作CD ⊥AB 交x 轴于点D ,请在图1中画出图形,并求D 点的坐标;(3)如图2,点E (0,﹣2),点P 为射线AB 上一点,且∠CEP =45°,求点P 的坐标.27.在ABC ∆中,90ACB ∠=︒,6AC BC ==,点D 是AC 的中点,点E 是射线DC 上一点,DF DE ⊥于点D ,且DE DF =,连接CF ,作FH CF ⊥于点F ,交直线AB 于点H .(1)如图(1),当点E 在线段DC 上时,判断CF 和FH 的数量关系,并加以证明; (2)如图(2),当点E 在线段DC 的延长线上时,问题(1)中的结论是否依然成立?如果成立,请求出当ABC △和CFH △面积相等时,点E 与点C 之间的距离;如果不成立,请说明理由.28.2ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G .①求证:BE EF =;②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.30.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度.【详解】∵AC =13,AD =12,CD =5,∴222AD CD AC +=,∴△ABD 是直角三角形,AD ⊥BC ,由于点D 在直线BC 上,分两种情况讨论:当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=, 则4BC BD CD =-=.故答案为:A.【点睛】 本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.2.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.3.D解析:D【分析】根据已知设AC =x ,BC =y ,在Rt △ACD 和Rt △BCE 中,根据勾股定理分别列等式,从而求得AC ,BC 的长,最后根据勾股定理即可求得AB 的长.【详解】如图,在△ABC 中,∠C =90°,AD 、BE 为△ABC 的两条中线,且AD =10,BE =5,求AB 的长.设AC =x ,BC =y ,根据勾股定理得:在Rt △ACD 中,x 2+(12y )2=(10)2,在Rt △BCE 中,(12x )2+y 2=52, 解之得,x =6,y =4, ∴在Rt △ABC 中,2264213AB =+= , 故选:D .【点睛】此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.4.D解析:D【解析】 【分析】根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可。
八年级数学下学期第一次月考测试卷及解析
八年级数学下学期第一次月考测试卷及解析一、选择题1.下列计算正确的是( )A .()222a b a b -=-B .()322x x 8x ÷=+C .1a a a a ÷⋅=D 4=-2.若2a <3=( ) A .5a - B .5a -C .1a -D .1a -- 3.对于所有实数a ,b ,下列等式总能成立的是( )A .2a b =+B 22a b =+C a b =+D a b =+ 4.下列运算错误的是( )A =B .=C .)216=D .)223= 5.下列计算正确的是( )A B C D6的倒数是( )A B .2 C . D .2- 7.下列计算正确的是( )A =B 3=C =D .21=8.=a 、x 、y 是两两不同的实数,则22223x xy y x xy y +--+的值是( ) A .3B .13C .2D .539.当x =时,多项式()20193419971994x x --的值为( ). A .1B .1-C .20022D .20012- 10.下列说法中正确的是( )A ±5B .两个无理数的和仍是无理数C .-3没有立方根.D .11.以下运算错误的是( )A .3535⨯=⨯B .2222⨯=C .169+=169+D .2342a b ab b =(a >0)12.下列运算一定正确的是( )A .2a a =B .ab a b =⋅C .222()a b a b ⋅=⋅D .()0n m n a a m =≥ 二、填空题13.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 14.将2(3)(0)3a a a a-<-化简的结果是___________________. 15.已知2216422x x ---=,则22164x x -+-=________.16.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.17.已知整数x ,y 满足20172019y x x =+--,则y =__________. 18.使式子32x x -+有意义的x 的取值范围是______. 19.化简:3222=_____.20.4x -x 的取值范围是_____. 三、解答题21.a ab a b+)÷ab b +ab a -ab )(a ≠b ). 【答案】a b 【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222222.观察下列等式:1==;====回答下列问题: (1(2)计算:【答案】(1(2)9【分析】(1)根据已知的3=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【详解】解:(1= (2+99+=1100++-=1=10-1=9.23.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.24.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可.【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭.本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.25.计算下列各题(1)⎛÷ ⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.26.计算:(1(2|a ﹣1|,其中1<a【答案】(1)1;(2)1【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简.【详解】解:(1-1=2-1=1(2)∵1<a ,a ﹣1=2﹣a +a ﹣1=1.本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.27.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题.【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数,∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.28.已知长方形的长a =b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.29.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断.【详解】解: A .()222a b a 2ab b -=-+,选项错误;B .()3322x x 8x x 8x ÷=÷=,选项正确;C .111a a 1a a a ÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .2.D解析:D 【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解.【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a ,故选:D . 【点睛】||a =这个公式是解决本题的关键.3.B解析:B【详解】解:A 、错误,∵2=+a bB 、正确,因为a 2+b 2≥0a 2+b 2;CD =|a +b |,其结果a+b 的符号不能确定.故选B .4.C解析:C【分析】根据二次根式的化简、乘法、完全平方公式、平方差公式逐项判断即可得.【详解】A =,此项正确;B 、=C 、)21516=+=+D 、)22743=-=,此项正确; 故选:C .【点睛】本题考查了二次根式的化简与乘法运算,熟记运算法则是解题关键.5.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键. 6.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】,;2故选:B.【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 7.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.8.B解析:B【分析】根据根号下的数要是非负数,得到a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,推出a≥0,a≤0,得到a=0,代入即可求出y=-x,把y=-x代入原式即可求出答案.【详解】由于根号下的数要是非负数,∴a(x-a)≥0,a(y-a)≥0,x-a≥0,a-y≥0,a(x-a)≥0和x-a≥0可以得到a≥0,a (y-a )≥0和a-y≥0可以得到a≤0,所以a 只能等于0,代入等式得,所以有x=-y ,即:y=-x ,由于x ,y ,a 是两两不同的实数,∴x >0,y <0.将x=-y 代入原式得:原式=()()()()2222313x x x x x x x x +---=--+-. 故选B .【点睛】本题主要考查对二次根式的化简,算术平方根的非负性,分式的加减、乘除等知识点的理解和掌握,根据算术平方根的非负性求出a 、x 、y 的值和代入求分式的值是解此题的关键.9.B解析:B【解析】【分析】由原式得()2211994x -=,得244+11994x x -=,原式变形后再将244+11994x x -=代和可得出答案.【详解】∵12x +=, ()2211994x ∴-=,即24419930x x --=,()()32241997199444199344199311x x x x x x x ∴--=--+---=-.∴原式()201911=-=-.【点睛】本题难度较大,需要对要求的式子进行变形,学会转化. 10.D解析:D【分析】根据算术平方根和平方根的概念,无理数的概念立方根的概念,和二次根式的概念逐一判断即可.【详解】5=,故A 选项错误;0ππ-+=,故B 选项错误;-3=,故C 选项错误;D 选项正确;故选D .【点睛】本题考查了算术平方根和平方根的区别,无理数、二次根式和立方根的概念,题目较为综合,熟练掌握相关概念是本题的关键.11.C解析:C【分析】利用二次根式的乘法法则对A 、B 进行判断;利用二次根式的化简对C 、D 进行判断.【详解】A .原式=所以A 选项的运算正确;B .原式=所以,B 选项的运算正确;C .原式==5,所以C 选项的运算错误;D .原式=2,所以D 选项的运算正确.故选C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.C解析:C【分析】直接利用二次根式的性质与化简以及积的乘方运算法则分别计算即可得出答案.【详解】A |a |,故此选项错误;B .,则a ,b 均为非负数,故此选项错误;C .a 2•b 2=(a •b )2,正确;D mn a(a ≥0),故此选项错误. 故选C .【点睛】本题主要考查了二次根式的性质与化简以及积的乘方运算,正确掌握相关运算法则是解题的关键. 二、填空题13.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 14..【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴==.故答案为:.【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键.解析:【分析】根据二次根式的性质化简即可.【详解】∵a <0.∴a -3<0,∴(a -=-=故答案为:【点睛】本题考查了二次根式的性质与化简,正确判断根号内的符号是解题的关键. 15.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.16.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a>0+3.=aa+3.【点睛】本题考查阅读理解的能力,正确理解题意是关键.17.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴,∴.故答案为:2018.解析:2018【解析】试题解析:y===令a =b =显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.18.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.20.x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根解析:x>4【分析】根据二次根式有意义的条件、分式有意义的条件列出不等式,解不等式得到答案.【详解】解:由题意得,x﹣4>0,解得,x>4,故答案为:x>4.【点睛】本题主要考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分式分母不为0是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级(下)第一次月考数学测试卷
八年级(下)第一次月考数学测试卷(考试时间:100分钟,满份100分)班级_____姓名_____一、选择题:(每题2分,共20分)1、如果a >b ,那么下列各式中正确的是--------------------------------------------------( )(A )a -2<b -2; (B )22b a <; (C )-2a <-2b ; (D )-a >-b .2、使分式 )2)(1(1---x x x 有意义的 x 的值为------------------------------------------( ).(A ).x ≠1 ; (B ). x ≠2 ; (C ). x ≠1 且 x ≠2 ;(D ). x ≠1或 x ≠2.3、若二次三项式x ²+ax -6可分解为(x+2)(x+b),则a+b=-------------------------------- ( )(A ) – 4 ; (B ) 4 ; (C )2 ; (D )–24、以不等式组⎩⎨⎧-≤-+>-x x x x 3182)1(325 的非负整数解为边长,可以构成一个----------( ) (A )等边三角形; (B )等腰三角形; (C )直角三角形; (D )一般三角形.5、若不等式(a – 2)x > 2-a 的解集是x < -1, 则a 的取值范围是---------------( )(A )a ≤2 ; (B ) a > 2 ; (C ) a < 2 ; (D ) a < 0 .6、下列各式从左到右,是因式分解的是---------------------------------------------------()(A )(y -1)(y +1)=2y -1;(B )1)(122-+=-+y x xy xy y x ; (C )(x -2)(x -3)=(3-x )(2-x );(D )22)2(44-=+-x x x .7、计算20032004)2(2-+的结果是---------------------------------------------------------------( )(A )20042 (B )20042- (C )20032 (D )20032- .8、下列多项式中,能用公式法进行因式分解的是------------------------------------------( )(A )A 、22y xy x +-; (B )222y xy x -+; (C )222y xy x -+-; (D )22y xy x ++ .9、当x 为任意实数时,下列分式一定有意义的是------------------------------------------( )(A )212-x ; (B )112+x ; (C )||1x ; (D )21+x .10、小明在抄分解因式的题目时,不小心漏抄了x 的指数,他只知道该数为不大于10的正整数,并且能利用平方差公式分解因式,他抄在作业本上的式子是x □-24y (“□”表示漏抄的指数),则这个指数可能的结果共有-------------------------------------------------------( )(A )2种 (B )3种 (C ) 4种 (D )5种 .二、填空题(每题2分,共40分)11、不等式-2x -1<-1的解集是________ 。
八年级数学(下)学期 第一次月考测试卷含解析
八年级数学(下)学期 第一次月考测试卷含解析一、选择题1.下列计算结果正确的是( )A B .3=C =D =2.下列各式中,无意义的是( )A B C D .310-3.下列各式中,正确的是( )A 2=±B =C 3=-D 2=4.下列各式中,运算正确的是( )A .=-=.2=D 2=- 5.下列各式计算正确的是( )A =B 6=C .3+=D 2=- 6.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D =7.下列计算正确的是( )A =B 1-=C =D 6==8.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b c p ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D 9.关于代数式12a a ++,有以下几种说法, ①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0. 在上述说法中正确的是( ) A .①B .①②C .①③D .①②③ 10.以下运算错误的是( )A =B .2= CD 2=a >0)11.若a b > )A .-B .-C .D .12.已知,5x y +=-,3xy =则的结果是( )A .B .-C .D .-二、填空题13.3=,且01x <<=______.14.若a 、b 、c 均为实数,且a 、b 、c 均不为0=___________ 15.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.16.若0xy >,则二次根式________.17.a ,小数部分是b b -=______.18.有意义,则x 的取值范围是____.19.函数y 中,自变量x 的取值范围是____________.20.mn =________.三、解答题21.计算:(1(2))((222+-+.【答案】(1)【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+=2223--+ =5-4-3+2=022.解:设x222x =++2334x =+,x 2=10∴x =10.0.【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6,x 2=14∴x =.0,∴x .【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.23.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==24.)÷)(a ≠b). 【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222225.计算:(1(041--;(2⎛- ⎝【答案】(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041--(2⎛- ⎝-0-=26.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.27.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.29.化简求值:212(1)211x x x x -÷-+++,其中1x =.【解析】分析:先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可. 详解:原式2112,2111x x x x x x -+⎛⎫=÷- ⎪++++⎝⎭2112,211x x x x x -+-=÷+++ ()211,11x x x x -+=⋅-+1.1x =+当1x =时,113x ==+ 点睛:考查分式的混合运算,掌握运算顺序是解题的关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的加法、减法、乘法、分母有理化逐一进行计算判断即可.【详解】A 不能合并,故A 选项错误;B .-=B 选项错误;C =D5==,故D 选项错误, 故选C .【点睛】本题考查了二次根式的运算,分母有理化,熟练掌握各运算法则是解题的关键.2.A解析:A【分析】直接利用二次根式有意义的条件、负整数指数幂的性质分析得出答案.【详解】AB ,有意义,不合题意;C D 、33110=10-,有意义,不合题意; 故选A.【点睛】 此题主要考查了二次根式有意义的条件、负整数指数幂的性质,正确把握二次根式的定义是解题关键.3.B解析:B【分析】本题可利用二次根式的化简以及运算法则判断A 、B 、C 选项;利用立方根性质判断D 选项.【详解】A,故该选项错误;B==C3=,故该选项错误;D11223334=(2)2==,故该选项错误;故选:B.【点睛】本题考查二次根式以及立方根,二次根式计算时通常需要化为最简二次根式,然后按照运算法则求解即可,解题关键是细心.4.A解析:A【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A、-=A正确;B=B错误;C、2不能合并,故C错误;D2=,故D错误;故选:A.【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.5.B解析:B【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据a=对D进行判断.【详解】解:A不能合并,所以A选项错误;B6=,正确,所以B选项正确;C、3不能合并,所以C选项错误;D22=--=(),所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.6.D解析:D【分析】由合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,分别进行判断,即可得到答案.【详解】解:A 、222523y y y -=,故A 错误;B 、426x x x ⋅=,故B 错误;C 、222()2a b a ab b --=++,故C 错误;D ==D 正确;故选:D .【点睛】本题考查了合并同类项、同底数幂乘法、完全平方公式、以及二次根式的加减运算,解题的关键是熟练掌握运算法则进行解题.7.A解析:A【分析】本题涉及二次根式化简,在计算时,需要针对每个选项分别进行计算,然后根据实数的运算法则求得计算结果.【详解】=D. 6===,故本项错误;故选:A .【点睛】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式的运算.8.A解析:A【分析】根据公式解答即可.【详解】根据题意,若一个三角形的三边长分别为2,3,4,则2+349=222a b c p +++== ∴其面积为S ====故选:A .【点睛】本题考查二次根式的应用、数学常识等知识,难度较难,掌握相关知识是解题关键.9.C解析:C【分析】①将3a =-代入12a a ++计算验证即可;②根据题意12a a ++=2,解得a 的值即可作出判断;③若a >-2,则a+2>0,则对12a a ++配方,利用偶次方的非负性可得答案. 【详解】解:①当3a =-时,1134232a a +=-+=-+-+. 故①正确; ②若12a a ++值为2, 则122a a +=+, ∴a 2+2a+1=2a+4,∴a 2=3,∴a =.故②错误;③若a >-2,则a+2>0, ∴12a a ++=1222a a ++-+=222+-=2≥0. ∴若a >-2,则12a a ++存在最小值且最小值为0. 故③正确.综上,正确的有①③.故选:C .【点睛】本题考查了分式的加减法、分式的值的计算及最值问题等知识点,熟练运用相关公式及运算法则是解题的关键.10.C解析:C【分析】利用二次根式的乘法法则对A、B进行判断;利用二次根式的化简对C、D进行判断.【详解】A.原式=所以A选项的运算正确;B.原式=所以,B选项的运算正确;C.原式==5,所以C选项的运算错误;D.原式=2,所以D选项的运算正确.故选C.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.11.D解析:D【分析】首先根据二次根式有意义的条件求得a、b的取值范围,然后再利用二次根式的性质进行化简即可;【详解】∴-a3b≥0∵a>b,∴a>0,b<0a ab=-,故选:D.【点睛】此题考查二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.12.B解析:B【分析】由x+y=-5,xy=3可得到x<0,y<0,再利用二次根式的性质化简得到原式==-,然后把xy=3代入计算即可.【详解】∵x+y=−5,xy=3,∴x<0,y<0,∴原式===-(x<0,y<0),当xy=3时,原式=-故选B.【点睛】此题考查二次根式的化简求值,解题关键在于先化简.二、填空题13..【分析】利用题目给的求出,再把它们相乘得到,再对原式进行变形凑出的形式进行计算.【详解】∵,∴,∴,∴,∵,∴,∴,∴原式.故答案是:.【点睛】本题考查二次根式的运.【分析】,再把它们相乘得到1xx-,再对原式进行变形凑出1xx-的形式进行计算.【详解】3=,∴221239x x =++==, ∴17x x+=,∴212725x x =-+=-=, ∵01x <<,=,∴1x x =-=-∴原式====.. 【点睛】 本题考查二次根式的运算和乘法公式的应用,解题的关键是熟练运用乘法公式对式子进行巧妙运算.14.【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0时,=;当b <0时,=.故答案为:.解析:00b b 当时当时>⎨⎪<⎪⎩【解析】根据题意,由二次根式的性质,可知a 的值与计算没影响,c≥0,b≠0,因此可分为:当b >0=当b<0=故答案为:22abbb⎧>⎪⎪⎨⎪<⎪⎩当时当时.15.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a对应,b对应,即将a=,b=,代入到代数式a(a-b)+b(a+b)中,再根据二次根式的混合运算法则解析:5【解析】32==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a,b,即将,代入到代数式a(a-b)+b(a+b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.16.-【分析】首先判断出x,y的符号,再利用二次根式的性质化简求出答案.【详解】解:∵,且有意义,∴,∴.故答案为.【点睛】此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解析:【分析】首先判断出x,y的符号,再利用二次根式的性质化简求出答案.【详解】解:∵0xy>∴00x y <,<,∴x ==.故答案为.【点睛】 此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.即(0)(0)a a a a a ≥⎧==⎨-<⎩=(a ≥0,b >0). 17.【详解】若的整数部分为a ,小数部分为b ,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a ,小数部分为b ,∴a =1,b1, ∴-b 1)=1.故答案为1.18.x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】∵有意义,∴x≥0,故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键. 解析:x≥0.【分析】直接利用二次根式有意义的条件进而分析得出答案.【详解】有意义,∴x≥0, 故答案为x≥0.【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.19.x≤4且x≠2根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由y=,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方解析:x≤4且x≠2【分析】根据被开方数是非负数、分母不能为零,可得答案.【详解】解:由,得4-x≥0且x-2≠0.解得x≤4且x≠2.【点睛】本题考查了函数自变量的取值范围,利用被开方数是非负数、分母不能为零得出4-x≥0且x-2≠0是解题关键.20.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∵最简二次根式与是同类二次根式,∴ ,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321. mn=⨯=三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级下学期第一次月考数学试卷(含参考答案)
八年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________第I卷(选择题共40分)一.单选题.(共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一个最符合题目要求。
1.下列各曲线是根据不同的函数绘制而成的,其中是中心对称图形的是( )2.若a<b<0,则下列条件一定成立的是( )A.ab<0B.a+b>0C.ac<bcD.a+c<b+c3.下列各式由左边到右边的变形中,是因式分解的为( )A.a2-16+3a=(a-4)(a+4)+3aB.10x2-5x=5x(2x-1)C.x2-4x+4=x(x-4)+4D.a(m+n)=am+an4.不等式x>4的解集在数轴上表示正确的是( )A. B. C. D.5.在平面直角坐标系中,已知点A的坐标为(1,4),如果将点A向右平移2个单位长度得到点A’,则点A’的坐标为( )A.(1,2)B.(1,6)C.(-1,4)D.(3,4)6.多项式12a3b-8ab2c的公因式是( )A.4a2B.4abC.2a2D.4abc7.下列多项式能用平方差公式进行因式分解的是( )A.x2-1B.x2+4C.x+9D.x2-6x8.下列多项式能直接用完全平方公式进行因式分解的是( )A.9x2-16y2B.4x2-4x+1C.x2+xy+y2D.9-3x+x29.如图,将△ABC绕点A逆时针旋转角a(0°<a<180°)得到△MDE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25,则旋转角a的度数是( )A.70°B.60°C.50°D.40°(第9题图) (第10题图)10.如图,将点A 1(1,1)向上平移1个单位,再向右平移2个单位,得到点A 2;将点A 2向上平移2个单位,再向右平移4个单位,得到点A 3;将点A 3向上平移4个单位,再向右平移8个单位,得到点A 4……按这个规律平移得到点A n ,则点A 2024的横坐标为( )A.22024B.22004-1C.22023-1D.2203+1第II 卷(非选择题 共110分)二.填空题:(每题4分,共24分)11.用适当的符号表示下列关系:a 是正数 .12.因式分解:a 2+4a= .13.若m>n ,则m -n 0(填">"或"="或"<").14.若一次函数y=kx+b 的图象如图所示,则关于x 的不等式kx+b<0的解集是 .(第14题图) (第15题图) (第16题图)15.如图,将周长为10cm 的△ABC 沿 BC 方向平移得到△DEF ,连接AD ,四边形ABFD 的周长为15cm ,则平移的距离为 cm.16.如图,长方形ABCD 中,AB=5,BC=12,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B’处,当△CEB'为直角三角形时,BE 的长为 .三.解答题(共10小题,86分)17.(4分)解下列不等式,并把不等式的解集在数轴上表示出来:-x -1≤3x -518.(6分)解不等式组{x -3(x -1)>11+3x 2>x -1,并写出它的所有非负整数解.19.(每题3分,共18分)因式分解:(1)8m 2n+2mn (2)-15a ³b 2+9a 2b 2-3ab 3 (3)4a 2-1(4)a 2-4ab+4b 2 (5)3x 3-12x (6)mx 2+2m 2x+m 320.(6分)先分解因式,再求值:2x(a-2)-y(2-a),其中a=2,x=1.5,y=-2.21.(6分)在如图所示的平面直角坐标系中,已知点4(1,2),B(3,1).(1)C点的坐标为.(2)将三角形ABC先向下平移4个单位,在向左平移3个单位,得到三角形A1B1C1,画出三角A1B1C1:(3)三角形A1B1C1的面积为。
八年级下第一次月考数学试卷含解析
八年级(下)第一次月考数学试卷一、选择题(本大题共10题,每题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.367人中至少有2人的生日相同D.实数的绝对值是负数3.下列调查中,最适宜采取普查的()A.一批洗衣机的使用寿命B.了解某市中学生课外阅读的情况C.《新闻联播》电视栏目的收视率D.调查乘坐飞机的旅客是否携带了危禁物品4.今天我们全区约1500名初二学生参加数学考试,拟从中抽取300名考生的数学成绩进行分析,则在该调查中,样本指的是()A.300名考生的数学成绩B.300C.1500名考生的数学成绩D.300名考生5.在一个样本中,50个数据分别落在5个小组内,第1,2,3,5小组数据的个数分别是2,8,15,5,则第4小组的频数是()A.15 B.20 C.25 D.306.平行四边形的一边长为10cm,那么这个平行四边形的两条对角线长可以是()A.4cm和6cm B.6cm和8cm C.20cm和30cm D.8cm和12cm7.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm8.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°9.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)10.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B 运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.2 B.C.2 D.4二、填空题:(本大题共8题,每题2分,共16分)11.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数不大于4的概率为.12.如图,▱ABCD的对角线相交于点O,请你添加一个条件(只添一个即可),使▱ABCD是矩形.13.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为cm.14.如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于F,则∠AFB=°.15.如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=.16.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是.17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为.18.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.三、解答题(本大题共7题,共54分)19.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.20.一个不透明的袋中装有黄球、黑球和红球共40个,它们除颜色外都相同,其中红球有22个,且经过试验发现摸出一个球为黄球的频率接近0.125.(1)求袋中有多少个黑球;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率达到,问至少取出了多少个黑球?21.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1)a=,b=;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.22.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)23.如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段AF的长.24.将▱OABC放置在平面直角坐标系xOy内,已知AB边所在直线的函数解析式为:y=﹣x+4.若将▱OABC绕点O逆时针旋转90°得OBDE,BD交OC于点P.(1)直接写出点C的坐标是:(2)求△OBP的面积;(3)若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与▱OABC重叠部分周长为L,试求出L关于x的函数关系式.25.如图,平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°(1)求B、C两点的坐标;(2)过点G(0,﹣6)作GF⊥AC,垂足为F,直线GF分别交AB、OC于点E、D,求直线DE的解析式;(3)在(2)的条件下,若点M在直线DE上,平面内是否存在点P,使以O、F、M、P 为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.2015-2016学年江苏省无锡市江阴市马镇八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共10题,每题3分,共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.2.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.367人中至少有2人的生日相同D.实数的绝对值是负数【考点】随机事件.【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:A、B可能发生也可能不发生的事件,属于随机事件;C、是一定会发生的,是必然事件;D、是不可能事件.故选C.3.下列调查中,最适宜采取普查的()A.一批洗衣机的使用寿命B.了解某市中学生课外阅读的情况C.《新闻联播》电视栏目的收视率D.调查乘坐飞机的旅客是否携带了危禁物品【考点】全面调查与抽样调查.【分析】根据各个选项可以知道最适宜采取的调查的方式是什么,从而可以得到正确的选项.【解答】解:一批洗衣机的使用寿命采取抽样调查,故A错误;了解某市中学生课外阅读的情况采取抽样调查,故B错误;《新闻联播》电视栏目的收视率采取抽样调查,故C错误;调查乘坐飞机的旅客是否携带了危禁物品采取普查,故D正确;故选D.4.今天我们全区约1500名初二学生参加数学考试,拟从中抽取300名考生的数学成绩进行分析,则在该调查中,样本指的是()A.300名考生的数学成绩B.300C.1500名考生的数学成绩D.300名考生【考点】总体、个体、样本、样本容量.【分析】根据总体、样本的定义直接可得答案.【解答】解:全区约1500名初二学生参加数学考试是总体,300名考生的数学成绩是总体的一个样本.故选:A.5.在一个样本中,50个数据分别落在5个小组内,第1,2,3,5小组数据的个数分别是2,8,15,5,则第4小组的频数是()A.15 B.20 C.25 D.30【考点】频数与频率.【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【解答】解:50﹣(2+8+15+5)=20.则第4小组的频数是20.故选B.6.平行四边形的一边长为10cm,那么这个平行四边形的两条对角线长可以是()A.4cm和6cm B.6cm和8cm C.20cm和30cm D.8cm和12cm【考点】平行四边形的性质;三角形三边关系.【分析】平行四边形的这条边和两条对角线的一半构成三角形,应该满足第三边大于两边之差小于两边之和才能构成三角形.【解答】解:A、∵2+3<10,不能够成三角形,故此选项错误;B、4+3<10,不能够成三角形,故此选项错误;C、10+10>15,能构成三角形,故此选项正确;D、4+6=10,不能够成三角形,故此选项错误;故选:C.7.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【考点】线段垂直平分线的性质;平行四边形的性质.【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE 的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.8.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,垂足为E,若∠ADC=130°,则∠AOE的大小为()A.75°B.65°C.55°D.50°【考点】菱形的性质.【分析】先根据菱形的邻角互补求出∠BAD的度数,再根据菱形的对角线平分一组对角求出∠BAO的度数,然后根据直角三角形两锐角互余列式计算即可得解.【解答】解:在菱形ABCD中,∠ADC=130°,∴∠BAD=180°﹣130°=50°,∴∠BAO=∠BAD=×50°=25°,∵OE⊥AB,∴∠AOE=90°﹣∠BAO=90°﹣25°=65°.故选B.9.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)【考点】坐标与图形变化-旋转.【分析】先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.【解答】解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选C.10.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B 运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.2 B.C.2 D.4【考点】翻折变换(折叠问题);菱形的性质.【分析】判断出△ABC是等腰直角三角形,根据等腰直角三角形的性质可得∠ABC=45°,再表示出BP、BQ,然后根据翻折的性质和菱形对角线互相垂直平分列出方程求解即可.【解答】解:∵∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∴∠ABC=45°,∵点P的速度是每秒cm,点Q的速度是每秒1cm,∴BP=tcm,BQ=(6﹣t)cm,∵四边形QPBP′为菱形,∴t×=,解得t=2.故选A.二、填空题:(本大题共8题,每题2分,共16分)11.任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数不大于4的概率为.【考点】概率公式.【分析】点数不大于4的有1种情况,除以总个数6即为向上的一面的点数不大于4的概率.【解答】解:∵共有6种情况,点数不大于4的有4种,∴P(点数不大于4)==.故答案为:.12.如图,▱ABCD的对角线相交于点O,请你添加一个条件AC=BD(只添一个即可),使▱ABCD是矩形.【考点】矩形的判定;平行四边形的性质.【分析】根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.【解答】解:添加的条件是AC=BD,理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形,故答案为:AC=BD.13.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为4cm.【考点】矩形的性质.【分析】由矩形的性质得出OA=OB=4cm,再证明△AOB是等边三角形,即可得出AB=OA=4cm.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD,BD=AC=8cm,∴OA=OB=4cm,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=4cm.14.如图,△ABC中,∠C=30°.将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC 交于F,则∠AFB=90°.【考点】旋转的性质.【分析】根据旋转的性质可知∠CAF=60°;然后在△CAF中利用三角形内角和定理可以求得∠CFA=90°,即∠AFB=90°.【解答】解:∵△ADE是由△ABC绕点A顺时针旋转60°得到的,∴∠CAF=60°;又∵∠C=30°(已知),∴在△AFC中,∠CFA=180°﹣∠C﹣∠CAF=90°,∴∠AFB=90°.故答案是:90.15.如图,在▱ABCD中,AB=4cm,BC=7cm,∠ABC的平分线交AD于点E,交CD的延长线于点F,则DF=3cm.【考点】平行四边形的性质.【分析】利用平行四边形的对边相等且平行以及平行线的基本性质求解即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABE=∠CFE,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠CBF=∠CFB,∴CF=CB=7cm,∴DF=CF﹣CD=7﹣4=3cm,故答案为:3cm.16.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是AC⊥BD.【考点】中点四边形.【分析】根据三角形的中位线定理,可以证明所得四边形的两组对边分别和两条对角线平行,所得四边形的两组对边分别是两条对角线的一半,再根据平行四边形的判定就可证明该四边形是一个平行四边形;所得四边形要成为矩形,则需有一个角是直角,故对角线应满足互相垂直.【解答】解:如图,∵E,F分别是边AB,BC的中点,∴EF∥AC,EF=AC,同理HG∥AC,HG=AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形;要使四边形EFGH是矩形,则需EF⊥FG,即AC⊥BD;故答案为:AC⊥BD.17.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE 折叠,使点B落在点B′处.当△CEB′为直角三角形时,BE的长为或3.【考点】翻折变换(折叠问题).【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5﹣3=2,设BE=x,则EB′=x,CE=4﹣x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4﹣x)2,解得x=,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.18.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是3.【考点】轴对称-最短路线问题;正方形的性质.【分析】根据最短路径的求法,先确定点E关于BC的对称点E′,再确定点A关于DC的对称点A′,连接A′E′即可得出P,Q的位置;再根据相似得出相应的线段长从而可求得四边形AEPQ的面积.【解答】解:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A ′D=3,BE=BE ′=1,∴AA ′=6,AE ′=4.∵DQ ∥AE ′,D 是AA ′的中点,∴DQ 是△AA ′E ′的中位线,∴DQ=AE ′=2;CQ=DC ﹣CQ=3﹣2=1,∵BP ∥AA ′,∴△BE ′P ∽△AE ′A ′,∴=,即=,BP=,CP=BC ﹣BP=3﹣=,S 四边形AEPQ =S 正方形ABCD ﹣S △ADQ ﹣S △PCQ ﹣S BEP =9﹣AD •DQ ﹣CQ •CP ﹣BE •BP =9﹣×3×2﹣×1×﹣×1×=,故答案为:.三、解答题(本大题共7题,共54分)19.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC 与△DEF 关于点O 成中心对称,△ABC 与△DEF 的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O 的位置.(2)将△ABC 先向右平移4个单位长度,再向下平移2个单位长度,得到△A 1B 1C 1,请画出△A 1B 1C 1;(3)在网格中画出格点M ,使A 1M 平分∠B 1A 1C 1.【考点】作图-旋转变换;作图-平移变换.【分析】(1)连接对应点B 、F ,对应点C 、E ,其交点即为旋转中心的位置;(2)利用网格结构找出平移后的点的位置,然后顺次连接即可;(3)根据网格结构的特点作出即可.【解答】解:(1)如图所示,点O 为所求.(2)如图所示,△A 1B 1C 1为所求.(3)如图所示,点M 为所求.20.一个不透明的袋中装有黄球、黑球和红球共40个,它们除颜色外都相同,其中红球有22个,且经过试验发现摸出一个球为黄球的频率接近0.125.(1)求袋中有多少个黑球;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率达到,问至少取出了多少个黑球?【考点】概率公式.【分析】(1)由一个不透明的袋中装有黄球、黑球和红球共40个,经过试验发现摸出一个球为黄球的频率接近0.125,求出黄球的个数,再用总数40减去黄球、黑球的个数,即为黑球的个数;(2)首先设取出x个黑球,根据搅拌均匀后使从袋中摸出一个球是黄球的概率达到,列出方程,解方程即可求得答案.【解答】解:(1)黄球有40×0.125=5个,黑球有40﹣22﹣5=13个.答:袋中有13个黑球;(2)设取出x个黑球,根据题意得=,解得x=5.答:至少取出5个黑球.21.某市对一大型超市销售的甲、乙、丙3种大米进行质量检测.共抽查大米200袋,质量评定分为A、B两个等级(A级优于B级),相应数据的统计图如下:根据所给信息,解决下列问题:(1)a=55,b=5;(2)已知该超市现有乙种大米750袋,根据检测结果,请你估计该超市乙种大米中有多少袋B级大米?(3)对于该超市的甲种和丙种大米,你会选择购买哪一种?运用统计知识简述理由.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据甲的圆心角度数是108°,求出所占的百分比,再根据总袋数求出甲种大米的袋数,即可求出a、b的值;(2)根据题意得先求出该超市乙种大米中B级大米所占的百分比,再乘以乙种大米的总袋数即可;(3)分别求出超市的甲种大米A等级大米所占的百分比和丙种大米A等级大米所占的百分比,即可得出答案.【解答】解:(1)∵甲的圆心角度数是108°,所占的百分比是×100=30%,∴甲种大米的袋数是:200×30%=60(袋),∴a=60﹣5=55(袋),∴b=200﹣60﹣65﹣10﹣60=5(袋);故答案为:55,5;(2)根据题意得:750×=100(袋),答:该超市乙种大米中有100袋B级大米;(3)∵超市的甲种大米A等级大米所占的百分比是×100%=91.7%,丙种大米A等级大米所占的百分比是×100%=92.3%,∴应选择购买丙种大米.22.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)【考点】平行四边形的判定与性质;菱形的判定;矩形的判定.【分析】(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.23.如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段AF的长.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由正方形的性质和已知条件可分别证明∠FEH=∠PBA,AB=HE,进而可证明△ABP≌△HEF,由全等三角形的性质即可得到HF=AP;(2)连接,设AF=x,则PF=BF=12﹣x,在△APF中利用勾股定理可得:42+x2=(12﹣x)2,解方程求出x的值即可.【解答】解:(1)∵EF⊥BP,EH⊥AB,∴∠FEH+∠EMQ=90°=∠PBA+∠BMH,又∵∠QME=∠BMH,∴∠FEH=∠PBA,∵四边形ABCD是正方形,∴∠A=∠D=90°,AB=AD,∵EH⊥AB,∴∠EHA=90°=∠A=∠D,∴四边形ADEH是矩形,∴AD=EH,又∵AB=AD,∴AB=EH,在△ABP与△HEF中,∴△ABP≌△HEF(ASA),∴AP=FH;(2)连结PF,∵EF垂直平分BP,∴PF=BF,设AF=x,则PF=BF=12﹣x,∴在△APF中,42+x2=(12﹣x)2,∴x=,∴AF=.24.将▱OABC放置在平面直角坐标系xOy内,已知AB边所在直线的函数解析式为:y=﹣x+4.若将▱OABC绕点O逆时针旋转90°得OBDE,BD交OC于点P.(1)直接写出点C的坐标是(﹣4,4):(2)求△OBP的面积;(3)若再将四边形OBDE沿y轴正方向平移,设平移的距离为x(0≤x≤8),与▱OABC重叠部分周长为L,试求出L关于x的函数关系式.【考点】一次函数综合题.【分析】(1)由AB边所在直线的解析为:y=﹣x+4,即可求得点A与B的坐标,又由四边形OABC是平行四边形,即可求得BC=OA=4,则可求得点C的坐标;(2)易证得△OBP是等腰直角三角形,又由BO=4,即可求得△OBP的面积;(3)分别从当0≤x<4时与当4≤x≤8时,利用等腰直角三角形的性质及平移的性质即可求得答案.【解答】解:(1)∵AB边所在直线的解析为:y=﹣x+4,∴点A的坐标为:(4,0),点B的坐标为:(0,4),∵四边形ABCD是平行四边形,∴BC=OA=4,BC∥OA,∴点C的坐标为:(﹣4,4);故答案为:(﹣4,4);(2)由旋转的性质,可得:OD=OB=4,∵∠BOD=90°,∴∠OBD=45°,∵OB=BC,∠OBC=90°,∴∠BOC=45°,∴∠OPB=90°,BP=OP,∵OB=4,∴OP=BP=2,∴S△OBP=OP•BP=4;(3)分两种情况考虑:①当0≤x≤4时,如图1所示,可得△CPH,△HBG与△FKO都为等腰直角三角形,∴GB=OF,PH=PC,KF=OK,此时重合部分五边形PHBFK的周长L=BH+HP+PK+KF+BF=GB+CP+PK+KO=BF=OC+FG=OC+OB=4+4;②当4≤x≤8时,如图2所示,此时△CPH与△BHF都为等腰直角三角形,∴FB=HB=BG﹣GF=x﹣4,CH=CB﹣HB=4﹣(x﹣4)=8﹣x,CP=PH=(8﹣x),此时重合部分△CHP的周长L=CH+CP+PH=8﹣x+2×(8﹣x)=8+8﹣x﹣x,综上,L=.25.如图,平面直角坐标系中,矩形OABC的对角线AC=12,∠ACO=30°(1)求B、C两点的坐标;(2)过点G(0,﹣6)作GF⊥AC,垂足为F,直线GF分别交AB、OC于点E、D,求直线DE的解析式;(3)在(2)的条件下,若点M在直线DE上,平面内是否存在点P,使以O、F、M、P 为顶点的四边形是菱形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)利用三角函数求得OA以及OC的长度,则C、B的坐标即可得到;(2)先求出直线DE的斜率,设直线DE的解析式是y=x+b,再把点G代入求出b的值即可;(3)分当FM是菱形的边和当OF是对角线两种情况进行讨论.利用三角函数即可求得P 的坐标.【解答】解:(1)在直角△OAC中,∵∠ACO=30°∴tan∠ACO==,∴设OA=x,则OC=3x,根据勾股定理得:(3x)2+(x)2=AC2,即9x2+3x2=144,解得:x=2.故C的坐标是:(6,0),B的坐标是(6,6);(2)∵直线AC的斜率是:﹣=﹣,∴直线DE的斜率是:.∴设直线DE的解析式是y=x+b,∵G(0,﹣6),∴b=﹣6,∴直线DE的解析式是:y=x﹣6;(3)∵C的坐标是:(6,0),B的坐标是(6,6);∴A(0,6),∴设直线AC的解析式为y=kx+b(k≠0),∴,解得.∴直线AC的解析式为y=﹣x+6.∵直线DE的解析式为y=x﹣6,∴,解得.∴F是线段AC的中点,∴OF=AC=6,∵直线DE的斜率是:.∴DE与x轴夹角是60°,当FM是菱形的边时(如图1),ON∥FM,则∠POC=60°或120°.当∠POC=60°时,过N作NG⊥y轴,则PG=OP•sin30°=6×=3,OG=OP•cos30°=6×=3,则P的坐标是(3,3);当∠NOC=120°时,与当∠POC=60°时关于原点对称,则坐标是(﹣3,﹣3);当OF是对角线时(如图2),MP关于OF对称.∵F的坐标是(3,3),∴∠FOD=∠POF=30°,在直角△OPH中,OH=OF=3,OP===2.作PL⊥y轴于点L.在直角△OPL中,∠POL=30°,则PL=OP=,OL=OP•cos30°=2×=3.故P的坐标是(,3).当DE与y轴的交点时G,这个时候P在第四象限,此时点的坐标为:(3,﹣3).则P的坐标是:(3,﹣3)或(3,3)或(﹣3,﹣3)或(,3).2016年5月19日。
八年级下册数学第一次月考试卷及答案
八年级下册数学第一次月考试卷及答案一、选择题(请将选择题答案填入题后表格中,36分)1.在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【解答】解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∴点P在第二象限.故选:B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.下列各式约分准确的是()A. =x3 B. =0 C. = D. =【考点】约分.【专题】计算题.【分析】根据约分的定义对各选项实行判断.【解答】解:A、原式=x4,所以A选项错误;B、原式=1,所以,B选项错误;C、原式= = ,所以C选项准确;D、原式= ,所以D选项错误.故选C.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.3.小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()A. B. C. D.【考点】函数的图象.【分析】对四个图依次实行分析,符合题意者即为所求.【解答】解:A、从家中走10分钟到离家1000米的报亭看了20分钟的报纸后,用15分钟返回家里,故本选项错误;B、从家中走20分钟到离家1000米的报亭看了0分钟的报纸后,用25分钟返回家里,故本选项错误;C、从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,故本选项准确;D、从家中走30分钟到离家1000米的报亭看了0分钟的报纸后,用15分钟返回家里,故本选项错误.故选C.【点评】本题考查利用函数的图象解决实际问题,准确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相对应解决.4.下面点中不在一次函数y=﹣2x+3图象上的是()A.(3,0) B.(﹣5,13) C.(2,﹣1) D.(﹣1,5)【考点】一次函数图象上点的坐标特征.【分析】分别把各点坐标代入一次函数的解析式实行检验即可.【解答】解:A、∵当x=3时,﹣2x+3=﹣6+3=﹣3≠0,∴此点不在函数图象上,故本选项准确;B、∵当x=﹣5时,﹣2x+3=10+3=13,∴此点在函数图象上,故本选项错误;C、∵当x=2时,﹣2x+3=﹣4+3=﹣1,∴此点在函数图象上,故本选项错误;D、∵当x=﹣1时,﹣2x+3=2+3=5,∴此点在函数图象上,故本选项错误.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.在函数中,自变量x的取值范围是()A.x≠﹣2 B.x>﹣2 C.x≠0 D.x≠2【考点】函数自变量的取值范围.【专题】计算题.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+2≠0,解可得答案.【解答】解:根据题意可得x+2≠0;解得x≠﹣2.故选A.【点评】本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为0.6.一次函数y=2x﹣3的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数的性质.【分析】根据一次函数的性质,当k>0时,图象经过第一、三象限解答.【解答】解:∵k=2>0,∴函数经过第一、三象限,∵b=﹣3<0,∴函数与y轴负半轴相交,∴图象不经过第二象限.故选:B.【点评】本题主要考查一次函数的性质,需要熟练掌握.7.关于函数y= 有如下结论:①函数图象一定经过点(﹣2,﹣3);②函数图象在第一、三象限;③函数值y随x的增大而减小;④当x≤﹣6时,函数y的取值范围为﹣1≤y<0.这其中准确的有()A.1个 B.2个 C.3个 D.4个【考点】反比例函数的性质.【分析】根据反比例函数图象上点的坐标特点及函数的增减性实行逐一分析解答.【解答】解:①准确,根据反比例函数k=xy的特点可知(﹣2)×(﹣3)=6符合题意,故准确;②准确,因为此函数中k=6>0,所以函数图象在第一、三象限;③错误,因为反比例函数的增减性必须强调在每个象限内或在双曲线的每一支上;④准确,当x≤﹣6时,函数y的取值范围为﹣1≤y<0.所以,①②④两个准确;故选C.【点评】本题考查了反比例函数的性质,涉及到反比例函数的性质及其增减性,涉及面较广但难易适中.8.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A. B. C. D.【考点】由实际问题抽象出分式方程.【专题】应用题;压轴题.【分析】关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间﹣张老师所用时间= .【解答】解:李老师所用时间为:,张老师所用的时间为:.所列方程为:﹣ = .故选:B.【点评】未知量是速度,有路程,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.9.在式子、、、、、中,分式的个数有()A.2个 B.3个 C.4个 D.5个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、9x+ 这3个式子的分母中含有字母,所以是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.10.在同一直角坐标系中,函数y=kx﹣k与y= (k≠0)的图象大致是()A. B. C. D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点实行选择准确答案.【解答】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y= (k≠0)的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y= (k≠0)的图象经过二、四象限,没有符合条件的选项.故选:B.【点评】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.11.设点A(﹣1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A.a=b B.a>b C.a<b D.无法确定【考点】一次函数图象上点的坐标特征.【分析】先判断出“k”的符号,再根据一次函数的性质判断出a、b的大小.【解答】解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵﹣1<4,∴a>b.故选B.【点评】此题考查了一次函数的性质,解答时只要判断出横坐标的大小,即可判断出a、b的大小.12.直线y=﹣3x﹣2与直线y=2x+8的交点坐标是()A.(﹣2,4) B.(﹣2,﹣4) C.(2,4) D.(2,﹣4)【考点】两条直线相交或平行问题.【分析】求两条直线的交点,可联立两函数的解析式,所得方程组的解即为两个函数的交点坐标.【解答】解:联立两函数的解析式组成方程组得:,解得:,则直线y=﹣3x﹣2与直线y=2x+8的交点坐标是(﹣2,4).故选:A.【点评】本题考查了两条直线相交问题,关键理解两条直线相交的交点即是两个函数联立方程组求得的解.二、填空题13.当x ≠1时,分式有意义.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:≠1.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义分母为零;(2)分式有意义分母不为零;(3)分式值为零分子为零且分母不为零.14.用科学记数法表示0.000 0201= 2.01×10﹣5 .【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也能够利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0201=2.01×10﹣5.故答案为:2.01×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.化简: + = 1 .【考点】分式的加减法.【专题】计算题;分式.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式= =1,故答案为:1.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.16.直线y=3x向上平移4个单位得到的直线的解析式为:y=3x+4 .【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则求解即可.【解答】解:直线y=3x向上平移4个单位得到的直线的解析式为y=3x+4.故答案为y=3x+4.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则“左加右减,上加下减”是解答此题的关键.17.点M(3,﹣4)关于x轴的对称点的坐标是(3,4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点M(3,﹣4)关于x轴的对称点M′的坐标是(3,4).故答案为:(3,4).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18.若一次函数y=2x﹣m的图象经过点A(2,3),则m的值为1 .【考点】一次函数图象上点的坐标特征.【分析】直接把A(2,3)代入一次函数y=2x﹣m,求出m的值即可.【解答】解:∵一次函数y=2x﹣m的图象经过点A(2,3),∴3=4﹣m,解得m=1.故答案为:1.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.若关于x的方程 + =3有增根,则增根一定是x=2 .【考点】分式方程的增根.【专题】计算题;分式方程及应用.【分析】分式方程变形后,找出最简公分母,由分式方程有增根,得到x﹣2=0,求出增根即可.【解答】解:由分式方程有增根,得到x﹣2=0,即x=2,则增根为x=2.故答案为:x=2.【点评】此题考查了分式方程的增根,增根问题可按如下步骤实行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.当x= 1 时,分式的值为零.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此能够解答本题.【解答】解:x2﹣1=0,解得:x=±1,当x=﹣1时,x+1=0,因而应该舍去.故x=1.故答案是:1.【点评】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、解答题21.计算:20200+|﹣ |﹣2﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质化简进而求出答案.【解答】解:20200+|﹣ |﹣2﹣2=1+ ﹣=1.【点评】此题主要考查了实数相关运算,准确根据相关性质化简各数是解题关键.22.先化简,再求值:(1+ )÷ ,其中x= ﹣2.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式实行化简,再求出x 的值代入实行计算即可.【解答】解:原式==x+1.当x= ﹣1时,原式= .【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.解方程: +3= .【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果需检验.【解答】解:方程两边都乘(x﹣2),得1+3(x﹣2)=x﹣1,解得x=2.经检验x=2为增根,原方程无解.【点评】本题需注意:分式方程里单独的一个数和字母也必须乘最简公分母.24.已知一次函数y=2x+4,作出函数图象,并回答以下问题:(1)x取何值时,y>0?(2)当x>8时,求y的取值范围.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】(1)利用描点法画出一次函数图象,然后写出图象在x 轴上方定义的自变量的范围即可;(2)先计算出x=8所对应的函数值,然后根据一次函数的性质求解.【解答】解:(1)如图,当x>﹣2时,y>0;(2)因为x=8时,y=2x+4=20,所以当x>8时,y>20.【点评】本题考查了一次函数与一元一次方程:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.25.甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:(1)谁先出发早多长时间谁先到达B地早多长时间?(2)两人在途中的速度分别是多少?(3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).【考点】一次函数的应用.【专题】图表型.【分析】本题主要是要读懂图中给出的信息,然后根据待定系数法来确定甲乙的函数关系式.【解答】解:(1)甲先出发,早了3小时;乙先到达B地,早了3小时;(2)甲速为10千米/小时,乙速为40千米/小时;(3)设y甲=kx,由图知:8k=80,k=10∴y甲=10x;设y乙=mx+n,由图知:解得∴y乙=40x﹣120答:甲、乙在行驶过程中的路程与时间之间的函数关系式分别为:y甲=10x,y乙=40x﹣120.【点评】借助函数图象表达题目中的信息,读懂图象是关键.26.如图,一次函数y1=kx+b的图象与反比例函数y2= 的图象交于点A﹙﹣2,﹣5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y2= 和一次函数y1=kx+b的表达式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)连接OA,OC.求△BOC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A(﹣2,﹣5)代入y2= 求得m的值,然后求得C的坐标,利用待定系数法求得直线的解析式;(2)根据图象和交点坐标即可求得;(3)首先求得B的坐标,根据三角形面积公式即可求解.【解答】解:(1)把A(﹣2,﹣5)代入y2= 得:﹣5= ,解得:m=10,则反比例函数的解析式是:y= ,把x=5代入,得:y= =2,则C的坐标是(5,2).根据题意得:,解得:,则一次函数的解析式是:y=x﹣3.(2)y1>y2时x的取值范围:﹣2<x<0或x>5;(3)在y=x﹣3中,令x=0,解得:y=﹣3.则B的坐标是(0,﹣3).∴OB=3,∵C的横坐标是5.∴S△BOC= ×OB×5= ×3×5= .【点评】本题综合考查一次函数与反比例函数的交点,函数与不等式的关系,利用反比例函数和一次函数的知识求三角形的面积,体现了数形结合的思想.27.某粮油公司要把240吨大米运往A、B两地,先用大、小两种货车共20辆,恰好能一次性装完这批大米,且每辆车都是满载,已知这两种货车的满载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A 地的大米很多于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设大货车为x辆,小货车为辆,根据这两种货车的满载重量分别为15吨/辆和10吨/辆,可列方程求解.(2)设有y辆大货车去A地,有(8﹣y)辆大货车去B地,有(10﹣y)辆小货车去A地,有[20﹣8﹣(10﹣y)]辆小货车去B地,以运往的大米做为不等量关系列不等式组求解.【解答】解:(1)设大货车为x辆,小货车为辆,15x+10=240x=8.20﹣8=12.故大货车8辆,小货车12辆.(2)设有y辆大货车去A地,有(8﹣y)辆大货车去B地,有(10﹣y)辆小货车去A地,有[20﹣8﹣(10﹣y)]辆小货车去B地..解得:3≤y≤11.根据运往A地的运费为:大车630元/辆,小车420元/辆;运往B 地的运费为:大车750元/辆,小车550元/辆.总费用为:a630+420(10﹣a)+(8﹣a)750+550(12﹣10+a)=10a+11300.故大车往A地的越少越省钱.则去A地的大车3辆,去B地的大车5辆,去A地的小车7辆,去B地的小车5辆,最省钱.最少费用为:10×3+11300=11330元.【点评】本题考查理解题意的水平,第一问设出大货的辆数,表示出小货的辆数,以钱数做为等量关系列方程求解,第二问求出能够运走粮食的车辆分配方案,根据总费用的关系式,确定方案.。
人教版数学八年级(下)第一次月考数学试卷(含答案)
八年级(下)第一次月考数学试卷一、选择题(每小题3分,12小题共36分1.(3分)在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.2.(3分)如图,在▱ABCD中,AD=16,点E,F分别是BD,CD的中点,则EF等于()A.10B.8C.6D.43.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB于D,CD=2,则AB长为()A.6B.C.+2D.+24.(3分)如图,在△ABC中,AB=AC=8,D是BC上一动点(D与B、C不重合),且DE∥AB,DF∥AC,则四边形DEAF的周长是()A.24B.18C.16D.125.(3分)下列选项中,矩形具有的性质是()A.四边相等B.对角线互相垂直C.对角线相等D.每条对角线平分一组对角6.(3分)平行四边形的边长为5,则它的对角线长可能是()A.4和6B.2和12C.4和8D.4和37.(3分)如图,矩形ABCD中,AB=3,BC=4,EB∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.8.(3分)下列结论中,错误的有()②△ABC的三边长分别为AB,BC,AC,若BC2+AC2=AB2,则∠A=90°;③在△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为3:4:5,则该三角形是直角三角形;A.0个B.1个C.2个D.3个9.(3分)如图是我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形、如果大正方形的面积13,小正方形的面积是1,直角三角形的短直角边为a,较长的直角边为b,那么(a+b)2的值为()A.169B.25C.19D.1310.(3分)如图,东西方向上有A,C两地相距10千米,甲以16千米/时的速度从A地出发向正东方向前进,乙以12千米/时的速度从C地出发向正南方向前进,那么最快经过()小时,甲、乙两人相距6千米?A.B.C.1.5D.11.(3分)如图,∠MON=90°,长方形ABCD的顶点B、C分别在边OM、ON上,当B在边OM上运动时,C随之在边ON上运动,若CD=5,BC=24,运动过程中,点D到点O的最大距离为()A.24B.25C.D.2612.(3分)如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四=;④S△AEF=.其中正确的有()边形BDEF是平行四边形;③S四边形BDEFA.1个B.2个C.3个D.4个二、填空题(每小题3分,6小题共18分13.(3分)若O是四边形ABCD的对角线AC和BD的交点,且OB=OD,AC=14cm,则当OA=cm 时,四边形ABCD是平行四边形.14.(3分)如图,在△ABC中,AB=6,D、E分别是AB、AC的中点,点F在DE上,且DF=3FE,当AF⊥BF时,BC的长是.15.(3分)如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=3,则CE2+CF2=.16.(3分)如图,矩形ABCD中,AB=4,AD=3,点Q在对角线AC上,且AQ=AD,连接DQ并延长,与边BC交于点P,则线段AP=.17.(3分)如图,在四边形ABCD中,AB⊥BC,对角线AC、BD相交于点E,E为BD中点,且AD=BD,AB=2,∠BAC=30°,则DC=.18.(3分)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为.19.(3分)如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(﹣2,4),B点坐标为(﹣4,2);(2)在第二象限内的格点上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是;(3)求△ABC中BC边上的高长.20.(3分)如图,在四边形ABCD中,AB=AD,∠A=90°,∠CBD=30°,∠C=45°,如果AB=,求CD的长.21.(3分)如图,平行四边形ABCD中,AE⊥BD于点E,CF⊥BD于点F,连结AF、CE.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AD=2,∠ABD=30°,求四边形AECF的面积.22.(3分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC =180°(1)求证:四边形ABCD是矩形;(2)若DE⊥AC交BC于E,∠ADB:∠CDB=2:3,则∠BDE的度数是多少?23.(3分)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向上,轮船从B处继续向正东方向航行100海里到达C处时,测得小岛A在船的北偏东30°的方向上,AD⊥BC于点D,求AD 的长.24.(3分)如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图1,当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图2,当折痕的另一端F在AD边上且BG=10时,①求证:EF=EG.②求AF的长.(3)如图3,当折痕的另一端F在AD边上,B点的对应点E在长方形内部,E到AD的距离为2cm,且BG=10时,求AF的长.参考答案一、选择题(每小题3分,12小题共36分1.B;2.B;3.D;4.C;5.C;6.C;7.C;8.C;9.B;10.A;11.B;12.C;二、填空题(每小题3分,6小题共18分13.7;14.8;15.36;16.;17.;18.4.8;19.(﹣1,1);。
八年级(下)学期 第一次月考检测数学试卷含答案
八年级(下)学期 第一次月考检测数学试卷含答案一、选择题1.下列计算正确的是( )A .()222a b a b -=-B .()322x x 8x ÷=+C .1a a a a ÷⋅=D 4=-2.下列运算中,正确的是 ( )A . 3B .×=6C . 3D .3.下列各式是二次根式的是( )A B C D 4.下列各式计算正确的是( )A =B 6=C .3+=D 2=- 5.下列式子一定是二次根式的是 ( )A B C D 6.下列运算正确的是( )A .32-=﹣6B 12-C =±2D .=7.设a b 21b a-的值为( )A 1+B 1+C 1D 18.设,n k 为正整数,1A =2A =3A =4A =…k A =….,已知1002005A =,则n =( ). A .1806B .2005C .3612D .4011 9.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .10.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a11.下列运算中错误的是( )A 235=B 236=C 822÷=D .2 (3)3-=12.下列计算正确的是( )A 235=B .332-=C .222=D 393=二、填空题13.已知412x =-()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 14.若m 20161-m 3﹣m 2﹣2017m +2015=_____. 15.()2117932x x x y ---=-,则2x ﹣18y 2=_____. 16.把1a- 17.已知2,n=1222m n mn +-的值________.18.已知x ,y 为实数,y 22991x x -+-+求5x +6y 的值________. 19.化简:3222=_____.20.x 的取值范围是_____三、解答题21.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9【分析】(1)仿照例子,由1+=的值;由1+=1的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.已知1,2y =. 【答案】1【分析】根据已知和二次根式的性质求出x 、y 的值,把原式根据二次根式的性质进行化简,把x 、y 的值代入化简后的式子计算即可.【详解】1-8x≥0,x≤18 8x-1≥0,x≥18,∴x=18,y=12, ∴原式532-==1222. 【点睛】本题考查的是二次根式的化简求值,把已知条件求出x 、y ,把要求的代数式进行正确变形是解题的关键,注意因式分解在化简中的应用.23.)÷)(a ≠b ). 【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222224.计算:(1)+ (2(33+-【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可.解:(1)+===(2(33+- =5+9-24=14-24=-10.【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.25.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1)(2)请你按照上面各等式反映的规律,用含n的等式表示(n为正整数).【答案】(1)1120(2)()111n n++(n为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1 1 20(2)1n−1n1+=1+()1n n1+ (n为正整数).a=,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.(1)已知a2+b2=6,ab=1,求a﹣b的值;(2)已知b=,求a2+b2的值.【答案】(1)±2;(2)2.【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解.【详解】(1)由a2+b2=6,ab=1,得a2+b2-2ab=4,(a-b)2=4,a-b=±2.(2)a===12b===,2222()22312 a b a b ab+=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.28.计算(1(2)21)-【答案】(1)4;(2)3+【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可;(2)利用平方差公式和完全平方公式计算即可.【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.29.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.30.02020((1)π-.【答案】【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可.【详解】原式11=-=【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断.【详解】解: A .()222a b a 2ab b -=-+,选项错误;B .()3322x x 8x x 8x ÷=÷=,选项正确;C .111a a 1a a a ÷⋅=⋅=,选项错误;D 44=-=,选项错误.故选:B .2.C解析:C【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断.【详解】A、A选项错误;B、×=12,所以B选项错误;C、3,所以C选项正确;D、,不能合并,所以D选项错误;故选:C.【点睛】本题考查了二次根式的混合运算,正确掌握运算法则是解题关键.3.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.4.B解析:B【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据=对D进行判断.a【详解】解:A不能合并,所以A选项错误;B6=,正确,所以B选项正确;C、3不能合并,所以C选项错误;D22(),所以D选项错误.=--=故选:B.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.5.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】A A 正确;B 、0a <B 错误;C 是三次根式,故C 错误;D 、0a <D 错误;故选:A .【点睛】0a ≥)是二次根式,注意二次根式的被开方数是非负数.6.B解析:B【分析】分别根据负整数指数幂的运算、立方根和算术平方根的定义及二次根式的乘法法则逐一计算可得.【详解】A 、3311228-==,此选项计算错误;B 12=-,此选项计算正确;C 2=,此选项计算错误;D 、,此选项计算错误;故选:B .【点睛】本题考查了负整数指数幂、立方根和算术平方根及二次根式的乘法,熟练掌握相关的运算法则是解题的关键.7.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a 、b 对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a ,∴b ,∴21b a -, 故选:B .【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.8.A解析:A【解析】【分析】利用多项式的乘法把各数开方进行计算,然后求出A 1,A 2,A 3的值,从而找出规律并写出规律表达式,再把k=100代入进行计算即可求解.【详解】∵(n+3)(n-1)+4=n 2+2n-3+4=n 2+2n+1=(n+1)2,∴A 11n =+∵(n+5)A 1+4=(n+5)(n+1)+4=n 2+6n+5+4=n 2+6n+9=(n+3)2,∴A 23n =+∵(n+7)A 2+4=(n+7)(n+3)+4=n 2+10n+21+4=n 2+10n+25=(n+5)2,∴A 35n =+⋯⋯依此类推,A k =n+(2k-1)∴A 100=n+(2×100-1)=2005解得,n=1806.故选A.【点睛】本题是对数字变化规律的考查,对被开方数整理,求出A1,A2,A3,从而找出规律写出规律的表达式是解题的关键.9.D解析:D【解析】【分析】根据等腰直角△ABC被直线a和b所截的图形分为三种情况讨论:①当0≤x≤1时,y是BM+BD;②当1<x≤2时,y是CP+CQ+MN;当2<x≤3时,y=AN+AF,分别用x表示出这三种情况下y的函数式,然后对照选项进行选择.【详解】①当0≤x≤1时,如图1所示.此时BM=x,则DM=x,在Rt△BMD中,利用勾股定理得BD=2x,所以等腰直角△ABC的边位于直线a,b之间部分的长度和为y=BM+BD=(2+1)x,是一次函数,当x=1时,B点到达N点,y=2+1;②当1<x≤2时,如图2所示,△CPQ是直角三角形,此时y=CP+CQ+MN=2+1.即当1<x≤2时,y的值不变是2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF2(3﹣x),y=AN+AF=(﹣1﹣2)x2,是一次函数,当x=3时,y=0.综上所述只有D 答案符合要求.故选:D .【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y 与x 的函数式.10.A解析:A【解析】 ﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.11.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】 23 23236=⨯= 828242÷÷===,故此项正确,不符合要求; D. 2 (3)3-=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.C解析:C【分析】根据立方根、二次根式的加减乘除运算法则计算.【详解】A 、非同类二次根式,不能合并,故错误;B 、2333=C 、22=,正确;D故选C .【点睛】本题考查二次根式、立方根的运算法则,熟练掌握基本法则是关键.二、填空题13.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键.【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】m== m==+1,∴m3-m2-2017m+2015=m2(m ﹣1)﹣2017m+2015解析:4030【分析】利用平方差公式化简m ,整理要求的式子,将m 的值代入要求的式子计算即可.【详解】mm ), ∴m 3-m 2-2017m +2015=m 2(m ﹣1)﹣2017m +2015= )22017)+2015=(2017+2015﹣2=4030.故答案为4030.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.15.【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】解:∵一定有意义,∴x≥11,∴﹣|7﹣x|+=3y ﹣2,﹣x+7+x ﹣9=3y ﹣2,整理得:=3y ,∴x ﹣解析:22【分析】直接利用二次根式的性质将已知化简,再将原式变形求出答案.【详解】一定有意义,|7﹣x=3y﹣2,﹣x+7+x﹣9=3y﹣2,=3y,∴x﹣11=9y2,则2x﹣18y2=2x﹣2(x﹣11)=22.故答案为:22.【点睛】本题考查二次根式有意义的应用,以及二次根式的性质应用,属于提高题.16.﹣【解析】解:通过有意义可以知道≤0,≤0,所以=﹣=﹣.故答案为:.点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.解析:【解析】解:通过a≤0,,所以故答案为:点睛:此题主要考查了二次根式的性质应用,正确判断二次根式的整体符号是解题关键.17.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得====.故答案是:.【解析】根据题意,把被开方数配方为完全平方,然后代入求解,可得.18.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16.故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解.19.【分析】直接合并同类二次根式即可.【详解】解:.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.解析:【分析】直接合并同类二次根式即可.【详解】解:=.故答案为【点睛】合并同类二次根式实际是把同类二次根式的系数相加,而根指数与被开方数都不变.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级下册数学第一次月考试卷及答案
八年级下册数学第一次月考试卷及答案一、选择题(请将选择题答案填入题后表格中,36分)1.在平面直角坐标系中,点P(﹣1,2)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】应先判断出所求点P的横坐标、纵坐标的符号,进而判断其所在的象限.【解答】解:∵点P(﹣1,2)的横坐标﹣1<0,纵坐标2>0,∵点P在第二象限.故选:B.【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.下列各式约分正确的是()A.=x3 B.=0 C.= D.=【考点】约分.【专题】计算题.【分析】根据约分的定义对各选项进行判断.【解答】解:A、原式=x4,所以A选项错误;B、原式=1,所以,B选项错误;C、原式= = ,所以C选项正确;D、原式= ,所以D选项错误.故选C.【点评】本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.3.小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()A.B.C.D.【考点】函数的图象.【分析】对四个图依次进行分析,符合题意者即为所求.【解答】解:A、从家中走10分钟到离家1000米的报亭看了20分钟的报纸后,用15分钟返回家里,故本选项错误;B、从家中走20分钟到离家1000米的报亭看了0分钟的报纸后,用25分钟返回家里,故本选项错误;C、从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,故本选项正确;D、从家中走30分钟到离家1000米的报亭看了0分钟的报纸后,用15分钟返回家里,故本选项错误.故选C.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.4.下面点中不在一次函数y=﹣2x+3图象上的是()A.(3,0)B.(﹣5,13)C.(2,﹣1)D.(﹣1,5)【考点】一次函数图象上点的坐标特征.【分析】分别把各点坐标代入一次函数的解析式进行检验即可.【解答】解:A、∵当x=3时,﹣2x+3=﹣6+3=﹣3≠0,∵此点不在函数图象上,故本选项正确;B、∵当x=﹣5时,﹣2x+3=10+3=13,∵此点在函数图象上,故本选项错误;C、∵当x=2时,﹣2x+3=﹣4+3=﹣1,∵此点在函数图象上,故本选项错误;D、∵当x=﹣1时,﹣2x+3=2+3=5,∵此点在函数图象上,故本选项错误.故选A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.在函数中,自变量x的取值范围是()A.x≠﹣2 B.x>﹣2 C.x≠0 D.x≠2【考点】函数自变量的取值范围.【专题】计算题.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+2≠0,解可得答案.【解答】解:根据题意可得x+2≠0;解得x≠﹣2.故选A.【点评】本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为0.6.一次函数y=2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】一次函数的性质.【分析】根据一次函数的性质,当k>0时,图象经过第一、三象限解答.【解答】解:∵k=2>0,∵函数经过第一、三象限,∵b=﹣3<0,∵函数与y轴负半轴相交,∵图象不经过第二象限.故选:B.【点评】本题主要考查一次函数的性质,需要熟练掌握.7.关于函数y= 有如下结论:①函数图象一定经过点(﹣2,﹣3);②函数图象在第一、三象限;③函数值y随x的增大而减小;④当x≤﹣6时,函数y的取值范围为﹣1≤y<0.这其中正确的有()A.1个B.2个C.3个D.4个【考点】反比例函数的性质.【分析】根据反比例函数图象上点的坐标特点及函数的增减性进行逐一分析解答.【解答】解:①正确,根据反比例函数k=xy的特点可知(﹣2)×(﹣3)=6符合题意,故正确;②正确,因为此函数中k=6>0,所以函数图象在第一、三象限;③错误,因为反比例函数的增减性必须强调在每个象限内或在双曲线的每一支上;④正确,当x≤﹣6时,函数y的取值范围为﹣1≤y<0.所以,①②④两个正确;故选C.【点评】本题考查了反比例函数的性质,涉及到反比例函数的性质及其增减性,涉及面较广但难易适中.8.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意,得到的方程是()A.B.C.D.【考点】由实际问题抽象出分式方程.【专题】应用题;压轴题.【分析】关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间﹣张老师所用时间= .【解答】解:李老师所用时间为:,张老师所用的时间为:.所列方程为:﹣= .故选:B.【点评】未知量是速度,有路程,一定是根据时间来列等量关系的.找到关键描述语,找到等量关系是解决问题的关键.9.在式子、、、、、中,分式的个数有()A.2个B.3个C.4个D.5个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:、、9x+ 这3个式子的分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:B.【点评】本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.10.在同一直角坐标系中,函数y=kx﹣k与y= (k≠0)的图象大致是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.【解答】解:①当k>0时,一次函数y=kx﹣k经过一、三、四象限,反比例函数的y= (k≠0)的图象经过一、三象限,故B选项的图象符合要求,②当k<0时,一次函数y=kx﹣k经过一、二、四象限,反比例函数的y= (k≠0)的图象经过二、四象限,没有符合条件的选项.故选:B.【点评】此题考查反比例函数的图象问题;用到的知识点为:反比例函数与一次函数的k 值相同,则两个函数图象必有交点;一次函数与y轴的交点与一次函数的常数项相关.11.设点A(﹣1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A.a=b B.a>b C.a<b D.无法确定【考点】一次函数图象上点的坐标特征.【分析】先判断出“k”的符号,再根据一次函数的性质判断出a、b的大小.【解答】解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵﹣1<4,∵a>b.故选B.【点评】此题考查了一次函数的性质,解答时只要判断出横坐标的大小,即可判断出a、b 的大小.12.直线y=﹣3x﹣2与直线y=2x+8的交点坐标是()A.(﹣2,4)B.(﹣2,﹣4)C.(2,4)D.(2,﹣4)【考点】两条直线相交或平行问题.【分析】求两条直线的交点,可联立两函数的解析式,所得方程组的解即为两个函数的交点坐标.【解答】解:联立两函数的解析式组成方程组得:,解得:,则直线y=﹣3x﹣2与直线y=2x+8的交点坐标是(﹣2,4).故选:A.【点评】本题考查了两条直线相交问题,关键理解两条直线相交的交点即是两个函数联立方程组求得的解.二、填空题13.当x≠1时,分式有意义.【考点】分式有意义的条件.【分析】根据分母不等于0列式求解即可.【解答】解:由题意得,x﹣1≠0,解得x≠1.故答案为:≠1.【点评】从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.用科学记数法表示0.000 0201= 2.01×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 0201=2.01×10﹣5.故答案为:2.01×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.化简:+ =1.【考点】分式的加减法.【专题】计算题;分式.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式= =1,故答案为:1.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.16.直线y=3x向上平移4个单位得到的直线的解析式为:y=3x+4.【考点】一次函数图象与几何变换.【分析】根据“上加下减”的原则求解即可.【解答】解:直线y=3x向上平移4个单位得到的直线的解析式为y=3x+4.故答案为y=3x+4.【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象变换的法则“左加右减,上加下减”是解答此题的关键.17.点M(3,﹣4)关于x轴的对称点的坐标是(3,4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点M(3,﹣4)关于x轴的对称点M′的坐标是(3,4).故答案为:(3,4).【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18.若一次函数y=2x﹣m的图象经过点A(2,3),则m的值为1.【考点】一次函数图象上点的坐标特征.【分析】直接把A(2,3)代入一次函数y=2x﹣m,求出m的值即可.【解答】解:∵一次函数y=2x﹣m的图象经过点A(2,3),∵3=4﹣m,解得m=1.故答案为:1.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.19.若关于x的方程+ =3有增根,则增根一定是x=2.【考点】分式方程的增根.【专题】计算题;分式方程及应用.【分析】分式方程变形后,找出最简公分母,由分式方程有增根,得到x﹣2=0,求出增根即可.【解答】解:由分式方程有增根,得到x﹣2=0,即x=2,则增根为x=2.故答案为:x=2.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.20.当x=1时,分式的值为零.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:x2﹣1=0,解得:x=±1,当x=﹣1时,x+1=0,因而应该舍去.故x=1.故答案是:1.【点评】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.三、解答题21.计算:20120+|﹣|﹣2﹣2.【考点】实数的运算;零指数幂;负整数指数幂.【分析】直接利用零指数幂的性质以及负整数指数幂的性质、绝对值的性质化简进而求出答案.【解答】解:20120+|﹣|﹣2﹣2=1+ ﹣=1.【点评】此题主要考查了实数有关运算,正确根据相关性质化简各数是解题关键.22.先化简,再求值:(1+ )÷ ,其中x= ﹣2.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:原式= •=x+1.当x= ﹣1时,原式= .【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.解方程:+3= .【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果需检验.【解答】解:方程两边都乘(x﹣2),得1+3(x﹣2)=x﹣1,解得x=2.经检验x=2为增根,原方程无解.【点评】本题需注意:分式方程里单独的一个数和字母也必须乘最简公分母.24.已知一次函数y=2x+4,作出函数图象,并回答以下问题:(1)x取何值时,y>0?(2)当x>8时,求y的取值范围.【考点】一次函数与一元一次不等式.【专题】数形结合.【分析】(1)利用描点法画出一次函数图象,然后写出图象在x轴上方定义的自变量的范围即可;(2)先计算出x=8所对应的函数值,然后根据一次函数的性质求解.【解答】解:(1)如图,当x>﹣2时,y>0;(2)因为x=8时,y=2x+4=20,所以当x>8时,y>20.【点评】本题考查了一次函数与一元一次方程:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.25.甲、乙两人分别骑自行车和摩托车沿相同路线由A地到相距80千米的B地,行驶过程中的函数图象如图所示,请根据图象回答下列问题:(1)谁先出发早多长时间谁先到达B地早多长时间?(2)两人在途中的速度分别是多少?(3)分别求出表示甲、乙在行驶过程中的路程与时间之间的函数关系式(不要求写出自变量的取值范围).【考点】一次函数的应用.【专题】图表型.【分析】本题主要是要读懂图中给出的信息,然后根据待定系数法来确定甲乙的函数关系式.【解答】解:(1)甲先出发,早了3小时;乙先到达B地,早了3小时;(2)甲速为10千米/小时,乙速为40千米/小时;(3)设y甲=kx,由图知:8k=80,k=10∵y甲=10x;设y乙=mx+n,由图知:解得∵y乙=40x﹣120答:甲、乙在行驶过程中的路程与时间之间的函数关系式分别为:y甲=10x,y乙=40x﹣120.【点评】借助函数图象表达题目中的信息,读懂图象是关键.26.如图,一次函数y1=kx+b的图象与反比例函数y2= 的图象交于点A﹙﹣2,﹣5﹚,C﹙5,n﹚,交y轴于点B,交x轴于点D.(1)求反比例函数y2= 和一次函数y1=kx+b的表达式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)连接OA,OC.求∵BOC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A(﹣2,﹣5)代入y2= 求得m的值,然后求得C的坐标,利用待定系数法求得直线的解析式;(2)根据图象和交点坐标即可求得;(3)首先求得B的坐标,根据三角形面积公式即可求解.【解答】解:(1)把A(﹣2,﹣5)代入y2= 得:﹣5= ,解得:m=10,则反比例函数的解析式是:y= ,把x=5代入,得:y= =2,则C的坐标是(5,2).根据题意得:,解得:,则一次函数的解析式是:y=x﹣3.(2)y1>y2时x的取值范围:﹣2<x<0或x>5;(3)在y=x﹣3中,令x=0,解得:y=﹣3.则B的坐标是(0,﹣3).∵OB=3,∵C的横坐标是5.∵S∵BOC= ×OB×5= ×3×5= .【点评】本题综合考查一次函数与反比例函数的交点,函数与不等式的关系,利用反比例函数和一次函数的知识求三角形的面积,体现了数形结合的思想.27.某粮油公司要把240吨大米运往A、B两地,先用大、小两种货车共20辆,恰好能一次性装完这批大米,且每辆车都是满载,已知这两种货车的满载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.(1)求两种货车各用多少辆;(2)如果安排10辆货车前往A地,其余货车前往B地,且运往A地的大米不少于115吨.请你设计出使总运费最少的货车调配方案,并求出最少总运费.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)设大货车为x辆,小货车为辆,根据这两种货车的满载重量分别为15吨/辆和10吨/辆,可列方程求解.(2)设有y辆大货车去A地,有(8﹣y)辆大货车去B地,有(10﹣y)辆小货车去A地,有[20﹣8﹣(10﹣y)]辆小货车去B地,以运往的大米做为不等量关系列不等式组求解.【解答】解:(1)设大货车为x辆,小货车为辆,15x+10=240x=8.20﹣8=12.故大货车8辆,小货车12辆.(2)设有y辆大货车去A地,有(8﹣y)辆大货车去B地,有(10﹣y)辆小货车去A地,有[20﹣8﹣(10﹣y)]辆小货车去B地..解得:3≤y≤11.根据运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.总费用为:a•630+420•(10﹣a)+(8﹣a)•750+550•(12﹣10+a)=10a+11300.故大车往A地的越少越省钱.则去A地的大车3辆,去B地的大车5辆,去A地的小车7辆,去B地的小车5辆,最省钱.最少费用为:10×3+11300=11330元.【点评】本题考查理解题意的能力,第一问设出大货的辆数,表示出小货的辆数,以钱数做为等量关系列方程求解,第二问求出能够运走粮食的车辆分配方案,根据总费用的关系式,确定方案.。
八年级数学(下)学期 第一次月考测试卷及答案
(1)依据规律可写出第n个式子,然后判断被开方数的正负情况,从而可做出判断;
(2)将 代入,得出第16个式子为 ,再判断即可.
【详解】
解:(1) ,
该式子一定是二次根式,
因为 为正整数, ,所以该式子一定是二次根式
(2)
∵ , ,
∴ .
∴ 在15和16之间.
【点睛】
本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.
用上述方法对 进行分母有理化.
(3)利用所需知识判断:若 , ,则 的关系是.
(4)直接写结果: .
【答案】(1) ;(2) ;(3)互为相反数;(4)2019
【分析】
(1)根据互为有理化因式的定义利用平方差公式即可得出;
(2)原式分子分母同时乘以分母的有理化因式 ,化简即可;
(3)将 分母有理化,通过结果即可判断;
18.已知x,y为实数,y= 求5x+6y的值________.
19.若 的整数部分是a,小数部分是b,则 ______.
20.若实数 ,则代数式 的值为___.
三、解答题
21.小明在解决问题:已知a= ,求2a2-8a+1的值,他是这样分析与解答的:
因为a= = =2- ,
所以a-2=- .
所以(a-2)2=3,即a2-4a+4=3.
25.先阅读下列解答过程,然后再解答:
形如 的化简,只要我们找到两个正数 ,使 , ,使得 , ,那么便有:
例如:化简
解:首先把 化为 ,这里 ,由于 ,即: , ,
所以 。
问题:
①填空: , ;
②化简: (请写出计算过程)
【答案】(1) , ;(2) .
八年级数学下学期第一次月考测试卷含答案
15.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为 ,已知 ,则 的值是____.
(1)已知点 、 是线段 的勾股分割点,若 , ,求 的长;
(2)如图2,在 中, ,点 、 在斜边 上, ,求证:点 、 是线段 的勾股分割点(提示:把 绕点 逆时针旋转 );
A.0个B.1个C.2个D.3个
7.如图,分别以直角 三边为边向外作三个正方形,其面积分别用 表示,若 , ,那么 ()
A.9B.5C.53D.45
8.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知 正方形 的边长是 , ,则 的长为()
A. B. C. D.
9.以下列各组数为边长,能构成直角三角形的是
A. B. 、 、
C. 、 、 D. 、 、
10.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东 的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()
A.北偏西 B.南偏西75°
C.南偏东 或北偏西 D.南偏西 或北偏东
A.121B.110C.100D.90
3.△ABC的三边分别为 ,下列条件能推出△ABC是直角三角形的有()
① ;② ;③∠A=∠B ∠C;④∠A∶∠B∶∠C=1∶2中, cm, cm,点D、E分别在AC、BC上,现将 沿DE翻折,使点C落在点 处,连接 ,则 长度的最小值()
(1)若点P在AC上,且满足PA=PB时,求出此时t的值;
八年级数学下册第一次月考试卷(附答案)
八年级数学下册第一次月考试卷(附答案)一.单选题。
(共40分)1.若m>n,下列结论错误的是()A.m+2>n+2B.m-2>n-2C.2m>2nD.﹣2m>﹣2n2.x的3倍与5的差不大于4,用不等式表示为()A.3x+5≤4B.3x+5<4C.3x-5<4D.3x-5≤43.函数y=kx+b的图象如图所示,关于x的不等式kx+b>0的解集为()A.x>0B.x<0C.x<2D.x>2(第3题图)(第4题图)(第8题图)4.一次函数y=kx+b的图像如图所示,当y<2时,x的取值范围是()A.x<1B.x>1C.x<3D.x>35.﹣3x≤9的解集在数轴上可表示为()A. B. C. D.6.已知点P(3-m,m-1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C. D.7.关于x的不等式x+a2≥2x-13的解集为x≤﹣1,则a的值是()A.0B.1C.﹣1D.﹣138.一次函数y=3x+b和y=ax-3的图象如图所示,交点P(﹣2,﹣5),则不等式3x+b>ax-3的解集在数轴上表示正确的是()A. B.C. D.9.某种商品的进件为80元,出售时标价120元,后来由于该商品积压,商店准备打折出售,但要保证利润率不低于5%,则至少打几折,如果该商品打x 折销售,则不等式中正确表示该商品的促销方式的是( )A.120x ≥80×5%B.120x -80≥80×5%C.120×x10≥80×5% D.120×x10-80≥80×5% 10.关于x 的不等式组{x -m <07-2x ≤1的整数解共有4个,则m 的取值范围是( )A.6<m <7B.6≤m <7C.6≤m ≤7D.6<m ≤7 二.填空题。
(共24分)11.若a <b ,则1-3a 1-3b (填>、<或=) 12.若关于x 的不等式组{x >2x >m的解集是x >2,则m 的取值范围是 .13.已知关于x 的不等式(1-a )x >3的解集为x <31-a,则a 的取值范围是 .14.关于x 的方程2x+4=m -x 的解为负数,则m 的取值范围是 . 15.已知关于x 、y 的二元一次方程组{2x +3y =5ax +4y =2a +3满足x -y >0,则a 的取值范围是 .16.对于任意实数a 、b 定义一种运算:a ★b=ab -a+b -2,例如2★5=2×5-2+5-2=11,请根据上述定义解决问题,若不等式3★x <2,则不等式的正整数解是 . 三.解答题。
新版【___版】八年级下数学第一次月考试题及答案
新版【___版】八年级下数学第一次月考试题及答案八年级第一次月考数学试题一、选择题。
(每小题3分,共27分)1.下列各式:10x2/13xy3a3b3c5xy、4yxaπ6+x7/8中分式的个数有()。
A。
5个 B。
4个 C。
3个 D。
2个2.下列运算正确的是()。
a2/b2+6ac2/b2=a/bA。
a+b B。
a-b C。
-c D。
(5a+b)/(5a+10b)3.如果把(x+y)扩大为原来的10倍,则这个代数式的值()。
A.不变B.扩大为原来的10倍C.缩小为原来的10倍D.扩大为原来的100倍4.关于x的分式方程x/(x-3)=-1有增根,则m得值为()A。
-6 B。
5 C。
6 D。
45.要使分式(x/(x-1))+(1/(x+2))有意义,则x应满足()。
A。
x≠1 B。
x≠-2 C。
x≠1且x≠-2 D。
x≠1或x≠-26.下面平面直角坐标系中的曲线不表示y是x的函数的是()。
7.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等),又顺水航行返回到万州,若该轮船从万州出发后所用的时间为x(小时),轮船距万州的距离为y(千米).则下列各图中,能够反映y与x之间的函数关系的大致图象是()。
8.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b得值为()。
A。
33 B。
-33 C。
-7 D。
79.函数y=-3x+2的图像一定通过点()。
A。
(1,-2) B。
(2,7) C。
(-1/3,2) D。
(-1,4)二、填空题。
(每小题3分,共27分)10.函数y=(x-1)/(2x+1)中自变量x的取值范围是-1/2<x<∞。
11.关于x的分式方程(m+3)/(x-1)-(1-m)/(x+1)=1的解为正数,则m得取值范围是0<m<2.12.若分式(x-3)/(x2-9)的值为零,则x=-3或x=3.13.已知a-a-1=4,则a2+a-2=18.从统计图中可以看出,擦玻璃、擦课桌椅和扫地拖地的面积分别为m2,m2和m2.我们可以利用图2中每人每分钟完成各项工作量的数据,来推导出擦玻璃面积y与人数x之间的函数关系式。
八年级数学(下)学期 第一次 月考检测测试卷含答案
一、选择题1.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则AP BP CP ++的最小值为( )A .8B .8.8C .9.8D .102.如图,在等腰三角形ABC 中,AC=BC=5,AB=8,D 为底边上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,则DE+DF= ( )A .5B .8C .13D .4.83.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A 、B 、C 、D 的边长是3、5、2、3,则最大正方形E 的面积是A .13B .225+C .47D .134.如图,□ABCD 中,对角线AC 与BD 相交于点E ,∠AEB=45°,BD=2,将△ABC 沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B 的落点记为B′,则DB′的长为( )A .1B 2C .32D 35.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2), 其中结论正确的个数是( )A .1B .2C .3D .4 6.在ABC 中,90C ∠=︒,30A ∠=︒,12AB =,则AC =( )A .6B .12C .62D .637.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .88.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )A .a =3,b =4,c =6B .a =5,b =6,c =7C .a =6,b =8,c =9D .a =7,b =24,c =259.有下列的判断:①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形 ②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形 ③如果△ABC 是直角三角形,那么a 2+b 2=c 2 以下说法正确的是( ) A .①②B .②③C .①③D .②10.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是( ) A .7,24,25B .111,4,5222C .3,4,5D .114,7,822二、填空题11.如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm 、3 dm 和1 dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点的最短路程是 dm .12.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.13.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________14.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =13S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.15.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.16.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________17.在△ABC 中,AB =6,AC =5,BC 边上的高AD =4,则△ABC 的周长为__________. 18.以直角三角形的三边为边向外作正方形P ,Q ,K ,若S P =4,S Q =9,则K S =___ 19.如图,在△ABC 中,AB =AC ,∠BAC =120°,AC 的垂直平分线交 BC 于 F ,交 AC 于 E ,交 BA 的延长线于 G ,若 EG =3,则 BF 的长是______.20.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.三、解答题21.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:2,CD 36,求线段AB 的长.22.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.23.如图, ABD 为边长不变的等腰直角三角形,AB AD =,90BAD ∠=︒,在 ABD 外取一点 E ,以A 为直角顶点作等腰直角AEP △,其中 P 在ABD 内部,90EAP ∠=︒,2AE AP ==,当E 、P 、D 三点共线时,7BP =.下列结论:①E 、P 、D 共线时,点B 到直线AE 的距离为5; ②E 、P 、D 共线时, 13ADP ABP S S ∆∆+=+;=532ABD S ∆+③;④作点 A 关于 BD 的对称点 C ,在 AEP 绕点 A 旋转的过程中,PC 的最小值为5+232-;⑤AEP △绕点A 旋转,当点E 落在AB 上,当点P 落在AD 上时,取BP 上一点N ,使得AN BN =,连接 ED ,则AN ED ⊥.其中正确结论的序号是___.24.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,5AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.25.阅读下列一段文字,然后回答下列问题.已知在平面内有两点()111, P x y 、()222, P x y ,其两点间的距离()()22121212PP x x y y =-+-直于坐标轴时,两点间距离公式可化简为12x x -或1|y -2|y . (1)已知()2, 4A 、()3, 8B --,试求A 、B 两点间的距离______.已知M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1,试求M 、N 两点的距离为______;(2)已知一个三角形各顶点坐标为()1, 6D 、()3, 3E -、()4, 2F ,你能判定此三角形的形状吗?说明理由.(3)在(2)的条件下,平面直角坐标系中,在x 轴上找一点P ,使PD PF +的长度最短,求出点P 的坐标及PD PF +的最短长度.26.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.27.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+;勾为5时,股112(251)2=-,弦113(251)2=+;请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24=弦25=(2)如果勾用n(3n≥,且n为奇数)表示时,请用含有n的式子表示股和弦,则股=,弦=.(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空: (3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式.(4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.28.(已知:如图1,矩形OACB 的顶点A ,B 的坐标分别是(6,0)、(0,10),点D 是y 轴上一点且坐标为(0,2),点P 从点A 出发以每秒1个单位长度的速度沿线段AC ﹣CB 方向运动,到达点B 时运动停止.(1)设点P 运动时间为t ,△BPD 的面积为S ,求S 与t 之间的函数关系式;(2)当点P 运动到线段CB 上时(如图2),将矩形OACB 沿OP 折叠,顶点B 恰好落在边AC 上点B ′位置,求此时点P 坐标;(3)在点P 运动过程中,是否存在△BPD 为等腰三角形的情况?若存在,求出点P 坐标;若不存在,请说明理由.29.(发现)小慧和小雯用一个平面去截正方体,得到一个三角形截面(截出的面),发现截面一定是锐角三角形.为什么呢?她们带着这个疑问请教许老师.(体验)(1)从特殊入手 许老师用1个铆钉把长度分别为4和3的两根窄木棒的一端连在一起(如图,),保持不动,让从重合位置开始绕点转动,在转动的过程,观测的大小和的形状,并列出下表:的大小 的形状…直角三角形 …直角三角形…请仔细体会其中的道理,并填空:_____,_____;(2)猜想一般结论在中,设,,(),①若为直角三角形,则满足;②若为锐角三角形,则满足____________;③若为钝角三角形,则满足_____________.(探索)在许老师的启发下,小慧用小刀在一个长方体橡皮上切出一个三角形截面(如图1),设,,,请帮助小慧说明为锐角三角形的道理.(应用)在小慧的基础上,小雯又切掉一块“角”,得到一个新的三角形截面(如图2),那么的形状是()A.一定是锐角三角形B.可能是锐角三角形或直角三角形,但不可能是钝角三角形C.可能是锐角三角形或直角三角形或钝角三角形30.如图,在△ABC 中,∠ACB =90°,AC =BC ,AB =2,CD 是边AB 的高线,动点E 从点A 出发,以每秒1个单位的速度沿射线AC 运动;同时,动点F 从点C 出发,以相同的速度沿射线CB 运动.设E 的运动时间为t (s )(t >0).(1)AE = (用含t 的代数式表示),∠BCD 的大小是 度; (2)点E 在边AC 上运动时,求证:△ADE ≌△CDF ; (3)点E 在边AC 上运动时,求∠EDF 的度数;(4)连结BE ,当CE =AD 时,直接写出t 的值和此时BE 对应的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由AP+CP=AC 得到AP BP CP ++=BP+AC ,即计算当BP 最小时即可,此时BP ⊥AC ,根据三角形面积公式求出BP 即可得到答案. 【详解】 ∵AP+CP=AC ,∴AP BP CP ++=BP+AC ,∴BP ⊥AC 时,AP BP CP ++有最小值, 设AH ⊥BC ,∵56AB AC BC ===, ∴BH=3, ∴224AH AB BH =-=,∵1122ABCSBC AH AC BP =⋅=⋅,∴1164522BP ⨯⨯=⨯, ∴BP=4.8, ∴AP BP CP ++=AC+BP=5+4.8=9.8,故选:C.【点睛】此题考查等腰三角形的三线合一的性质,勾股定理,最短路径问题,正确理解AP BP CP ++时点P 的位置是解题的关键.2.D解析:D【分析】过点C 作CH ⊥AB ,连接CD ,根据等腰三角形的三线合一的性质及勾股定理求出CH ,再利用ABC ACD BCD S S S =+即可求出答案.【详解】如图,过点C 作CH ⊥AB ,连接CD ,∵AC=BC ,CH ⊥AB ,AB=8,∴AH=BH=4,∵AC=5,∴2222543CH AC AH =-=-=, ∵ABC ACD BCD SS S =+, ∴111222AB CH AC DE BC DF ⋅⋅=⋅⋅+⋅⋅, ∴1118355222DE DF ⨯⨯=⨯+⨯, ∴DE+DF=4.8,故选:D.【点睛】此题考查等腰三角形三线合一的性质,勾股定理解直角三角形,根据题意得到ABC ACD BCD S S S =+的思路是解题的关键,依此作辅助线解决问题.3.C解析:C【分析】根据勾股定理即可得到正方形A 的面积加上B 的面积加上C 的面积和D 的面积是E 的面积.即可求解.【详解】四个正方形的面积的和是正方形E 的面积:即222233=92549=47+5+2++++;故答案为C .【点睛】理解正方形A ,B ,C ,D 的面积的和是E 的面积是解决本题的关键.4.B解析:B【解析】【分析】如图,连接BB′.根据折叠的性质知△BB′E 是等腰直角三角形,则BB′=2BE .又B′E 是BD 的中垂线,则DB′=BB′.【详解】∵四边形ABCD 是平行四边形,BD=2,∴BE=12BD=1. 如图2,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E .∴∠BEB′=90°,∴△BB′E 是等腰直角三角形,则BB′=2BE=2,又∵BE=DE ,B′E ⊥BD ,∴DB′=BB′=2.故选B .【点睛】考查了平行四边形的性质以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.C解析:C试题分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.∵在△BAD和△CAE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≌△CAE(SAS).∴BD=CE.本结论正确.②∵△BAD≌△CAE,∴∠ABD=∠ACE.∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°.∴BD⊥CE.本结论正确.③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°.∵∠ABD=∠ACE,∴∠ACE+∠DBC=45°.本结论正确.④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得:BE2=BD2+DE2.∵△ADE为等腰直角三角形,∴AD,即DE2=2AD2.∴BE2=BD2+DE2=BD2+2AD2.而BD2≠2AB2,本结论错误.综上所述,正确的个数为3个.故选C.6.D解析:D【分析】根据直角三角形的性质求出BC,根据勾股定理计算,得到答案.【详解】解:∵∠C=90°,∠A=30°,∴BC=12AB=6,由勾股定理得,=故选:D.【点睛】本题考查的是直角三角形的性质、勾股定理,掌握在直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.7.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A的面积等于100-64=36;故选:B.【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.解析:D【解析】A选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选D.9.D解析:D【分析】欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.【详解】①c不一定是斜边,故错误;②正确;③若△ABC是直角三角形,c不是斜边,则a2+b2≠c2,故错误,所以正确的只有②,故选D.【点睛】本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.10.B解析:B【分析】根据勾股定理的逆定理分别计算各个选项,选出正确的答案.【详解】A、22272425+=,能组成直角三角形,故正确;B、22211145222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能组成直角三角形,故错误;C、222345+=,能组成直角三角形,故正确;D、2221147822⎛⎫⎛⎫+=⎪ ⎪⎝⎭⎝⎭,能组成直角三角形,故正确;故选:B.【点睛】本题考查了勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.二、填空题11.【解析】试题分析:将台阶展开,如图,331312,5,AC BC =⨯+⨯==222169,AB AC BC ∴=+=13,AB ∴=即蚂蚁爬行的最短线路为13.dm考点:平面展开:最短路径问题.12.(21009,0).【分析】根据等腰直角三角形的性质得到OA 1=1,OA 2=12,OA 3=22,OA 4=32,…OA 2019=20182,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.【详解】∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=1,OA 22,OA 3=2)2,…,OA 2019=2)2018,∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,∴2019÷8=252…3,∴点A 2019在x 轴正半轴上.∵OA 2019=2)2018,∴点A 2019的坐标为(20182,0)即(21009,0).故答案为:(21009,0).【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征. 135【分析】由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =∠BCD 可证△ACE ≌△BCD ,可得AE =BD 3ADB =90°,由勾股定理求出AB 即可得到AC 的长.【详解】解:如图所示,连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD , 在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BD 3E =∠BDC =45°,∴∠ADB =∠ADC+∠BDC =45°+45°=90°,∴AB 22AD +BD =7+3=10, ∵AB=2BC ,∴BC =2AB=525【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.14.2【分析】根据S △PAD =13S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.【详解】设△PAD 中AD 边上的高是h .∵S △PAD =13S 矩形ABCD , ∴12 AD •h =13AD •AB , ∴h =23AB =4,∴动点P在与AD平行且与AD的距离是4的直线l上,如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.在Rt△ADE中,∵AD=8,AE=4+4=8,DE=2222AE AD+=+= ,8882即PA+PD的最小值为82.故答案82.【点睛】本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.15.413【分析】延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.【详解】解:如图,延长AD至点E,使得DE=AD=4,连接BE,∵D是BC边中点,∴BD=CD,又∵DE=AD,∠ADC=∠EDB,∴△ADC≌△EDB(SAS),∴BE=AC=6,又∵AB=10,∴AE2+BE2=AB2,∴∠E=90°,∴在Rt△BED中,2222=++=,64213BD BE DE∴BC=2BD=13故答案为:13【点睛】本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.16.53或203 【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83 ∵DE AC ⊥根据勾股定理可得222CD CE -=由折叠的性质可得:DH=CD=103,CP=PH ∴EH=DH -DE=43设CP=PH=x ,则EP=CE -CP=83-x在Rt △PEH 中,EP 2+EH 2=PH 2即(83-x )2+(43)2=x 2 解得:x=53即此时CP=53;②当折叠后点C 的对应点H 在AC 的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH ∴EH=DH +DE=163设CP=PH=y ,则EP= CP -CE =y -83在Rt △PEH 中,EP 2+EH 2=PH 2即(y -83)2+(163)2=y 2 解得:y=203即此时CP=203. 综上所述:CP=53或203. 故答案为:53或203. 【点睛】 此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.17.1425+或825+【分析】分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在直角三角形ABD 与直角三角形ACD 中,利用勾股定理求出BD 与DC 的长,由BD+DC 求出BC 的长,即可求出周长;如图2所示,此时△ABC 为钝角三角形,同理由BD -CD 求出BC 的长,即可求出周长.【详解】解:分两种情况考虑:如图1所示,此时△ABC 为锐角三角形,在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,∴BC=253+, ∴△ABC 的周长为:652531425+++=+;如图2所示,此时△ABC 为钝角三角形,在Rt △ABD 中,根据勾股定理得:BD=22226425AB AD -=-=, 在Rt △ACD 中,根据勾股定理得:CD=2222543AC AD -=-=,∴BC=253-, ∴△ABC 的周长为:65253825++-=+;综合上述,△ABC 的周长为:1425+或825+;故答案为:1425+或825+.【点睛】此题考查了勾股定理,利用了分类讨论的思想,熟练掌握勾股定理是解本题的关键. 18.5或13【分析】根据已知可得题意中的图是一个勾股图,可得S P +S Q =S K 为从而易求S K .【详解】解:如下图所示,若A=S P =4.B=S Q =9,C=S K ,根据勾股定理,可得A+B=C ,若A=S P=4.C=S Q=9,B=S K,根据勾股定理,可得A+B=C,∴B=9-4=5.∴S K为5或13.故答案为:5或13.【点睛】本题考查了勾股定理.此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.19.4【分析】根据线段垂直平分线得出AE=EC,∠AEG=∠AEF=90°,求出∠B=∠C=∠G=30°,根据勾股定理和含30°角的直角三角形性质求出AE和EF,即可求出FG,再求出BF=FG即可【详解】∵AC的垂直平分线FG,∴AE=EC,∠AEG=∠AEF=90°,∵∠BAC=120°,∴∠G=∠BAC-∠AEG=120°-90°=30°,∵∠BAC=120°,AB=AC,∴∠B=∠C=12(180°-∠BAC)=30°,∴∠B=∠G,∴BF=FG,∵在Rt△AEG中,∠G=30°,EG=3,∴AG=2AE,即(2AE)2=AE2+32,∴即同理在Rt△CEF中,∠C=30°,CF=2EF,(2EF)2=EF2+2,∴EF=1(负值舍去),∴BF=GF=EF+CE=1+3=4,故答案为4.【点睛】本题考查了勾股定理,含30°角的直角三角形性质,等腰三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.20.2根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2, 由勾股定理可得2222AB AC BC =+=,∴222=-BM ,∵∠B=45°,∴△BDM 为等腰直角三角形,∴DM=BD ,由勾股定理可得222+BD DM =BM∴DM=BD=22-∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.三、解答题21.(1)见解析;(2)BD 2+AD 2=2CD 2;(3)AB =2+4.(1)根据等腰直角三角形的性质证明△ACE ≌△BCD 即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.22.(1)见解析;(2)①见解析;②2.【分析】(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积=12BC CG⋅,而BC和CG可得,问题即得解决.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,当D、E两点重合时,则AD=CD,∴1302DBC ABC∠=∠=︒,∵CF CD=,∴∠F=∠CDF,∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,∴∠CBD=∠F,∴BD DF=;(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,∵AE CD=,CD=CF,∴EH=CF,又∵∠BHE=∠ECF=120°,∴△BHE≌△ECF(SAS),∴∠EBH=∠FEC,EB=EF,∵BA=BC,∠A=∠ACB=60°,AE=CD,∴△BAE≌△BCD(SAS),∴∠ABE=∠CBD,∴∠FEC=∠CBD,∵∠EDG=∠BDC,∴∠BGE=∠BCD=60°;②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE =23, ∴BF =226BE =,232GF =-,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,∴6BM ME MF ===,∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =+,266262CF =--=-, ∴()26231CN FN ==⨯-=-,∴()2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB ,∴62CG CF ==-,∴△BCG 的面积=()()116262222BC CG ⋅=+-=. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.23.②③⑤【分析】①先证得ABE ADP ≅,利用邻补角和等腰直角三角形的性质求得90PEB ∠=︒,利用勾股定理求出BE ,即可求得点B 到直线AE 的距离;②根据①的结论,利用APD ABP ABE APB S S S S ∆∆∆+=+AEP BEP S S ∆∆=+即可求得结论; ③在Rt AHB 中,利用勾股定理求得2AB ,再利用三角形面积公式即可求得ABD S ∆; ④当A P C 、、共线时,PC 最小,利用对称的性质,AB BC =的长,再求得AC 的长,即可求得结论;⑤先证得ABP ADE ≅,得到ABP ADE ∠=∠,根据条件得到ABP NAB ∠=∠,利用互余的关系即可证得结论.【详解】①∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =,45APE AEP ∠=∠=︒, ∴EAB PAD ∠=∠, ∴()ABE ADP SAS ≅,∴180********AEB APD APE ∠=∠=︒-∠=︒-︒=︒,∴1354590PEB AEB AEP ∠=∠-∠=︒-︒=︒,∴222PE BE PB +=, ∵2AE AP ==,90EAP ∠=︒, ∴22PE AE ==, ∴()22227BE +=, 解得:3BE =,作BH ⊥AE 交AE 的延长线于点H ,∵45AEP ∠=︒,90PEB ∠=︒,∴180180904545HEB PEB AEP ∠=︒-∠-∠=︒-︒-︒=︒, ∴26sin 4532HB BE =︒==, ∴点B 到直线AE 的距离为62,故①错误; ②由①知:ABE ADP ≅,2EP =,3BE =∴APD ABP ABE APB S S S S ∆∆∆∆+=+AEP BEP S S ∆∆=+ 1122AE AP PE EB =⨯⨯+⨯⨯11222322=⨯⨯+⨯⨯ 13=+,故②正确;③在Rt AHB 中,由①知:6EH HB ==, ∴622AH AE EH =+=+, 22222256623AB AH BH ⎛⎫⎛⎫=+=++=+ ⎪ ⎪ ⎪ ⎪⎭⎝⎭, 21153222ABD S AB AD AB ∆=⋅==+,故③正确; ④因为AC 是定值,所以当A P C 、、共线时,PC 最小,如图,连接BC ,∵A C 、关于 BD 的对称,∴523AB BC ==+∴225231043AC BC ==+=+∴ min PC AC AP =-,10432=+⑤∵ABD 与AEP 都是等腰直角三角形,∴90BAD ∠=︒,90EAP ∠=︒,AB AD =,AE AP =, 在ABP 和ADE 中,AB AD BAP DAE AP AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABP ADE SAS ≅,∴ABP ADE ∠=∠,∵AN BN =,∴ABP NAB ∠=∠,∴EAN ADE ∠=∠,∵90EAN DAN ∠+∠=︒,∴90ADE DAN ∠+∠=︒,∴AN DE ⊥,故⑤正确;综上,②③⑤正确,故答案为:②③⑤.【点睛】本题是三角形的综合题,主要考查了等腰直角三角形的性质,全等三角形的判定和性质,勾股定理的应用,三角形的面积公式,综合性强,全等三角形的判定和性质的灵活运用是解题的关键.24.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=12BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;(3)同(2)建立等式关系即可得出关系式,再根据Q 在FC 之间求出t 的取值范围即可.【详解】解:(1)如图,作AE ⊥BC 于E ,∵AB=AC ,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q点在FC之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤< 所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.25.(1)13,5;(2)等腰直角三角形,理由见解析;(3)当P 的坐标为(1304,)时,PD+PF 73【解析】【分析】(1)根据阅读材料中A 和B 的坐标,利用两点间的距离公式即可得出答案;由于M 、N 在平行于y 轴的直线上,根据M 和N 的纵坐标利用公式1|y -2|y 即可求出MN 的距离; (2)由三个顶点的坐标分别求出DE ,DF ,EF 的长,即可判定此三角形的形状;(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时PD PF +最短,最短距离为DF',P 的坐标即为直线DF'与x 轴的交点.【详解】解:(1)∵()2, 4A 、()3, 8B --∴()()22AB 234813=+++=故A 、B 两点间的距离为:13.∵M 、N 在平行于y 轴的直线上,点M 的纵坐标为4,点N 的纵坐标为-1∴()MN 415=--= 故M 、N 两点的距离为5.(2)∵()1, 6D 、()3, 3E -、()4, 2F∴()()22DE 13635=++-= ()()22DF 14625=-+-= ()()22EF 343252=--+-=∴DE=DF ,222DE DF EF +=∴△DEF 为等腰直角三角形(3)作F 关于x 轴的对称点F',连接DF',与x 轴交于点P ,此时DP+PF 最短设直线DF'的解析式为y=kx+b将D (1,6),F'(4,-2)代入得:642k b k b +=⎧⎨+=-⎩解得83263k b ⎧=-⎪⎪⎨⎪=⎪⎩∴直线DF'的解析式为:826y 33x =-+ 令y=0,解得13x 4=,即P 的坐标为(1304,) ∵PF=PF'∴PD+PF=PD+ PF'= DF'=()()22146273-++= 故当P 的坐标为(1304,)时,PD+PF 的长度最短,最短长度为73. 【点睛】 本题属于一次函数综合题,待定系数法求一次函数解析式以及一次函数与x 轴的交点,弄清楚材料中的距离公式是解决本题的关键.26.(1)①BC =DC +EC ,理由见解析;②证明见解析;(2)6.【解析】【分析】(1)证明△BAD ≌△CAE ,根据全等三角形的性质解答;(2)根据全等三角形的性质得到BD =CE ,∠ACE =∠B ,得到∠DCE =90°,根据勾股定理计算即可;(3)作AE ⊥AD ,使AE =AD ,连接CE ,DE ,证明△BAD ≌△CAE ,得到BD =CE =9,根据勾股定理计算即可.【详解】(1)①解:BC =DC +EC ,理由如下:∵∠BAC =∠DAE =90°,∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC ,即∠BAD =∠CAE ,在△BAD 和△CAE 中,,∴△BAD ≌△CAE (SAS ),∴BD =EC ,∴BC =DC +BD =DC +EC ,;故答案为:BC =DC +EC ;②证明:∵Rt △ABC 中,AB =AC ,∴∠B =∠ACB =45°,由(1)得,△BAD ≌△CAE ,∴BD =CE ,∠ACE =∠B =45°,∴∠DCE =∠ACB +∠ACE =90°,∴CE 2+CD 2=ED 2,在Rt △ADE 中,AD 2+AE 2=ED 2,又AD =AE ,∴BD 2+CD 2=2AD 2;(2)解:作AE ⊥AD ,使AE =AD ,连接CE ,DE ,如图2所示:。
八年级第二学期 第一次 月考检测数学试题含答案
八年级第二学期 第一次 月考检测数学试题含答案一、选择题1.下列各式中,运算正确的是( ) A .222()-=-B .284⨯=C .2810+=D .222-=2.下列计算正确的是( ) A .93=±B .382-=C .2(7)5=D .222= 3.下列计算正确的是( ) A .2×3=6B .2+3=5C .8=42D .4﹣2=24.2的倒数是( ) A .2B .22C .2-D .22-5.二次根式23的值是( ) A .-3B .3或-3C .9D .36.下列各式一定成立的是( )A .2()a b a b +=+B .222(1)1a a +=+C .22(1)1a a -=-D .2()ab ab =7.下列式子中,为最简二次根式的是( ) A .12B .7C .4D .488.下列各式中,正确的是( ) A .16=±4 B .±16=4C .26628⨯= D .42783+⨯=- 4 9.已知,那么满足上述条件的整数的个数是( ).A .4B .5C .6D .710.已知实数x ,y 满足(x 22008x -y 2-2008y )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008 B .2008 C .-1D .111.()23-A .﹣3B .3C .﹣9D .912.设0a >,0b >35a a b ba b =23a b aba b ab-+++的值是( )A .2B .14C .12D .3158二、填空题13.使函数212y x x=+有意义的自变量x 的取值范围为_____________ 14.若0a >化成最简二次根式为________. 15.把_____________. 16.若2x ﹣x 2﹣x=_____.17.对于任意实数a ,b ,定义一种运算“◇”如下:a ◇b =a(a -b)+b(a +b),如:3◇2=3×(3-2)+2×(3+2)=13=_____.18.已知x ,y 为实数,y=13x -求5x +6y 的值________.19.若a 、b 为实数,且b=7a ++4,则a+b =_____. 20.=_______.三、解答题21.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:3==,25384532++====-进行分母有理化. (3)利用所需知识判断:若a =,2b =a b ,的关系是 .(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227 -==-(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.22.计算:21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算. 【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.先观察下列等式,再回答问题:=1+1=2;12=2 12;=3+13=313;… (1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用 n (n 为正整数)表示的等式,并用所学知识证明.【答案】(1=144+=144;(2=211n n n n++=,证明见解析. 【分析】(1)根据“第一个等式内数字为1,第二个等式内数字为2,第三个等式内数字为3”,=414+=414;(2=n 211n n n++=”,再利用222112n n n n++=+()()开方即可证出结论成立.【详解】(1=1+1=2=212+=212;=313+=313;里面的数字分别为1、2、3,= 144+= 144.(2=1+1=2,=212+=212=313+=313=414+=414= 211n n n n++=.证明:等式左边==n 211n n n++==右边.=n 211n n n++=成立. 【点睛】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数字为4;(2)找出变化规律=n 211n n n++=”.解决该题型题目时,根据数值的变化找出变化规律是关键.24.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:=== 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.25.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.26.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a ba b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可. 【详解】原式=()()222a ab b aa ab a b -+⨯+-=()()()2·a b a aa b a b -+-=a ba b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.27.(1|5-+;(2)已知实数a 、b 、c 满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4 【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可; (2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可. 【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩,解得5b =由此可化简原式得,30a +=30a ∴+=,20c -= 3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.28.计算(1(2)21)-【答案】(1)4;(2)3+ 【分析】(1)先把各根式化为最简二次根式,再去括号,合并同类项即可; (2)利用平方差公式和完全平方公式计算即可. 【详解】解:(1)解:原式=4=+4=-(2)解:原式()22161=---63=-+3=+ 【点睛】本题考查了二次根式的混合运算,注意先化简,再进一步利用计算公式和计算方法计算.29.计算:(1)13⎛+-⨯ ⎝⎭(2))()2221+.【答案】(1)6-;(2)12-【分析】(1)原式化简后,利用二次根式乘法法则计算即可求出值; (2)原式利用平方差公式,以及完全平方公式计算即可求出值. 【详解】解:(1)原式=1(233⨯⨯-⨯=-⨯=3⎫⨯⎪⎪⎭=6-;(2)原式=3﹣4+12﹣=12﹣. 【点睛】此题考查了二次根式的混合运算,以及平方差公式、完全平方公式,熟练掌握运算法则及公式是解本题的关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =, 由于437+=,4312⨯=,所以22+==,2===.. 【答案】见解析 【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法. 【详解】根据题意,可知13m =,42n =, 由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】=(a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.【详解】=,故原题计算错误;A2B=,故原题计算正确;C=D、2不能合并,故原题计算错误;故选B.【点睛】此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.2.D解析:D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A3=,此项错误;B2=-,此项错误;=≠C、27D2==,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.3.A解析:A【解析】分析:根据二次根式的加、减、乘、除的法则计算逐一验证即可.详解: , 此选项正确;≠此选项错误;, 此选项错误;,此选项错误.故选A.点睛:本题考查了二次根式的混合运算,掌握二次根式的运算法则是解题的关键. 4.B解析:B【分析】根据倒数的定义,即可得到答案.【详解】2,2;故选:B.【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题. 5.D解析:D【分析】根据二次根式的性质进行计算即可.【详解】|3|3=.故选:D.【点睛】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩.6.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.7.B解析:B【分析】根据最简二次根式的定义即可求出答案.【详解】=,故A不是最简二次根式;2是最简二次根式,故B正确;,故C不是最简二次根式;=D不是最简二次根式;故选:B.【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.8.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A4=,此项错误B、4=±,此项错误C==,此项正确D==故选:C.【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.9.C解析:C【解析】【分析】利用分母有理化进行计算即可.由原式得:所以,因为,,所以.故选:C【点睛】此题考查解一元一次不等式的整数解,解题关键在于分母有理化.10.D解析:D【解析】由(x22008x-y2-2008y)=2008,可知将方程中的x,y对换位置,关系式不变,那么说明x=y是方程的一个解由此可以解得2008,或者2008则3x2-2y2+3x-3y-2007=1,故选D.11.B解析:B【分析】利用二次根式的性质进行化简即可.【详解】()23-﹣3|=3.故选B.12.C解析:C【分析】(35a ab b a b=变形后可分解为:a b a b)=0,从而根据a>0,b>0可得出a和b的关系,代入即可得出答案.【详解】由题意得:a ab=ab+15b,∴a b a+b)=0,a=b,a=25b,23aba b ab ++12.【点睛】本题考查二次根式的化简求值,有一定难度,根据题意得出a 和b 的关系是关键.二、填空题13.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤ ①当0x <时,120x +≥ 解得:21x ≥-即:102x -≤<故自变量x的取值范围为11,0 22x x-≤≤≠【点睛】本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 14.【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】解:∵∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析:【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】解:∵40,0 aab-≥>∴0b<2a bb b b=--所以答案是:【点睛】a=.15.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得:1m,即0m∴11mm m mm mm故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m的取值范围.16.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型. 17.5【解析】◇==5.故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a 对应,b 对应,即将a=,b=,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则解析:5【解析】32==5. 故本题应填5.点睛:理解新定义运算的运算规则,其实就是一个对应关系,a ,b ,即将,代入到代数式a(a -b)+b(a +b)中,再根据二次根式的混合运算法则进行计算,注意最终的结果一定要化为最简二次根式.18.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16 解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x 2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16. 故答案为:-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解. 19.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.20.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t=,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)6=+2=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级数学下学期第一次月考测试卷及答案
八年级数学下学期第一次月考测试卷及答案一、选择题1.下列计算正确的是( )A .235+=B .3223-=C .623÷=D .(4)(2)22-⨯-=2.下列式子中,属于最简二次根式的是( )A .9B .13C .20D .73.下列计算正确的是( )A .235+=B .422-=C .8=42D .236⨯=4.下列计算正确的是( )A .42=±B .()233-=-C .()255-=D .()233-=-5.下列计算正确的是( )A .2+3=5B .8=42C .32﹣2=3D .23⋅=66.下列根式中,最简二次根式是( )A .13B .0.3C .3D .87.已知52a =+,52b =-,则227a b ++的值为( )A .4B .5C .6D .7 8.下列各式中,正确的是( ) A .32 >23 B .a 3 • a 2=a 6 C .(b+2a) (2a -b) =b 2 -4a 2 D .5m + 2m = 7m 29.如图直线a ,b 都与直线m 垂直,垂足分别为M 、N ,MN =1,等腰直角△ABC 的斜边,AB 在直线m 上,AB =2,且点B 位于点M 处,将等腰直角△ABC 沿直线m 向右平移,直到点A 与点N 重合为止,记点B 平移平移的距离为x ,等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y ,则y 关于x 的函数图象大致为( )A .B .C .D .10.下列二次根式是最简二次根式的是( )A .0.1B .19C .8D .14411.化简(﹣3)2的结果是( )A .±3B .﹣3C .3D .912.已知实数x 、y 满足222y x x =-+--,则yx 值是( ) A .﹣2 B .4 C .﹣4 D .无法确定二、填空题13.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.14.已知2215x 19x 2+--=,则2219x 215x -++=________.15.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.16.若a ,b ,c 是实数,且21416210a b c a b c ++=---,则2b c +=________.17.x y 53xy 153,则x+y=_______.18.已知x ,y 为实数,y 22991x x -+-+求5x +6y 的值________.19.若a、b为实数,且b+4,则a+b=_____.20.x的取值范围是_____三、解答题21.解:设x222x=+,x=++2334x2=10∴x=10.0.【分析】根据题意给出的解法即可求出答案即可.【详解】设x两边平方得:x2=2+2+即x2=4+4+6,x2=14∴x=.0,∴x.【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.22.阅读下面的解答过程,然后作答:m和n,使m2+n2=a 且,则a可变为m2+n2+2mn,即变成(m+n)2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==23.观察下列等式:1==;==== 回答下列问题: (1(2)计算:【答案】(1(2)9【分析】(1)根据已知的31=-n=22代入即可求解;(2)先利用上题的规律将每一个分数化为两个二次根式的差的形式,再计算即可.【详解】解:(1= (2+99+=1100++-=1=10-1=9.24.(1)计算:(2)先化简,再求值:(()8a a a a +--,其中14a =.【答案】(1)2)82-a ,【分析】(1)分别根据二次根式的除法法则、二次根式的性质、二次根式的乘法法则计算和化简各项,再合并同类二次根式即可;(2)分别根据平方差公式和单项式乘以多项式的法则计算各项,再把a 的值代入化简后的式子计算即可.【详解】(1)==;(2)(()8a a a a +--2228a a a =--+82a =-,当14a =时,原式1824⎫=⨯-=⎪⎭. 【点睛】本题考查了整式的乘法和二次根式的混合运算,属于常考题型,熟练掌握基本知识是解题的关键.25.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.先观察下列等式,再回答下列问题:111111112=+-=+;111112216=+-=+1111133112=+-=+(1) (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n ++(n 为正整数) 【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n ,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1120(2)1 n −1 n 1+=1+()1n n 1+ (n 为正整数).a =,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.27.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解.【详解】(()69x x x x +--+=22369x x x --++=6x+6把1x =代入原式=61)【点睛】 此题主要考查实数的运算,解题的关键熟知整式的运算法则.28.计算(1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-, 22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.29.计算下列各题:(1(2)2-.【答案】(1)2)2--【分析】(1)根据二次根式的运算顺序和运算法则计算即可;(2)利用平方差、完全平方公式进行计算.【详解】解:(1)原式==;(2)原式22(5=--+525=---2=--【点睛】本题考查二次根式的加减乘除混合运算,熟练掌握运算法则和乘法公式是关键.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】 此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的运算法则逐项计算即可判断.【详解】解:AB 、C 2÷=,故错误;D ,故正确.故选D.【点睛】本题考查了二次根式的四则运算.2.D解析:D【分析】 根据直角二次根式满足的两个条件进行判断即可.【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A 错误;3=被开方数中含分母,不是最简二次根式,故选项B 错误;=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C 错误;是最简二次根式,故选项D正确.故选D.【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.3.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB=,故此选项不合题意;2C,故此选项不合题意;D=故选:D.【点睛】本题考查二次根式的混合运算,正确掌握相关运算法则是解题关键.4.C解析:C【分析】直接利用二次根式的性质分别求解,即可得出答案.【详解】解:A,故A选项错误;B,故B选项错误;C选项:2=5,故C选项正确;D选项:2=3,故D选项错误,故选:C.【点睛】此题主要考查了二次根式的性质,正确求解二次根式是解题的关键.5.D解析:D【解析】解:A A错误;B==,所以B错误;C.=C错误;D ==D 正确.故选D . 6.C解析:C【分析】根据最简二次根式的定义,可得答案.【详解】A 、被开方数含分母,故选项A 不符合题意;B 、被开方数是小数,故选项B 不符合题意;C 、被开方数不含开的尽的因数,被开方数不含分母,故C 符合题意;D 、被开方数含开得尽的因数,故D 错误不符合题意;故选:C .【点睛】本题考查了最简二次根式,被开方数不含开的尽的因数或因式,被开方数不含分母.7.B解析:B【分析】根据二次根式的混合运算和完全平方公式进行计算,即可得到结果.【详解】解:∵2a =,2b =,∴227a b ++2252527 554547454 25= ∴255故选:B .【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟悉相关运算法则是解题的关键 8.A解析:A【分析】比较两个二次根式的大小可判别A ,根据同底数幂的乘法、平方差公式、合并同类项的运算法则分别计算可判断B 、C 、D 的正误.【详解】A 、=,=∵1812>,∴3223>,故该选项正确;B 、3a •25a a =,故该选项错误;C 、()()22224b a a b a b +-=-,故该选项错误; D 、527m m m +=,故该选项错误;故选:A .【点睛】本题考查了二次根式大小的比较,同底数幂的乘法、平方差公式、合并同类项的运算,熟练掌握相关运算法则是解题的关键.9.D解析:D【解析】【分析】根据等腰直角△ABC 被直线a 和b 所截的图形分为三种情况讨论:①当0≤x ≤1时,y 是BM +BD ;②当1<x ≤2时,y 是CP +CQ +MN ;当2<x ≤3时,y =AN +AF ,分别用x 表示出这三种情况下y 的函数式,然后对照选项进行选择.【详解】①当0≤x ≤1时,如图1所示.此时BM =x ,则DM =x ,在Rt △BMD 中,利用勾股定理得BD =2 x ,所以等腰直角△ABC 的边位于直线a ,b 之间部分的长度和为y =BM +BD =(2+1)x ,是一次函数,当x =1时,B 点到达N 点,y =2+1;②当1<x ≤2时,如图2所示,△CPQ 是直角三角形,此时y =CP +CQ +MN 2+1.即当1<x ≤2时,y 2+1.③当2<x≤3时,如图3所示,此时△AFN是等腰直角三角形,AN=3﹣x,则AF=2(3﹣x),y=AN+AF=(﹣1﹣2)x+3+32,是一次函数,当x=3时,y=0.综上所述只有D答案符合要求.故选:D.【点睛】本题主要考查动点问题的函数图象,解题的方法是动中找静,在不同的情况下找到y与x 的函数式.10.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A、被开方数含分母,故A错误;B、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B正确;C、被开方数含能开得尽方的因数,故C错误;D、被开方数含分母,故D错误;故选B.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.11.C解析:C【分析】根据二次根式的性质即可求出答案.【详解】原式=3,故选C.【点睛】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.12.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】y=,∵实数x、y满足2∴x=2,y=﹣2,-⨯=-4.∴yx=22故选:C.【点睛】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.二、填空题13.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 14.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n=2①,m2+n2=2+2=34②.由①得,m=2+n③,将③代入②得:n2+2n−15=0,解得:n=−5(舍去)或n=3,因此可得出,m=5,n=3(m≥0,n≥0).n+2m=13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.15.(1)a2=,a3=2,a4=2;(2)an=(n为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).16.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123===∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.17.8+2【解析】根据配方法,由完全平方公式可知x+y==()2-2,然后把+=+,=-整体代入可得原式=(+)2-2(-)=5+3+2-2+2=8+2.故答案为:8+2.解析:【解析】根据配方法,由完全平方公式可知x+y=2222+=+-)2整体代入可得原式=2-2)故答案为:18.-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-,因此可得5x+6y=5×(-3)+6×(-)=-15-1=-16解析:-16【解析】试题分析:根据分式的有意义和二次根式有意义的条件,可知x 2-9=0,且x-3≠0,解得x=-3,然后可代入得y=-16,因此可得5x+6y=5×(-3)+6×(-16)=-15-1=-16.点睛:此题主要考查了分式的有意义和二次根式有意义,解题关键是利用二次根式的被开方数为非负数和分式的分母不为0,可列式求解.19.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册第一次月考测试卷
一、选择题(24分)。
1、下列条件中能判定△ABC△△DEF的是( )
A.AB=DE,BC=EF,△A=△D B.△A=△D,△B=△E,△C=△F C.AC=DF,△B=△F,AB=DE D.△B=△E,△C=△F,AC=DF
2、下列命题中正确的是( )
A.有两条边相等的两个等腰三角形全等B.两腰对应相等的两个等腰三角形全等
C.两角对应相等的两个等腰三角形全等D.一边对应相等的两个等边三角形全等
3、已知,如图,在△ABC中,OB和OC分别平分△ABC和△ACB,过O作DE△BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为( )
A.5 B.6 C.7 D.8
4、至少有两边相等的三角形是( )
A.等边三角形B.等腰三角形
C.等腰直角三角形D.锐角三角形
5、函数y=kx+b(k、b为常数,k0)的图象如图所示,则关于x的不等式kx+b>0的解集为()
A.x>0 B.x<0 C.x<2 D.x>2
6、已知,则下列不等式不成立的是()
A.B.
C.D.
7、将不等式组的解集在数轴上表示出来,应是()
D
8、如图所示,一次函数y=kx+b(k、b为常数,且k0)
与正比例函数y=ax(a为常数,且a0)相交于点P,则
不等式kx+b>ax的解集是()w W
w .x K b 1.c o M
A.x>1 B.x<1 C.x>2 D.x<2
二、填空题(18分)。
1、在△ABC中,AB=AC,△A=44°,则△B=度。
2、“直角三角形两条直角边的平方和等于斜边的平方”的逆定理
是。
3、不等式的非负整数解是。
4、如图,AB=AD,只需添加一个条件,就可以判定△ABC△△ADE。
5、如图,在△ABC中,△C=90°,D为BC上的一点,且DA=DB,DC=AC,则△B=度。
(第4题图) (第5题图) (第6题图)
6、如图,△ABC中,△ACB=90°,CD△AB于点D,△A=30°,BD=1.5cm,则AB= cm。
三、解答题(58分)。
1、(8分)解下列不等式(组),并把它们的解集在数轴上表示出来。
(1)(2)
2、(6分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠。
设顾客预计累计购物x元(x>300)。
(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用;
(2)顾客到哪家超市购物更优惠?说明你的理由。
3、(6分)有一个长方形足球场的长为x m,宽为70m。
如果它的周长大于350m,面积小于7560m2,求x的取值范围,并判断这个球场是否可以用作国际足球比赛。
(注:用于国际比赛的足球场的长在100m到110m之间,宽在64m到75m 之间)
4、(6分)已知:如图,点D是△ABC内一点,AB=AC,△1=△2。
求证:AD平分△BAC。
5、(6分)求证:等腰三角形两腰上的中线的交点到底边两个端点的距离相等。
6、(6分)已知:如图,等腰三角形ABC中,AC=BC,△ACB=90°,直线l
经过点C(点A、B都在直线l的同侧),AD△l,BE△l,垂足分别为D、E。
求证:△ADC△△CEB。
7、(6分)如图,在△ABC中,△ACB=90°,BC=15,AC=20,CD是高。
(1)求AB的长;(2)求△ABC的面积;(3)求CD的长。
8、(6分)已知:如图,在Rt△ABC中,△C=90°,沿过B点的一条直线BE折叠这个三角形,使C点与AB边上的一点D重合。
(1)当△A满足什么条件时,点D恰为AB的中点?写出一个你认为适当的条件,并利用此条件证明D为AB的中点;(2)在(1)的条件下,若DE=1,求△ABC的面积。
X k B 1 . c o m
9、(8分)已知A、B两个海港相距180海里.如图表示一艘轮船和一艘快艇沿
相同路线从A港出发到B港航行过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象)。
根据图象解答下列问题:
(1)请分别求出表示轮船和快艇行驶过程的函数表达式(不要求写出自变量的取值范围);
(2)快艇出发多长时间后能超过轮船?(3)快艇和轮船哪一艘先到达B港?。