理解傅里叶级数
傅里叶级数及变换的本质解释和形象阐述
傅里叶级数及变换的本质解释和形象阐述——老师不会这么讲,书上也不会讲很多人学信号与系统、数字信号处理学了几年,关于傅里叶级数和傅里叶变换可能还是一知半解,只能套用公式,根本不理解为什么要这么算,也就是有什么实际含义——可以说,几乎所有信号与系统里面的数学公式都是有实实在在的物理含义的!那么,什么是傅里叶变换,它是怎样一种变换,具体有怎么变换,有没有确切一点或者形象一点的物理解释呢?下面笔者将尝试将自己的理解比较本质和形象地讲出来,形式是思考探讨渐进的模式,也就是我自己的思考过程,希望对大家有所帮助。
首先,要知道傅里叶变换是一种变换,准确点说是投影。
傅里叶变换的投影问题,一直想不明白那一系列的正交函数集,到底是什么样一个函数集合,或者说是怎么样的一个空间。
所谓三角傅里叶级数当成谐波分析的时候很好理解——同一个时间轴,也就是说同一个维度的分解和叠加,肯定没错,也很实用。
但是要是从投影(或者说变换)的角度来说,怎么解释呢?这一系列正弦余弦的函数,在一个区间内,是一个完备的正交函数集,每一个函数所带的系数(或者叫权重),就是原函数在这个函数的方向上的一个投影(说方向不准确,但找不到其他的词)。
那么,原函数到底是一个什么样的函数,和各正交基函数又是怎样的一种关系呢?这个投影又是怎么投的呢?三维或者二维空间,一个矢量在各正交基的投影很好理解,那么,傅里叶变换的正交基函数,也是这样一种相互垂直的关系么???投影也是取余弦值么?这可以很容易地想清,我们只用余弦或者只用正弦就可以,如cos(2pi*nf0)系列,显然每两个函数图像之间不可能是垂直关系,相反可以看出这是在同一个维度里面的!所以上面两个答案是否定的。
那么,到底是怎么正交、怎么投影的呢。
出现这个问题,是因为开始看书的时候我看得太粗心太浅显,没有认真透彻地理解函数正交的含义,没想到那才是最重要最根本的,从那里面再深刻理解一下,问题就迎刃而解。
函数正交和矢量正交完全不一样,是两个概念。
傅里叶级数课程及习题讲解
傅里叶级数课程及习题讲解Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第15章 傅里叶级数§ 傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系21, , , , , n x x x线性表出而得.不妨称2{1,,,,,}n x x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1 三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1) 周期性 每一个函数都是以2π为周期的周期函数; (2) 正交性 任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m a u x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数()01cos sin 2n n n a a nx b nx ∞=++∑称为三角级数,其中011,,,,,,n n a a b a b 为常数2 以2π为周期的傅里叶级数定义1 设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰0,1,2,k =;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰1,2,k =,称为函数()f x 的傅里叶系数,而三角级数()01cos sin 2n n n a a nx b nx ∞=++∑称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2n n n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1 若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2 如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条光滑曲线段组成,它至多有有限个第一类间断点与角点.推论 如果()f x 是以2π[,]ππ-上按 段光滑,则x R ∀∈,有 ()01()cos sin 2n n n a f x a nx b nx ∞==++∑.定义3 设()f x 在(,]ππ-上有定义,函数() (,] ˆ()(2) (2,2],1,2,f x x f x f x k x k k k πππππππ∈-⎧=⎨-∈-+=±±⎩称()f x 为的周期延拓.二 习题解答1 在指定区间内把下列函数展开为傅里叶级数 (1) (),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求. (ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,22011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰220011sin sin d 0|x nx nx x n n ππππ=-=⎰,22011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2)2()(i) (ii) 02f x =x , -π<x <π,<x <π; 解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,2211cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰211sin 2sin d |x nx x nx xn n ππππππ--=-⎰22d(cos )x nx n πππ-=⎰222224cos cos d (1)|nx nx nx x n n n ππππππ--=-=-⎰,2211sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰212cos cos d |x nx x nx xn n ππππππ---=+⎰22d(sin )x nx n πππ-=⎰ 2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.解:(ii)()2f x =x (0,2)x π∈其按段光滑,故可展开为傅里叶级数. 由系数公式得2222000118()d d 3a f x x x x πππππ===⎰⎰.当1n ≥时,2222011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰2220011sin 2sin d |x nx x nx xn n ππππ=-⎰2202d(cos )x nx n ππ=⎰2222200224cos cos d |x nx nx x n n n ππππ=-=⎰,22220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2220012cos cos d |x nx x nx xn n ππππ-=+⎰22042d(sin )x nx n n πππ=-+⎰2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰, 所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求. (3) 0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰. 当1n ≥时,02011cos d cos d n a ax nx x bx nx xππππ-=+⎰⎰2[1(1)]n a bn π-=--0011sin d sin d n b ax nx x bx nx xππππ-=+⎰⎰1(1)n a b n ++=-所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2 设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n c a f x nx x f x nx x n πππππ+-===⎰⎰, 2 11()sin d ()sin d ,1,2,c n c b f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有211()cos d (2)cos (2)d(2)cc f x nx x f t n t t ππππππππ-+=---⎰⎰c+2 c+2 11()cos d ()cos d f t nt t f x nx x ππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰2 11()cos d ()cos d c n cca f x nx x f x nx xππππ+-==⎰⎰c+211()cos d ()cos d f x nx x f x nx xππππππ-++⎰⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3 把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2) 111111357111317π=+--+-+;11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,0011cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11sin d sin d 44n b nx x nx xππππππ--=+⎰⎰11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1) 取2x π=,则11114357π=-+-+; (2) 由11114357π=-+-+得111112391521π=-+-+,于是111111341257111317πππ=+=+--+-+;(3) 取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,11111157111317=-+-+-+.4 设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x xπππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,()cos d ()cos d n a f x nx x f x nx xπππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xππππππ=+++⎰⎰11(1)()cos d n f x nx xππ++-=⎰02()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰.0011()sin d ()sin d n b f x nx x f x nx xππππ-=+⎰⎰02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =.5 设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=, 所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得000111()d ()d ()d a f x x f x x f x xπππππππ--==+⎰⎰⎰11()d ()d f t t f x xπππππ=-+⎰⎰11(2)d ()d f t t f x xππππππ=-++⎰⎰112()d ()d ()d f t t f x x f x xπππππππ=++=⎰⎰⎰.当1n ≥时,0011()cos d ()cos d n a f x nx x f x nx xππππ-=+⎰⎰11()cos()d ()cos d f t nx n x f x nx xπππππ=++⎰⎰1(1)()cos d nf x nx xππ+-=⎰02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰.()sin d ()sin d n b f x nx x f x nx xπππ-=+⎰⎰02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=.6 试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又1,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,cos ,cos cos cos d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系.就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,201sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,sin ,sin sin sin d mx nx mx nx xπ=⎰0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系.但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是 [0, ]π上的正交系.实因:01,sin sin d 10x x x π==≠⎰.7 求下列函数的傅里叶级数展开式(1) (),022x f x x ππ-=<<; (),02x f x x ππ-=<<其按段光滑,故可展开为傅里叶级数. 由系数公式得2200011()d d 02x a f x x x πππππ-===⎰⎰. 当1n ≥时, 220011cos d d(sin )22n x x a nx x nx n ππππππ--==⎰⎰22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011sin d d(cos )22n xxb nx x nx n ππππππ---==⎰⎰220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰, 所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求.(2) ()f x x ππ=-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<==⎨⎪≤≤⎪⎩,所以由系数公式得01()d a f x xπππ-=⎰0sin d sin d 22x x x x ππ-=+=.当1n ≥时,0sin cos d sin cos d 22n x xa nx x nx x ππ-=+sin cos d 2x nx x π==.0sin sin d sin sin d 022n x x b nx x nx x ππ-=+=.所以211()cos 41n f x nxnππ∞==--,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+==±,故211()cos 41n f x nxn∞==-,[,]x ππ∈-为所求.(3)2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<; 解:(i)由系数公式得2001()d a f x xππ=⎰22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,2201()cos d n a ax bx c nx xππ=++⎰2220011()sin (2)sin d |ax bx c nx ax b nx xn n ππππ=++++⎰24a n =,2201()sin d n b ax bx c nx xππ=++⎰2220011()cos (2)cos d |ax bx c nx ax b nx xn n ππππ=-++-+⎰42a n n ππ=--,故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a b nx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23a ax bx c x cππππ-=++=+⎰.当1n ≥时,21()cos d n a ax bx c nx xπππ-=++⎰211()sin (2)sin d |ax bx c nx ax b nx xn n ππππππ--=++++⎰24(1)n a n =-,21()sin d n b ax bx c nx xπππ-=++⎰211()cos (2)cos d |ax bx c nx ax b nx xn n ππππππ--=-++-+⎰12(1)n bn -=-,故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a bnx nx x n n ππ∞=+---∈-∑为所求.(4) ()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,1ch cos d n a x nx xπππ-=⎰11ch sin sh sin d |x nx x nx x n n ππππππ--=-⎰ 21sh d(cos )x nx n πππ-=⎰ 2211sh cos ch cos d |x nx x nx xn n ππππππ--=-⎰222sh 1(1)n na n n ππ=--,所以22sh (1)(1)nn a n ππ=-+.11ch sin d ch d(cos )n b x nx x x nx ππππππ---==⎰⎰11ch cos sh cos d |x nx x nx xn n ππππππ--=-+⎰21sh d(sin )x nx n πππ-=⎰ 2211sh sin ch sin d |x nx x nx xn n ππππππ--=-+⎰2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5) ()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰. 当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.11sh sin d sh d(cos )n b x nx x x nx ππππππ---==⎰⎰11sh cos ch cos d |x nx x nx xn n ππππππ--=-+⎰121(1)sh ch d(sin )n x nx n n πππππ+-=-+⎰ 122211(1)sh ch sin sh sin d |n x nx x nx xn n n ππππππππ+--=-+-⎰1221(1)sh n nb n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8 求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n nπ∞==∑.解:由224()3af x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑得221()(362)12f x x x ππ=-+222326πππ=-+211cos n nx n ∞=+∑211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9 设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰故结论成立.10 证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos n n n u x n a nx n b nx'≤+n n n a n b ≤+22M n ≤.而22Mn ∑收敛, 所以()()cos sin nn n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则11()(cos sin )()n n nn n s x na nx nb nx u x ∞∞==''=-+=∑∑且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15. 2 以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是()01()cos sin 2n n n a F t a nt b nt ∞=++∑,其中1()cos d ,n a F t nt t πππ-=⎰1()sin d n b F t nt tπππ-=⎰.令x t l π=得 ()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑. 其中 1()cos ,l n l n x a f x dx l l π-=⎰1()sin l n l n x b f x dxl l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑.其只含余弦项,故称为余弦级数. 同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是 1()cos d 0l n l n x a f x x l l π-==⎰, 012()sin d ()sin d l l n l n x n x b f x x f x xl l l l ππ-==⎰⎰.从而01()2n n a f x a ∞=+∑由此可知,函数(),(0,)f x x l∈偶延拓() (0,)()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1 求下列周期函数的傅里叶级数展开式 (1) ()cos f x x =(周期π);解:()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,222cos cos 2d n a x nx x πππ-=⎰204cos cos 2d x nx xππ=⎰202[cos(21)cos(21)]d n x n x xππ=++-⎰220011sin(21)sin(21)(21)(21)||n x n x n n ππππ=++-+-1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--.2222222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2) ()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得()()111210022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,()()1121022[]cos 2d 2[]cos 2d n a x x n x x x x n x xππ-=-=-⎰⎰110012cos2d d(sin 2)x n x x x n x n πππ==⎰⎰110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰.()1121022[]sin 2d 2sin 2d n b x x n x x x n x xππ-=-=⎰⎰101d(cos2)x n x n ππ-=⎰110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3)4()sin f x x =(周期π); 解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图.2222由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得442200224sin d sin d a x x x x πππππ-==⎰⎰22041cos 2d 2x xππ-⎛⎫=⎪⎝⎭⎰24311cos 2cos 4d 828x x x ππ⎛⎫=-+⎪⎝⎭⎰34=.当1n ≥时,24311cos2cos4cos2d 828n a x x nx xππ⎛⎫=-+ ⎪⎝⎭⎰11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4) ()sgn(cos )f x x = (周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,2sgn(cos )cos d n a x nx xππ=⎰202224cos d cos d sin 2n nx x nx x n πππππππ=-=⎰⎰ 4sin 2n n ππ=024(1)21(21)kn kn k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞.2 求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时, 12012222cos d cos d 3333n n x n xa x x x ππ=+⎰⎰3222(3)cos d 33n x x x π+-⎰21011212d sin sin 33n x n x x n n ππππ⎛⎫=+ ⎪⎝⎭⎰ 3212(3)d sin 3n x x n ππ⎛⎫+- ⎪⎝⎭⎰ 10121214sin sin d sin 333n n x n x n n n ππππππ=-+⎰3322121212sin (3)sin sind 333n n x n xx x n n n ππππππ-+-+⎰12201432sin cos 323n n xn n ππππ=+32221432sin cos 323n n xn n ππππ--2222323cos 232n n n πππ=-2222334cos2cos 223n n n n ππππ-+2222323cos 3n n n πππ=-. 2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n x f x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求.3 将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪⎪⎝⎭⎝⎭⎰.当1n ≥时,02cos d 2n a x nx xπππ⎛⎫=- ⎪⎝⎭⎰22sin sin d 2x nx nx x n n πππππ⎛⎫=-+ ⎪⎝⎭⎰202cos nxn ππ=-242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4 将函数()cos2xf x =在[0,]π上展开成正弦级数.解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.02cos sin d 2n x b nx x ππ=⎰ 0111sin sin d 22n x n x x ππ⎡⎤⎛⎫⎛⎫=++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎰11cos cos 1221122n x n x n n ππ⎡⎤⎛⎫⎛⎫+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎢⎥=-+⎢⎥+-⎢⎥⎣⎦28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5 把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n xa f x x π=⎰240211(1)cos d (3)cos d 2424n x n xx x x x ππ=-+-⎰⎰220022(1)sin sin d 44n x n x x x n n ππππ=-+⎰442222(3)sin sind 44n xn xx x n n ππππ--⎰22208cos 4n xn ππ=42228cos 4n xn ππ+ 2282cos 1(1)2n n n ππ⎛⎫=-+- ⎪⎝⎭220421642n k n k n π≠-⎧⎪=⎨=-⎪⎩所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos (21)2n n xn ππ∞=-=-∑为所求.6 把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++ ⎪⎝⎭.解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰1120022(1)sin (1)sin d x n x x n x xn n ππππ=---⎰11222222(1)cos cos d x n x n x xn n ππππ=--⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑.7 求下列函数的傅里叶级数展开式 (1) ()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.2arcsin(sin )sin d n b x nx xππ=⎰20222sin d ()sin d x nx x x nx xππππππ=+-⎰⎰22022cos cos d x nx nx xn n ππππ-=+⎰2222()cos cos d x nx nx x n n πππππππ--+-+⎰204cos d nx x n ππ=⎰24sin2n n ππ=2024(1)21k n kn k n π=⎧⎪=⎨-=-⎪⎩所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2) ()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,2arcsin(cos )cos d n a x nx x ππ=⎰2cos d 2x nx x πππ⎛⎫=- ⎪⎝⎭⎰22sin sin d nx nx xn n ππππ=+⎰202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈.8 试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1) 211cos(21)n n an x∞-=-∑; (2) 211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.2()cos d n a f x nx xππ=⎰20222()cos d ()cos d f x nx x f x nx xπππππ=+⎰⎰202()[cos cos()]d f x nx n nx xπππ=--⎰204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2) 先把()f x 延拓到[0,]π上,方法如下.()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.由于按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰2()sin d n b f x nx xππ=⎰20222()sin d ()sin d f x nx x f x nx xπππππ=+⎰⎰202()[sin sin()]d f x nx n nx xπππ=+-⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数.推论1 设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2 设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2 设以2π为周期的函数()f x 在[,]ππ-上可积,则()1()cos sin 2nn k k k a S x a kx b kx ==++∑ 1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3 (收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)lim ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4 如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5 如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1 设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑,1()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx xπππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.1()sin d n b f x nx xπππ-'=⎰1()sin ()cos d |nnf x nx f x nx x na ππππππ--'=-=-⎰于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()n nn a b ∞=''+∑收敛,又211n n∞=∑收敛,从而()12n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2 设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而(),()(),()2(),,m m m m m f x S f x S f x f x f x S S S --=-+()()22 2222200 11()d 222m m n n n n n n a a f x x a b a b ππππππ-==⎡⎤=-+++++⎢⎥⎣⎦∑∑⎰()22221()d 2mn n n af x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故 ()2222011()d 2n n n a a b f x x πππ∞-=++=∑⎰.。
傅里叶级数合成实验报告
一、实验目的1. 理解傅里叶级数的基本原理,掌握周期信号的傅里叶级数展开方法。
2. 学习傅里叶级数在信号处理中的应用,掌握信号合成的基本方法。
3. 通过实验验证傅里叶级数在信号合成中的正确性和有效性。
二、实验原理傅里叶级数是一种将周期信号分解为一系列正弦波和余弦波的方法。
对于任意周期信号f(t),都可以表示为傅里叶级数的形式:f(t) = a0/2 + Σ[a_ncos(nωt + φ_n)],其中n=1,2,3,...其中,a0、a_n、φ_n分别为傅里叶系数,ω为信号的角频率。
傅里叶级数合成是指将傅里叶级数中的正弦波和余弦波进行叠加,得到原始信号的过程。
三、实验器材1. 实验箱2. 信号发生器3. 示波器4. 计算器5. 计算机四、实验步骤1. 利用信号发生器产生一个周期方波信号,将信号输入实验箱。
2. 使用示波器观察方波信号的波形,记录其基本参数(如周期、幅度等)。
3. 将方波信号输入计算机,使用傅里叶级数展开方法计算傅里叶系数。
4. 根据计算得到的傅里叶系数,利用计算机生成正弦波和余弦波。
5. 将正弦波和余弦波叠加,得到合成信号。
6. 使用示波器观察合成信号的波形,与原始方波信号进行比较。
7. 分析实验结果,验证傅里叶级数在信号合成中的正确性和有效性。
五、实验结果与分析1. 实验过程中,我们首先使用信号发生器产生了一个周期方波信号,并将其输入实验箱。
通过示波器观察,我们得到了方波信号的波形,并记录了其基本参数。
2. 接着,我们将方波信号输入计算机,使用傅里叶级数展开方法计算傅里叶系数。
根据计算结果,我们得到了方波信号的傅里叶级数表达式。
3. 然后,我们根据傅里叶级数表达式,利用计算机生成了正弦波和余弦波。
将这些正弦波和余弦波叠加,得到了合成信号。
4. 最后,我们使用示波器观察了合成信号的波形,并与原始方波信号进行了比较。
实验结果表明,合成信号的波形与原始方波信号基本一致,验证了傅里叶级数在信号合成中的正确性和有效性。
傅里叶级数通俗解析
傅里叶级数通俗解析傅里叶级数本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。
1. 完备正交函数集要讨论傅里叶级数首先得讨论正交函数集。
如果n 个函数φ1 t , φ2 t , …, φn t 构成一个函数集,若这些函数在区间 t1, t2 上满足φi t φj t dt=t1t20 ,i≠j (1)Ki ,i=j如果是复数集,那么正交条件是∗ φi t φjtdt= t1t20 ,i≠j (2)Ki ,i=jφ∗j t 为函数φj t 的共轭复函数。
有这个定义,我们可以证明出一些函数集是完备正交函数集。
比如三角函数集和复指数函数集在一个周期内是完备正交函数集。
先证明三角函数集:设φn t =cos nωt,φm t =cos mωt, 把φn t ,φm t 代入(1)得t0+Tt0φi t φj t dt=t0+Tcos nωtcos mωt dtt0当n ≠m时=2 t0+T cos n+m ωt+cos n−m ωt dt1t=21sin n+m ωt(n+m)ω+sin n−m ωtt0+T(n−m) ωt0=0 (n,m=1,2,3,…,n ≠m) 当n=m时=2 t0+Tcos2nωt dt1t=2T再证两个都是正弦的情况设φn t =sin nωt,φm t =sin mωt, 把φn t ,φm t 代入(1)得 t0+Tt0φi t φj t dt=t0+Tsin nωtsin mωt dtt0当n ≠m时=2 t0+T cos n+m ωt−cos n−m ωt dt1t=21sin n+m ωt(n+m)ω−sin n−m ωtt0+T(n−m) ωt0=0 (n,m=1,2,3,…,n ≠m) 当n=m时=2 t0+Tcos2nωt dt1t=2最后证明两个是不同名的三角函数的情况设φn t =cos nωt,φm t =sin mωt, 把φn t ,φm t 代入(1)得 t0+TTt0φi t φj t dt=11t0+Tcos nωtsin mωt dtt0t=2 t0+T sin n+m ωt−sin n−m ωt dt=2 −cos n+m ωt(n+m)ω+cos n−m ωtt0+T(n−m) ωt0=0 (n,m为任意整数)因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。
什么是傅里叶傅里叶级数和傅里叶变换,并说明两者的区别与联系
什么是傅里叶级数和傅里叶变换,两者的区别与联系傅里叶级数和傅里叶变换都是将信号从时域转换到频域的数学工具。
傅里叶级数:傅里叶级数是针对周期函数的,它用一组正交函数将周期信号表示出来。
具体来说,所有周期信号都可以分解为不同频率的各次谐波分量。
这意味着周期波都可分解为n次谐波之和。
傅里叶变换:傅里叶变换则是用来处理非周期函数的,它可以用一组正交函数将非周期信号表示出来。
与傅里叶级数不同的是,非周期信号可以看作不同频率的余弦分量叠加,其中频率分量可以是从0到无穷大任意频率,而不是像傅里叶级数一样由离散的频率分量组成。
傅里叶级数和傅里叶变换都是数学工具,用于将信号从时域转换到频域。
但它们之间存在明显的区别和联系:1. 本质不同:傅里叶级数是周期信号的另一种时域表达方式,可以看作是正交级数,即不同频率的波形的叠加。
而傅里叶变换是完全的频域分析,它可以将非周期信号转换为频域表示。
简而言之,傅里叶级数是用一组正交函数将周期信号表示出来,而傅里叶变换是用一组正交函数将非周期信号表示出来。
2. 适用范围不同:傅里叶级数主要适用于对周期性现象做数学上的分析。
而傅里叶变换可以看作傅里叶级数的极限形式,也可以看作是对周期现象进行数学上的分析,同时也适用于非周期性现象的分析。
3. 周期性不同:傅里叶级数是一种周期变换,它以三角函数为基对周期信号的无穷级数展开。
而傅里叶变换是一种非周期变换,它可以将非周期信号转换为频域表示。
4. 联系:傅里叶级数可以视作傅里叶变换的特例。
当周期信号的周期趋于无穷大时,傅里叶级数可以取极限得到傅里叶变换。
此外,无论是傅里叶级数还是傅里叶变换,都是为了将信号从时域转到频域。
傅里叶级数和傅里叶变换都是强大的数学工具,用于分析和处理信号,但它们的应用范围和性质有所不同。
傅里叶级数介绍
傅⾥叶级数介绍傅⾥叶变换能将满⾜⼀定条件的某个函数表⽰成三⾓函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅⾥叶变换具有多种不同的变体形式,如连续傅⾥叶变换和离散傅⾥叶变换。
最初傅⾥叶分析是作为热过程的解析分析的⼯具被提出的。
要理解傅⽴叶变换,确实需要⼀定的耐⼼,别⼀下⼦想着傅⽴叶变换是怎么变换的,当然,也需要⼀定的⾼等数学基础,最基本的是级数变换,其中傅⽴叶级数变换是傅⽴叶变换的基础公式。
变换提出让我们先看看为什么会有傅⽴叶变换?傅⽴叶是⼀位法国数学家和物理学家的名字,英语原名是Jean Baptiste Joseph Fourier(1768-1830), Fourier对热传递很感兴趣,于1807年在法国科学学会上发表了⼀篇论⽂,运⽤正弦曲线来描述温度分布,论⽂⾥有个在当时具有争议性的决断:任何连续周期信号可以由⼀组适当的正弦曲线组合⽽成。
当时审查这个论⽂的⼈,其中有两位是历史上著名的数学家拉格朗⽇(Joseph Louis Lagrange, 1736-1813)和拉普拉斯(Pierre Simon de Laplace, 1749-1827),当拉普拉斯和其它审查者投票通过并要发表这个论⽂时,拉格朗⽇坚决反对,在近50年的时间⾥,拉格朗⽇坚持认为傅⽴叶的⽅法⽆法表⽰带有棱⾓的信号,如在⽅波中出现⾮连续变化斜率。
法国科学学会屈服于拉格朗⽇的威望,拒绝了傅⽴叶的⼯作,幸运的是,傅⽴叶还有其它事情可忙,他参加了政治运动,随拿破仑远征埃及,法国⼤⾰命后因会被推上断头台⽽⼀直在逃避。
直到拉格朗⽇死后15年这个论⽂才被发表出来。
谁是对的呢?拉格朗⽇是对的:正弦曲线⽆法组合成⼀个带有棱⾓的信号。
但是,我们可以⽤正弦曲线来⾮常逼近地表⽰它,逼近到两种表⽰⽅法不存在能量差别,基于此,傅⽴叶是对的。
为什么我们要⽤正弦曲线来代替原来的曲线呢?如我们也还可以⽤⽅波或三⾓波来代替呀,分解信号的⽅法是⽆穷的,但分解信号的⽬的是为了更加简单地处理原来的信号。
傅里叶级数的定理
傅里叶级数的定理傅里叶级数是一种将周期函数表示为三角函数的级数展开形式的数学工具。
它是由法国数学家傅里叶在18世纪提出的,被广泛应用于物理学、工程学和信号处理等领域。
傅里叶级数的定理提供了一种将任意周期函数分解为正弦和余弦函数的方法,使得我们可以更好地理解和分析周期性的现象。
傅里叶级数的定理可以简单地表述为:任意一个周期为T的函数f(x)可以表示为一系列正弦和余弦函数的线性组合,即f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中an和bn是傅里叶系数,表示了函数f(x)中各个频率分量的振幅,ω=2π/T是角频率。
a0是直流分量,对应于频率为0的分量。
傅里叶级数的定理是基于正交函数的思想而来。
正交函数是指在某个区间上两两内积为0的函数。
在傅里叶级数中,正弦和余弦函数是互相正交的,因此可以通过内积运算来确定各个傅里叶系数的值。
傅里叶级数的定理在实际应用中具有重要意义。
首先,它可以将复杂的周期函数分解为一系列简单的正弦和余弦函数,使得我们能够更好地理解函数的频域特性。
其次,傅里叶级数的定理为信号处理提供了一种便捷的方法,可以对信号进行频谱分析和滤波处理。
此外,傅里叶级数还被广泛应用于图像处理、音频处理和通信系统等领域。
傅里叶级数的定理具有一些重要的性质。
首先,对于一个具有奇对称性或偶对称性的函数,其傅里叶级数只包含正弦函数或余弦函数。
其次,傅里叶级数的收敛性得到了严格的数学证明,即对于一个光滑的函数,其傅里叶级数可以收敛到原函数。
此外,傅里叶级数还满足线性性质,即两个函数的傅里叶级数之和等于它们的傅里叶级数之和。
傅里叶级数的定理虽然强大,但也有一些限制。
首先,傅里叶级数只适用于周期函数,对于非周期函数需要进行适当的处理才能使用傅里叶级数展开。
其次,傅里叶级数的展开系数需要通过积分计算,对于一些复杂的函数可能无法得到解析解,需要使用数值方法进行近似计算。
傅里叶级数的定理为我们理解和分析周期函数提供了一种有效的工具。
傅里叶级数物理意义
傅里叶级数物理意义
一、什么是傅里叶级数物理意义
傅里叶级数是描述周期函数的泛函发展。
它是一种分析函数的方法,利用它可以将一个任意周期函数分解为无穷多个正弦函数和余弦函数的线性组合,并将周期函数的形状和振幅特征用它们的参数来表示,而且可以很快地将这些特征反推出函数的原始形式,这使得傅里叶级数特别适合用于数字处理,信号处理和信号分析等应用场合,同时也可以用于拟合实验数据,实现数学模拟等。
二、傅里叶级数的物理意义
1、傅里叶级数的物理意义是能够将一个任意周期函数分解为无穷多个正弦函数和余弦函数的线性组合,即任何周期函数都可以写成正弦余弦级数,包括了具有任意形状和振幅特征的周期函数。
2、傅里叶级数的物理意义还体现在它的有限阶数时,它和函数的原型之间的正确比例,即函数的原型可以用前几项正弦余弦的比例来精确表示。
3、此外,傅里叶级数对弦论也有重要的物理意义,它可以把正弦余弦函数的加法、乘法转变为它们的三角函数的乘法和除法,这种转变的技术在各种物理应用中有重要意义。
4、此外,傅里叶级数在电磁学中有着重要的意义,可以用来描述磁场和电场中的电磁波的产生和传播,而且可以用来计算电磁系统的传输特性。
如何理解傅里叶级数
如何理解傅里叶级数傅里叶级数是一种非常重要的数学工具,用于分析周期性信号。
它的概念由法国数学家傅里叶在18世纪末提出,经过两个世纪的发展和完善,已经成为了现代物理学、工程学、计算机科学等领域中不可或缺的数学方法之一。
傅里叶级数的核心思想是将一个周期性函数表示为一系列正弦和余弦函数的线性组合。
具体来说,对于一个周期为T的函数f(t),可以将其表示为以下形式的级数:f(t) = a0 + Σ(an cos(nωt) + bn sin(nωt))其中,a0、an和bn是常数,ω是角频率,n是正整数。
这个级数中的每一项都是一个正弦或余弦函数,而这些函数的频率是ω/n。
傅里叶级数告诉我们,一个周期性函数可以由不同频率的正弦和余弦函数组成,而这些函数在一起又可以还原成原始函数。
为了求解傅里叶级数的系数a0、an和bn,我们可以利用傅里叶级数的正交性质。
具体来说,正弦和余弦函数在一个周期上的积分等于0,除非它们具有相同的频率。
这意味着,我们可以通过对原始函数进行积分和乘法操作,与正弦和余弦函数相乘后再在一个周期上积分,来计算出傅里叶级数的系数。
傅里叶级数在物理学中有着广泛的应用。
例如,在声音分析中,我们可以将一个复杂的声音信号分解成多个不同频率的正弦波,从而得到声音的频谱信息。
在图像处理中,傅里叶级数可以将一个图像分解成不同频率的正弦和余弦模式,从而实现图像的压缩和特征提取。
在通信领域,傅里叶级数可以用来分析和合成信号,帮助我们设计和优化通信系统。
除了傅里叶级数,还有傅里叶变换和傅里叶级数的离散形式——离散傅里叶级数和离散傅里叶变换。
傅里叶变换将一个非周期性的函数表示为频域上的连续谱,而离散傅里叶级数和离散傅里叶变换则适用于离散信号的频谱分析。
总结一下,傅里叶级数是一种将周期性函数表示为正弦和余弦函数的线性组合的数学工具。
它的应用广泛,可以用于信号处理、图像处理、通信系统等领域。
通过傅里叶级数,我们可以将复杂的信号分解成简单的频率成分,从而更好地理解和处理这些信号。
傅里叶级数证明自然数倒数平方和
傅里叶级数证明自然数倒数平方和傅里叶级数是数学中的一个重要概念,它可以用来表示周期函数。
在数学中,周期函数是指在一个固定区间内以固定的周期重复变化的函数。
而傅里叶级数的核心思想是通过不同频率的正弦和余弦函数的线性组合来逼近任意周期函数。
在本文中,我们将探讨傅里叶级数是如何证明自然数倒数平方和的,希望通过深入的讨论,让读者对这一概念有更深刻的理解。
1. 傅里叶级数的基本原理傅里叶级数的基本原理是,任意周期为2L的函数f(x)可以在区间[-L, L]上展开成一个正弦函数和余弦函数的级数之和:\[ f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos\frac{n\pi x}{L} + b_n \sin \frac{n\pi x}{L} \right) \]其中,系数a0、an和bn可以通过积分计算得出。
这就是傅里叶级数的基本表示形式,它可以用来逼近周期函数f(x)。
2. 自然数倒数平方和的证明现在,让我们来看看傅里叶级数是如何证明自然数倒数平方和的。
自然数倒数平方和是指求解无穷级数\[ \sum_{n=1}^{\infty}\frac{1}{n^2} \]的和。
这个级数在数学中有着重要的意义,它的和被称为ζ(2)或π²/6,是一个无理数。
要证明自然数倒数平方和,我们可以使用傅里叶级数的思想。
现在,让我们考虑周期函数f(x) = x(π-x)在区间[0, π]上的傅里叶级数展开。
3. 傅里叶级数展开根据傅里叶级数的定义,我们可以计算出展开系数an和bn。
经过一系列的计算和推导,可以得出:\[ a_n = \frac{2(-1)^n}{n^2} \quad b_n = 0 \]将这些展开系数代入傅里叶级数的公式中,可以得到:\[ f(x) = \frac{\pi^2}{6} - \frac{4}{\pi} \sum_{n=1}^{\infty}\frac{\cos(nx)}{n^2} \]4. 结论和个人观点通过上述的推导,我们得到了一个重要的结论:自然数倒数平方和等于π²/6。
傅里叶级数理解傅里叶级数的概念和计算方法
傅里叶级数理解傅里叶级数的概念和计算方法傅里叶级数:理解傅里叶级数的概念和计算方法傅里叶级数是一种数学工具,用于将任意周期函数分解成一系列正弦和余弦函数的和。
它是由法国数学家傅里叶提出的,具有重要的物理和工程应用。
本文将介绍傅里叶级数的概念和计算方法。
一、傅里叶级数的概念傅里叶级数的核心思想是利用正弦和余弦函数的线性组合来表示周期函数。
对于一个周期为T的函数f(t),如果它满足一定条件(可积、狄利克雷条件等),则可以用以下公式表示:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0、an、bn是待确定的系数,n表示正整数,ω=2π/T是角频率。
a0表示直流分量,即周期函数在一个周期内的平均值。
an和bn表示交流分量,分别代表正弦和余弦函数的振幅。
二、傅里叶级数的计算方法1. 计算a0:将周期函数在一个周期内的积分除以周期T即可得到a0。
2. 计算an和bn:将周期函数与正弦或余弦函数相乘后在一个周期内积分,最后除以周期T即可得到an或bn。
3. 根据需要确定级数的取舍:当n趋向于无穷大时,傅里叶级数能准确地还原原始函数。
但实际应用中,通常会根据需要截断级数,只考虑前几项的和来逼近原函数。
三、傅里叶级数的应用傅里叶级数在物理和工程领域有广泛的应用。
以下是一些常见的应用领域:1. 信号处理:傅里叶级数可以将信号分解成不同频率的分量,用于信号滤波、降噪等处理。
2. 电路分析:傅里叶级数可以将电路中的周期性电信号转化为频域上的分布,用于电路分析和设计。
3. 通信系统:傅里叶级数是调制和解调过程的基础,用于信号的传输和接收。
4. 图像处理:傅里叶级数在图像压缩、频域滤波和图像识别等方面有重要应用。
四、总结傅里叶级数是将任意周期函数分解成正弦和余弦函数的和的数学工具。
通过计算待确定的系数,可以将周期函数用傅里叶级数表示。
傅里叶级数在物理和工程领域的应用广泛,包括信号处理、电路分析、通信系统和图像处理等。
傅里叶级数的应用
傅里叶级数的应用傅里叶级数是一种数学方法,用于描述周期性函数。
它可以将任意周期函数分解成一组余弦和正弦函数的和,从而使我们能够更好地理解和分析周期性现象。
傅里叶级数的应用非常广泛,在信号处理、图像处理、物理学、工程学等领域都有重要的作用。
本文将介绍傅里叶级数的基本原理和其在不同领域中的应用。
一、傅里叶级数的基本原理傅里叶级数是由法国数学家傅里叶提出的,它基于一个关键的思想:任何周期函数都可以表示为一系列正弦和余弦函数的和。
具体来说,对于一个周期为T的函数f(t),它的傅里叶级数表示如下:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))在上式中,a0表示零频率分量,an和bn表示各个频率分量的振幅,n为正整数,ω为角频率(等于2π/T)。
傅里叶级数的关键就在于确定这些振幅以及零频率分量。
二、傅里叶级数在信号处理中的应用傅里叶级数在信号处理中起到了至关重要的作用。
信号处理是一门研究如何处理和分析信号的学科,其中很多方法都依赖于傅里叶级数。
首先,傅里叶级数可以帮助我们理解信号的频谱特性。
通过将信号表示为一系列频率分量的和,我们可以清楚地看到信号中各个频率的贡献,从而更好地理解信号的频域特性。
其次,傅里叶级数还可以用于信号的滤波。
滤波是指通过对信号进行加权或去权以达到目标处理效果的过程。
利用傅里叶级数分解信号后,我们可以选择性地去除或增强特定频率的分量,从而实现信号的滤波处理。
此外,傅里叶级数还可以应用于信号的压缩和解压缩。
在传输和存储信号时,通常需要将信号进行压缩以减小数据量。
傅里叶级数可以将信号表示为有限个频率分量的和,从而可以实现对信号的压缩编码。
在解压缩时,只需利用傅里叶级数的逆变换将频率分量恢复,就可以获得原始信号。
三、傅里叶级数在图像处理中的应用傅里叶级数在图像处理中也有广泛的应用。
图像可以看作是一个二维函数,傅里叶级数可以将图像分解为一系列二维正弦和余弦函数的和,从而提供了不同频率、不同方向的空域信息。
傅里叶级数教案
傅里叶级数教案傅里叶级数教案一、教学目标理解傅里叶级数的概念和原理,掌握其数学表达形式。
能够应用傅里叶级数展开任意周期函数。
理解傅里叶变换的概念,能够将其应用于信号处理等领域。
培养学生的数学思维和数学素养,提高学生对数学在实际应用中的认识。
二、教学内容傅里叶级数的概念和原理傅里叶级数的数学表达形式傅里叶变换的概念及其应用傅里叶级数和傅里叶变换的应用案例三、教学步骤导入新课:通过实例演示,让学生感受到周期现象在生活中的普遍存在,并引出傅里叶级数的概念。
讲解傅里叶级数的原理和数学表达形式:通过具体的例子,让学生理解傅里叶级数的原理和数学表达形式,包括正弦函数和余弦函数的定义和性质。
讲解傅里叶变换的概念:通过具体的例子,让学生理解傅里叶变换的概念和数学表达形式,包括频谱分析和滤波器设计等应用案例。
讲解傅里叶级数和傅里叶变换的应用案例:通过具体的案例,让学生了解傅里叶级数和傅里叶变换在实际中的应用,包括信号处理、图像处理等领域。
课堂练习:让学生自己动手计算一些函数的傅里叶级数展开式,加深对概念和方法的理解和应用。
课堂讨论:让学生分组讨论,探讨傅里叶级数和傅里叶变换在其他领域的应用,并分享自己的看法和观点。
小结:对本节课的内容进行总结,强调重点和难点,并引出下节课要学习的内容。
四、教学难点理解傅里叶级数的原理和数学表达形式,尤其是正弦函数和余弦函数的定义和性质。
理解傅里叶变换的概念和数学表达形式,以及其在信号处理等领域的应用案例。
能够应用傅里叶级数展开任意周期函数,并理解其在图像处理等领域的应用案例。
五、教学策略通过实例演示,让学生感受到周期现象在生活中的普遍存在,并引出傅里叶级数的概念。
通过具体的例子,让学生理解傅里叶级数的原理和数学表达形式,包括正弦函数和余弦函数的定义和性质。
通过具体的例子,让学生理解傅里叶变换的概念和数学表达形式,包括频谱分析和滤波器设计等应用案例。
通过具体的案例,让学生了解傅里叶级数和傅里叶变换在实际中的应用,包括信号处理、图像处理等领域。
傅里叶级数的理解
傅里叶级数的理解
一、傅里叶级数的定义
傅里叶级数是一种将周期函数表示为无穷级数的方法,它是由法国数学家约瑟夫·傅里叶在19世纪初提出的。
傅里叶级数是将一个周期函数表示为无穷个正弦函数和余弦函数的线性组合,其中每个正弦函数和余弦函数都具有一定的幅度和相位。
二、傅里叶级数的展开
傅里叶级数的展开是将一个周期函数表示为无穷个正弦函数和余弦函数的线性组合的过程。
三、傅里叶级数的三角形式
傅里叶级数的另一种表示形式是三角形式,它将每个正弦和余弦函数合并为一个三角函数形式。
这种形式更加简洁,并且可以更容易地看出函数的对称性和周期性。
四、傅里叶系数的计算
傅里叶系数的计算是傅里叶级数展开的关键步骤,它可以通过对函数的积分来得出。
五、傅里叶级数的收敛性
傅里叶级数是一个无穷级数,因此需要满足一定的条件才能收敛到原函数。
什么是傅里叶级数
我们的提纲如下:1. 为什么我们要分解一个函数2. 傅里叶级数就是三角级数2.1 傅里叶级数就是把周期函数展开成基频和倍频分量2.2 每个分量的大小我们用投影的方法来求。
————————————————————————你是大学生吗?你学理工科吗?你还不知道傅里叶级数吗?你以为傅里叶和泰勒有什么亲戚关系吗?你一定听说过傅里叶展开和泰勒展开吧?展开的结果就是傅里叶级数和泰勒级数。
他们是对一个函数的不同的【展开】方法。
【相信我,傅里叶分解其实巨简单!】#【但是最开始的问题一定是:我们为什么要展开一个函数一个函数:y=1他的泰勒展开是神马?还是y=1。
那么y=x的展开呢?是y=x。
我们知道,泰勒展开是把函数分解成1, x, x^2, x^3, …等等幂级数的【和】。
就是【把一个函数变成几个函数的和】啊这个展开的式子就是泰勒级数啊对函数的展开和5 = 2+3 一样一样一样的啊要多简单有多简单有木有啊但是你要注意啊:【展开的很多时候是有无限项不能穷尽的呀!】你还记得sinx 的泰勒展开是什么吗?sinx = 0+ x – 1/3!x^3 + 1/5!x^5 -…(如果系数错了可千万不要吐槽啊啊啊,lz是学渣记系数记不住啊)【那么现在提问:】你知道为什么要展开成幂级数的和吗?请看这里:因为我们把y展开成泰勒级数y = 1+x+x^2+x^3+x^4+…的时候我们可以无限细分得到函数在每个点的【【变化】】呀呀呀!这和你把3234.352拆成3000+200+30+4+0.3+0.05+0.002一样一样一样的啊所谓对函数的无限细分,就是不断求导,得到123456789阶变化率,从而得到这个函数到底在各个点【精细】【变化】的有多剧烈啊!还记得神马叫变化吗?位移的变化是速度,速度的变化是加速度,加速度的变化是加加速度的。
一句话,【变化就是导数啊】【泰勒级数的每一阶的系数(主值)就是各阶导数啊!!】所以泰勒级数就是在描述一个函数的各个点的变化啊啊啊——————————————————————————喂不要再跑题啦啦!!我们是要说傅里叶级数的好不好!你不认识傅里叶?没有任何关系,但是你见过三角形吗?知道三角函数吗?傅里叶级数又叫三角级数啊。
傅里叶级数定理
傅里叶级数定理傅里叶级数定理是数学中的一项重要定理,它是法国数学家傅里叶在18世纪提出的。
傅里叶级数定理的中心思想是任意一个周期函数都可以表示成一系列三角函数的和,这些三角函数的频率是原周期函数的基本频率的整数倍。
这个定理在数学、物理和工程等学科中都有非常广泛的应用。
傅里叶级数定理的表述可以用以下方式来说明:设f(x)是一个周期为T的函数,那么f(x)可以展开成各个频率的三角函数幅度和相位逐渐递减的级数表达式。
这个级数中的三角函数是正弦函数和余弦函数,其频率为基频的整数倍。
傅里叶级数表达式如下:f(x) = A0 + Σ[An*cos(nωt) + Bn*sin(nωt)]在这个公式中,A0是基频分量的直流分量,An和Bn分别是基频分量的余弦和正弦分量。
ω是基频角频率,n是频率的整数倍。
这个定理是非常重要的,因为它告诉我们任意周期函数都可以用无穷多个正弦和余弦函数来逼近。
这个逼近的程度可以通过级数中各个分量的幅度来控制。
如果级数中的幅度越大,那么逼近的程度就越高,而如果幅度趋近于零,那么函数的表示也就趋近于原函数。
傅里叶级数定理的应用非常广泛。
在数学领域,它可以用于解决各种泛函方程,比如热传导方程、波动方程和拉普拉斯方程等。
通过傅里叶级数的展开,我们可以将这些复杂的方程转化为简单的三角函数的运算。
在物理学中,傅里叶级数定理是研究振动和波动现象的重要工具。
通过将物理量表示为傅里叶级数,我们可以更好地理解光、声音等波动的性质。
在工程学中,傅里叶级数定理被广泛应用于信号处理和通信系统。
通过将信号进行频域变换,我们可以分析信号的频率成分,进而提取有用的信息。
傅里叶级数定理还有一项重要的推广,即傅里叶变换。
傅里叶变换是将一个非周期函数表示成一系列连续频谱的方法。
通过傅里叶变换,我们可以将信号从时域转换到频域,进而分析信号的频率特性。
傅里叶变换在数字信号处理、图像处理和音频处理等领域有着广泛的应用。
总结起来,傅里叶级数定理是数学中的一个重要定理,它告诉我们任意周期函数都可以表示成一系列三角函数的和。
傅里叶级数与傅里叶变换
傅里叶级数与傅里叶变换是数学分析中两个重要的概念和理论工具,它们在信号处理、图像处理、物理学等领域有广泛的应用。
傅里叶级数是一种将周期函数分解为一系列谐波的方法,而傅里叶变换是将非周期函数分解成连续谱的方法。
首先,我们来介绍一下傅里叶级数。
傅里叶级数是将一个周期为T的函数f(t)展开为一系列谐波的和的形式,其中每个谐波都有一个特定的频率和振幅。
傅里叶级数的基本公式为:f(t) = a0 + Σ(An cos(nω0t) + Bn sin(nω0t))其中a0表示直流分量,An和Bn分别表示正弦和余弦项的振幅,n为谐波的阶数,ω0为基本频率。
傅里叶级数的系数可以通过求解积分或者利用傅里叶级数的性质进行计算。
傅里叶级数的应用十分广泛。
例如在信号处理中,傅里叶级数可以用来将一个周期信号分解为多个频率成分,从而进行频域分析和滤波等操作。
此外,傅里叶级数也可以用来恢复被损坏的信号,例如在音频和图像压缩中,傅里叶级数可以用来还原被压缩的信号。
接下来,我们来介绍傅里叶变换。
傅里叶变换是将一个非周期函数f(t)分解成连续的频谱。
傅里叶变换的基本公式为:F(ω) = ∫[f(t)*e^(-jωt)] dt其中F(ω)表示函数f(t)在频率ω处的频谱,e^(-jωt)是一个旋转复指数,j为虚数单位。
傅里叶变换的结果是一个连续的函数,其中包含了函数f(t)在不同频率上的振幅和相位信息。
傅里叶变换的应用也非常广泛。
在信号处理中,傅里叶变换可以用来将一个时域信号转换成频域信号,在频域进行滤波、增强和分析操作。
在图像处理中,傅里叶变换可以用来进行图像的频域滤波、边缘检测和压缩等操作。
在物理学中,傅里叶变换可以用来研究波动、振动和量子力学等问题。
傅里叶级数和傅里叶变换是相互联系的。
当一个函数是周期函数时,傅里叶级数可以通过傅里叶变换来计算。
而当一个函数是非周期函数时,傅里叶变换可以通过傅里叶级数来近似计算。
总之,傅里叶级数和傅里叶变换是数学分析的两个重要工具,它们在信号处理、图像处理和物理学等领域具有广泛的应用。
傅里叶级数理论
傅里叶级数理论
傅里叶级数理论是19世纪法国数学家Joseph Fourier提出的一种函数分析理论,它提出了任何一个连续的波形都可以用无穷高次的正弦函数和余弦函数的和来表示。
该理论可以用来表示图像、声音、热力学及其他科学领域的函数。
例如,单个的正弦波可以用 sin (x/T) 来表示,而余弦波可以用 cos (x/T) 来表示,其中T是一个实数,表示一个全周期内实际上重复的次数。
傅里叶级数理论描述了一般函数可以用正弦函数和余弦函数来表示,这是由傅里叶级数定理可以得出的结果,它证明了函数将正弦函数和余弦函数的无穷级数作为参数,可以以这种形式来描述关于函数的基本性质。
此外,它还提出了一种特殊类型的级数,称为傅里叶数列或傅里叶分析,它可以用来表示任何一个连续的或可计算的函数,而不仅限于正弦和余弦波。
傅里叶级数理论在许多科学领域中都有广泛的应用,它可以用来模拟常见的热力学行为,也可以用来准确地表示时间和频率特性,以及物体直线动态和三维行为的形状及其物理性质的变化。
比如传统的自然现象,如正弦曲线、矩形曲线、平坦曲线、抛物线、菱形曲线和锥形曲线,它们都可以通过傅里叶级数理论模拟出来。
它的应用涉及到各种类型的函数,例如电磁学、信号处理、调制解调、系统分析、电子技术、计算机图形学等等。
此外,傅里叶级数理论也可以用来解释熵的变化、地震学、色谱分析、电机调节、声像学以及许多其他复杂问题。
在总结傅里叶级数理论时,可以说它是利用正弦函数和余弦函数来表示任何一个连续或可计算的函数的一种函数分析理论,它的应用渗透到了多个领域,并且在这些领域中有着广泛而重要的应用,甚至影响了很多现象解释的结果。
傅里叶级数与变换的意义
傅里叶级数与变换的意义摘要:1.傅里叶级数简介2.傅里叶变换的原理与应用3.傅里叶级数与变换在实际工程中的意义4.总结与展望正文:一、傅里叶级数简介傅里叶级数是一种将周期函数分解为一系列正弦和余弦函数和的形式。
任何一个周期函数都可以通过正弦和余弦函数的线性组合来表示,这一理论在信号处理、图像处理等领域具有广泛的应用。
傅里叶级数为我们提供了一种将复杂信号分解为简单成分的方法,使得我们可以更容易地理解和处理复杂的物理现象。
二、傅里叶变换的原理与应用傅里叶变换是一种将时域信号转换为频域信号的数学方法。
通过傅里叶变换,我们可以分析信号的频率成分,了解其内在的结构和特性。
傅里叶变换在信号处理、图像处理、通信等领域具有重要应用价值。
例如,在图像处理中,傅里叶变换可以用于边缘检测、噪声去除等任务,从而提高图像的质量。
在通信系统中,傅里叶变换可用于信号调制与解调、多路复用与解复用等操作,实现高效的信息传输。
三、傅里叶级数与变换在实际工程中的意义傅里叶级数与变换在实际工程中具有重要意义。
在信号处理领域,傅里叶级数可以帮助我们分析信号的频率特性,从而设计出滤波器、降噪等算法。
在图像处理领域,傅里叶变换有助于我们提取图像的特征信息,实现图像的增强、边缘检测等任务。
此外,傅里叶变换在通信、音频处理、量子力学等领域也有着广泛的应用。
四、总结与展望总之,傅里叶级数与变换作为一种重要的数学工具,在科学研究和实际工程中具有广泛的应用。
随着科技的不断发展,傅里叶级数与变换的理论体系和应用领域将继续拓展,为人类社会创造更多的价值。
在未来的研究中,我们可以从以下几个方面展开:1.研究更高效、更精确的傅里叶级数与变换算法;2.探索傅里叶级数与变换在新型领域中的应用,如大数据、人工智能等;3.将傅里叶级数与变换与其他数学方法相结合,发展新的理论和应用。
傅里叶级数的原理及其在信号分析中的应用
傅里叶级数的原理及其在信号分析中的应用傅里叶级数是一种将周期函数表示为正弦函数和余弦函数的和的方法。
它是由法国数学家傅里叶在19世纪初发现的。
傅里叶级数在现代科学中是一个非常有用的工具,尤其在信号分析中。
本文将介绍傅里叶级数的原理以及在信号分析中的应用。
傅里叶级数的原理傅里叶级数的原理是将一个周期 T 的函数 f(x) 表示为正弦函数和余弦函数的和。
假设函数 f(x) 是一个周期为 T 的函数,那么它可以表示为:f(x) = a0 + a1*cos(omega*x) + b1*sin(omega*x) +a2*cos(2*omega*x) + b2*sin(2*omega*x) + ...其中,omega = 2*pi/T,a0, a1, b1, a2, b2等系数是由函数 f(x)来确定的。
这个式子被称为傅里叶级数公式。
在傅里叶级数公式中,a0 表示函数 f(x) 在一个周期内的平均值。
a1*cos(omega*x) 和 b1*sin(omega*x) 分别表示函数 f(x) 在一个周期内的奇偶分量。
a2*cos(2*omega*x) 和 b2*sin(2*omega*x) 表示函数 f(x) 的二次谐波分量。
以此类推。
傅里叶级数的应用傅里叶级数在现代科学中有着广泛的应用,尤其在信号分析中。
在信号处理中,许多信号都可以用傅里叶级数来表示。
例如,声音信号、光信号、电信号等等。
当信号被表示为傅里叶级数时,我们可以更好地理解信号的特征。
例如,我们可以通过分析信号的频谱来确定信号中包含的各种频率成分。
这对于诸如音频等的信号处理非常重要。
此外,傅里叶级数还用于图像处理。
在图像中,每个像素可以被视为一个傅里叶级数,这使我们可以分析图像的频谱并应用相应的滤波器来增强图像的特定频率成分。
傅里叶级数在信号分析中的另一个重要应用是在通信中。
在调制和解调信号时,我们需要将信号分解成它的频率分量。
这可以通过傅里叶级数来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
将傅里叶系数值代入 f (x) 展开式的右端
f(x)a 2 0k 1(akco k s xbksikn )x
得到的三角级数
a20n 1(ancons xbnsinn)x
称为函数 f (x) 的傅里叶级数.
A
6
定理1(收敛定理,狄利克雷充分条件)设
f (x) 是周期为 2 的周期函数 如果它满足
在一个周期内连续或只有有限个第一类间断 点 在一个周期内至多只有有限个极值点 则 f (x) 的傅里叶级数收敛 并且:
(1) 当 x 是 f (x) 的连续点时 级数收敛于f (x);
(2) 当 x 是 f (x) 的间断点时 级数收敛于
1[f(x0)f(x0).] 2
A
7
例1 设 f (x) 是周期为 2的周期函数 它在
A
13
an20 f(x)consx,d(xn1,2,L)
b n 0 (n1,2,L).
例3 将周期函数 u(t)Esitn展开成傅里叶
级数,其中 E为正常数.
解 不妨将u(t)看成是2 为周期的函数,满足
收敛定理,先计算傅里叶系数
bn0(n1,2,L)
a 0 π 20 π u (t)d t π 20 πE stid n t 4 π E
2 π
x2 2
π 0
A
11
a n 1 π π π F (x )cn o d x x s1 π π π f(x )cn o d x x s π 20 πxco nd s x xπ 2 xsninn x cn 2 o n s x0 π
4
n22π(cosnπ1) 0(2k1)2
u(t)2π E4π EAk 14k1 21co 2ksx
15
4 E (1 1 c2 o t 1 s c4 o t 1 s c6 o t s ) π23 15 35 ( t) .
A
14
a1E π 0πsi2 ntdt0
a n π 20 π u ( t)cn o td t sπ 20 π E sticn n o d tts Eπ [sn i 1 n )t (sinn 1 )t( ]d t
π0
4E
(4k2 1)
n 2k
0
n 2k 1
(k1,2,)
从而函数 u(t) 的傅里叶级数是一个余弦级数
第十章 无穷级数
A
1
10.5 傅里叶级数*
10.5.1 三角级数与三角函数系的正交性
Hale Waihona Puke 10.5.2 以 2 为周期的函数的傅里叶级数
10.5.3 区间 [ , ] 上函数的傅里叶级数
10.5.4 正弦级数和余弦级数
10.5.5 以 2l 为周期的函数的傅里叶级数
10.5.6 小结
A
2
10.5.1 三角级数与三角函数系的正交性
k
n
A
4
12dx2,
co2snxdx n1,2,L ,
sin2nxdx n1,2,L .
10.5.2 以 2 为周期的函数的傅里叶级数
通常,由下述公式确定的 a 0,a n,b n(n 1 ,2 , ) 称为函数 f (x) 的傅里叶系数.
a0
1
f(x)dx,
A
5
an1f(x)consx,dxn1,2,L , bn1f(x)sinx,dxn1,2,L .
(πxπ)
12
.
10.5.4 正弦级数和余弦级数
一、正弦级数和余弦级数
定理2 对于周期为 2 的奇函数 f (x),其傅里叶
级数为正弦级数,即傅里叶系数为
a n0(n0,1,2,L),
bn20 f(x)sinxd, x(n1,2,L)
周期为2 的偶函数 f (x), 其傅里叶级数为
余弦级数,即傅里叶系数为
A
3
三角函数系的正交性是指:三角函数系中
任何两个不同的函数的乘积在区间 [ , ]上
的积分等于零 即
consxdx0 n1,2,L ,
sinnxdx0 n1,2,L ,
sikncxonsx d0x
k,n1,2,L,
siknsxinnxd 0x
k,n1,2,L,
k
n
cokscxonsx d0xk,n1,2,L,
1[cn o n]s0 x 1[cn o n]s 0 x n 1 [1co nsco ns1 ]
2 (1(1)n)
n
n4 n1,3,5,
0 n2,4,6,
于是 f (x) 的傅里叶级数展开式为
f( x ) 4 [x s 1 s i3 n x i n 1 s2 i k 1 n ) x ( ]
2
2
当 x k 时级数收敛于 f (x).
傅里叶系数计算如下
an
1
f(x)cosnxdx
1 0 ( 1 )c o sn x d x 10 1 c o sn x d x 0(n0,1,2,L)
bn
1
f(x)sinxdx
1 0 ( 1 )sAinnxd 10 x1sinnxd9 x
函数项级数
a 20n 1(ancons xbnsinn)x
称为三角级数,其中 a 0,a n,b n(n 1 ,2 , )是常数. 称函数族
1 , c x , s o x , c i 2 x s , n s o 2 x , i , s c n n , s o n , x is n
为三角函数系.
3A
2 k 1
10
10.5.3 区间 [ , ] 上函数的傅里叶级数
例2
将函数
f(x) xx,,
πx0展开成
0xπ
傅里叶级数.
解 将函数 f (x) 延拓成以 2为周期的函数
F(x), 易知,函数 F(x) 满足收敛定理的条
件,傅里叶系数为
a 0 1 π π π F ( x )d x 1 π π π f( x )d x π 2 0 π x d x
n2k1
(k1,2,)
n2k
b n 1 π π π F ( x ) sn id n x x 1 π π π f( x ) sn id n x x 0
所以,函数 f (x) 的傅里叶级数展开式为
f(x ) π 2 π 4 (c o sx 3 1 2c Ao s3 x 5 1 2c o s5 x L )
[ , ) 上的表达式为
f(x) 1 10xx0,
将 f (x) 展开成傅里叶级数.
解 所给函数 f (x) 满足收敛定理的条件,
函数在点 x k (k0,1,2,L) 处不连续
在其它点处连续,从而由收敛定理知道
f (x) 的傅里叶级数收敛,并且当 x k
时收敛于
A
8
1 [f(x 0 ) f(x 0 ) ]1 ( 1 1 ) 0