八年级数学实践与探索2

合集下载

八年级数学一次函数实践与探索导学案函数的实践与应用

八年级数学一次函数实践与探索导学案函数的实践与应用

课堂教学导学案25,1.y x y x 的解。

”小风却对此半信半疑。

你能帮助小风打消顾虑吗?学完本节内容后你一定会做到。

2368x y x y ,,的解为探究1 一次函数与一元一次方程之间的关系● 在给出的直角坐标系中,画出函数y=2x+2的图象,由图可知方程2x+2=0的解 。

点拨:一次函数y =kx +b 中,给定了一个变量的值,求另一个变量的值,就是解关于另一个变量的一元一次方程.体现在函数图象上,就是知道了一次函数图象上一个点的横坐标或纵坐标,求另一个坐标.特别地,当y =0时,一元一次方程kx +b =0中x 的解,就是一次函数图象与x 轴交点的横坐标;当x =0时,y =b 就是一次函数图象与y 轴交点的纵坐标探究2一次函数与二元一次方程组之间的关系。

● 利用函数图象解方程组: (1) (2)点拨:一次函数y =kx +b ,如果从方程的角度看,就是一个以变量x ,y 为未知数的二元一次方程,一次函数y =kx +b 的图象上任意一个点的坐标就对应着这个方程的一个解.因此,一次函数图象上的无穷多个点,就对应着相应的二元一次方程的无穷多个解.根据一次函数与二元一次方程的关系,两个含有相同未知数x ,y 的二元一次方程组成的方程组⎩⎪⎨⎪⎧ y =k 1x +b 1,y =k 2x +b 2(可以化成⎩⎪⎨⎪⎧a 1x +b 1y =c 1,a 2x +b 2y =c 2的形式)的解,就对应着两个一次函数y =k 1x +b 1,y =k 2x +b 2图象的交点坐标.所以求两条直线交点的坐标,就转化为解二元一次方程组的解.探究3 一次函数与一元一次不等式的关系● 如图,直线y =kx +b 交坐标轴于A (-3,0)、B (0,5)两点,则不等式-kx -b <0的解集为( ).A. x >-3B. x <-3C. x >3D. x <3点拨:一元一次不等式kx +b >0(或kx +b <0)的解集,就对应着一次函数y =kx +b 在函数值y >0(或y <0)时,对应自变量x 的范围,体现在函数图象上,就是x 轴的上方(或下方)的射线(不含端点)对应的x 的取值范围.探究4 数形结合的数学思想● 如果双曲线y 1=-3x与直线y 2=-x +2交于点A (-1,n )、B .{12421--=+=x y x y {225=--=+y x y x Oy x(1)求出n 的值和点B 的坐标;(2)根据图象,写出y 1>y 2时,自变量x 的取值范围.点拨:用一次函数来研究一元一次方程、二元一次方程(组)、一元一次不等式问题,主要就是借助于图形的直观性解题,所以理解一次函数与一元一次方程、二元一次方程(组)、一元一次不等式的关系是解题的关键.同时,在一次函数这个高观点之下,重新来审视一元一次方程、二元一次方程(组)的解和一元一次不等式的解集,理解它们的几何意义,对于弄清知识之间的内在联系,使知识形成体系有着重要的意义.与不等式的意义一样,对于两个函数y 1=k 1x +b 1,y 2=k 2x +b 2(或y 2=k 2x),要找出y 1>y 2的自变量的取值范围,可以先用解方程组的办法求出图象的交点坐标.当y 1>y 2时,即k 1x +b 1>k 2x +b 2(或k 1x +b 1>k 2x),在图象上对应着交点的一侧,函数图象y 1=k 1x +b 1高于y 2=k 2x +b 2(或y 2=k 2x)的部分的自变量的取值范围.基础训练:。

2023-2024学年(华师版)八年级数学下册名师教学设计:课题 实践与探索(3)

2023-2024学年(华师版)八年级数学下册名师教学设计:课题 实践与探索(3)

2023-2024学年(华师版)八年级数学下册名师教学设计:课题实践与探索(3)一. 教材分析本节课是华师版八年级数学下册的课题实践与探索(3),主要内容是让学生通过实践活动,进一步理解和掌握数学知识。

教材通过具体的实例,引导学生探索和发现数学规律,培养学生的动手操作能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了一定的数学基础知识,具备一定的动手操作能力。

但是,对于一些复杂的数学问题,学生可能还不知道如何运用所学的知识去解决。

因此,在教学过程中,教师需要关注学生的学习情况,及时给予引导和帮助。

三. 教学目标1.知识与技能:让学生通过实践活动,理解和掌握数学知识,提高解决问题的能力。

2.过程与方法:培养学生动手操作的能力,提高学生解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。

四. 教学重难点1.教学重点:让学生通过实践活动,理解和掌握数学知识。

2.教学难点:如何引导学生发现和总结数学规律。

五. 教学方法1.启发式教学:通过提问和引导,激发学生的思考,帮助学生理解和掌握数学知识。

2.实践活动:让学生通过动手操作,亲身参与实践活动,提高解决问题的能力。

3.小组合作:让学生分组进行合作,培养团队合作意识,提高沟通能力和解决问题的能力。

六. 教学准备1.教材:华师版八年级数学下册。

2.课件:与本节课相关的课件。

3.学具:与本节课相关的实践活动材料。

七. 教学过程1.导入(5分钟)教师通过一个具体的实例,引出本节课的主题,激发学生的兴趣。

2.呈现(10分钟)教师通过课件,展示与本节课相关的实例,让学生观察和思考,引导学生发现数学规律。

3.操练(10分钟)学生分组进行实践活动,教师巡回指导,帮助学生理解和掌握数学知识。

4.巩固(10分钟)教师通过提问和引导,帮助学生巩固所学知识,让学生能够运用所学知识解决问题。

5.拓展(10分钟)教师通过出示一些拓展题,让学生进行思考和解答,提高学生的解决问题的能力。

实践与探索第3课时一次函数反比例函数的实际应用课件华东师大版八年级数学下册

实践与探索第3课时一次函数反比例函数的实际应用课件华东师大版八年级数学下册

课堂总结
(2)观察描出的点的整体分布,它们基本在一条直线附近波动,y与x之 间的函数 关系可以用一次函数去模拟.即y=kx+b.
y/s
240
230 ·
·
·
·
220
210
200
·
·
·
·
x/年 O(1984) 1(1988) 2(1992) 3(1996) 4(2000) 5(2004) 6(2008)7(2012)8(2016)
坐标,即(0,231.23),(1,226.95)等,在坐标系中描出这些对应点.
y/s
240
230 ·
220
·
·
·
210
200
·
·
·
·
x/年 O(1984) 1(1988) 2(1992) 3(1996) 4(2000) 5(2004) 6(2008)7(2012)8(2016)
学习目标
合作探究
当堂检测
p/(N/m2)
60
40
20
O
20 40 60 S/m2
学习目标
合作探究
当堂检测
课堂总结
4.据说篮球巨人姚明的鞋子长31cm,那么你知道他穿多大码的鞋子吗?
解:我们选取点(22,34)及点
(25,40)的坐标代入y=kx+b中,得 22k+b=34, 25k+b=40.
解得k=2,b=-10 所以,一次函数的解析式为y=2x-10. 把x=31代入上式,得y=2×31-10=52.
第17章 函数及其图象 17.5 实践与探索
3.一次函数、反比例函数的实际应用
学习目标
合作探究
当堂检测

2020—2021年华东师大版八年级数学下册《实践与探索》课时练习及参考答案.docx

2020—2021年华东师大版八年级数学下册《实践与探索》课时练习及参考答案.docx

(新课标)2017-2018学年华东师大版八年级下册第十七章第五节17.5实践与探索课时练习一、单选题(共15题)1.某同学网购一种图书,每册定价20元,另加书价的5%作为快递运费.若购书x册,则需付款y(元)与x的函数解析式为()A.y=20x+1 B.y=21x C.y=19x D.y=20x-1 答案:B解析:解答:由题意得:购买一册书需要花费(20+20×5%)元,故购买x册数需花费x(20+20×5%)元.即y=x(20+20×5%)=21x选B分析: 根据题意可得购买一册书需要花费(20+20×5%)元,根据此关系式可得出购书x册与需付款y(元)与x的函数解析式2.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系式应为()A.y=40t+5 B.y=5t+40 C.y=5t-40 D.y=40-5t 答案:D解析:解答:依题意得,油箱内余油量y(升)与行驶时间t(小时)的关系式为:y=40-5t选:D.分析:根据:油箱内余油量=原有的油量-t小时消耗的油量,可列出函数关系式3.某书贩以每本10元的价格从出版社购进某种练习册5000份,以每份30元的价格销售出x份(x<5000),未销售完的练习册又以每份2元的价格由废品收购站收购,这次买卖中该书贩获利y元,则y与x的函数关系式为()A.y=32x+40000(x<5000)B.y=32x-60000(x<5000)C.y=28x+40000(x<5000)D.y=28x-40000(x<5000)答案:D解析:解答: ∵总售价为:30x元,总成本为:10×5000=50000元,由废品收购站收购总价为:2×(5000-x)元,∴赚钱为:y=30x-50000+2×(5000-x)=28x-40000(x<5000)选D.分析: 等量关系为:利润=总售价-总成本+收购站收购总价,把相关数值代入4.某报亭老板以每份0.5元的价格从报社购进某种报纸500份,以每份O.8元的价格销售x 份(x<500),未销售完的报纸又以每份0.1元的价格由报社收回,这次买卖中该老板获利y 元,则y与x的函数关系式为()A.y=0.7x-200(x<500)B.y=0.8x-200(x<500)C.y=0.7x-250(x<500)D.y=0.8x-250(x<500)答案:A解析:解答: ∵总售价为0.8x元,总成本为0.5×500=250元,回收总价为0.1×(500-x),∴获利为:y=0.8x-250+0.1×(500-x)=0.7x-200(x<500)选A.分析:等量关系为:利润=总售价-总成本+回收总价,把相关数值代入5.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分钟30米的速度行走了前半程,为了不迟到他加快了速度,以每分钟45米的速度行走完了剩下的路程,那么小亮行走的路程y(米)与他行走的时间t(分)(t>15)之间的函数关系正确的是()A.y=30t(t>15)B.y=900-30t(t>15)C.y=45t-225(t>15)D.y=45t-675(t>15)答案:C解析:解答:由题意可得:y=45(t-15)=45t-225(t>15)选C.分析:利用他从家去上学时以每分钟30米的速度行走了前半程,所用时间为15分钟,进而得出y与t的函数关系式6.函数y=2x-1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:解答: ∵k=2>0,∴函数y=2x-1的图象经过第一,三象限;又∵b=-1<0,∴图象与y轴的交点在x轴的下方,即图象经过第四象限;所以函数y=-x-1的图象经过第一,三,四象限,即它不经过第二象限选B.分析:由于k=2,函数y=2x-1的图象经过第一、三象限;b=-1,图象与y轴的交点在x轴的下方,即图象经过第四象限,即可判断图象不经过第二象限7.“五一”期间,一体育用品商店搞优惠促销活动,其活动内容是:“凡在该商店一次性购物超过100元者,超过100元的部分按九折优惠”.在此活动中,小东到该商店为学校一次性购买单价为70元的篮球x个(x>2),则小东应付货款y(元)与篮球个数x(个)的函数关系式是()A.y=63x(x>2)B.y=63x+100(x>2)C.y=63x+10(x>2)D.y=63x+90(x>2)答案:C解析:解答:∵凡在该商店一次性购物超过100元者,超过100元的部分按九折优惠,∴小东到该商店为学校一次性购买单价为70元的篮球x个(x>2),则小东应付货款y(元)与篮球个数x(个)的函数关系式是:y=(70x-100)×0.9+100=63x+10(x>2)选:C.分析:根据已知表示出买x个篮球的总钱数以及优惠后价格,进而得出等式8.李大爷要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是()A.y=-2x+24(0<x<12)x+12(0<x<24)B.y=-12C.y=2x-24(0<x<12)x-12(0<x<24)D.y=12答案:B解析:解答:由题意得:2y+x=24,故可得:y=-1x+12(0<x<24)选B.2分析: 根据题意可得2y+x=24,继而可得出y与x之间的函数关系式,及自变量x的范围9.某小汽车的油箱可装汽油30升,原有汽油10升,现再加汽油x升.如果每升汽油7.6元,求油箱内汽油的总价y(元)与x (升)之间的函数关系是()A.y=7.6x(0≤x≤20)B.y=7.6x+76(0≤x≤20)C.y=7.6x+10(0≤x≤20)D.y=7.6x+76(10≤x≤30)答案:B解析:解答: 依题意有y=(10+x)×7.6=7.6x+76,10≤汽油总量≤30,则0≤x≤20选:B.分析: 根据油箱内汽油的总价=(原有汽油+加的汽油)×单价10.小高从家门口骑车去离家4千米的单位上班,先花3分钟走平路1千米,再走上坡路以0.2千米/分钟的速度走了5分钟,最后走下坡路花了4分钟到达工作单位,若设他从家开始去单位的时间为t(分钟),离家的路程为y(千米),则y与t(8<t≤12)的函数关系为()A.y=0.5t(8<t≤12)B.y=0.5t+2(8<t≤12)C.y=0.5t+8(8<t≤12)D.y=0.5t-2(8<t≤12)答案:D解析:解答: 下坡路的长度=4-1-0.2×5=2千米,下坡路的速度=2÷4=0.5千米/分钟,则y=平路+上坡路+(t-8)×下坡路速度=2+0.5×(t-8)=0.5t-2,即可得y=0.5t-2(8<t≤12)选:D.分析:当8<t≤12时,小高正在走下坡路,求出走下坡路的速度,然后根据y=平路+上坡路+(t-8)×下坡路速度,即可得出答案11.已知,如图,某人驱车在离A地10千米的P地出发,向B 地匀速行驶,30分钟后离P地50千米,设出发x小时后,汽车离A地y千米(未到达B地前),则y与x的函数关系式为()A.y=50x B.y=100x C.y=50x-10 D.y=100x+10 答案:D解析:解答: ∵汽车在离A地10千米的P地出发,向B地匀速行驶,30分钟后离P地50千米(未到达B地前),∴汽车的速度=50÷0.5=100(千米/时),则依题意有:y=100x+10选:D.分析:根据汽车的速度=50÷0.5=100千米/时,汽车离A地距离=10+行驶距离得出12.小明每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,设该天小明上学行走t分时行走的路程为S米,则当l5<t≤25时,s与t之间的函数关系是()A.s=30t B.s=900-30t C.S=45t-225D.s=45t-675答案:C解析:解答:以每分30米的速度行走了450米用的时间为=15s,t=45030则当l5<t≤25时,速度是每分45米,根据题意列出关系式:s=450+45(t-15)=45t-225(l5<t≤25).选:C.分析:当l5<t≤25时,小明的速度为每分45米,从而可得出s 与t的关系式13.为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t (15<t≤23)的函数关系为()A.y=100t(15<t≤23)B.y=100t-500(15<t≤23)C.y=50t+650(15<t≤23)D.y=100t+500(15<t≤23)答案:B解析:解答: ∵用了8分钟骑行了剩余的800米,=100米/分,∴速度v=8008则可得y=1000+100(t-15)=100t-500(15<t≤23)分析:先求出骑车的速度,然后根据路程=故障前行走的路程+故障后行走的路程,即可得出y与x的函数关系式14.若某地打长途电话3分钟之内收费1.8元,3分钟以后每增加1分钟(不到1分钟按1分钟计算)加收0.5元,当通话时间t≥3分钟时,电话费y(元)与通话时间t(分)之间的关系式为()A.y=t+2.4 B.y=0.5t+1 C.y=0.5t+0.3 D.y=0.5t-0.3答案:C解析:解答:依题意有:y=1.8+0.5(t-3)=0.5t+0.3选:C.分析:根据电话费=3分内收费+三分后的收费列出函数解析式15.平行四边形的周长为50,设它的长为x,宽为y,则y与x 的函数关系为()A.y=25-x B.y=25+x C.y=50-x D.y=50+x 答案:A解析:解答:∵平行四边形的周长为50,∴2x+2y=50,整理,得y=25-x选:A.分析:根据平行四边形的对边相等,周长表示为2x+2y,根据已知条件,建立等量关系,再变形二、填空题(共5题)16.一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧时剩下的高度h(单位:cm)与燃烧时间t(单位:h)(0≤t≤4)之间的关系是___答案:h=-5t+20解析:解答: 解:由题意得:5t+h=20,整理得:h=-5t+20,答案为:h=-5t+20分析:根据题意可得等量关系:燃烧的高度+剩余的高度=20cm,根据等量关系列出函数关系式17.为了加强公民节水意识,某市制定了如下用水收费标准,每户每月用水不超过10t时,水价为每吨1.2元;超过10t时,超过的部分按每吨1.8元收费,现有某户居民5月份用水xt(x>10),应交水费y元,则y与x的关系式__________.答案:y=1.8x-6解析:解答: 依题意有y=1.2×10+(x-10)×1.8=1.8x-6.所以y关于x的函数关系式是y=1.8x-6(x>10)答案为:y=1.8x-6分析:水费y=10吨的水费+超过10吨的水费,依此列式18.汽车以60千米/时速度匀速行驶,随着时间t(时)的变化,汽车的行驶路程s也随着变化,则它们之间的关系式为_________ 答案:s=60t解析:解答: 由路程=速度×时间,可得s与t的函数关系式为:s=60t答案为s=60t分析:根据路程=速度×时间,列出函数关系式19.已知等腰三角形的周长为24cm,设腰长为x(cm),底边长为y(cm),写出y关x函数解析式及自变量x的取值范围________.答案:y=24-2x(6<x<12)解析:解答:∵等腰三角形的周长为24cm,设腰长为x(cm),底边长为y(cm),∴y关于x函数解析式为:y=24-2x,自变量x的取值范围为:6<x<12.分析:利用等腰三角形的性质结合三角形三边关系得出答案20.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为________答案:y=6+0.3x解析:解答: 根据题意可得:y=6+0.3x(0≤x≤5)分析:根据高度等于速度乘以时间列出关系式解答即可三、解答题(共5题)21.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为怎样的?答案:解答: 新增加的投资额x万元,x万元.则增加产值250100这函数关系式是:y=2.5x+15.即总产值y(万元)与新增加的投资额x(万元)之间函数关系为y=2.5x+15分析:每增加100元投资,一年增加250元产值,那么增加1万元投资,就要增加2.5万元的产值,根据总产值=现在年产值+增加的年产值可得出关系式22.一拖拉机有油10升,工作时每小时用油5升.写出剩余油量Q升与工作时间t小时之间的关系式,并画出函数的图象.答案:解答: 剩余油量Q升与工作时间t小时之间的关系式为:Q=10-5t(0≤t≤2)分析: 余油量=原有油-每小时用油×时间,函数图象为一条线段23.已知一个长方形周长为60米.求它的长y(米)与宽x(米)之间的函数关系式,并指出关系式中的自变量与函数答案:解答:由题意得,2(x+y)=60x+y=30,即y=30-x (0<x<30)故长方形的长与宽的关系为:y=40-x (0<x<30)分析:根据长方形的周长等于长方形长和宽之和的两倍,写出长与宽的关系式24.A,B两地相距400km,甲车从A地出发,以60km/h的速度匀速行驶到B地,设甲车与B的路程为y(km),行驶的时间为x(h),求y关于x的函数解析式,并写出自变量x的取值范围答案:解答:由题意得:60x+y=400,y=400-6x,400-6x≥0,,解得:x≤2003∵x≥0,∴0≤x≤2003分析:由题意得:甲车的行驶速度×行驶时间+y=400km,根据等量关系可得60x+y=400,然后再变形可得y=400-6x25.等腰三角形的周长为30cm.(1)若底边长为xcm,腰长为ycm,写出y与x的关系式,并注明自变量的取值范围.x+1,0<x<15答案:y=-12解答:∵等腰三角形的周长为30cm,底边长为xcm,腰长为ycm,x+15,自变量的取值∴y与x的关系式为:x+2y=30,即y=-12范围是:0<x<15;(2)若腰长为xcm,底边长为ycm,写出y与x的关系式,并注明自变量的取值范围答案:y=-2x+30,7.5<x<15解答:∵等腰三角形的周长为30cm,腰长为xcm,底边长为ycm,∴y与x的关系式为:y=-2x+30,自变量的取值范围是:7.5<x <15分析:(1)直接利用三角形周长公式求出y与x的函数关系,进而利用三角形三边关系得出自变量的取值范围;(2)直接利用三角形周长公式求出y与x的函数关系,进而利用三角形三边关系得出自变量的取值范围.。

华师大版数学八年级下册1实践与探索课件

华师大版数学八年级下册1实践与探索课件

提示:读图不认真,x>2时,对应的函数值在x轴下方,即y <0.
【解析】设y=kx+b(k,b为常数,k≠0),
则有
b 2
299, 000k b
解得 235,
k b
-4, 125
299,
∴y= 4 +x299.
125
当x=1 200时,y=
=260.6(g/m3).
×41 200+299
125
答:该山山顶处的空气含氧量约为260.6 g/m3.
【想一想错在哪?】当自变量x满足什么条件时,一次函数 y=-2x+4的值满足y>-2?
3, 2
【解析】选B.∵两条直线y=k1x+b1和y=k2x+b2相交于点A(-
2,3), ∴∴x方=程-2组,y=yy 3就kk12x是x方bb12,程的组解为yy xykk12xx-3的. 2bb,1解2,.
2.如图,以两条直线l1,l2的交点坐标为解的方程组是( )
x-y 1,
x-y -1,
可以是
x-y -1, 2x-y 1.
3.函数y=2x-3的图象上任意一点的坐标都一定满足二元一次 方程________. 【解析】y=2x-3移项,得2x-y-3=0. 答案:2x-y-3=0
4.如图,已知一次函数y=ax+b和正比例函数y=kx的图象交
于点P,则根据图象可得二元一次方程组
y
【思路点拨】由待定系数法分别求出AB,CD的关系式→联立 得方程组即可得两直线的交点坐标. 【自主解答】直线AB过(-3,0),(0,6),由待定系数法得直 线AB的方程为y=2x+6; 直线CD过(0,1),(2,0),由待定系数法得直线CD的方程为 y= 1 x 1, 联所以立直得2 线方A程B组,CyyD的2x交12x点6,1坐,解标得为(xy-2,2.22,).

八年级数学实践与探索2

八年级数学实践与探索2
公寓预订 https://
住院病历书写质量评估标准中有项单项否决。A.30B.31C.32D.33E.34 矿井涌水的大小,通常以每或每涌入矿井多少立方米/水计算。 一个独立光伏系统,已知系统电压48V,蓄电池的标称电压为12V,那么需串联的蓄电池数量为。A.1B.2C.3D.4 [配伍题]具有化生气血功能的脏是。</br>具有朝百脉功能的脏是。</br>具有运化水液功能的脏是。A.肝B.心C.脾D.肺E.肾 用万用表测得某晶体二极管的正反向电阻值相差很大,则说明该管子。A.很好B.已失去单向导电性C.已经击穿D.内部已断路 下列有关赔偿的说法正确的是A、行政机关、司法机关的工作人员是赔偿责任主体B、行政机关、司法机关的工作人员是履行赔偿义务的主体C、行政机关、司法机关的工作人员是原则上侵权主体D、行政机关、司法机关的工作人员是有追偿权 下列哪一种情况是造成铸件冷隔的原因A.铸型反复多次焙烧B.铸造温度过高C.铸金量过多D.包埋材料透气性不良E.铸金量不足 12岁女孩,外院诊断为"先天性心脏病",近因头昏、失眠来诊。体检:肺动脉瓣区有Ⅱ级收缩期杂音,柔和,不传导,肺动脉瓣区第2音正常,无分裂。心电图及超声心动图正常。此时处理应是A.通知家属来院面谈B.请班主任来院联系C.建议每半年随访一次D.解释为生理性杂音,消除顾虑E.作心 世界卫生组织推荐的预防接种的4种疫苗是。A、卡介苗麻疹疫苗百白破混合疫苗脊髓灰质炎疫苗B、卡介苗流感疫苗白喉疫苗脊髓灰质炎疫苗C、卡介苗麻疹疫苗伤寒疫苗霍乱疫苗D、卡介苗麻疹疫苗风疹疫苗脊髓灰质炎疫E、麻疹疫苗流感疫苗天花疫苗脊髓灰质炎疫苗 肠梗阻诊断明确后,最重要的是确定。A.梗阻的原因B.梗阻的部位C.梗阻的程度D.梗阻的性质E.有无发生肠绞窄 下列哪种血液病的诊断需要求助于五官科医师会诊()A.骨髓瘤B.巨幼细胞性贫血C.轻型血友病D.皮肤性淋巴瘤E.粒细胞缺乏症 下列不是引起急性心肌梗死的原因有A.休克B.脱水C.冠脉血栓形成D.妊娠E.严重心律失常 水中少量硫酸盐对人体无影响,但过量时有致写作用,饮用水中硫酸盐的含量不应超过mg/L。 关于限仓制度,以下说法正确是。A、限制投资者最多可持有的期权合约数量B、限制投资者最多可持有的股票数量C、限制投资者单笔最小买入期权合约数量D、限制投资者每个交易日最多可买入期权合约数量 相啮合的一对齿轮旋转方向,每经一齿轮传动副传动,其输出轴变改变旋转方向。A.相反一次B.相同一次C.相反二次D.相同二次 卢梭以小说体裁反映自然主义教育思想的代表作是。A.社会契约论B.忏悔录C.新爱洛绮丝D.爱弥儿 灭火基本方法分隔离法、窒息法、冷却法、抑制法四种.A.正确B.错误 失认症左侧忽略患者常将"标"读作A.标B.木C.示D.二E.小 非溶血性发热反应除表现寒战、高热外,可能还具有下列何种表现A.血压降低,恶心、呕吐,腹泻B.血压升高,头痛、呕吐,腰痛C.血压正常,头痛、呕吐D.皮肤潮红,全身痛E.全身潮红,手脚发麻 二氧化碳是一种不助燃、不导电、无腐蚀性的惰性气体,不空气重.A.正确B.错误 某建筑设计注册执业人员在施工图纸设计过程中,严重违反民用建筑节能强制性标准的规定,造成严重后果,按照《民用建筑节能条例》的规定,可由颁发资格证书的部门吊销执业资格证书,()内不予注册。A.1年B.2年C.3年D.5年 假定KM不变,当少量装货的重心高于船舶的重心时,则装货后船舶的初稳性高度值将。A.减小B.不变C.增大D.变化趋势不定 男性,30岁。自15岁起反复中至大量咯血,有时痰呈脓性。近日咯血50ml就诊。体检:右下肺固定性湿啰音。X线胸片示两肺纹粗乱。临床诊断支气管扩张症。患者要求手术治疗,医生告之要进一步检查,对于该患者能否手术的决定性因素是A.病变范围B.病变部位C.肺功能D.临床症状E.有无继发 下列选项不属于拱桥支架施工控制要点的是。A.预制拼装B.混凝土压注质量控制C.墩顶实心段混凝土裂缝控制D.支架沉降控制E.拱架加载控制 以经营方式租入的固定资产改良支出属于。A、修理费用B、固定资产C、长期待摊费用D、流动性资产 以神经毒素致病的细菌是A.霍乱弧菌B.肉毒梭菌C.伤寒沙门菌D.脑膜炎奈氏菌E.乙型溶血性链球菌 肺吸虫病的临床症状哪项是错误的A.不可能侵犯脑部B.血中嗜酸性粒细胞可增加C.可无明显症状D.可出现肝型E.急性期可出现低热、荨麻疹 影响神经系统发育最重要的激素A.生长素B.甲状腺激素C.糖皮质激素D.胰岛素E.性激素 近年来对痢疾杆菌较为敏感的抗菌药物是A.磺胺药B.庆大霉素C.喹诺酮类D.氨苄西林E.四环素 我们一般使用以下哪个软件用于编制项目实施计划?A.MS-VISIOB.MS-PROJECTC.EXCELD.WORD 可以导致心力衰竭加重的因素A.情绪激动B.感染C.回心血量不足D.不恰当使用&beta;受体阻滞剂E.以上均可 股骨头血液供给的主要来源是。A.腹壁浅动脉的分支B.腹壁下动脉的分支C.旋股内、外侧动脉的分支D.肌骨头圆韧带的小凹动脉E.股骨干的滋养动脉升支 坐高/身高的比值最小是出现在A.婴儿期B.童年期C.青春发育早期D.青春发育中期E.青春发育晚期 安宫牛黄丸的证治要点中不包括()A.神昏谵语B.高热烦躁C.口干舌燥D.舌红或绛E.脉数 关于臀位,哪项错误A.为最常见的异常胎位B.胎儿病死率比枕前位高3~8倍C.多见于经产妇D.必须在妊娠28周左右行外转胎位术E.后出头困难时需产钳助产 高压加热器为防止停用后的氧化腐蚀,规定停用时间小于h可将水侧充满给水A.20B.40C.60D.80 引起副溶血性弧菌食物中毒的好发食品是A.奶制品B.海产品C.豆制品D.剩饭E.肉制品 支票是出票人签发的,委托办理支票存款业务的银行或者其他金融机构在见票时无条件支付确定的金额给收款人或者的票据。 某网点在贷款发放时,操作员执行交易录入相关要素后,系统将会计人员录入要素与电子准贷证有关要素作一致性检查。 局麻药的不良反应有和

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

八年级数学教案:探索三角形全等的条件 ( 全8课时 )

合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。

新版华东师大版八年级数学下册《17.5实践与探索》说课稿26

新版华东师大版八年级数学下册《17.5实践与探索》说课稿26

新版华东师大版八年级数学下册《17.5实践与探索》说课稿26一. 教材分析华东师大版八年级数学下册《17.5实践与探索》是一节旨在培养学生实践能力和探索精神的课程。

本节课的内容包括两个部分,一部分是实践操作,另一部分是探索研究。

实践操作部分要求学生运用所学知识解决实际问题,提高学生的动手操作能力;探索研究部分则要求学生通过自主探究,发现规律,提高学生的思维能力和创新能力。

二. 学情分析八年级的学生已经具备了一定的数学基础,对数学产生了一定的兴趣。

但是,由于地区差异,学生的数学水平参差不齐,部分学生对数学仍然存在恐惧心理。

此外,学生对于实践与探索类课程的认识还不够深刻,需要在教学过程中加以引导。

三. 说教学目标1.知识与技能目标:学生能够运用所学知识解决实际问题,提高实践操作能力。

2.过程与方法目标:学生通过自主探究,发现规律,提高思维能力和创新能力。

3.情感态度与价值观目标:学生体验数学在生活中的应用,增强对数学的兴趣和信心。

四. 说教学重难点1.教学重点:学生能够运用所学知识解决实际问题。

2.教学难点:学生通过自主探究,发现规律,提高思维能力和创新能力。

五. 说教学方法与手段1.教学方法:采用引导发现法、讨论法、实践操作法等。

2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学。

六. 说教学过程1.导入新课:通过生活中的实际问题,引发学生对数学的兴趣,导入新课。

2.实践操作:学生分组讨论,运用所学知识解决实际问题,提高实践操作能力。

3.探索研究:学生自主探究,发现规律,提高思维能力和创新能力。

4.总结提升:教师引导学生总结本节课的知识点,加深对数学的理解。

5.布置作业:布置适量作业,巩固所学知识,提高应用能力。

七. 说板书设计板书设计遵循清晰、简洁、易懂的原则,突出本节课的关键知识点和思路。

主要包括以下几个部分:1.实践操作部分的板书设计:问题提出、方法指导、操作步骤等。

2.探索研究部分的板书设计:问题提出、思路引导、规律总结等。

6.3实践与探索(2)-储蓄问题

6.3实践与探索(2)-储蓄问题

解:设小明爸爸前年存了 x 元,则根据题意,得
x 2.43% 2 80% 48 .6
0.03888 x 48 .6
48 .6 x 0.03888
经检验,符合题意
答:小明爸爸前年存了
x 1250
1250
元.
• 青青的妈妈前年买了某公司的二年期债券 4500元,今年到期,扣除利息税后,共得本 利和约4700元,利息税的税率为20%,问这 种债券的年利率是多少?(精确到0.01%)
x 0.1863 x 1.8
1.1863 x 1.8
x 1.8 1.1863
x 1 .5
答:他现在大约可以贷款 1.5万元.
数字问题
要理解十进制整数的表示方法
例:一个两位数的十位上的数是个位上的数的
两倍,若把两个数字对调,则新得到的两位数 比原两位数小36,求原两位数。 分析 :题中数量关系如下表 (若设原数的 个位数字为X) 十位数字 个位数字 本数 2X X 20X+X 原两位数 X 2X 10X+2X 新两位数
知识点
增长率问题
• 原始总量、增长量、增长后总量、增长率这四者之 间的关系: • (1)增长后总量=原始总量+增长量
增长长 • (2)增长率= ×100% 原始量
• 通过经历“问题情境——建立数学模型——解释、 应用与拓展”的过程,理解和体会数学建模思想在 解决实际问题中的作用.
做一做
1.某市去年年底人均居住面积为11平方米,计划在今年年 底增加到人均13.5平方米.求今年的住房年增长率. (精确到0.1%)
每件服装的实际售价为: 1 40%x 80% 每件服装的利润为: 1 40%x 80% 1 40%x 80% x 15 得方程:

新版华东师大版八年级数学下册《17.5实践与探索》教学设计26

新版华东师大版八年级数学下册《17.5实践与探索》教学设计26

新版华东师大版八年级数学下册《17.5实践与探索》教学设计26一. 教材分析华东师大版八年级数学下册《17.5实践与探索》这一节主要讲述了锐角三角函数的概念和应用。

通过本节课的学习,学生能够理解锐角三角函数的定义,掌握锐角三角函数的计算方法,并能够运用锐角三角函数解决实际问题。

教材通过丰富的例题和练习题,帮助学生巩固所学知识,提高解题能力。

二. 学情分析八年级的学生已经掌握了初中阶段的基础数学知识,对于函数的概念和解题方法有一定的了解。

但是,对于锐角三角函数的理解和应用可能还存在一定的困难。

因此,在教学过程中,教师需要通过生动的讲解和丰富的实例,帮助学生理解锐角三角函数的内涵和外延,提高学生的学习兴趣和解题能力。

三. 教学目标1.知识与技能目标:学生能够理解锐角三角函数的定义,掌握锐角三角函数的计算方法,并能够运用锐角三角函数解决实际问题。

2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生的团队协作能力和问题解决能力。

3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的探究精神和创新意识。

四. 教学重难点1.教学重点:锐角三角函数的定义和计算方法。

2.教学难点:锐角三角函数在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活实例和数学故事,引发学生的兴趣和思考,帮助学生理解锐角三角函数的内涵和外延。

2.小组合作学习:学生进行小组讨论和交流,培养学生的团队协作能力和问题解决能力。

3.启发式教学法:教师通过提问和引导,激发学生的思维,帮助学生掌握锐角三角函数的计算方法。

六. 教学准备1.教学课件:制作精美的教学课件,配合生动的讲解,帮助学生理解锐角三角函数的概念和应用。

2.练习题:准备适量的练习题,巩固学生的学习成果,提高学生的解题能力。

3.教学道具:准备一些教学道具,如三角板、直尺等,帮助学生直观地理解锐角三角函数的计算过程。

七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的主题,如“一个直角三角形,其中一个锐角的正弦值是0.8,求这个锐角的余弦值。

八年级数学实践与探索2

八年级数学实践与探索2
esball怎样注册
[单选,A2型题,A1/A2型题]可精确切割不同组织,最适于镫骨手术的是()。A.准分子激光B.氩离子激光CO2激光D.半导体激光E.Nd:YAG激光 [名词解释]宏观市场营销 [填空题]《学校卫生工作条例》所称的学校,是指普通中小学、农业中学、职业中学、中等专业学校、技工学校、()。 [单选]布氏硬度HB的单位是()A.MPaB.无单位C.kgf/c㎡D.kgf&bull;m/m㎡ [问答题,简答题]噪声测定仪 [单选]车辆检修时,摇枕中心销插入摇枕长度及露出长度均不小于()(从下心盘凸脐上部测量)。A.160mmB.150mmC.100mmD.90mm [单选,A1型题]关于干酪性肺炎的叙述正确的是()A.属于继发性肺结核常见的类型B.易发生在免疫力过强或变态反应过低的病人C.病变性质为渗出性炎D.常由浸润型肺结核恶化进展产生E.由慢性纤维空洞型肺结核经血行播散所致 [单选,A2型题,A1/A2型题]关于阴离子隙,描述错误的是().A.参考范围8~16mmol/LB.细胞外液阴阳离子总数之差C.酮症酸中毒时,阴离子隙增加D.判断代谢性碱中毒病因E.判断代谢性酸中毒病因 [单选,A2型题,A1/A2型题]女性,45岁。新诊断糖尿病,用胰岛素治疗后第5天,血糖从原来甚高很快降至接近正常水平,但突然发生视力模糊,应首先考虑可能是由于().A.已有白内障B.视网膜微血管病变C.合并青光眼D.晶体渗透压改变E.玻璃体出血 [单选]总行程由()和空驶行程构成。A.重车公里B.载重行程C.平均车日行程D.有效行程 [单选,A1型题]下述哪项不是产后出血的原因()A.胎膜早破B.滞产C.子宫畸形D.多次刮宫人流术后E.双胎妊娠 [单选,A1型题]当创伤事件的片段如同黑白影片中的一个个画面一样在当事人的脑中反复闪现时,当事人出现的创伤后反应是()A.焦虑B.抑郁C.精神病性症状D.解离E.创伤后应激障碍 [名词解释]卷内目录 [单选,A2型题,A1/A2型题]2级高血压,血压水平为()A.收缩压140~149mmHg,舒张压90~99mmHgB.收缩压160~179mmHg,舒张压100~109mmHgC.收缩压150~159mmHg,舒张压90~109mmHgD.收缩压170~189mmHg,舒张压90~109mmHgE.收缩压160~179mmHg,舒张压109~119mmHg [单选,A2型题,A1/A2型题]小儿腹股沟斜疝发病的相关因素为()A.生后腹膜鞘状突未闭B.腹股沟区解剖结构薄弱C.剧烈哭闹等腹压增高因素D.小儿多仰卧,双髋屈曲,使腹肌松弛E.以上都是 [单选]过烧缺陷的金相特征主要表现为()。A、晶粒粗化B、性能降低C、晶界氧化和熔化D、氧化脱碳 [单选,A2型题,A1/A2型题]一般小儿在几岁左右平衡、精细动作、粗大运动的协调发育基本成熟()A.10岁B.11岁C.9岁D.7岁E.4岁 [不定项选择]属于从传播途径上降低噪声的方法的是()。A.在工程设计中改进生产工艺和加工操作方法,降低工艺噪声B.在生产管理和工程质量控制中保持设备良好运转状态,不增加不正常运行噪声C.合理安排建筑物功能和建筑物平面布局,使敏感建筑物远离噪声源,实现"闹静分开"D.采用合 [判断题]方法发明一般不能授予专利权。A.正确B.错误 [名词解释]密级 [名词解释]525R型水泥 [单选,A1型题]哪项不是对β内酰胺类抗生素产生耐药的原因()。A.细菌产生&beta;内酰胺酶B.PBPs与抗生素亲和力降低C.PBPs数量减少D.菌细胞壁或外膜的通透性发生改变E.细菌缺少自溶酶 [填空题]影响放大电路工作点稳定的主要因素是()的变化。 [单选]鉴别肾上腺腺瘤与嗜铬细胞瘤主要依据()A.肿瘤大小和外形B.肿瘤内密度C.增强扫描后强化方式D.发病年龄E.是否出现临床症状 [单选]下列卵巢子宫内膜异位囊肿声像图分型,哪一项是错误的A.单纯囊肿型B.多囊型C.实性团块型D.囊内团块型E.囊内均匀点状回声型 [单选]电源频率增加一倍,变压器绕组感应电动势也()。A、增加一倍B、不变C、减少一倍D、略有增加 [单选]沿岸航行中,利用同名侧物标进行转向时,若发现船舶至转向物标的横距比预定的距离大,则应()转向,以使船舶转向后行驶在计划航线上。A.提前B.推迟C.大舵角D.小舵角 [单选,A1型题]形成高带免疫耐受的细胞是()A.B细胞B.T细胞C.T和B细胞D.单核细胞E.NK细胞 [单选]人工砂的总压碎值指标应小于()。A.10%B.20%C.30% [问答题,简答题]什么是“抄表段”? [单选]放射性制剂的放射化学纯度要求()A.放化纯度控制在85%以上B.放化纯度控制在99%以上C.放化纯度控制在95%以上D.放化纯度控制在80%以上E.放化纯度控制在70%以上 [单选]下列不属于容积式泵的是()。A.喷射泵B.凸轮泵C.隔膜泵D.齿轮泵 [单选]含水量为8%的粉煤灰540g,其烘干后质量为()。A.496.8gB.504gC.500gD.无法判定 [单选,案例分析题]某电网企业110kV变电站,两路电源进线,两路负荷出线(电缆线路),进线、出线对端均为系统内变电站,四台主变压器(电压比为110/10.5kV);110kV为单母线分段接线,每段母线接一路进线,一路出线,两台主变;主变高压侧套管CT电流比为3000/1A,其余110kVCT电流 [单选]下列哪种情况不会传播朊毒体病()A.器官移植B.神经外科手术C.进食煮熟的牛肉D.空气传播E.注射尸体来源的人体激素 [单选,A2型题,A1/A2型题]继发性肺结核包括()A.血行播散性肺结核B.浸润型肺结核C.结核性胸膜炎D.其他肺外结核E.原发性肺结核 [单选]区别行政违法与行政不当时,行政违法对应的行为是裁量行为和()。A.意志行为B.羁束行为C.客观行为D.主观行为 [单选,A1型题]下列有关mRNA的特点,哪项是错误的()A.代谢活跃B.分子大小不一C.其5&rsquo;末端可有&quot;帽&quot;,3&rsquo;末端可有&quot;polyA&quot;D.通常易被碱水解E.主要含在线粒体中 [填空题]钢中的氮可使钢材产生()脆化,降低钢的(),且能引起钢的()脆。 [单选]下列哪些内容应成为航海员判定海图资料是否可信的依据()。Ⅰ.测量时间;Ⅱ.海图比例尺;Ⅲ.新购置图;Ⅳ.航标位置;Ⅴ地貌精度。A.Ⅰ~ⅤB.Ⅰ,Ⅱ,Ⅳ,ⅤC.Ⅱ,Ⅲ,ⅣD.Ⅲ~Ⅴ

八年级数学实践与探索2.docx

八年级数学实践与探索2.docx

二手泵车:https:///[单选]月经周期为32天的妇女,其排卵日应在月经来潮后的()A.第10天B.第12天C.第15天D.第18天E.第21天[单选]减容期满后的客户及新装,增容的客户,()内不得申请办理减容或暂停。

A.半年B.一年C.两年D.一年半[单选]小儿惊厥最常见的原因是()A.癫痫B.低钙惊厥C.高热惊厥D.低血糖E.颅内感染[问答题,简答题]编入列车的车辆对车钩缓冲装置的质量要求是什么?[单选]保险合同是最大诚信合同这一特征主要的约束()。

A.保险和经纪人B.被保险人和代理人C.受益人和保险人D.投保人和保险人[单选]19岁男性,自婴儿期皮肤上就有多数鳞屑斑,患者的一个哥哥和一个妹妹有类似疾病,可能的诊断是()A.毛发红糠疹B.性联遗传性鱼鳞病C.寻常型鱼鳞病D.层板状鱼鳞病E.表皮松解性角化过度鱼鳞病[单选,A2型题,A1/A2型题]下部量过长见于()。

A.糖尿病B.巨人症C.生殖腺功能不全症D.先天愚型E.肥胖症[单选,A2型题,A1/A2型题]判断HLA-D位点编码的抗原间是否相容的方法是()A.迟发型皮肤超敏反应B.PHA激发的淋巴细胞C.混合淋巴细胞反应D.HLA血清学定型试验E.以上均不是[单选]除规范有特殊规定外,人员密集场所一般要求每一个防火分区的安全疏散出口不应少于()个A、1B、2C、3D、4[单选,A型题]不属于嗜铬细胞瘤的影像表现是()A.圆形中等密度病灶B.发生在皮质C.增强明显强化D.T2WI呈高信号E.腹膜后可有淋巴结增大[单选]驾驶厂内机动车,应当依法取得()A、操作上岗证B、驾驶证C、企业内部通行证[单选,A2型题,A1/A2型题]DSA的时间减影方式中没有()A.连续方式B.脉冲方式C.路标方式D.常规方式E.双能方式[单选]冬天走进橙色的房间里有一种温暖的感觉,这是()现象。

A.感觉适应B.感觉对比C.联觉D.视觉[单选]以下关于两种路由协议的叙述中,错误的是()。

八年级数学 一次函数学 实践与探索教案

八年级数学 一次函数学 实践与探索教案

八年级数学一次函数学实践与探索(1)知识技能目标1.使学生理解二元一次方程组的解是两条直线的交点坐标,并能通过图象法来求二元一次方程组的解;2.让学生了解到函数是刻画和研究现实世界数量关系的重要数学模型,也是一种重要的数学思想,培养和提高学生在数学学习中的创造和应用函数的能力.过程性目标1.使学生体会到实际问题中数量之间的相互关系,学会用函数的思想去进行描述、研究其内在联系和变化规律;2.通过图象获取函数相关信息,运用图象来解释实际问题中相关量的涵义;3.使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.教学过程一、创设情境问题学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如下图所示.根据图象回答:(1)乙复印社的每月承包费是多少?(2)当每月复印多少页时,两复印社实际收费相同?(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?二、探究归纳问“乙复印社的每月承包费”在图象上怎样反映出来?答“乙复印社的每月承包费”指当x=0时,y的值,从图中可以看出乙复印社的每月承包费是200元.问“收费相同”在图象上怎样反映出来?答“收费相同”是指当x取相同的值时,y相等,即两条射线的交点.我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.问如何在图象上看出函数值的大小?答作一条x轴的垂线,如下图,此时x的值相同,它与哪一条射线的交点较高,就表示对应函数值较大,收费就较高;反之,它与另一条射线的交点较低,就表示对应函数值较小,收费就较低.从图中可以看出,如果每月复印页数在1200页左右,那么应选择乙复印社收费较低.三、实践应用例1小X准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.小X的同学小王以前没有存过零用钱,听到小X在存零用钱,表示从小X存款当月起每个月存18元,争取超过小X.请你写出小X和小王存款和月份之间的函数关系,并计算半年以后小王的存款是多少,能否超过小X?至少几个月后小王的存款能超过小X?解设小X存x个月的存款是y1元,小王的存x个月的存款是y2元,则y1=50+12x,y2=18x,当x =6时,y 1=50+12×6=122(元),y 2=18×6=108(元). 所以半年后小王的存款不能超过小X .由y 2>y 1,即18x > 50+12x ,得x >318,所以9个月后,小王的存款能超过小X .思考:①求⎩⎨⎧=+=.18,1250x y x y 的解.②观察两直线交点坐标与这个方程组的解有什么关系. 结论我们看到,两个一次函数图象的交点处,自变量和对应的函数值同时满足两个函数的关系式.而两个一次函数的关系式就是方程组中的两个方程,所以交点的坐标就是方程组的解.据此,我们可以利用图象来求某些方程组的解.例2利用图象解方程组⎩⎨⎧+-=-=.1,52x y x y 解在直角坐标系中画出两条直线,如下图所示.两条直线的交点坐标是(2,-1),所以方程组的解为⎩⎨⎧-==.1,2y x例3 下图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程中路程随时间变化的图象(分别是正比例函数图象和一次函数图象).根据图象解答下列问题:(1)请分别求出表示轮船和快艇行驶过程的函数解析式(不要求写出自变量的取值X 围); (2)轮船和快艇在途中(不包括起点和终点)行驶的速度分别是多少? (3)问快艇出发多长时间赶上轮船?解(1)设表示轮船行驶过程的函数解析式为y =kx (k ≠0), 由图象知:当x =8时,y =160. 代入上式,得8k =160, 可解得k =20.所以轮船行驶过程的函数解析式为y =20x .设表示快艇行驶过程的函数解析式为y =ax +b (a ≠0), 由图象知:当x =2时,y =0;当x =6时,y =160.代入上式,得⎩⎨⎧=+=+.1606,02b a b a可解得⎩⎨⎧-==.,8040b a所以快艇行驶过程的函数解析式为y =40x -80.(2)由图象可知,轮船在8小时内行驶了160千米,快艇在4小时内行驶了160千米,所以轮船的速度是208160=(千米/时),快艇的速度是404160=(千米/时). (3)设轮船出发x 小时快艇赶上轮船, 20x =40x -80 得x =4,x -2=2.答快艇出发了2小时赶上轮船.四、交流反思1.实际问题中数量之间的相互关系,用函数的思想去进行描述、研究其内在联系和变化规律;2.使学生体会到二元一次方程组的解是两条直线的交点坐标,能通过图象法来求二元一次方程组的解.五、检测反馈1.利用图象解下列方程组:(1)⎪⎩⎪⎨⎧+=--=.421,12x y x y (2)⎩⎨⎧-=+=-.5,22y x y x 2.已知直线y =2x +1和y =3x +b 的交点在第三象限,写出常数b 可能的两个数值. 3.学校准备去白云山春游.甲、乙两家旅行社原价都是每人60元,且都表示对学生优惠.甲旅行社表示:全部8折收费;乙旅行社表示:若人数不超过30人则按9折收费,超过30人按7折收费.(1)设学生人数为x ,甲、乙两旅行社实际收取总费用为y 1、y 2(元),试分别列出y 1、y 2与x 的函数关系式(y 2应分别就人数是否超过30两种情况列出); (2)讨论应选择哪家旅行社较优惠;(3)试在同一直角坐标系内画出(1)题两个函数的图象,并根据图象解释题(2)题讨论的结果.4.药品研究所开发一种抗菌新药.经多年动物实验,首次用于临床人体试验.测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如下图.请你根据图象:(1)说出服药后多少时间血液中药物浓度最高?(2)分别求出血液中药物浓度上升和下降阶段y 与x 的函数关系式.实践与探索(2)知识技能目标1.使学生理解并掌握一次函数与一元一次方程、一元一次不等式的相互联系;2.使学生能初步运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.过程性目标1.使学生体会到一次函数与一元一次方程、一元一次不等式的相互联系;2.使学生感受到“数形结合”在数学研究和探究现实生活数量关系及其变化规律中的作用.3.能运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.教学过程一、创设情境问题画出函数y =323x 的图象,根据图象,指出:(1) x 取什么值时,函数值y 等于零? (2)x 取什么值时,函数值y 始终大于零?二、探究归纳问一元一次方程323+x =0的解与函数y =323+x 的图象有什么关系?答一元一次方程323+x =0的解就是函数y =323+x 的图象上当y =0时的x 的值.问一元一次方程323+x =0的解,不等式323+x >0的解集与函数y =323+x 的图象有什么关系?答不等式323+x >0的解集就是直线y =323+x 在x 轴上方部分的x 的取值X 围.三、实践应用例1 画出函数y =-x -2的图象,根据图象,指出: (1) x 取什么值时,函数值y 等于零? (2)x 取什么值时,函数值y 始终大于零? 解过(-2,0),(0,-2)作直线,如图.(1)当x =-2时,y =0; (2)当x <-2时,y >0.例2 利用图象解不等式(1)2x -5>-x +1,(2) 2x -5<-x +1.解设y 1=2x -5,y 2=-x +1,在直角坐标系中画出这两条直线,如下图所示.两条直线的交点坐标是(2, -1) ,由图可知:(1)2x-5>-x+1的解集是y1>y2时x的取值X围,为x>-2;(2)2x-5<-x+1的解集是y1<y2时x的取值X围,为x<-2.四、交流反思运用函数的图象来解释一元一次方程、一元一次不等式的解集,并能通过函数图象来回答一元一次方程、一元一次不等式的解集.五、检测反馈1.已知函数y=4x-3.当x取何值时,函数的图象在第四象限?2.画出函数y=3x-6的图象,根据图象,指出:(1) x取什么值时,函数值y等于零?(2)x取什么值时,函数值y大于零?(3)x取什么值时,函数值y小于零?3.画出函数y=-x-1的图象,根据图象,求:(1)函数图象与x轴的交点坐标;(2)函数图象在x轴上方时,x的取值X围;(3)函数图象在x轴下方时,x的取值X围.4.如图,一次函数y =kx +b 的图象与反比例函数xmy的图象交于A 、B 两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值X 围.实践与探索(3)知识技能目标1.通过对一次函数性质、一次函数与一次方程、一次不等式联系的探索,提高自主学习和对知识综合应用的能力.2.让学生用简单的已知函数来拟合实际问题中变量的函数关系.过程性目标1.让学生在探索过程中,体会“问题情境—建立模型—解释应用—回顾拓展”这一数学建模的基本思想,感受函数知识的应用价值;2.让学生结合自身的生活经历,模仿尝试解决一些身边的函数应用问题.教学过程一、创设情境问题为了研究某合金材料的体积V(cm3)随温度t(℃)变化的规律,对一个用这种合金制成的圆球测得相关数据如下:能否据此求出V和t的函数关系?将这些数值所对应的点在坐标系中作出.我们发现,这些点大致位于一条直线上,可知V和t近似地符合一次函数关系.我们可以用一条直线去尽可能地与这些点相符合,求出近似的函数关系式.如下图所示的就是一条这样的直线,较近似的点应该是(10,1000.3)和(60,1002.3).设V=kt+b(k≠0),把(10,1000.3)和(60,1002.3)代入,可得k=,b=.V=t+.你也可以将直线稍稍挪动一下,不取这两点,换上更适当的两点.二、探究归纳我们曾采用待定系数法求得一次函数和反比例函数的关系式.但是现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究.三、实践应用例1 为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身长调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1)小明经过对数据探究,发现:桌高y 是凳高x 的一次函数,请你求出这个一次函数的关系式(不要求写出x 的取值X 围);(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为cm ,请你判断它们是否配套?说明理由.解(1)设一次函数为y =kx +b (k ≠0),将表中数据任取两组,不妨取,70.0)和,78.0)代入,得 ⎩⎨⎧+=+=.4278,3770b k b k 解得⎩⎨⎧==.8.10,6.1b k 一次函数关系式是y =x +.(2)当x =时,y =×+=≠77.答一次函数关系式是y =x +,小明家里的写字台和凳子不配套.例2 某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回.已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (元)与所买的水果量x (千克)之间的函数关系式,并写出自变量x 的取值X 围.(2)当购买量在什么X 围时,选择哪种购买方案付款最少?并说明理由.解 (1))3000(9≥x x y =甲;)3000(50008≥+=x x y 乙.(2)当乙甲=y y ,即9x =8x +5000时,解得x =5000.所以当x =5000时,两种付款一样;⎩⎨⎧+<≥<.500089,3000x x x y y 时,有当乙甲 解得3000≤x <5000.所以当3000≤x <5000时,选择甲方案付款最少;500089+>>x x y y 时,有当乙甲.解得x >5000.所以当x >5000时,选择乙方案付款最少.四、交流反思1.现实生活中的数量关系是错综复杂的,在实践中得到一些变量的对应值,有时很难精确地判断它们是什么函数,需要我们根据经验分析,也需要进行近似计算和修正,建立比较接近的函数关系式进行研究;2.把实际问题数学化,运用数学的方法进行分析和研究,是常用的、有效的一种方法.五、检测反馈1.酒精的体积随温度的升高而增大,在一定X 围内近似于一次函数关系.现测得一定量的酒精在0℃时的体积是升,在40℃时的体积是升.求出其函数关系式,又问这些酒精在10℃和30℃时的体积各是多少?2.分别写出下列函数的关系式,指出是哪种函数,并确定其中自变量的取值X 围.(1)在时速为60km 的运动中,路程 s 关于运动时间t 的函数关系式;(2)某校要在校园中辟出一块面积为84m 2的长方形土地做花圃,这个花圃的长y (m)关于宽x (m)的函数关系式;(3)已知定活两便储蓄的月利率是0.0675%,国家规定,取款时,利息部分要交纳20%的利息税,如果某人存入2万元,取款时实际领到的金额y (元)与存入月数x 的函数关系式.3.如图,温度计上表示了摄氏温度(℃)与华氏温度(℉)的刻度.能否用一个函数关系式来表示摄氏温度y (℃)和华氏温度x (℉)的关系?如果气温是摄氏32度,那相当于华氏多少度?4.小亮家最近购买了一套住房.准备在装修时用木质地板铺设居室,用瓷砖铺设客厅.经市场调查得知:用这两种材料铺设地面的工钱不一样.小亮根据地面的面积,对铺设居室和客厅的费用(购买材料费和工钱)分别做了预算,通过列表,并用x (m 2)表示铺设地面的面积,用y (元)表示铺设费用,制成下图.请你根据图中所提供的信息,解答下列问题:(1)预算中铺设居室的费用为元/ m 2,铺设客厅的费用为元/ m 2;(2)表示铺设居室的费用y (元)与面积x (m 2)之间的函数关系式为,表示铺设客厅的费用y (元)与面积x (m 2)之间的函数关系式为;(3)已知在小亮的预算中,铺设1m 2的瓷砖比铺设1m 2的木质地板的工钱多5元;购买1m 2的瓷砖是购买1m 2的木质地板费用的43.那么铺设每平方米木质地板、瓷砖的工钱各是多少?购买每平方米的木质地板、瓷砖的费用各是多少?。

17.5 实践与探索 华东师大版数学八年级下册同步练习(含解析)

17.5 实践与探索 华东师大版数学八年级下册同步练习(含解析)

17.5实践与探索基础过关全练知识点1一次函数与一元一次方程的关系1.如图,一次函数y=kx+b与x轴的交点为P(-2,0),则关于x的一元一次方程kx+b=0的解为()A.x=-2B.x=2C.x=3D.x=-12.(2021北京五中期中)在平面直角坐标系xOy中,函数y=kx和y=-x+b 的图象如图所示,则关于x的方程kx=-x+b的解为.3.如图,根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=-3的解.知识点2一次函数与一元一次不等式(组)的关系4.(2022山东济南长清期中)如图,若一次函数y=-2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式-2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<35.(2022吉林长春汽开区月考)直线l1:y=k1x+b与直线l2:y=k2x在同一平面直角坐标系中如图所示,则关于x的不等式k1x+b<k2x的解集为()A.x<-1B.x>-1C.x<-2D.x>-26.(2021湖南娄底中考)如图,直线y=x+b和y=kx+4与x轴分别相交于点A(-4,0),点B(2,0),则{x+b>0,kx+4>0的解集为()A.-4<x<2B.x<-4C.x>2D.x<-4或x>27.(2022北京房山期中)如图,已知正比例函数y1=ax与一次函数x+b的图象交于点P.下面结论正确的是() y2=-12A.b<0B.当x>0时,y1<0C.当x<2时,y1<y2D.当x>2时,y1<y28.(2022江苏扬州中考)如图,函数y=kx+b(k<0)的图象经过点P,则关于x 的不等式kx+b>3的解集为.9.【新独家原创】如图,直线y=kx+b(k≠0)与直线y=-x-1交于点A(m,1),2则关于x的不等式kx+b>-x-1>0的解集是.210.(2022福建宁德福安期中)已知一次函数y=kx+b(k,b为常数,且k≠0),x与y的部分对应值如下表所示:那么关于x的不等式kx+b<0的解集是.11.已知一次函数y=-2x+4,完成下面的问题.(1)在如图所示的直角坐标系中画出此函数的图象;(2)根据函数图象回答:方程-2x+4=0的解是;当x时,y>2;当-4≤y≤0时,对应x的取值范围是.(k≠0)与正比例函数12.(2022湖南岳阳中考)如图,反比例函数y=kxy=mx(m≠0)的图象交于点A(-1,2)和点B,点C是点A关于y轴的对称点,连结AC,BC.(1)求该反比例函数的解析式;(2)求△ABC的面积;(3)请结合函数图象,直接写出不等式k<mx的解集.x知识点3 一次函数与二元一次方程(组)的关系13.【数形结合思想】(2022福建泉州外国语学校月考)如图所示,如果一次函数y =k 1x +b 1的图象l 1与y =k 2x +b 2的图象l 2相交于点P ,那么方程组{y =k 1x +b 1,y =k 2x +b 2的解是 ( )A.{x =3y =−1B.{x =−1y =3C.{x =−1y =−3D.{x =1y =314.(2022湖南衡阳弘扬中学期中)若一次函数y =32x +m 与y =-12x +3的图象的交点在第一象限,则m 的取值范围是 ( )A.-9<m <3B.0<m <3C.m <0或m >3D.m <-9或m >315.用图象法解某二元一次方程组时,在同一平面直角坐标系中作出相应的两个一次函数图象,如图,则所解的二元一次方程组为( )A.{y =−x +2y =2x −1 B.{y =2x −1y =32x −12C.{y =2x −1y =−32x +52D.{y =−x +2,y =32x −1216.若方程组{2x +y =b,x −y =a 的解是{x =−1,y =3,则直线y =-2x +b 与直线y =x -a的交点坐标是 .17.【新独家原创】直线y =2x -5与直线y =-x +1交于点A (a ,b ),则a -2+b 0= .18.(2022四川凉山州会东参鱼中学期中)已知:如图,一次函数y 1=-x -2与y 2=x -4的图象相交于点A. (1)求点A 的坐标;(2)一次函数y 1=-x -2与y 2=x -4的图象与x 轴分别相交于点B 、C ,求△ABC 的面积;(3)结合图象,直接写出y 1≥y 2时x 的取值范围.知识点4函数的实际应用19.【跨学科·化学】【教材变式·P64T6变式】药品研究所开发一种抗菌素新药,经过多年的动物实验后,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药后时间x(h)之间的函数关系如图所示,则当1≤x≤6时,y的取值范围是.20.【跨学科·物理】(2022湖南郴州中考)科技小组为了验证某电路的电压U(V),电流I(A),电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55(Ω)时,电流I=(A).21.(2022河南南阳镇平期中)某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为x(x为正整数).(1)根据题意,填写下表:(2)若小明计划今年夏季游泳的总费用为270元,他选择哪种付费方式,游泳的次数比较多?(3)设方式一的总费用与方式二的总费用的差为y元.①求y与x之间的函数关系式;②小明选择哪种方式比较合算?22.(2022福建泉州安溪期中)某茶叶店计划购进甲、乙两种茶叶共500千克进行销售,进价和售价如下表所示:已知用4 000元购进甲种茶叶的数量与用6 000元购进乙种茶叶的数量相同.(1)求n的值;(2)试写出总利润y(元)与购进甲种茶叶的数量x(千克)之间的函数关系式;(3)在销售过程中发现乙种茶叶滞销,茶叶店决定每千克降价a元,若甲种茶叶的售价不变,且无论乙种茶叶购进多少千克,销售完这500千克茶叶所获利润相同,求a的值.能力提升全练23.(2022湖北荆州中考,6,)下图是同一直角坐标系中函数y1=2x和y2=2x 的图象.观察图象可得不等式2x>2x的解集为()A.-1<x<1B.x<-1或x>1C.x<-1或0<x<1D.-1<x<0或x>124.(2022吉林长春东北师大附中月考,3,)如图,直线y=kx+b(k≠0)与x 轴交于点(-5,0),下列说法正确的是()A.k>0,b<0B.直线上有两点(x1,y1),(x2,y2),若x1<x2,则y1>y2C.直线经过第四象限D.关于x的方程kx+b=0的解为x=-525.【一题多解】(2022江苏泰州中考,12,)一次函数y=ax+2的图象经过点(1,0).当y>0时,x的取值范围是.26.【主题教育·社会主义先进文化】(2022四川成都中考,24,)随着“公园城市”建设的不断推进,成都绕城绿道化身成为这座城市的一个超大型“体育场”,绿道骑行成为市民的一种低碳生活新风尚.甲、乙两人相约同时从绿道某地出发同向骑行,甲骑行的速度是18 km/h,乙骑行的路程s(km)与骑行的时间t(h)之间的关系如图所示.(1)直接写出当0≤t≤0.2和t>0.2时,s与t之间的函数表达式;(2)何时乙骑行在甲的前面?27.(2022四川自贡中考,23,)如图,在平面直角坐标系中,一次函数的图象相交于A(-1,2),B(m,-1)两点.y=kx+b的图象与反比例函数y=nx(1)求反比例函数和一次函数的解析式;(2)过点B作直线l∥y轴,过点A作AD⊥l于点D,点C是直线l上一动点,若DC=2DA,求点C的坐标.28.【转化思想】(2022福建泉州科技中学期中,23,)如图,已知一次函数y=kx+b与反比例函数y=m交于A(-1,2),B(2,n),与y轴交于C点.x的解集;(1)直接写出不等式kx+b<mx(2)求反比例函数和一次函数的解析式;(3)如图,将y=kx+b向下平移t(t>0)个单位长度,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=6,求t的值.素养探究全练29.【模型观念】(2022河南洛阳嵩县期中)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的图象并探究该函数的过程.结合已有的学习经验,请画出函数y=2x2+1的性质.(1)绘制函数图象.①列表:下表是x与y的几组对应值,其中a=;②描点:根据表中的数值在图中描点(x,y),请补充描出点(0,a);③连线:用平滑的曲线顺次连结各点,请画出函数图象.(2)探究函数性质.的两条性质:①;请写出函数y=2x2+1②.(3)运用函数图象及性质.≥1的解集是.根据函数图象,写出不等式2x2+1答案全解全析基础过关全练1.A 方程kx +b =0的解即为函数y =kx +b 的图象与x 轴交点的横坐标,∴方程kx +b =0的解是x =-2,故选A .2.答案 x =1解析 ∵函数y =kx 和y =-x +b 的图象交于点(1,2),∴关于x 的方程kx =-x +b 的解为x =1.3.解析 (1)当x =2时,y =0,所以方程kx +b =0的解为x =2. (2)当x =1时,y =-1,所以代数式k +b 的值为-1. (3)当x =-1时,y =-3,所以方程kx +b =-3的解为x =-1.4.B ∵一次函数y =-2x +b 的图象与y 轴交于点A (0,3),∴b =3, ∴一次函数的解析式为y =-2x +3, 解不等式-2x +3>0,得x <32.5.B 由题图知,两函数图象的交点坐标是(-1,-2),当x >-1时,直线l 2在直线l 1的上方,故关于x 的不等式k 1x +b <k 2x 的解集为x >-1.故选B.6.A ∵当x >-4时,y =x +b >0,当x <2时,y =kx +4>0, ∴{x +b >0,kx +4>0的解集为-4<x <2.故选A. 7.C 由图象可知,b >0,故A 错误;当x >0时,y 1>0,故B 错误;当x <2时,y 1<y 2,故C 正确;当x >2时,y 1>y 2,故D 错误.故选C. 8.答案 x <-1解析 由题图可知当x <-1时,y >3,即kx +b >3,所以不等式kx +b >3的解集为x <-1.9.答案 -32<x <-12解析 将点A (m ,1)代入y =-x -12得m =-32,∴点A 的坐标为(−32,1).y =-x -12中,令y =0,则-x -12=0,解得x =-12,∴直线y =-x -12与x 轴的交点坐标为(−12,0),∴关于x 的不等式kx +b >-x -12>0的解集为-32<x <-12. 10.答案 x >1解析 观察表格可知,函数值y 随x 的增大而减小,且当x =1时y =0,故关于x 的不等式kx +b <0的解集为x >1. 11.解析 (1)如图.(2)由图象可得当x =2时,y =0,所以方程-2x +4=0的解是x =2.由图象可得当x <1时,y >2.由图象可得当-4≤y ≤0时,2≤x ≤4.12.解析 (1)把A (-1,2)代入反比例函数y =kx,得2=k−1,∴k =-2,∴反比例函数的解析式为y =-2x.(2)易知点B 的坐标为(1,-2). ∵点A (-1,2)与点C 关于y 轴对称, ∴点C 的坐标为(1,2).由点A ,B ,C 的坐标可知AC ∥x 轴,BC ∥y 轴, ∴AC ⊥BC ,∴S △ABC =12AC ·BC =12×2×4=4.(3)由图象可知,不等式kx<mx 的解集为x <-1或0<x <1.13.B ∵两函数图象的交点坐标是(-1,3),∴方程组的解为{x =−1,y =3.故选B.14.A 由题意可得{y =32x +m,y =−12x +3,解得{x =−12m +32,y =14m +94,∵交点在第一象限,∴{−12m +32>0,14m +94>0,解得-9<m <3,故选A.15.A 设过点(1,1)和(0,-1)的直线的解析式为y =kx +b (k ≠0),则{k +b =1,b =−1,解得{k =2,b =−1,所以过点(1,1)和(0,-1)的直线的解析式为y =2x -1.设过点(1,1)和(0,2)的直线的解析式为y =mx +n (m ≠0),则{m +n =1,n =2,解得{m =−1,n =2,所以过点(1,1)和(0,2)的直线的解析式为y =-x +2,所以所解的二元一次方程组为{y =−x +2,y =2x −1.故选A .16.答案 (-1,3)解析 两条直线的交点坐标为两条直线对应的函数解析式组成的二元一次方程组的解. 17.答案 54解析 联立{y =2x −5,y =−x +1,解得{x =2,y =−1,∴点A 的坐标为(2,-1),∴a =2,b =-1,∴a -2+b 0=2-2+(-1)0=14+1=54.18.解析 (1)解方程组{y =−x −2,y =x −4,得{x =1,y =−3,∴点A 的坐标为(1,-3). (2)当y 1=0时,-x -2=0,解得x =-2, ∴B (-2,0),当y 2=0时,x -4=0,解得x =4, ∴C (4,0), ∴CB =6,∴△ABC 的面积为12×6×3=9.(3)由图象可得y 1≥y 2时,x 的取值范围是x ≤1. 19.答案 83≤y ≤8解析 设当0≤x ≤3时,y 与x 之间的函数关系式为y =kx (k ≠0),把(3,8)代入,得8=3k ,解得k =83,∴当0≤x ≤3时,y 与x 之间的函数关系式为y =83x.设当3<x ≤14时,y 与x 之间的函数关系式为y =k'x +b (k'≠0), 易知(3,8)也满足此关系式,把(3,8),(14,0)代入,得{3k′+b =8,14k′+b =0,解得{k′=−811,b =11211,∴当3<x ≤14时,y 与x 之间的函数关系式为y =-811x +11211,当x =1时,y =83,当x =3时,y 有最大值,为8,当x =6时,y =-811×6+11211=6411,∴当1≤x ≤6时,y 的取值范围是83≤y ≤8.20.答案 4解析 将(100,2.2)代入I =UR ,得U =IR =100×2.2=220(V),∴I =220R,当R =55(Ω)时,I =220R=22055=4(A).21.解析 (1)填表如下:(2)方式一:100+5x =270,解得x =34. 方式二:9x =270,解得x =30. ∵34>30,∴选择方式一,游泳的次数比较多. (3)①由题意,得y =100+5x -9x =100-4x ,∴y 与x 之间的函数关系式为y =100-4x (x 为正整数). ②当y =0时,100-4x =0,解得x =25,∴当x =25时,选择方式一和方式二一样合算. 当y <0时,100-4x <0,解得x >25, ∴当x >25时,选择方式一较合算. 当y >0时,100-4x >0,解得x <25, ∴当0<x <25时,选择方式二较合算.综上,当x =25时,选择方式一和方式二一样合算; 当0<x <25时,选择方式二较合算; 当x >25时,选择方式一较合算. 22.解析 (1)依题意得4 000n=6 000n+40,解得n =80,经检验,n=80是原方程的解,且符合题意,故n的值为80.(2)∵n=80,∴n+40=120,即乙种茶叶的进价为120元/千克,依题意,得y=(120-80)x+(200-120)(500-x),即y=-40x+40 000.(3)设乙种茶叶购进m千克,总利润为w元,则甲种茶叶购进(500-m)千克,由题意得w=(120-80)(500-m)+(200-120-a)m=20 000-40m+80m-ma= (40-a)m+20 000,∵无论乙种茶叶购进多少千克,销售完这500千克茶叶所获利润相同,∴w的取值与m无关,∴40-a=0,∴a=40,即当a=40时,无论乙种茶叶购进多少千克,利润都不变.能力提升全练23.D由图象可知,函数y1=2x和y2=2x的图象分别在第一、三象限有一个交点,交点的横坐标分别为1,-1,∴当-1<x<0或x>1时,函数y1=2x的图象在y2=2x 图象的上方,即2x>2x,故选D.24.D由图象知,直线y=kx+b(k≠0)经过第一、二、三象限,∴k>0,b>0,故A错误;∵k>0,∴y随x的增大而增大,∵(x1,y1),(x2,y2)是直线y=kx+b上的两点,且x1<x2,∴y1<y2,故B错误; 直线y=kx+b经过第一、二、三象限,不经过第四象限,故C错误; ∵直线y=kx+b(k≠0)与x轴交于点(-5,0),∴当x=-5时,y=kx+b=0,∴关于x 的方程kx +b =0的解为x =-5,故D 正确.故选D. 25.答案 x <1解析 解法一:将(1,0)代入y =ax +2,得a +2=0,解得a =-2,∴一次函数的解析式为y =-2x +2, 画出函数图象如图:∴当y >0时,x <1.解法二:把(1,0)代入y =ax +2得a +2=0,∴a =-2,∴一次函数的解析式为y =-2x +2,当y >0时,-2x +2>0,∴x <1. 26.解析 (1)当0≤t ≤0.2时,s =15t ;当t >0.2时,s =20t -1. 详解:当0≤t ≤0.2时,设s 与t 之间的函数表达式为s =k 1t (k 1≠0), 将t =0.2,s =3代入得3=0.2k 1,∴k 1=15. ∴当0≤t ≤0.2时,s =15t.当t >0.2时,设s 与t 之间的函数表达式为s =k 2t +b (k 2≠0), 易知t =0.2,s =3也满足此表达式, 将t =0.2,s =3和t =0.5,s =9代入得, {3=0.2k 2+b,9=0.5k 2+b,解得{k 2=20,b =−1, ∴当t >0.2时,s =20t -1. (2)∵v 甲=18 km/h, ∴s 甲=18t. ∵18>15,∴当0≤t ≤0.2时,乙不可能在甲前面.当t >0.2时,v 乙>v 甲,若乙在甲前面,则s 乙>s 甲,∴20t -1>18t ,解得t >0.5.答:0.5小时后,乙骑行在甲的前面.27.解析 (1)把A (-1,2)代入y =n x , 得2=n −1,∴n =-2,∴反比例函数的解析式为y =-2x . 把B (m ,-1)代入y =-2x ,得-1=-2m , ∴m =2,∴B (2,-1).把A (-1,2),B (2,-1)代入y =kx +b ,得{−k +b =2,2k +b =−1,解得{k =−1,b =1,∴一次函数的解析式为y =-x +1.(2)易知D (2,2),AD =3,∵DC =2DA ,∴DC =6,∵点C 是直线l 上一点,∴点C 的坐标为(2,8)或(2,-4).28.解析 (1)由图象可得不等式kx +b <m x 的解集为-1<x <0或x >2. (2)∵A (-1,2)在反比例函数y =m x 的图象上, ∴m =(-1)×2=-2,∴反比例函数的解析式为y =-2x , ∵B (2,n )在反比例函数y =-2x 的图象上, ∴n =-1,即B (2,-1).把A (-1,2),B (2,-1)代入y =kx +b 中,得{−k +b =2,2k +b =−1,解得{k =−1,b =1,∴一次函数的解析式为y =-x +1.(3)如图,连结AF ,BF ,∵DF ∥AB ,∴S △ABF =S △ABD =6(同底等高的两个三角形的面积相等), ∵直线AB 的解析式为y =-x +1,∴C (0,1),∴将直线AB 向下平移t (t >0)个单位长度后的解析式为y =-x +1-t , ∴F (0,1-t ),∴CF =t ,∴S △ABF =S △ACF +S △BCF =12CF ×|x A |+12CF ×|x B |=12t ×(1+2)=6,∴t =4, 故t 的值为4.素养探究全练29.解析 (1)①2.②描点如图.③连线,画出函数图象如图.(2)①函数y=2的图象关于y轴对称.x2+1②函数y=2有最大值,最大值为2.(答案不唯一) x2+1≥1的解集是-1≤x≤1.(3)不等式2x2+1。

华师大版八下数学17.5实践与探索第2课时说课稿

华师大版八下数学17.5实践与探索第2课时说课稿

华师大版八下数学17.5实践与探索第2课时说课稿一. 教材分析华师大版八年级下册数学第17.5实践与探索第2课时,主要内容是进一步探究函数的性质。

通过本节课的学习,学生能够掌握函数的单调性、奇偶性等基本性质,并能够运用这些性质解决实际问题。

本节课的内容在教材中起到了承前启后的作用,为后续学习更高级的数学知识打下基础。

二. 学情分析在进入八年级下册之前,学生已经学习了函数的基本概念和简单的函数图像。

他们对函数有一定的认识,但还不够深入。

在学习本节课的过程中,学生需要通过实践活动和探索,进一步深化对函数性质的理解。

此外,学生还需要培养解决问题的能力和团队合作精神。

三. 说教学目标1.知识与技能目标:学生能够掌握函数的单调性、奇偶性等基本性质,并能够运用这些性质解决实际问题。

2.过程与方法目标:学生通过实践活动和探索,培养解决问题的能力和团队合作精神。

3.情感态度与价值观目标:学生对数学产生浓厚的兴趣,树立自信心,培养坚持不懈的品质。

四. 说教学重难点1.教学重点:函数的单调性、奇偶性等基本性质。

2.教学难点:如何运用函数的性质解决实际问题。

五. 说教学方法与手段本节课采用问题驱动的教学方法,通过引导学生提出问题、分析问题、解决问题,培养学生的思维能力和创新能力。

同时,利用多媒体手段,如动画、图片等,帮助学生直观地理解函数的性质。

六. 说教学过程1.导入:通过复习上节课的内容,引导学生回顾函数的基本概念和图像,为新课的学习做好铺垫。

2.自主学习:学生分组讨论,根据已有知识,探索函数的单调性和奇偶性。

3.合作交流:学生分享自己的探索成果,讨论并解决出现的疑问。

4.教师讲解:针对学生的探索结果,教师进行讲解和总结,明确函数的单调性和奇偶性的定义和性质。

5.实践应用:学生分组解决实际问题,运用函数的性质进行分析和计算。

6.总结反思:学生对自己在实践活动中的表现进行总结,反思自己在解决问题过程中的优点和不足。

八年级数学实践与探索2

八年级数学实践与探索2

电子游戏注册无需存款送体验金
[单选]外阴恶性黑色素瘤的叙述正确的是()A.由结合痣或复合痣发展B.仅发生于老年妇女C.常无明显自觉症状D.宜行外阴根治术E.手术范围应在病变处3~4cm处 [单选]港口与航道工程项目技术管理的重要内容之一是()。A.项目经营目标的确定B.保险种类的比选C.编制施工组织设计D.进度控制的实施 [单选,A2型题,A1/A2型题]不符合β-地中海贫血杂合子的是()A.&beta;-R链合成减少B.HbA减少C.HbA2减少D.HbF增高E.以上都不是 [单选,A2型题,A1/A2型题]男性雄激素的作用不包括()A.皮脂腺分泌多,有痤疮B.腋毛多C.阴毛呈菱形分布D.声音高调E.睾丸和阴茎的发育 [单选]力的作用点是指力在物体上的()。A.作用位置B.重心C.中心D.圆心 [单选,A2型题,A1/A2型题]升药的功效是()A.清热解毒B.杀虫止痒C.拔毒去腐D.敛疮生肌E.消肿散结 [单选,A1型题]患者平卧,患肢抬高70°~80°,持续60秒,若出现麻木、疼痛、苍白,说明()A.Pratt试验阳性B.Buerger试验阳性C.Trendelenburg试验阳性D.Penthes试验阳性E.腰交感神经阻滞试验阳性 [单选]可出现明显意识障碍的疾病是()。A.强迫症B.恐惧症C.疑病症D.癔病E.惊恐发作 [单选,A2型题,A1/A2型题]一颅脑外伤患者,可正确回答问题,可自动睁眼,右侧肢体偏瘫,刺痛可回缩,左侧肢体可随意运动。GCS评分为()。A.15分B.14分C.13分D.12分E.11分 [单选]电动机的多地控制,其线路上控制按钮的连接原则是()。A.启动按钮要并联B.停止按钮要并联C.启动按钮要串联D.都可以 [填空题]安全生产的“三同步”是指安全生产与经济建设、()、()、同步发展、同步实施。Байду номын сангаас[单选,A2型题,A1/A2型题]地高辛的半衰期为40.8h,在体内每天消除剩余量的()A.33.48%B.40.76%C.66.52%D.29.41%E.87.67% [单选]经复议机关复议,复议机关改变原具体行政行为的,()是被告。A.原机关和复议机关B.复议机关C.复议机关的上级机关D.原机关 [单选]雪情通告的标志是().A.NOTAMSB.SNOTAMC.SNOWTAM [单选]当我们每个月给工人发放工资时,货币执行的是()。A.交换媒介B.价值标准C.延期支付标准D.储藏手段 [单选]选择ERP软件产品时,以下哪种因素不在我们的考虑范围?()A.供应商的实力、信誉B.实施队伍、服务C.产品的已有客户群D.企业和产品的宣传 [问答题,简答题]如何检测土方路基的弯沉值? [填空题]仁果类果树有:()、()、()、()、()等 [单选]“原来喜欢的东西现在不喜欢了”体现了()。A.质量的经济性B.质量的时效性C.质量的广义性D.质量的相对性 [单选]一项病例对照研究,500名病例中有暴露史者400例,而500名对照中有暴露史者100例,其OR值为()A.1.25B.1.6C.16D.160E.无法计算 [单选]胃壁固有肌层声像图上回声为()。A.极高回声B.高回声C.中度回声D.低回声E.不确定 [单选]滨湖控制开发带的区域功能是?()A、强化生态功能,禁止开发建设B、构建生态屏障,严格控制开发C、集聚经济人口,高效集约开发。 [单选]处理放射治疗鼻出血时,下列哪项是错误的()A.病人取坐位或卧位,为稳定情绪可用镇静剂B.出血不多可用麻黄素滴鼻或填入棉花块C.出血较多者可做鼻腔、后鼻孔填塞D.难以控制的鼻出血可做颈外动脉结扎E.因放射治疗引起的鼻出血不必做合血准备,输液即可 [单选]县级土地承包主管部门在农村土地承包管理工作中的任务是()。A.设置权证、承包合同登记簿、纠纷调解登记簿、回访检查登记簿B.制定档案科学的检索方法C.妥善保管档案D.指导乡镇档案管理工作 [单选]充分利用原材料,做到物尽其用,这是职业道德中()的要求A、讲究公德B、发对浪费C、钻研业务D、尽职尽责 [单选]提到信用一般就会想到银行和贷款。长期以来我国的信用交易主要集中在()A.企业B.银行C.投资基金D.政府债券 [单选,A1型题]参与特异性抗细胞外病原体感染的主要免疫效应成分是()A.CTLB.Th1C.巨噬细胞D.IgE.NK细胞 [问答题,简答题]在什么情况下需要同时启动两台膨胀机,操作时应该注意什么? [单选]煤矿职工因行使安全生产权利而影响工作时,有关单位不得扣发其工资或给予处分,由此造成的停工、停产损失,应由()负责。A.该职工B.企业法人C.责任者D.工会 [单选]某一阶段的咨询任务是保证项目按设计和计划的进度、质量、投资预算顺利实施建设,最后达到预期的目标和要求,这一阶段是()。A.项目准备阶段B.项目运营阶段C.项目前期阶段D.项目实施阶段 [单选,A2型题,A1/A2型题]临床最常见周围性面瘫的类型是()。A.先天性B.感染性C.外伤性D.原发性E.医源性 [单选]不能载货的专用作业车车辆按()收费。A.行驶证上的总质量B.改为按总质量折半后吨位计量收费C.原核载质量D.计重收费 [填空题]1948年,美国数学家()发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。 [单选]湿疹急性期皮疹无糜烂渗液者外搽()A.硼酸软膏B.氧化锌油C.水杨酸软膏D.炉甘石洗剂E.氧化锌糊剂 [问答题,简答题]母亲节、父亲节分别是哪一天? [单选]双金属片是由两种()不同的金属片叠焊在一起构成的。A、温度B、质量C、体积膨胀系数D、线膨胀系数 [单选]保险合同的当事人是()。A.受益人与保险人B.投保人与被保险人C.投保人与保险人D.被保险人与保险人 [判断题]为了保证錾子具有良好的硬度,应对錾子进行热处理,即淬火。()A.正确B.错误 [多选]关于性病性淋巴肉芽肿描述正确的是()A.病原体为6、11、15血清型沙眼衣原体B.生殖器初疮主要表现为外生殖器小丘疹,疱疹,糜烂或溃疡C.常伴有发热、头痛、乏力等全身症状D.可并发无菌性脑膜炎、心包炎等并发症 [单选]携带进境的动物、动物产品和其他检疫物,经检验检疫不合格又无有效办法处理或经除害处理后不合格的,作限期退回或销毁处理,并由口岸检验检疫机构签发()。A.《携带物检疫处理证》B.《出人境人员携带物检疫处理证》C.《携带物留检/处理凭证》D.《出入境人员携带物留检/处理

八年级数学下册 17.5 实践与探索(第1课时)教案 (新版)华东师大版

八年级数学下册 17.5 实践与探索(第1课时)教案 (新版)华东师大版

实践与探索
一、学习目标确定的依据
1、课程标准
探索根据一次函数的图象求二元一次方程组的解,并能从图象上获取信息的能力。

利用数形结合解决实际问题
2、教材分析
本节课是初中数学华师大版八年级下册第17章函数及其图象第五大节:实践与探索问题1,是学生在掌握正比例函数和一次函数性质及图象的基础上,进一步利用函数解决实际问题。

教材通过实例提出问题,通过对问题的观察、分析综合应用函数及其图象解决实际问题。

为学生能够灵活利用函数及其图象解决综合性实际问题奠定基础。

3、中招考点
函数及其图象中的实践与探索是中招的常考题,多与其它几何综合性问题渗透在一起。

4、学情分析
实践与探索问题是学生在掌握函数的性质及图象的基础上进行学习的,学生已经对函数和函数图象有了初步的了解,因此学生对利用函数图象决问题会有较浓厚的兴趣。

二、学习目标
1、能根据一次函数的图象求二元一次方程组的解。

2、会从图象上获取信息,利用数形结合解决实际问题
三、评价任务
学生通过对例题的学习能正确利用数形结合解决实际问题。

四、教学过程
、对于y1=2x-1, y2=4x-2,下列说法:
①两直线平行;②两直线交y轴于同一点;
③两直线交于x轴于同一点;④方程2x-1 =0与
的解相同;⑤当x=1时,y1=y2=1. 其中。

新版华东师大版八年级数学下册《17.5实践与探索第2课时》教学设计

新版华东师大版八年级数学下册《17.5实践与探索第2课时》教学设计

新版华东师大版八年级数学下册《17.5实践与探索第2课时》教学设计一. 教材分析华东师大版八年级数学下册《17.5实践与探索第2课时》的主要内容是立体几何图形的性质和判定。

这部分内容是学生在学习了平面几何的基础上,进一步拓展到立体几何的学习,对于培养学生的空间想象能力和思维能力具有重要意义。

本节课的内容主要包括长方体的对角线、长方体的表面积和体积等性质,以及如何运用这些性质解决实际问题。

二. 学情分析学生在学习本节课之前,已经学习了平面几何的基本知识,对于图形的性质和判定有一定的了解。

但立体几何的学习对于学生来说是一个新的挑战,需要学生在空间中进行思考。

此外,学生对于实际问题的解决能力也有待提高。

三. 教学目标1.让学生掌握长方体的对角线、表面积和体积的性质。

2.培养学生运用立体几何知识解决实际问题的能力。

3.提高学生的空间想象能力和思维能力。

四. 教学重难点1.长方体的对角线、表面积和体积的性质。

2.如何运用立体几何知识解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探究;通过案例分析,让学生了解实际问题是如何转化为立体几何问题的;通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.PPT课件2.立体几何模型3.实际问题案例七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾平面几何的基本知识,如点、线、面的性质和判定。

然后引入立体几何的概念,让学生了解本节课将要学习的内容。

2.呈现(15分钟)利用PPT课件和立体几何模型,展示长方体的对角线、表面积和体积的性质。

让学生直观地了解长方体的结构特征,并引导学生进行观察和思考。

3.操练(20分钟)针对长方体的对角线、表面积和体积的性质,设计一系列练习题。

让学生通过计算和证明,加深对性质的理解和运用。

同时,引导学生将实际问题转化为立体几何问题,运用所学的知识解决。

4.巩固(10分钟)通过小组合作学习,让学生互相讨论和交流,巩固所学知识。

八年级数学实践与探索2

八年级数学实践与探索2
(2)根据图象写出一次函数的 值大于反比例函数的值的x 的取值范围.
《探究在线》P39—P40 基础练兵 13—17
解:过(-2,0),(0,-2)作直线,如图.
(1)当x=-2时,y=0; (2)当x<-2时,y>0.
实践运用
例2 利用图象解不等式: (1)2x-5>-x+1, (2) 2x-5<-x+1.
解:设y1=2x-5,y2=-x+1,
在直角坐标系中画出这两条直线,如图.
两条直线的交点坐标是(2, -1) ,可知: (1)2x--5>-x+1的解集是y1>y2时
x的取值范围,为x>-2; (2)2x-5<-x+1的解集是y1<y2时
x的取值范围,为x<-2.Fra bibliotek反馈练习
1.已知函数y=4x-3.当x取何值时,函数的 图象在第四象限?
2.画出函数y=3x-6的图象,根据图象,指出: (1) x取什么值时,函数值 y等于零? (2) x取什么值时,函数值 y大于零? (3) x取什么值时,函数值 y小于零?
教学课件网:/
木丛样的墨灰色飞烟,加速射向远方琳可奥基官员怒哮着音速般地跳出界外,狂速将细长的淡灰色怪石一样的脑袋复原,但元气已受损伤转壮扭公主:“哈哈!这位官家的技术空前温柔哦!相当 有迷信性呢!”琳可奥基官员:“哇咻!我要让你们知道什么是威猛派!什么是疯狂流!什么是野蛮科学风格!”壮扭公主:“哈哈!小老样,有什么创意都弄出来瞧瞧!”琳可奥基官员:“哇 咻!我让你享受一下『彩鸟骨怪船头宝典』的厉害!”琳可奥基官员突然搞了个,醉兽花生翻九千度外加鹤喝水管旋一百周半的招数,接着又演了一套,波体鱼摇腾空翻七百二十度外加飞转三周 的壮观招式!接着像天蓝色的悬角丛林兽一样猛啐了一声,突然玩了一个独腿狂跳的特技神功,身上眨眼间生出了九十只很像水桶一样的纯黑色脖子。紧接着颤动很大的牙齿一喊,露出一副秀丽 的神色,接着摇动结实的仿佛扫帚般的腿,像水蓝色的亿血牧场鳄般的一吼,寒酸的硕长的眉毛猛然伸长了九十倍,散射的土黄色水精一样的气味也顿时膨胀了九十倍……最后颤起仿佛扫帚般的 腿一摆,变态地从里面抖出一道神光,他抓住神光野性地一扭,一件黑森森、灰叽叽的咒符『彩鸟骨怪船头宝典』便显露出来,只见这个这件东西儿,一边抽动,一边发出“啾啾”的幽响……… …猛然间琳可奥基官员快速地念起念念有词的宇宙语,只见他轻飘的暗橙色细小棕绳一样的胡须中,猛然抖出四十道风车状的天网,随着琳可奥基官员的抖动,风车状的天网像球拍一样在额头上 独裁地弄出团团光甲……紧接着琳可奥基官员又连续使出五十五路玄雀田埂飞,只见他老态的舌头中,轻飘地喷出四十组旋舞着『金丝春神石板珠』的椰壳状的嘴唇,随着琳可奥基官员的旋动, 椰壳状的嘴唇像泡菜一样念动咒语:“金掌哔 嘟,水桶哔 嘟,金掌水桶哔 嘟……『彩鸟骨怪船头宝典』!大爷!大爷!大爷!”只见琳可奥基官员的身影射出一片葱绿色灵光,这时 裂土而出快速出现了四群厉声尖叫的紫玫瑰色光犀,似幻影一样直奔葱绿色金辉而来……,朝着壮扭公主大如飞盘的神力手掌狂劈过来!紧跟着琳可奥基官员也摇耍着咒符像弯弓般的怪影一样向 壮扭公主狂劈过来壮扭公主突然耍了一套,窜豹石板翻九千度外加犀哼撬棍旋一百周半的招数!接着又玩了一个,妖体马飞凌空翻七百二十度外加呆转九百周的震撼招式。接着像亮紫色的万喉戈 壁豹一样怒咒了一声,突然搞了个倒地蠕动的特技神功,身上瞬间生出了九十只活像烟斗般的深红色脚趾……紧接着扭动刚劲有力、无坚不摧的粗壮手指一吼,露出一副典雅的神色,接着晃动奇 如熨斗的手掌,像湖青
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
bwin是不是骗人
[单选]在消费者与保险公司之间基于保险合同内容发生争议后,对于合同争议的解决方式说法不正确的是()A.调解是指在合同管理机关或法院的参与下,通过说服协调,使双方自愿达成协议平息争端B.自行协商解决方式简便,有利于增进双方的进一步信任与合作,并且有助于合同的继续执行C [单选]采用同高并列式的催化裂化装置反应器压力与再生器压力相比()。A、相近B、高C、低D、无法确定 [多选]短暂性脑缺血发作,下列哪些方面是正确的()A.颈内动脉系或椎基底动脉系的神经症状及体征B.神经系统症状于24小时内完全消失C.脑膜刺激征阴性D.脑CT扫描正常E.脑脊液正常 [单选]在下列骨折中,属于运动系统慢性损伤的是()A.颈椎爆裂骨折B.第二跖骨干疲劳骨折C.儿童胫骨髁上伸直型骨折D.掌骨骨折E.骨盆骨折 [单选,A2型题,A1/A2型题]在观察软腭运动时,应嘱患者()。A.发"衣"声B.发"啊"声C.张口做吞咽动作D.伸舌E.上述都不是 [单选]厨房每小时换气次数为多少次使厨房保持良好的通风环境()A、30~50次B、50~80次C、60次D、40~60次 [多选]下列各项中,不应确认为营业外收入的有()。A.存货盘盈B.固定资产出租收入C.周定资产盘盈D.无法查明原因的现金溢余 [问答题,简答题]增加瓦斯嘴的操作? [单选]慢性支气管炎肺气肿的酶系统改变,下面哪一项是正确的()A.&alpha;抗胰蛋白酶减少B.磷酸二酯酶减少C.真性胆碱酯酶活性正常D.腺苷酸环化酶增多E.蛋白分解酶减少 [单选,A2型题,A1/A2型题]为了鉴别巨幼细胞贫血与红白血病,最好的染色方法是()ACP染色B.PAS染色C.&alpha;-NAE染色D.NAP染色E.POX染色 [单选,A1型题]在孕妇腹壁上听诊,与母体心率相一致的音响是()A.胎心音B.子宫杂音C.脐带杂音D.胎动音E.肠蠕动音 [单选]作为荧光抗体标记的荧光素必须具备的条件中,可以提高观察效果的是()A.必须具有化学上的活性基团能与蛋白稳定结合B.性质稳定不会影响抗体的活性C.荧光效率高,荧光与背景组织色泽对比鲜明D.与蛋白质结合的方法简便快速E.与蛋白质的结合物稳定 [单选,A2型题,A1/A2型题]下列肾功能监测的指标中,临床很少应用的是()A.肾小球滤过率(GFR)B.血尿素氮(BUN)C.血肌酐(Cr)D.肾血流量测定E.肾小管功能测定 [单选]下列对于性病性淋巴肉芽肿的诊断有意义,但除了()A.有不洁性交史或配偶感染史B.衣原体培养阳性C.男性龟头、包皮处可见小丘疹、疱疹,无自觉症状D.低丙种球蛋白血症 [单选]()是直接反映汽车设计速度利用程度的指标。A.营运速度B.最高速度C.技术速度D.平均车日行程 [单选,A1型题]急性有机磷杀虫药中毒,治疗时最理想的合用药是()A.呼吸兴奋剂合脱水剂B.脱水剂合肾上腺皮质激素C.肾上腺皮质激素合阿托品D.阿托品合胆碱酯酶复活剂E.胆碱酯酶复活剂合肾上腺皮质激素 [单选]刮片细胞学检查时,常用的固定液是()A.甲醛B.丙酮C.乙醇D.冰醋酸E.甲醇 [单选]《灵枢.百病始生》所言的“虚邪”是指()。A.正气虚弱B.致病性不强的邪气C.四时不正之气D.泛指一切致病因素E.情志失调 [单选,A1型题]下列哪项不是黄连的功效()A.清热B.安胎C.燥湿D.泻火E.解毒 [单选]胎儿肾脏最常见畸形是A.多囊肾B.肾脏缺如C.盆腔肾D.肾多发囊肿E.肾发育不良 [单选,B型题]属于前馈控制的是()A.急救物品完好率B.压疮发生率C.护理差错事故发生次数D.查对医嘱及时纠正E.基础护理合格率 [单选]提出目标管理的管理学家是()。A.巴纳德B.韦伯C.孔茨D.德鲁克E.泰勒 [单选,A2型题,A1/A2型题]终止心绞痛发作最有效的药物是()A.硝苯地平B.普萘洛尔C.阿司匹林D.硝酸甘油E.阿托品 [问答题,简答题]试说明异戊巴比妥的化学命名。 [单选,A1型题]动物出现肌肉震颤、四肢抽搐、角弓反张等病证,可归属的致病因素是()A.风邪B.湿邪C.寒邪D.暑邪E.燥邪 [单选]加氢气密性试验时应控制压力()。A、稍低于操作压力B、等于控制压力C、稍高于操作压力D、等于工厂公用工程部所提供的高压氮气压力 [单选]甲欠乙1万元,丙作为保证人为乙提供保证。后丁作为反担保人为丙提供了保证。后甲不能还债,丙又没有承担保证责任,则乙是否可以要求丁承担还款责任?()A.可以,因为丁担保的是甲与乙的主债权B.可以,因为丁担保的不是甲与乙的主债权C.不能,因为丁担保的是甲与乙的主债权 [单选,A1型题]对危急患者,医师应该采取的救治措施是()A.积极措施B.紧急措施C.适当措施D.最佳措施E.一切可能的措施 [单选,A2型题,A1/A2型题]病理反射中最常用、且易引出的是()。A.Oppenheim征Babinski征C.Gordon征D.Romberg征E.Chaddock征 [单选]外阴瘙痒最常见原因()A.滴虫阴道炎B.维生冠上三面相交所成的角称()A.线角B.点角C.面角D.嵴角E.夹角 [填空题]我省分别在()年、()年举办了两次全省农村党员干部现代远程教育学用典型评比活动,我市辰溪县欧国建、鹤城区彭先文、麻阳县傅锡和被评为“()”,芷江县王洪元、会同刘骁勇、溆浦县舒幸、辰溪县杨志明被评为“袁隆平科技致富能手”。 [单选]削痂主要用于()A.Ⅰ度烧伤B.浅Ⅱ度烧伤C.Ⅲ度烧伤D.深Ⅱ度烧伤E.轻度烧伤 [单选]“月落乌啼霜满天,江枫渔火对愁眠。”是一种()的写作手法。A.借物言志B.借景抒情C.对偶D.互文 [单选]关于水灰比对混凝土拌合物特性的影响,说法不正确的是()。A.水灰比越大,粘聚性越差B.水灰比越小,保水性越好C.水灰比过大会产生离析现象D.水灰比越大,坍落度越小 [填空题]涂装的作用包括()、()、()和()。 [单选,A2型题,A1/A2型题]一患者呼吸表现为有规律的呼吸几次后,突然停止一段时间,又开始呼吸,周而复始,这种呼吸节律称为()A.Cheyne-Stokes呼吸B.叹息样呼吸C.Kussmaul呼吸D.Blots呼吸E.抑制性呼吸 [单选]关于非孕期成人正常子宫,下列说法错误的是()。A.子宫长7~8cmB.子宫容积约50mLC.子宫体位于骨盆腔中央D.子宫颈与子宫体相连处称为峡部,长约1cmE.正常子宫呈前倾前屈位 [单选]哪种类型的网络攻击的特点是项要求用TCP连接到服务器泛红大量的数据包()。A.侦听B.拒绝服务C.暴力破解D.木马E.地址欺骗 [单选]乳疽的局部症状有()A.乳肿软绵B.乳坚硬木痛C.乳红肿热痛D.乳坚硬如石E.乳头溢液
相关文档
最新文档