232回归直线方程—最小二乘法PPT-(课件精选)

合集下载

822一元线性回归模型参数的最小二乘估计 课件(共23张PPT)

822一元线性回归模型参数的最小二乘估计 课件(共23张PPT)
i 1
观测数据与直线 y bx a的“整体接近程度”.
探究新知
残差:实际值与估计值之间的差值,即 yi (bxi a )
n
| y
i 1
i
(bxi a ) |
n
残差平方和: Q(a, b) yi (bxi a )
2
i 1
求a, b的值,使Q(a, b)最小
的变化的方法称为回归分析.
探究新知
一元线性回归模型Y bx a e
对于响应变量Y,通过观测得到的数据为观测值,通过经验回归
方程得到的 ŷ称为预测值,观测值减去预测值称为残差,即eˆ y yˆ .
残差是随机误差的估计值,通过对残差的分析可判断回归模
型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,
C.a 0, b 0
D.a 0, b 0
6
n
i 1
i 1
2
(
x

x
)
17.5
x 5.5, y 0.25 ( xi x)( yi y) 24.5 i
25.5
b
1.4
17.5
â bˆ x y 7.95
利用公式(2)可以计算出b=0.839, a=28.957, 得到儿子身高Y
关于父亲身高x的经验回归方程为 y 0.839 x 28.957
相应的经验回归直线如下图所示:
儿子身高/cm
190
185
180
ŷ 0.839 x 28.957
175
170
165
160
160
165
170
175
探究新知

232回归直线方程—最小二乘法-PPT精品文档

232回归直线方程—最小二乘法-PPT精品文档

23
27
39
41
45
49
50
53
54
56
57
58
60
61
9.5
17.8
21.2
25.9
27.5 26.3 28.2 29.6 30.2 31.4 30.8 33.5 35.2 34.6
根据最小二乘法公式, 利用计算机可以求出 其回归直线方程
散 y 0 . 5 7 7 x 0 . 4 8 点 图
回 归 直 线
回归直线概念:散点图中心的分布从整体上看 大致是一条直线附近,该直线称为回归直线 求出回归直线的方程 我们就可以比较清楚地了解年龄与体 内脂肪含量之间的相关性
由此可以预测相应年龄段的脂肪含量 那我们又该如何具体求这个回归方程呢?
方法汇总
法一
1.选取两点作 直线 ps:使直线两 侧 的点的个 数基本相同。
Q=(y1-bx1-a) 2+(y2-bx2-a) 2+…+(yn-bxn-a) 2
当a,b取什么值时,Q的值最小,即总体偏差最小
求线性回归方程的步骤:
(1)求平均数 ; ;
(2)计算 xi 与 yi 的乘积,再求 (3)计算 ;
(4)将上述有关结果代入公式,写出回归 直线方程.
13
年 龄 脂 肪
? ?
上面三种方法都有一定的道理,但总让人感到 可靠性不强. 回归直线与散点图中各点的位置用数学的方法 来刻画应具有怎样的关系?Fra bibliotek方法汇总
法一
1.选取两点作 直线 ps:使直线两 侧 的点的个 数基本相同。
法二
1.画一条直线 2.测量出各点 与它的距离 3.移动直线, 到达某一位置 使距离的和最 小,测量出此 时直线的斜率 与截距,得到 回归方程。

最小二乘法-PPT课件

最小二乘法-PPT课件
请用最小二乘法求出这两个变量之间的线性回归方程.
解 根据上表数据,可以计算出:x 4.5, y 25.5 其他数据如下表
-
19
i 1 2 3 4 5 6 7 8 合计

xi
yi
1
1
2
4
3
9
4
16
5
25
6
36
7
49
8
64
36
204
x2 i
xi yi
1
1
4
8
9
27
16
64
25
125
36
216
49
343
d bxi yi a b2 1
方法二:
xi,abix
yi a bxi 2 0 -
yabx
x
4
显然方法二能有效地表示点A与直线y=a+bx的距离, 而且比方法一计算更方便,所以我们用它来表示二者 之间的接近程度.
-
5
思考2.怎样刻画多个点与直线的接近程度? 提示:
例如有5个样本点,其坐标分别为(x1,y1),(x2, y2),(x3,y3),(x4,y4),(x5,y5),与直 线y=a+bx的接近程度:
使上式达到最小值的直线y=a+bx就是所要求的直线, 这种方法称为最小二乘法.
-
7
思考3:怎样使 [y1 (a bx1)]2 [yn (a bxn )]2 达到最小值?
先来讨论3个样本点的情况
…………………①
-
8
3 a 2 - 2 ( a y - b x ) ( y 1 - b x 1 ) 2 ( y 2 - b x 2 ) 2 ( y 3 - b x 3 ) 2

高中数学:.《线性回归方程》课件(共10张PPT)

高中数学:.《线性回归方程》课件(共10张PPT)
在垂直方向(纵轴方向)上的距离的平 方和,可以用来衡量
直线 yˆ bxa 与图中六个点的接近 程度,所以,设法取 a , b 的值,使 Q ( a , b )
达到最小值.这种方法叫做最小平方法 (又称最小二乘法) .
线性相关系:
像这样能用直线方程 yˆ bxa
近似表示的相关关系叫做线性相关关系.
问题:
某小卖部为了了解热茶销售量与气温
之间的关系,随机统计并制作了某6天 卖出热茶的杯数与当天气温的对照表:
气温 /0C
26
18
13
10
4
-1
杯数 20 24 34 38 50 64
如果某天的气温是-50C,你能根据这些
数据预测这天小卖部卖出热茶的杯数吗?
为了了解热茶销量与
气温的大致关系,我们
以横坐标x表示气温,
……………… 怎样的直线最好呢?
建构数学
1.最小平方法:
用方程为 yˆ bxa 的直线拟合散点图中
的点,应使得该直线与散点图中的点最接近
那么,怎样衡量直线 yˆ bxa 与图中六
个点的接近程度yˆ 呢?
我们将表中给出的自变量 x 的六个值
带入直线方程,得到相应的六个值:
2 6 b a , 1 8 b a , 1 3 b a , 1 0 b a , 4 b a , b a
2
选择怎样的直线近似地表示热茶销量与气
…y 3
y n 当a,b使
事实上数学和物理成绩都是
Q ( y b x a ) ( y b x a ) . . . ( y b x a ) 但还存在着另一种非确定
数据预测这天小卖部卖出热茶的杯数吗?
2
2
像这样能用直线方程1 1

最小二乘法线性详细说明.ppt

最小二乘法线性详细说明.ppt
19
3. 回归方程的精度和相关系数
用最小二乘法确定a, b存在误差。 总结经验公式时,我们初步分析判断所假定
的函数关系是正确,为了解决这些问题,就 需要讨论回归方程的精度和相关性。 为了估计回归方程的精度,进一步计算数据
点 xi,yi 偏离最佳直线y=a+bx的大小,我们 引入概念——剩余标准差 s ,它反映着回
一种可能是各数据点与该线偏差较小,一种可能是各数据 点与该线偏差较大。
当R 1时,s 减小,一般的数据点越靠近最佳值两旁。两
变量间的关系线性相关,可以认为是线性关系,最佳直线 所反应的函数关系也越接近两变量间的客观关系。同时还 说明了测量的精密度高。
当条“R 最佳1时”,直线s 增。大然,而根,据数数据据点点与的“分最布佳,”也直许线能的得偏到差一过
14
根据二元函数求极值法,把③式对a和b分 别求出偏导数。得:
n
v2 i
i1
a n
2yi a bxi
4
v2 i
i1 2
b
yi a bxi xi
15
令④等于零,得:
n
n
yi na b xi 0
i1 n
i1
n
n
5
yixi
i1
a xi i1
b
x2 i
i1
0
解方程,得:
而且: b 1.993 0.006
31
第二节 二元线性回归
已知函数形式(或判断经验公式的函数形式)为 y a b1x1 b2x2
式中,均为独立变量,故是二元线性回归。 若有实验数据:
x1 x11, x12,......... .x1n x2 x21, x22,......... .x2n

最小二乘法PPT课件

最小二乘法PPT课件
第2页/共74页
一、问题背景
• 在多数估计和曲线拟合的问题中,不论是 参数估计还是曲线拟合,都要求确定某些(或 一个)未知量,使得所确定的未知量能最好地 适应所测得的一组观测值,即对观测值提供 一个好的拟合。
• 解决这类问题最常用的方法就是最小二乘 法。
• 在一些情况下,即使函数值不是随机变量, 最小二乘法也可使用。

,aˆ1
,…,
aˆ2
。这样aˆk求出的参数叫参数的最小二乘估计。
第6页/共74页
正规方程
=最小
• 根据数学分析中求函数极值的条件:
共得k个方程,称正规方程,求此联立方程的解可得出诸参数估计值
(j=1,2,…,k)。 aˆ 等精度观测的情况,若诸观测值yi是不等精度的观测,即它们服从不 同的方差σi2的正态分布N(0,1),那么也不难证明,在这种情况下,最小二乘 法可改为:
正规方程(5—19)组,还可表示成如下形式
表示成矩阵形式为
第23页/共74页
线性参数正规方程的矩阵形式
又因
(5-21)
有 即 若令 则正规方程又可写成 若矩阵C是满秩的,则有
(5-22)
(5-22) (5-23)
第24页/共74页
的数学期望Xˆ
因 可见 Xˆ 是X的无偏估计。
式中Y、X为列向量(n ×1阶矩阵和t×l阶矩阵)
例5.3
• 试求例5.1中铜棒长度的测量精度。
已知残余误差方程为 将ti,li,值代人上式,可得残余误差为
第43页/共74页
(二)不等精度测量数据的精度估计
不等精度测量数据的精度估计与等精度测量数据的精度估计相似,只是公 式中的残余误差平方和变为加权的残余误差平方和,测量数据的单位权方差 的无偏估计为

高中数学人教A版必修三2.3.2《线性回归方程》课件

高中数学人教A版必修三2.3.2《线性回归方程》课件

2、回归直线方程
定义:一般地,设x与y是具有相关关系的两个变量,且相应 于n组观测值的n个点(xi,yi)(i=1,2,…,n)大致分布在 一条直线附近,求在整体上与这n个最接近的一条直线.设此直 线方程为y^=bx+a.
这里在y的上方加记号“^”,是为了区分实际值y,表示当 x取值xi(i=1,2,…n)时,y相应的观察值为yi,而直线上对 应于xi的纵坐标是yi^=bxi+a. y^=bx+a叫做y对x的回归直线方 程,a、b叫做回归系数.
2.3 变量间的相关关系
2.3.2 线性回归方程
本课主要学习变量间的相关关系的相关内容,具体 包括线性回归方程的求解。
本课开始回顾了上节课所学变量间的相关关系与散 点图的相关内容,紧接着引入回归直线的定义及特征, 回归直线方程的定义及求法(最小二乘法),并且通过 例题和习题进行讲解。最后通过习题进行加深巩固。
有部分课件由于控制文件大小,内容不完整,请联系购买完整版
1. 理解线性回归。 2. 了解回归直线方程的求解方法。
(1)如果所有的样本点都落在某一函数曲线上,就用该函数来 描述变量之间的关系,即变量之间具有函数关系.
(2)如果所有的样本点都落在某一函数曲线附近,变量之间就 有相关关系。
(3)如果所有的样本点都落在某一直线附近,变量之间就 有线性相关关系 .
y 水稻产量
500
450
400
350
(施化肥量)
300
10 20
30
40
50
x
3、最小二乘法
假设我们已经得到两个具有线性相关的变量的一组数 据(x1,y1),(x2,y2),…(xn,yn).
n
n
(xi x)( yi y)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档