皮肤的力学性能概述
生物软组织力学特性及超弹性模型
生物软组织力学特性及超弹性模型生物软齟织力学待性属于生物粘弹性固体力学的研究范峙,己广泛应用于生狗怵的基础研允.如机肉讥皮肤国' 心肌阿及布横阿等.为ia袒工程握供了大盘的生物力学数据.宙于生命体结构与功能的复杂性和特殊性.便软组织在变形时表现岀各向杲性、非线性*粘弹性,墜性等特点(珂・其力学模型主要有粘弹性模型利趙弹性摸型.粘弹件锁魁吧研朮生物轮组织的…个早期榄型*理论成筋,c广泛应用到肌罔、闸帯、柏顺、戌|庆、粘贬朋血倚竽轶殂织的生韌力学研咒」山同吋•诫翦地粘押件理论研兗为超禅性模型的发展幵拓了思齬・尽管软组织的力学行为表现出与时间相黄的特性•但崔好应变卒范鬧内(即准静态条件卜[・展魅可将其觇为超弹性体-自上个世紀80年代以来.各圜学者対生物软组织的翘艸峙和为进苗了广泛地研究・程理论利临氐研冗方而血取得了氏足地逬燧・本章首先介细主物软组织力学性能的研宛冇法和歆组织变形时的力学特征.在介绍趙弹性应变能函数王曲,肯龙从连续介质力学出狀.介貂有限变形理论「在这一部分渓及有限变形时的桶种应山/陶变表达方式;隹介绍粗弹性模型吋.就简单的荐向局性应变能碉毀开始・邃歩引入横向同性超弹性模塑・最后提出前卿録腺准静歩轴向力学件能研託方江口因为木文卞要研究家殒前制艘腺在低疵变率下的撞忡力学忤施・故未研JE材料的粘弹杵櫃型.2 1生物软组织力学特性研究方法生樹软组织不冏于常见的金属或高聚物尊材料.其组织结构貝朵.力学ttttfiffi 处环境和实验方註的雖响较大,研覽具力学性醴的硏究方法構像篇考虫鞠理学与工凰学冇面的知HI.生物力学研眾方法主要包含以下儿个主要步悄问:(1)研眾宦砌須纵的i松在学和细观组织结构.以便于理W0FS对镇的几何构翹及对力学性能的滋响.(2)测定问趣屮涉及的M料或组织的力学性葩°在该却需屮・III/试样欣材不便、fj效试禅尺• f不足威试佯的离体狀态,塔加了确宦本构方程的难度,但可以枚为春晶的建立示构方用的粽学厢式,而把某此嚳筛鬲待牛.网实验卿俯定"(3)粮抿物理学基本定律和材科本构方程,推导岀微分方程或积分方程:⑷井清组织嶠肓府工作坏境.得到肖盘义的边界荼件;同时.粥解析圧或坡值法求解边界値何邂*⑸进存生理丈验.验证上述边界値问遞的解.在该步購中,釦必便实验与靂论相一魏・简華地说就绘幣戒拒同的假说;(6)将实验结果与相应的理论解进行对比.验证假设是否合理.求得本构方程:(7)探讨理论与丈验的实际应用。
生物医用材料:人工皮肤研究综述
生物医用材料:人工皮肤研究综述摘要:近些年来,运用组织工程来钻研人工皮肤是皮肤缺损修复临床医学研究中的主要课题,目前为止组织工程人工皮肤支架材料主要有两大类:一类是天然高分子材料,另一类是人工合成高分子材料。
但从结构和功能分,组织工程人工皮肤主要有表皮替代物、真皮替代物以及含有表皮和真皮双层结构的皮肤替代物。
本文从人工皮肤的概况、原料、现有缺陷进行了综述,并且分析、总结了人工皮肤研究现状、原料的选择问题以及一些问题的解决的方向。
关键词:生物医用材料人工皮肤组织工程学引言皮肤是人体面积最大的器官,是机体免于脱水、损伤、感染的第一道防线。
当创伤、Ⅲ度烧伤、大面积瘢痕切除造成皮肤严重缺损时,机体不能保持正常的自稳状态,极易引起系列并发症甚至导致死亡。
人工皮肤是目前为止最良好的替代皮肤的材料,人工皮肤是用生物材料或合成材料加工制造的薄膜样或海绵状的人体皮肤代用品,用以暂时或永久性覆盖烧伤或创伤创面。
人工皮肤在国外的研究相比较国内多些,一些人工皮肤研究成果已形成产品应用在临床上。
第一章人工皮肤的研究现状人工皮肤是目前为止在临床应用方面最为成功的组织工程材料,也是组织工程中首个面市产品。
目前,已经面世的产品有Biobrane一TM、eDmragraft一TC和Apligraft一TM等,且已在烧伤、大面积瘢痕切除造成皮肤严重缺损等疾病的医治方面都取得不错的成果。
研究开发性能符合真正皮肤的人工皮肤的人现在越来越多,越来越新的人工皮肤类的产品正在不断出现在市场上。
目前可用于组织工程化皮肤的天然高分子材料有:脱细胞真皮基质;天然蛋白类高分子材料,如胶原蛋白、明胶、丝素蛋白等;天然多糖类高分子材料,如纤维素、甲壳质、壳聚糖、糖胺聚糖(如硫酸软骨素、透明质酸、肝素等)、海藻酸盐等;生物合成聚酯,如聚羟基丁酸酯(polyhydroxybutyrate,PHB)等。
但是部分天然高分子材料大规模提取比较困难,价格较高,产品批次有差异,性质难以统一,大多天然高分子材料的力学性能难以符合操作要求,部分天然高分子材料降解速率不容易被控制等。
皮肤生理知识
皮肤生理知识皮肤是人体最大的器官之一,具有多种重要的生理功能。
它不仅起到保护内部器官的作用,还参与体温调节、感觉传导和免疫防御等重要功能。
本文将以人类的视角,详细介绍皮肤的生理知识。
皮肤的主要组成部分包括表皮、真皮和皮下组织。
表皮是最外层的一层,由多层角质化的上皮细胞构成。
它起到了防止外界物质和微生物侵入的作用。
表皮中还含有黑色素细胞,它们产生黑色素来赋予我们的皮肤颜色。
真皮位于表皮下方,由结缔组织和弹性纤维构成。
真皮中含有毛囊、汗腺和神经末梢等结构,它们与皮肤的感觉和调节有关。
皮下组织位于真皮下方,主要由脂肪组织构成,起到保护和绝缘的作用。
皮肤的一个重要功能是调节体温。
当我们体温升高时,汗腺会分泌汗液,通过蒸发来散发热量,从而降低体温。
另外,皮肤中的血管可以调节血液的流动,通过扩张或收缩来调节体温。
当环境温度较低时,血管会收缩,减少热量散失;而当环境温度较高时,血管会扩张,增加热量散失。
感觉传导也是皮肤的重要功能之一。
皮肤中的神经末梢能够感知各种刺激,如触觉、痛觉和温度等。
这些感觉信息会通过神经传递到大脑,使我们能够感知和反应外界刺激。
例如,当我们触碰到热物体时,神经末梢会立即传递热觉信息到大脑,引发我们的回避反应。
皮肤还具有免疫防御的功能。
它作为我们与外界环境的第一道屏障,能够抵御细菌、病毒和其他有害物质的侵入。
表皮细胞的角质化过程使得皮肤表面形成一层保护膜,防止微生物进入体内。
同时,皮肤中的免疫细胞也能够识别和消灭入侵的病原体,保护我们的身体免受感染。
总结起来,皮肤是一个复杂而重要的器官,具有保护、调节体温、感觉传导和免疫防御等多种生理功能。
通过深入了解皮肤的生理知识,我们能够更好地保护和维护我们的皮肤健康。
只有保持良好的生活习惯和皮肤护理,才能使我们的皮肤保持光滑、健康和年轻。
皮肤组织的热力学行为表征:Ⅰ. 拉压行为
皮肤组织的热力学行为表征:Ⅰ. 拉压行为(作者:___________单位: ___________邮编: ___________)【摘要】目的重点研究在不同温度下猪皮肤组织的拉压行为,探讨温度和真皮层胶原质热变性对皮肤组织力学性质的影响。
方法实验采用新鲜猪皮,在特殊设计的温控制拉伸系统和压缩系统条件下观察猪皮肤在不同温度下的拉压行为。
结果在拉伸实验中,皮肤的刚度随着温度的升高而降低,而在压缩实验中则相反。
结论温度对皮肤组织的拉伸和压缩行为都有影响:拉伸性质的变化主要是由于随着温度的升高皮肤胶原蛋白的热变性所引起,而压缩性质的变化则有可能是由于在热变性的影响下水合的变化所引起。
【关键词】皮肤组织变性热力学行为拉伸行为压缩行为ABSTRACT: Objective This paper aims to characterize the tensile and compressive behaviors of skin tissue under different temperatures and to study the effect of temperature and corresponding dermal collagen denaturation on the mechanical properties of skin tissue. Methods The uniaxial tensile and compressive tests of fresh pig ear skin underdifferent temperatures have been performed by using two specifically designed hydrothermal experimental systems. Results In tensile tests, the skin stiffness decreases with increased temperature, while a contrary trend is observed in compressive tests. Conclusion The results show that temperature has a great influence on both tensile and compressive properties of skin tissue, but the mechanisms are different. The variation of skin tensile properties is caused by the thermal denaturation of skin collagen with increased temperature, while the variation of skin compressive behavior of skin tissue may be due to the hydration change with thermal denaturation.KEY WORDS: skin tissue; thermal denaturation; thermomechanical behavior; tensile behavior; compressive behavior皮肤覆盖于人体表面,约占人体重量的16%,容纳了人体约1/3的循环血液和约1/4的水份,具有多种重要的生理功能。
人体皮肤摩擦和弹性性能的试验研究
的研究了性别 试验部位 试验设备和护肤品对人体皮肤摩擦和弹性性能的影响 性别对皮 其保湿性能 不同试验部位皮肤的摩擦性能存在差异 硅油霜显著影响皮肤的摩擦性能 2 皮肤摩擦性能
的测试结果因试验设备不同而异
不同试验部位和不同试验设备之间差别不大 未见皮肤的弹性有显著变化 摩擦性能 弹性性能 硅油霜
在选定人群样本
从而产生了许多皮肤摩擦问题
许多生理功能的实现都依赖于其力学性能 提高生活质量具有重要的意义
而皮肤的弹性性能是皮肤力学性能的
人体皮肤摩擦和弹性性能的研究对于人们保持皮肤健康
国内外关于皮肤摩擦性能的研究主要是在传统的摩擦试验装置上进行 测试部位的局限性 为此 本文在研究中 适用 使用方便
这些试验装置大多只能针对人体上肢部位皮肤进行测试 国内外有关专用的皮肤摩擦试验装置的研究比较少 不但可以测试人体上肢部位皮肤的摩擦系数 该装置灵活小巧
图 2.4 FS-1 便携式皮肤摩擦试验装置 ..................................................................... 18 图 2.5 FS-1 便携式皮肤摩擦试验装置结构示意图 ................................................. 19 图 2.6 图 2.7 图 2.8 图 2.9 试验示意图 FS-1 ...................................................................................... 19 数据采集卡实物图 .......................................................................................... 20 数据采集的结构框图 ...................................................................................... 20 数据传输模块原理图 ...................................................................................... 21
皮肤科学资料
皮肤科学皮肤是人体最大的器官,承担着保护身体、调节体温、感知外界刺激等重要功能。
而皮肤科学则是研究皮肤结构、功能以及与疾病相关问题的学科领域。
通过对皮肤科学的了解,我们可以更好地保护和护理我们的皮肤,预防皮肤疾病的发生。
皮肤的结构皮肤是由三层组成的:表皮、真皮和皮下组织。
表皮是皮肤最外层的一层,主要由表皮细胞和角质细胞构成,起到保护体内器官的作用。
真皮在表皮下方,包含有血管、神经末梢、汗腺和毛发等组织,是皮肤最厚的一层。
皮下组织则主要是由脂肪组织构成,起到保护和储存能量的作用。
皮肤的功能皮肤具有多种重要的功能,其中包括:1.保护功能:作为身体最外层的屏障,皮肤可以防止外部细菌、病毒等有害物质进入体内,保护身体免受外界环境的侵害。
2.感知功能:皮肤含有大量神经末梢,可以感知外界的触摸、温度、疼痛等刺激,使我们能够及时感知到外界环境的变化。
3.调节体温:皮肤可以通过出汗、散热等方式帮助调节体温,保持身体的稳定状态。
4.分泌代谢:皮肤中的皮脂腺可以分泌皮脂,有助于保持皮肤的水分和滋润度,同时具有抗菌作用。
皮肤科学的重要性皮肤科学在医学和美容领域中具有重要的意义。
在医学方面,皮肤科学可以帮助医生诊断和治疗各种皮肤病,如湿疹、疱疹、皮肤癌等。
在美容领域,皮肤科学可以帮助人们了解如何正确保养皮肤,选择合适的护肤品,延缓皮肤衰老的过程。
皮肤科学的研究方向皮肤科学的研究方向非常广泛,包括皮肤生理学、皮肤病理学、皮肤药理学等多个方面。
皮肤科学的发展还涵盖了皮肤抗衰老、皮肤免疫学等新兴领域。
通过对皮肤科学的不断研究,我们可以更加全面地了解皮肤的结构和功能,从而更好地保护和护理我们的皮肤。
结语总而言之,皮肤科学是一门重要的学科,对于我们的健康和美容都具有重要的意义。
通过加强对皮肤科学的研究和了解,我们可以更好地保护和护理我们的皮肤,享受健康美丽的皮肤所带来的好处。
愿每个人都拥有健康、亮丽的皮肤!以上是关于皮肤科学的简要介绍,希望对您有所帮助。
软物质的相互作用与力学性能
软物质的相互作用与力学性能咱们在日常生活中,常常会接触到各种各样的软物质,像果冻、牙膏、胶水这些东西。
可您有没有想过,它们为啥会有那样独特的性质呢?这就得从软物质的相互作用和力学性能说起啦。
我记得有一次,我在家做手工,想用胶水把两块木板粘在一起。
我拿起胶水,挤了一些在木板的接口处,然后使劲儿把它们压在一起。
等了好一会儿,胶水干了,两块木板牢牢地粘在了一起。
这时候我就开始琢磨,这普普通通的胶水,怎么就能有这么大的“魔力”,能让两块木板紧紧相依呢?其实啊,软物质内部的相互作用可有着大学问。
就拿胶水来说,它里面的分子之间有着各种各样的吸引力和排斥力。
这些力相互作用,让胶水在液体状态下能够流动,容易涂抹,而一旦涂到物体表面,经过一段时间,分子之间的相互作用增强,胶水就会固化,实现黏合的作用。
再比如说,我们常吃的果冻。
果冻那 Q 弹的口感,也是因为软物质的特殊相互作用和力学性能。
果冻里面的大分子形成了一种网络结构,这种结构既能让果冻保持一定的形状,又能在受到外力挤压时发生变形,然后再恢复原状。
像洗发水、沐浴露这类东西,也是软物质的典型代表。
您在挤压瓶子的时候,它们很容易流出来,这是因为它们内部的分子相互作用相对较弱。
但是当您把它们涂抹在头发或者身体上,又能起到清洁和滋润的作用,这是因为它们能够与污垢或者皮肤表面发生特定的相互作用。
软物质的力学性能也是非常有趣的。
比如说,橡皮泥可以被我们随意地揉捏成各种形状,这是因为它在受力时能够发生很大的形变,而且这种形变是可逆的。
而像面团,在揉面的过程中,它的性质会逐渐改变,从一开始的松散变得有韧性,这也是因为其中的分子结构和相互作用在不断变化。
还有那柔软的橡胶,我们用它制作轮胎、橡皮等物品。
橡胶能够承受很大的拉力和压力,并且在力消失后能够恢复原状,这都要归功于它特殊的分子结构和相互作用。
在科学研究中,对于软物质的相互作用和力学性能的研究可是非常重要的。
科学家们通过各种先进的技术和实验方法,试图揭示软物质背后的奥秘。
面部皮肤结构基础知识
面部皮肤结构基础知识面部皮肤是身体最外层的组织,它起着保护内部器官、调节体温和感知外界刺激的重要作用。
了解面部皮肤的结构和功能对于保持皮肤健康和美观至关重要。
本文将介绍面部皮肤的基础知识,包括其组织结构、生物化学成分以及与身体其他系统的关联。
1. 面部皮肤的组织结构面部皮肤主要由三个层次组成:表皮、真皮和皮下组织。
•表皮:表皮是面部皮肤的最外层,由多层角质化细胞组成。
它起到防止水分流失、抵御外界环境刺激和提供屏障功能的作用。
表皮还含有黑色素细胞,负责产生黑色素以保护皮肤免受紫外线损伤。
•真皮:真皮位于表皮下方,由蛋白质纤维和胶原蛋白组成。
它为皮肤提供弹性和支撑力,并供给皮肤所需的养分和氧气。
真皮含有汗腺、毛囊、血管和神经末梢,这些结构对于保持皮肤的保湿、散热和感知外界刺激起着重要作用。
•皮下组织:皮下组织是面部皮肤的最底层,主要由脂肪组织组成。
这一层具有保护和保暖身体的功能,并为面部提供光滑的外观。
脂肪组织还可以储存能量,并在受伤时提供缓冲作用。
2. 面部皮肤的生物化学成分面部皮肤的生物化学成分包括水分、油脂和蛋白质。
•水分:面部皮肤中的水分含量对于维持皮肤的健康至关重要。
适当的水分可以保持皮肤的弹性和柔软性,并预防干燥和脱屑。
为了保持皮肤的水分平衡,我们需要定期摄入足够的水分,并使用保湿产品。
•油脂:面部皮肤产生的油脂有助于维持皮肤的水分和柔软性。
油脂还可以阻止水分流失,形成皮肤表面的保护层。
然而,过多的油脂会导致毛孔堵塞和皮肤问题的产生。
因此,对于油性皮肤的人来说,适当的清洁和控油是必不可少的。
•蛋白质:面部皮肤中的蛋白质是构成皮肤结构的基本组成元素。
蛋白质负责维持皮肤的弹性和支撑力,并参与修复受损组织。
适当的蛋白质摄入可以促进皮肤细胞的再生和修复。
3. 面部皮肤与其他系统的关联面部皮肤不仅仅是一个外部的保护层,它还与身体其他系统密切相关,包括神经系统、循环系统和免疫系统。
•神经系统:面部皮肤富含神经末梢,它们对于感知外界刺激和传递神经信号至大脑起着重要作用。
假人皮肤材料动态力学性能及本构模型研究
假人皮肤材料动态力学性能及本构模型研究假人皮肤材料常被用于替代真人皮肤服役于许多复杂环境,在这些服役过程中,不可避免会承受动态冲击载荷的作用,为使假人皮肤材料在受动态冲击载荷时能真实反映真人皮肤在同等受试条件下的力学响应,必须了解假人皮肤的动态力学性能,并建立精确的本构模型。
本文首先对假人皮肤材料进行了准静态加载下的试验研究,包括低应变率的单轴压缩试验、压缩松弛试验及压缩蠕变试验。
试验结果表明,假人皮肤材料具有明显的超弹性和粘弹性特性,且具有一定的应变率敏感性。
依据假人皮肤材料准静态加载下的力学特性,考察了常用超弹性模型和粘弹性模型对假人皮肤材料力学行为的表征效果,发现这些常用的超弹性模型和粘弹性模型能够较好地描述假人皮肤材料的力学行为,但各应变率下的模型参数各不相同,使得模型不具有一般性。
为此,本文发展了修正形式的ZWT模型及率相关的粘-超弹性模型,通过与试验结果对比发现,两种模型都能够较好地实现对假人皮肤材料低应变率下力学行为的描述。
针对假人皮肤材料的力学特性,基于霍普金森压杆(SHPB)试验原理,建立了一套适合测试其动态力学行为的SHPB试验平台。
试验获得了应变率为1510s<sup>-1</sup>、2260 s<sup>-1</sup>和3000 s<sup>-1</sup>时的应力应变曲线,由试验结果发现,假人皮肤材料高应变率下抵抗变形的能力明显高于低应变率下的抗变形能力,且存在着明显的非线性特性和应变率相关性。
为获得假人皮肤材料高应变率下的本构模型,采用ZWT模型和粘-超弹性模型对其力学行为进行表征。
其中,原始ZWT模型能够较为精确地描述假人皮肤材料高应变率加载下力学行为,但各应变率下所对应的模型参数各不相同,使得模型不具有一般性,需对其进行一定的修正。
在发展粘-超弹性模型时,采用了由松弛试验确定粘弹性部分松弛函数阶数的方法对其进行了构建。
真皮结构的分析与皮肤的生物力学特性
真皮结构的分析与皮肤的生物力学特性真皮是皮肤的中间层,位于表皮下方,由不同类型的组织和结构组成。
了解真皮的结构和生物力学特性对于了解皮肤的功能以及相关疾病的发生和治疗具有重要意义。
本文将详细介绍真皮的结构和生物力学特性。
真皮的结构可以分为两个主要层次:上皮下真皮和真皮下真皮。
上皮下真皮是真皮下方与表皮直接相连的一层。
这一层主要由胶原蛋白纤维和弹力纤维组成,它们赋予皮肤强度、韧性和弹性。
胶原蛋白纤维是真皮中最丰富的成分,它们呈束状排列,与纵向张力相互作用,使皮肤具有良好的耐拉性。
弹力纤维则负责皮肤的弹性,使皮肤能够回复到其初始状态。
在上皮下真皮下方是真皮下真皮层,这一层主要由胶原蛋白束、弹力纤维束和基质组成。
胶原蛋白束和弹力纤维束支撑真皮的结构,并为皮肤提供扩展和收缩的能力。
基质是一种凝胶样物质,是胶原蛋白和弹力纤维的储存区域,还含有水分子、细胞和各种生物活性分子。
基质在维持真皮结构的同时,也提供一些重要的生物物理性能,如抗压力、吸水性和保湿性。
真皮的生物力学特性是指皮肤组织在受力时所表现出来的力学性能。
皮肤的生物力学特性受到真皮的结构和成分的影响。
由于胶原蛋白纤维的存在,皮肤具有很强的耐拉性和抗压性,可以承受外界的刺激和压力。
此外,真皮中的弹力纤维赋予了皮肤良好的弹性,使其能够回复到原来的形状。
除了上述的力学特性,真皮还具有其他生物学特性。
例如,真皮中的基质和水分子提供了皮肤的保湿性和吸水性。
这些特性保持皮肤的水分平衡,防止皮肤过度干燥或水分流失。
同时,真皮中的细胞也发挥着重要的生物学功能,如细胞分裂和修复受损组织。
了解真皮的结构和生物力学特性对于皮肤科学和医学具有广泛的意义。
在皮肤疾病的诊断和治疗方面,了解真皮的结构可以帮助医生判断疾病的类型和严重程度。
同时,对真皮生物力学特性的研究也有助于皮肤再生和修复技术的发展。
总之,真皮是皮肤中重要的组织层,其结构和生物力学特性决定了皮肤的功能和性能。
通过深入研究真皮的结构和生物力学特性,我们可以更好地理解皮肤的生物学过程,并促进皮肤科学和医学的发展。
皮肤结构宏强
皮肤结构宏强皮肤是人体最大的器官,它的作用不仅仅是保护身体免受外界环境的伤害,还参与调节体温、排泄水分和代谢废物等重要功能。
为了更好地了解皮肤的结构和功能,下面将详细介绍皮肤的组织结构。
皮肤由三层组成,分别是表皮、真皮和皮下组织。
表皮是皮肤最外层的一层,主要由表皮细胞组成。
表皮细胞形成了一层厚约0.05毫米的角化层,它们密集地排列在一起,形成紧密的结构,有效地防止水分的流失和外界致病菌的侵入。
表皮细胞的生命周期为28天左右,老化的表皮细胞会脱落,并通过新生的细胞不断替代。
表皮还含有大量的黑色素细胞,它们的分布和活性决定了皮肤颜色的深浅。
真皮位于表皮的下方,厚度约为表皮的20倍。
它由胶原纤维、弹力纤维和基质组成,具有较高的韧性和弹性。
真皮具有丰富的血管和神经丛,为皮肤提供养分和传递感觉信号的通道。
真皮还含有汗腺、毛囊和皮脂腺等附属器官。
汗腺主要负责分泌汗液,帮助调节体温和排泄体内废物。
毛囊则是毛发生长的地方,它们通过与小肌肉的协同作用,使毛发能够竖起来,形成鸟嘴状的结构,帮助维持体温。
皮脂腺则分泌皮脂,形成皮肤的保护膜,保持皮肤的滋润。
皮下组织位于真皮下方,是连接皮肤和深层组织的重要媒介。
皮下组织主要由脂肪细胞组成,它们不仅能储存能量,还能提供保温和保护内脏的功能。
除了以上三层组织外,皮肤还有一些其他的结构和组织。
例如,表皮下的眼睑中有睫毛和汗腺,它们能够过滤空气和保护眼睛。
指甲是由角化的表皮细胞形成的,它们能够起到保护手指和增加手指灵敏度的作用。
总结起来,皮肤的结构复杂多样,每一层都有着特定的功能。
通过表皮、真皮和皮下组织的共同作用,皮肤能够保护身体、调节体温、排泄废物和感受外界刺激。
因此,保持皮肤健康对于整个人体的健康也至关重要。
我们应该重视皮肤的护理,保持良好的生活习惯和合理的饮食,以保持皮肤的正常功能和美丽外观。
以上所述仅是关于皮肤结构的一个简要介绍,希望能对您有所帮助。
如果您还有其他问题,请继续提问。
人造皮肤基本性能研究与测试
人造皮肤基本性能研究与测试摘要:人造皮肤在当前临床医学领域的地位愈发重要,作为专用于大面积创口愈合的医用敷料,往往对其透湿性和力学性能有一定的要求,以维持创口的适度湿润并满足日常伸曲、缝合等要求。
通过对两种人造皮肤材料的性能测试,简单分析了影响其透湿性和力学性能的多重因素。
关键词:人造皮肤、水蒸气透过率、力学性能皮肤是人体最大的器官,承担着屏蔽细菌、感知冷热、调节体温、分泌排泄等功能,由表皮、真皮和皮下组织三层构成。
当外因造成皮肤的大面积损伤,如灼伤、溃疡或急性创伤时,在清理创面防止细菌感染的同时,需尽快覆盖皮肤创面以减少蛋白质、血红球等体液的流失。
长久以来,大面积皮肤缺损的覆盖材料主要来自自体皮、同种异体皮或异种皮等,由于皮源缺乏、新创旧疤等因素限制患者的治疗进程。
这种情况催生了能重复生产且永久替代皮肤缺损的材料研发,即人造皮肤。
1 人造皮肤应具备的性能人造皮肤是利用组织工程学和细胞生物学的方法,将种子细胞与天然生物高分子材料制得的支架材料相结合构建出的用于修复、维护、替代缺损皮肤组织的生物替代物。
其作用机理首先是基于伤口愈合机理的。
现代伤口愈合理论有两大分支:伤口干性愈合和伤口湿性愈合。
传统观念认为伤口需干燥消毒,利于结痂愈合,但随着临床经验的愈加丰富,医护人员发现此种治疗方法极易造成创面局部脱水,结痂造成伤口疼痛反而阻碍上皮细胞移行,愈合速度缓慢。
于是近现代“湿润环境愈合理论”兴起,即在伤口局部保持适度的湿润以营造有利于伤口愈合的微酸低氧、自溶清创、生长因子释放环境等,这种方法具有不结痂、微创少痛,利于肉芽生长和皮肤细胞分裂,其促进伤口愈合的速度是传统干性环境的两倍。
基于“湿润环境愈合”机理,人造皮肤应具备一定的保湿性能才能维持伤口的“湿润环境”。
据王成传等人研究,正常皮肤的水分蒸发量为18.48±5.02g/(m2·h),普通创面伤后6小时水分蒸发量达到顶峰40~60 g/(m2·h)[1],虽然随后蒸发量逐渐下降,但仍高出正常皮肤蒸发量的18.5% ~76.85%。
皮肤学基础知识大全
皮肤学基础知识大全
皮肤学基础知识主要包括以下几个方面:
1. 皮肤的结构:皮肤是人体最大的器官,由表皮、真皮和皮下组织三部分组成。
表皮是皮肤的最外层,由角质层、透明层、颗粒层、有棘层和基底层组成。
真皮层主要由胶原纤维和弹性纤维组成,皮下组织则包含大量的脂肪组织。
2. 皮肤的生理功能:皮肤具有保护、调节体温、感觉、分泌和排泄等多种生理功能。
例如,皮肤可以防止外界有害因素的侵入,保持体内水分和电解质的平衡,同时还能够通过排汗来调节体温。
3. 皮肤疾病:皮肤疾病种类繁多,包括各种炎症、感染、肿瘤等。
了解和识别各种皮肤疾病的特征和表现,对于及时诊断和治疗非常重要。
4. 皮肤护理:正确的皮肤护理对于保持皮肤的健康状态非常重要。
这包括保持皮肤清洁、保湿、防晒等。
适当的皮肤护理可以预防皮肤干燥、皱纹、色斑等问题。
5. 皮肤治疗:对于各种皮肤疾病,治疗的方法也多种多样,包括药物治疗、光疗、激光治疗等。
了解各种治疗方法的作用机制和使用方法,对于选择合适的治疗方案非常重要。
以上是皮肤学基础知识的一些主要内容,如需获取更多信息,建议咨询专业医生或查阅医学书籍。
皮肤的力学性能概述
皮肤的力学性能概述
卢天健;徐峰
【期刊名称】《力学进展》
【年(卷),期】2008(038)004
【摘要】鉴于皮肤的力学性能对于临床和日用化妆品的重要性,人们已经对在体和离体皮肤的力学性能进行了长期的研究.本文对皮肤力学的近期发展进行了全面的回顾,总结了在体和离体实验的方法和仪器,概述了皮肤的主要力学性能,包括杨氏模量、泊松比、压缩系数、强度、韧性、初应力和初张力、热膨胀系数、约束力/层离能、摩擦系数,以及这些性能的各向异性,并以表格形式收集了现有文献中的有关数据.最后,讨论了有关皮肤力学的一些特殊领域中的未来研究方向.
【总页数】34页(P393-426)
【作者】卢天健;徐峰
【作者单位】西安交通大学强度与振动教育部重点实验室,西安,710049;剑桥大学工程系,CB2 IPZ,英国剑桥
【正文语种】中文
【中图分类】O3
【相关文献】
1.快速升温高温条件下材料力学性能测试方法概述 [J], 王美玲; 常海; 尹佳
2.现代竹梁结构及力学性能研究概述 [J], 朱骏杰;马静文;曹明鑫;王晓欢;费本华;王雪花
3.现代竹梁结构及力学性能研究概述 [J], 朱骏杰;马静文;曹明鑫;王晓欢;费本华;王雪花
4.烧结金属多孔材料力学性能检测方法概述 [J], 邓颖;董领锋
5.烧结金属多孔材料力学性能检测方法概述 [J], 邓颖;董领锋
因版权原因,仅展示原文概要,查看原文内容请购买。
扩张皮肤移植后的生物力学特性
扩 张 皮肤 移 植 后 的生 物 力学 特 性
章 晶 , 曾衍 钧 黄 昆 , 胡 华新 张 正文 孙广 慈 , , ,
( 北 京 工 业 大 毕 生物 力 学 研 究 室 , 京 1 0 2 ; .中 国医 学 科 学 院 中 国协 和 医 科 大 学 整 形 外 科 医 院 . 京 10 4 ) 1 北 002 2 北 0 0 1 摘 要 : 对狗 背部 扩张 后 和 相应 对 照 侧 的皮 肤 软组 织在 移植 后 的不 同 阶段 . 别进 行 应 力 一 分 应变 、 力 格 弛 特 应
维普资讯
第 2 1卷 第 2期 20 0 2年 4月
中
国
生
物
医
学
工
程
学
ห้องสมุดไป่ตู้
报
V0_2l _ No 2 AD n【2 0 02
CHI NES OURNAL oF BI EJ oME C DI AL ENGI NEE NG RI
文 章编 号 :2 88 2 (0 2一2140 0 5 —0 12 0 ) -4 —5 0
2 结 果
2 1 应 力 松 弛 特 性 .
将试件 由原长 以某一速度 ( 0 m I n 拉伸至一特定 伸长 比( 5 0 m/ 1 ) I i =1 8 后保 持不变 , 肤扩 张 时 , 一个 应 .) 皮 有 变过程 , 实验过程 尽可能与临床过程保 持相近 , 以我们采 用 ^ 。然后 由 Is o 所 =18 nt n材料 实验 机 的 X Y记 录 r - 仪绘制 出松 弛曲线。归一化松 弛函数 G( 是在 ) O时 刻伸 长量 为某个 长度 , 在 此后保 持这个 值时 试样 所 并 受的应力 , 且在 一0时应力 值定 为 1 。图 12分别为试样 在移植后 不 同阶段 的归一化松弛 曲线 G( ) , 。在移植
人体皮肤屈服强度
人体皮肤屈服强度
人体皮肤的屈服强度是指在外力作用下,皮肤发生可逆形变的最大应力。
人体皮肤屈服强度的数值因人而异,受到多种因素的影响,如年龄、性别、肤色、皮肤厚度等。
同时,皮肤在不同部位的屈服强度也存在差异。
一般来说,人体皮肤的屈服强度范围在0.3 MPa到3 MPa之间。
这意味着在外力作用下,人体皮肤承受的最大应力通常不会超过3 MPa。
需要注意的是,人体皮肤的屈服强度可以随着年龄的增长而下降。
老年人的皮肤往往比年轻人更脆弱,屈服强度较低。
此外,女性的皮肤一般比男性的皮肤更柔软,屈服强度相对较低。
总之,人体皮肤的屈服强度是多因素综合作用的结果,具体数值会有一定的差异。
对于各个个体而言,其皮肤的屈服强度应在一定范围内。
生物材料的力学特性与力学性能研究
生物材料的力学特性与力学性能研究生物材料,作为一种特殊的材料类型,具有独特的力学特性和力学性能。
研究这些特性与性能的目的是为了更好地理解生物材料的本质和应用,从而开发出更好的材料和应用。
首先,我们来探讨生物材料的力学特性。
生物材料的力学特性指的是材料在外力作用下产生的形变和变形能力。
与传统的工程材料不同,生物材料经常需要承受复杂的力学负荷,如拉力、压力、剪力等。
这些力学负荷可以导致生物材料发生弹性变形、刚性变形或塑性变形。
以骨骼为例,它是一种具有弹性和韧性的生物材料。
在正常情况下,人体的骨骼可以弹性地抵抗外力的作用,从而保护内脏器官和其他组织。
当骨骼受到极端力的作用时,骨骼可以发生塑性变形,能够更好地吸收冲击力和保护身体。
这种力学特性是骨骼作为生物材料的重要特点,也是许多工程材料无法媲美的。
在研究生物材料的力学特性时,我们还需要考虑材料的力学性能。
力学性能是指材料在特定条件下表现出的性能,包括强度、硬度、韧性等。
这些性能对生物材料的应用至关重要。
以皮肤为例,它是人体最大的器官之一,具有出色的韧性和弹性。
皮肤的韧性使其能够承受外界力学负荷,并向全身分散压力,起到保护作用。
而皮肤的弹性使其能够自由地伸缩,适应身体的各种运动和姿势。
这些力学性能使得皮肤能够适应不同的环境和挑战,确保身体的健康和安全。
研究生物材料的力学特性和力学性能的方法包括实验和数值模拟。
实验是通过设计和进行一系列的试验来测量和观察生物材料在不同外力作用下的变形和变化,从而得到力学特性和性能的数据。
数值模拟则是利用计算机模型和算法,对生物材料在外力作用下的行为进行模拟和分析,得到力学特性和性能的预测结果。
最后,了解和研究生物材料的力学特性和力学性能有助于应用于医学、生物工程和材料科学等领域的发展。
例如,在医学领域,了解骨骼的力学特性和性能可以帮助医生诊断和治疗骨骼相关疾病,并指导人工关节和植入物的设计和应用。
在生物工程领域,了解细胞和组织的力学特性和性能可以为组织工程和生物材料的研发提供指导和支持。
人造皮肤的原理
人造皮肤的原理1 人造皮肤人造皮肤是指以有机合成玻璃、聚酰胺等类似真皮质的高分子材料为基材,通过乳液印刷、路径拉伸或整形注模等复杂工艺和技术生产出来的实物。
它具有结构类似真皮的力学性能及真皮的外观效果,是用来材料替代真皮的新型人造革材料,能够满足生活和工业设计领域的大量需求,而且在可见市场领域已经有了一定的应用广度与深度。
2 结构原理人造皮肤的结构原理主要是高分子材料的物理和化学结构特性以及制备工艺中采用的复合技术。
高分子材料由聚合先合成的主要单体和乳液技术进行混合组成,经薄膜定型或拉伸形成结构,其结构受力平衡,形成特定方式的薄膜结构。
这种结构不仅具有较好的力学弹性、光学透光性和耐热性,而且具有很强的物理、机械和化学属性,具有很好的耐久性和防水性,可以满足多重要求。
3 工艺原理人造皮肤的生产工艺主要分为钻取、化学聚合、复合印刷以及最后的加工处理等几个环节。
在钻取环节中,以水玻璃和硅橡胶、聚酰胺等高分子材料为原料,采用复合技术将原料物理性状和化学结构和性质转化为可用的状态。
在化学聚合环节中,在原料的基础上,加入一定的剂量的聚合物,利用高温湿热反应将原料加工成熔融球状材料。
随后,在采用乳液粘结技术上将多层结合有机玻璃薄膜涂敷在熔融球上,并采取拉伸形式将有机薄膜加工成人造皮肤。
最后,可以根据应用要求对生产出来的人造皮肤结构进行加工处理,使其具有类似真皮的外观效果。
4 应用领域由于人造皮肤具有真皮一般的力学性能和外观效果,可以在很多领域取代传统的皮革材料,已经得到了越来越广泛的应用。
在家具领域,人造皮肤可以用来制作家具面板、沙发面料和桌布等,给我们带来丰富多样的体验。
在服装领域,人造皮肤可以用于制作服装面料和衣服装饰,使服装显得更具有时尚感。
在车内装饰领域,也可以采用人造皮肤进行装饰,使整个汽车内的氛围更加优雅宜人。
此外,人造皮肤还可以应用到户外运动、医疗保健、电子产品等各个领域。
5 结论人造皮肤是利用复合技术和合成的高分子材料,以更优的性能和更好的外观效果来替代真皮材料的一种人造材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
皮肤的力学性能概述作者:卢天健, 徐峰, LU Tianjian, XU Feng作者单位:卢天健,LU Tianjian(西安交通大学强度与振动教育部重点实验室,西安,710049), 徐峰,XU Feng(剑桥大学工程系,CB2 IPZ,英国剑桥)刊名:力学进展英文刊名:ADVANCES IN MECHANICS年,卷(期):2008,38(4)被引用次数:1次nir Y Skin mechanics 19872.Parsons K C Human Thermal Environments 19933.Silver F H.Siperko L M.Seehra G P Mechanobiology of force transduction in dermal tissue 2003(01)4.Dombi G W.Haut R.C The tensile strength of skin and correlations with collagen content,1985 Advances in Bioengineering 19855.Reihsner R.Balogh B.Menzel E J Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration 1995(04)6.Cotta-Pereira G.Rodrigo G.Bittencourt-Sampaio S Oxytalan,elaunin,and elastic fibers in the human skin 19767.Weber L.Kitsch E.Muller P Collagen type distribution and macromolecular organization of connective tissue in different layers of human skin 1984(02)8.Holzapfel G A Biomechanics of soft tissue 20019.Elsner P.Berardesca E.Wilhelm K P Bioengineering of the Skin:Skin Biomechanics 200210.Gitis N V.Sivamani R K Tribometrology of skin 200411.Hollander D A.Erli H J.Theisen A Standardized qualitative evaluation of scar tissue properties in an animal wound healing model 2003(02)12.Kitzmiller W J.Visscher M.Page D A A controlled evaluation of dermabrasion versus CO2 laser resurfacing for the treatment of perioral wrinkles 2000(06)13.Duchemin G.Maillet P.Poignet P A hybrid position/force control approach for identification of deformation models of skin and underlying tissues 2005(02)14.Gambarotta L.Massabo R.Morbiducei R In vivo experimental testing and model identification of human scalp skin 2005(11)15.Molinari E.Fato M.De Leo G Simulation of the biomechanical behavior of the skin in virtual surgical applications by finite element method 2005(09)16.Zeng Y.Xu C Q.Yang J Biomechanical comparison between conventional and rapid expansion of skin 200317.Zeng Y J.Liu Y H.Xu C Q Biomechanical properties of skin in vitro for different expansion methods 2004(08)18.Saulis A utenschlnger E P.Mustoe T A Biomechanical and viscoelastic properties ofskin,SMAS,and composite flaps as they pertain to rhytidectomy 2002(02)19.Thacker J G.Stalnecker M C.Allaire P E Practical applications of skin biomechanics 1977(02)20.Powell H M.Boyce S T EDC crces-linking improves skin substitute strength and stability 2006(34)21.Goodwin A W.Wheat H E Sensory signals in neural populations underlying tactile perception and manipulation 200422.Birznieks I.Jenmalm P.Goodwin A Encoding of direction of fingertipforces by human tactile afferents 200123.Moy G.Singh U.Tan E Human psychophysics for teletaction system design 2000(03)24.Biggs J.Srinivasan M A Tangential versus normal displacements of skin:Relative effectiveness for producing tactile sensations 200225.Iida I.Koyanagi T.Isobe Y Studies on typification of cosmetics-application of sensory evaluation to classify milky lotion 1987(03)26.Sulzberger M B.Cortese T A.Fishman L Studies on blisters produced by friction 199627.Zimmerer R wson K D.Calvert C J The effects of wearing diapers on skin 198628.E1-Shimi A F In vivo skin friction measurements 197729.Buchholz B.Frederick L J.Armstrong T J An investigation of human palmar skin friction and the effects of materials,pinch force and moisture 198830.Wang Q.Hayward V In vivo biomechanics of the fingerpad skin under local tangential traction2006(04)31.Moy G.Wagner C.Fearing R S A compliant tactile display for teletaction 200032.Levesque V.Pasquero J.Hayward V Display of virtual Braille dots by lateral skindeformation:Feasibility study 2005(02)33.Drewing K.Fritschi M.Zopf R First evaluation of a novel tactile display exerting shear force via lateral displacement 2005(02)34.Brett P N.Fraser C A.Henningan M Automatic surgical tools for penetrating flexible tissues1995(03)rrabee W F,Jr A finite element model of skin deformation.I.Biomechanics of skin and soft tissue:a review 1986(04)36.Edwards C.Marks R Evaluation of biomechanical properties of human skin 1995(04)37.Pierard G E EEMCO guidance to the in vivo assessment of tensile functional properties of theskin-Part 1:Relevance to the structures and ageing of the skin and subcutaneous tissues 1999(06) 38.Wilhelmi B J.Blackwell S J.Mancoll J S Creep vs.stretch:A review of the viscoelastic properties of skin 1998(02)39.DiMaio V J Penetration and perforation of skin by bullets and missiles.A review of the literature 1981(02)40.Karwoski A C Testing and analysis of the peeling of medical adhesives from human skin 200341.Cook T.Alexander H.Cohen M Experimental method for determining the 2-dimensional mechanical properties of living human skin 1977(04)vitro results 198243.Vogel H G Mechanical properties of rat skin as compared by in vivo and in vitro measurement 198244.Marangoni R D.Glaser A A.Must J S Effect of storage and handling techniques on skin tissue properties 1966(16)45.Jacquet E.Gwendal J.Khatyr F A new experimental method for measuring skin'snatural tension 200846.Marks M G.Doillon C.Silver F H Effects of fibroblasts and basic fibroblast growth-factor on facilitation of dermal wound-healing by type-i collagen matrices 1991(05)47.Rodrigues L.Group E EEMCO guidance to the in vivo assessment of tensile functional properties of the skin,Part Ⅱ.Instrumentation and test methods 200148.Greenleaf J F.Fatemi M.Insana M Selected methods for imaging elastic properties of biological tissuesy 200349.Wilkes G L.Brown I A.Wildnauer R H The biomechanical properties of skin 1973(04)50.Nicolopoulos C S.Giannoudis P V.Glarce K D In vitro study of the failure of skin surface after influence of hydration and preconditioning 1998(11)51.Eshel nir Y Effects of strain level and proteogiycan depletion on preconditioning and viscoelastic responses of rat dorsal skin 200152.Ozyazgan I.Liman N.Dursun N The effects of ovariectomy on the mechanical properties of skin in rats 2002(01)53.Shergold O A.Fleck N A.Radford D The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates 2006(09)54.Spencer T S.Smith S E.Conjeevaram S Adhesive interactions between polymers and skin in transdermal delivery systems 199055.Vogel S.Papanicolaou M N A constant stress creep testing machine 1983nger K Sitzungsberichte der mathematisch-natur-wissenschaftliehen clasee der kaiserlichen academie der wisscnschaften 1861nir Y.Fung Y C Two-dimensionai mechanical properties of rabbit skin.I.Experimental system 1974(01)58.Reihsner R.Menzel E J Two-dimensional stressrelaxation behavior of human skin as influenced by nonenzymatic glycation and the inhibitory agent aminoguanidine 1998(11)59.Vito R P The mechanical properties of soft tissuesI:A mechanical system for hi-axial testing 1980(11)60.Nielsen P M.Hunter P J.Smaill B H Biaxial testing of membrane biomaterials:testing equipment and procedures 1991(03)61.Wan A W Biaxial tension test of human skin in vivo 199462.Thubrikar M.Eppink R T A method for analysis of bending and shearing deformations in biological tissue 1982(07)63.Hung C T.Williams J L A method for inducing equibiaxial and uniform strains in elastomeric64.Mitchell S B.Sanders J E.Garbini J L A device to apply user-specified strains to biomaterials in culture 2001(02)65.Sanders J E.Mitchell S B.Wang Y N An explant model for the investigation of skin adaptation to mechanical stress 2002(12)66.Dupuytren G Tralte theorique et pratique des blessures pax axmes de guerre 183467.Gibson T.Kenedi R M Biomechanicai properties of skin 1967(02)68.Gibson T.Stark H.Evans J H Directional variation in extensibility of human skin in vivo 196969.Manschot J F.Brakkee A J The measurement and modelling of the mechanical properties of human skin in vivo II.The model 1986(07)70.Manschot J F.Brakkee A J The measurement and modelling of the mechanical properties of human skin in vivo-I.The measurement 1986(07)71.Wan Abas W A.Baxbenel J C Uniaxial tension test of human skin in vivo 1982(01)72.Wan Abas W A B.Baxbenel J C Response of human skin to small tensile loads in vitro 1995(02)73.van Ratingen M R.Petterson R.Drost M R Mixed numerical experimental method to find Langer'slines of skin 199374.Khatyr F.Imberdis C.Vescovo P Model of the viscoelastic behaviour of skin in vivo and study of anisotropy 2004(02)75.Kirkpatrick S J.Duncan D D.Fang L Low-frequency surface wave propagation and the viscoelastic behavior of porcine skin 2004(06)76.Reihsner R.Menzel E J On the orthogonal anisotropy of human skin as a function of anatomical region 1996(02)77.Vexler A.Polyansky I.Gorodetsky R Evaluation of skin viscoelasticity and anisotropy by measurement of speed of shear wave propagation with viscoelasticity skin analyzer 199978.Douven L F A.Meijer R.Oomens C W J Characterisation of mechanical behaviour of human skin in vivo 200079.Melling M.Pfeiler W.Karimian-Teherani D Differential scanning calorimetry,biochemical,and biomechanical analysis of human skin from individuals with diabetes mellitns 2000(03)80.Kirkpatrick S J.Chang I.Duncan D D Viscoelastic anisotropy in porcine skin:Acousto-optical and mechanical measurements 200581.Manschot J F M.Wijn P F F.Brakkee A J M The anguo lax distribution function of the elastic fibres in the skin as estimated from in vivo 198282.de Jong L A M.Douven L F A Pre-tension and anisotropy in skin[b.Unclassified Report NL-UR 023/95] 199683.Finlay B Scanning electron microscopy of the human dermis under uni-axial strain 196984.Stark H L Directional variations in the extensibility of human skin 197785.Ridge M D.Wright V Mechanical properties of skin:a bioengineering study of skin structure1966(05)87.Maurel W.Wu Y.Magnenat Thalmann N Biomechanical Models for Soft Tissue Simulation 199888.Bonilla C M A.Massanet A R F.Almodoar N V Mechanics of biomaterials:skin repair and grafts 200589.Van der Voorden W K L.Douven L F A Characterisation of the in-plane mechanical behaviour of human skin.A Mixed numerical-experimental approach employing a structural skin model[b.Unclassified Report NL-UR 014/96] 199690.Meijer R.Douven L F A Characterisation of anlsotropic and non-linear behaviour of humanskin[b.Unclassified Report NL-UR 013/97] 199791.Ankersen J.Birkbeck A E.Thomson R D Puncture resistance and tensile strength of skin simnlants 1999(06)nir Y.Fung Y C Two-dimensional mechanical properties of rabbit skin.II.Experimental results 1974(02)93.Flynn D M.Peura G D.Grigg P A finite element based method to determine the properties of planar soft tissue 1998(02)94.Borges A F Relaxed skin tension lines (RSTL) versus other skin lines 196495.Choi H S.Vito R P Two-dimensional stress-strain relationship for canine pericardium 199096.Harris J L.Humphrey J D Kinetics of thermal damage of a collagenons membrane under biaxial isotonic loading 200497.Wells P B.Harris J L.Humphrey J D Altered mechanical behavior of epicardium under isothermal biaxial loading 200498.Saxer C E.de Boer J F.Park B H High-speed fiberbased polarzationsensitive optical coherence tomography of in vivo human skin 200099.Jiao S.Todorovic M.Stoics G Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation 2005100.Yasui T.Tohno Y.Araki T Determination of collagen fiber orientation in human tissue by use of polarization measurement of molecular socond-harmonic-generation light 2004101.Rellhauser H Tensile Strength Human Skin 1950102.Grahame R In vivo Observations on the Elastic Properties of Human Skin 1968103.Grahame R.Holt P J L The influence of aging on the in vivo elasticity of human skin 1969104.Sanders R Torsional elasticity of human skin in vivo 1973(03)105.Alexander H.Cook T H Variations with age in the mechanical properties of human skin in vivo 1976 106.Agache P G.Monneur C.Leveque J L Mechanical properties and Young'smodulus of human skin in vivo 1980(03)107.Leveque J L.de Rigal J.Agache P G Influence of ageing on the in vivo extensibility of human skin at a low stress 1980(02)108.Leveque J L.Corcuff P.de Rigal J In vivo studies of the evolution of physical properties of the human skin with age 1984(05)109.Wijn P F F The aliuear viscoelastic properties of human skin in-vivo for small deformation 1980111.Manschot J F M The mechanical properties of human skin in vivo 1985112.Manechot J F M.Brakkee A J M Characterisation of in vivo mechanical skin properties independent of measuring configuration 1987113.Escoffier C.de R J.Rochefort A Age-related mechanical properties of human skin:an in vivo study 1989(03)114.Agache P Noninvasive assessment of biaxial Young'smodulus of human skin in vivo 1992115.Barel A.Courage W.Clarys P Suction method for measurement of skin mechanical properties:the Cutometer 1995116.Clark J A.Cheng J C Y.Leung K S Mechanical properties of normal skin and hypertrophic scars 1996(06)117.Pan L.Zan L.Foster F S In vivo high frequency ultrasound assessment of skin elasticity 1997 118.Zhang M.Zheng Y P.Mak A F Estimating the effective Young'smodulus of soft tissues from indentation testsnonlinear finite element analysis of effects of friction and large deformation 1997(06)119.Barel A mbreeht R.Clarys P Mechanical function of the skin:state of the art 1998120.Diridollou S.Black garde J M Sex-and site-dependent variations in the thickness and mechanical properties of human skin in vivo 2000121.Diridollou S.Patat F.Gens F In vivo model of the mechanical properties of the bureau skin under suction 2000(04)122.Diridollou S.Vabre V.Berson M Skin ageing:changes of physical properties of human skin in vivo 2001123.Dandekar K.Raju B I.Srinivasan M A3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense 2003124.Pedersen L.Hansen B.Jemec G B Mechanical properties of the skin:a comparison between two suction cup methods 2003(02)125.Gennisson J L.Baldeweck T.Tauter M Assessment of elastic parameters of human skin using dynamic elastography 2004(08)126.Grebenyuk L A.Uten'kin A A Mechanical properties of the human skin:Communication I 1994(02) 127.Hendriks F M.Brokken D.Oomens C W The relative contributions of different skin layers to the mechanical behavior of human skin in vivo using suction experiments 2006(03)128.Daly C H Biomechanieal properties of dermis 1982(z1)129.Maeno T.Kobay-Ashi K.Yamazaki N Relationship between the structure of human finger tissue and the location of tactile receptors 1998130.Pan L.Zan L.Foster F S Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro 1998(07)131.Silver F H.Freeman J W.DeVote D Viscoelastic properties of human skin and processed dermis2001(01)and Young'smodulus 2004133.Jansen L H.Rottier P B Some mechanical properties of human abdominal skin measured on excised strips:a study of their dependence on age and how they 'are influenced by the presence of striae 1958(02)134.Veroncla D R.Westmann R A Mechanical characterization of skin-finite deformations 1970(01)135.Vogel H G Antagonistic effect of aminoacetonitrile and prednisolone on mechanical properties of rat skin 1971(03)136.Ranu H S.Burlin T E.Hutton W C The effects of xirradiation on the mechanical properties of skin 1975(01)137.Oxlund H.Manschot J.Viidik A The role of elastin in the mechanical properties of skin 1988(03) 138.Pereira J M.Mansour J M.Davis B K Dynamic Measurement of the Viscoelastic Properties of Skin 1991(02)139.Greven H.Zanger K.Schwinger G Mechanical properties of the skin of Xenopus laevis(Anura,Amphibia) 1995(01)140.Iatridis J C.Wu J R.Yandow J A Subcutaneous tissue mechanical behavior is linear andviscoelastic under uniaxial tension 2003(05)141.Chi X.Nian L.Zhongyou G Investigating testing elasticity of equivalent material for human skin 2005142.Wildnauer R H.Bothwell J W.Douglass A B Stratum corneum biomechvanical properties.I.Influence of relative humidity on normal and extracted human stratum cornenm 1971(01)143.Park A.Baddiel C Rheology of stratum corneum i.a molecular interpretation of the stress-strain curve 1972144.Park A C.Baddiel C B Rhcology of stratum corneum ii.a physio-chemical investigation of factors influencing the water content of the corneum 1972145.Papir Y S.Hsu K H.Wildnauer R H The mechanical properties of stratum corneum.I.The effect of water and ambient temperature on the tensile properties of newborn rat stratum corneum 1975(01) 146.Koutroupi K S.Barbenel J C Mechanical and failure behaviour of the stratum corneum 1990(03) 147.Gardner T N.Briggs G A Biomeehanical measurements in microscopically thin stratum comeum using acoustics 2001(04)148.Yuan Y.Verma R Measuring microelastic properties of stratum cornenm 2006(01)149.Smalls L K.Wickett R R.Visscher M O Effect of dermal thickness,tissue composition,and body site on skin biomechanical properties 2006(01)150.Deng Z S.Lin J Non-Fourier heat conduction effect on prediction of temperature transients amd thermal stress in kin cryoperservation 2003151.Gefen A.Chen J.Elad D Stresses in the normal and diabetic human penis following implantation of an inflatable prosthesis 1999152.Retel V.Vescovo P.Jacquet E Nonlinear model of skin mechanical behaviour analysis with finite element method 2001(03)153.Zhang Y.Goldgof D B.Sarkar S A modeling approach for burn scar assessment using natural features andelastic property 2004(10)154.Majaron B.Lukac M Thermo-mechanical laser ablation of hard dental tissues:an overview of effects,regimes,and models 1999155.Magnenat-Thalmann N.Kalra P.Leveque J L A computational skin model:fold and wrinkle formation 2002(04)156.Lees C.Vincent J F.Hillerton J E Poisson'sratio in skin 1991(01)157.Wu J Z.Dong R G.Smutz W P Non-linear and viscoelastic characteristics of skin under compression:experiment and analysis 2003(04)158.Gefen A.Chen J.Elad D A biomechanical model of Peyronie'sdisease 2000(12)159.Gefen A.Megido-Ravid M.Azariah M Integrating a Photoelastic Device into Open MRI for Soft Tissue Mechanics Studies 1998160.Delalleau A.Joese garde J M Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test 2006(09)161.Hvidberg E Investigation into the effect of mechanical pressure on the water content of isolated skin 1960162.Von Gierke H E Biomechanics of impact injury 1962163.North J F.Gibson F Volume compressibility of human abdominal skin 1978(04)164.Voesoughi J.Vaishnav R N Comments on the paper "volume compressibility of human abdominal skin" 1979(06)165.Sekhon K S Ultrasonic techniques to study wound healng 1976166.Howes E L.Sooy J W.Harvey S C The healing of wounds as determined by their tensile strength 1929 167.Sandblom P Determination of the tensile strength of the healing wound as a clinical test1953(04)168.Sandblom P.Petersen P.Muren A Determination of the tensile strength of the healing wound as a clinical test 1953(1-4)169.Sandblom P Tensile strength of healing wounds,an experimental study 1944(zk)170.Beckwith T G.Brody G S.Glaser A A Standardization of methods for measuring mechanical properties of wounds 1963171.Glaser A A.Marangoni R D.Must J S Refinements in the methods for the measurement of the mechanical properties of unwounded and wounded skin 1965(04)172.Ankersen J.Birkbeck A E.Thomson R D Puncture resistance and tensile strength of skin stimulants 1999173.Haut R C The effects of orientation and location on the strength of dorsal rat skin in high and low speed tensile failure experiments 1989(02)174.Jansen L H.Rottier P B Comparison of the mechanical properties of strips of human abdominal skin excised from below and from above the umbilic 1958(04)175.Gadd C nge W A.Peterson F J Strength of skin and its measurement[Paper No.65-WA/HUF-68] 1965176.Fazekais I G.Kesa F.Basch A Uber dieR eissfestigkeit derH aut verschiedener Korperregionen (Experimental,in vitro,human skin) 1968177.Mendoza S ch R A Age variations of nominal tensile strength of Wistar rat skins 1964178.Wenzel H G Untersuchungen einiger mechanischer Eigenschaften der Haut,insbesondere der Striae cutis distensae 1950179.Fry P.Harkness M L.Harkness R D Mechanical properties of the collagenous framework of skin in rats of different ages 1964180.Suesman M D Aging of connective tissue:physical properties of healing wounds in young and old rats 1973(05)181.Arumugam V.Nareeh M D.Sanjeevi R Effect of strain rate on the fracture behaviour of skin1994(03)182.Fry P.Harkness M L R.Harkness R D Mechanical properties of tissuee of lathyritic animals 1962 183.Harkness R D Functional aspects of connective tissues of skin 1970184.Felsher Z Physiology and Biochemistry of Skin 1954185.Wainwright S A.Biggs W D.Curry J D Mechanical designs in Organisms 1976186.Bailey A J.Peach C M.Fowler L J The Chemistry and Molecular Biology of the Intercellular Matrix 1970187.Yamada H Strength of Biological Materials 1970188.Duck F A Physical Properties Of Tissue:A Comprehensive Reference Book 1990189.Ranu H S Effects of radiotheraphy on the mechanical properties of human skin 1991(02)190.Silver F H.Kato Y P.Ohno M Analysis of mammalian connective tissue:relationship between hierarchical structures and mechanical properties 1992(2-3)191.Zhou L.Li Z.Guo S Z Biomechanical and histomorphological changes in stretched pig skin[期刊论文] -Chinese Journal of Aesthetic Medicine 2000(04)192.Zhang G J Biomechanical characteristics of expanded skins after transplantation[期刊论文]-Chinese Journal of Biomedical Engineering 2002(02)193.Tsubouchi K.Enosawa S.Harada K Evaluation of the relationship between the viscoelastic stress and strain of fetal rat skin as a guide for designing the structure and dynamic performance of a manipulator for fetal surgery 2006(08)194.Jacquemoud C.Bruyere-Garnier K.Coret M Methodology to determine failure characteristics of planar soft tiesues using a dynamic tensile test 2007(02)195.Serrat M A.Vinyard C I.King D Alterations in the mechanical properties and composition of skinin human growth hormone transgenic mice 2007(01)196.Pickering J W.Posthumus P.van Gemert M J Continuous measurement of the heat-induced changes in the optical properties (at 1064 nm) of rat liver 1994(02)197.Mai Y W.Atkins A G Further comments on J-shaped etress-strain curves and the crack resistance of biological materials 1989(01)198.Purslow P P Fracture of non-linear biological materials:Some observations from practice relevantto recent theory 1989(06)199.Rivlin R.Thomas A Rupture of rubber:I Characteristic energy for tearing 1953200.Purslow P P Measurement of the fracture toughness of extensible connective tissues 1983(12) 201.Purslow P P Positional variations in fracture toughness,stiffnees and strength of descending thoracic pig aorta 1983(11)202.Shergold O A.Fleck N A Experimental investigation into the deep penetration of soft solids by sharp and blunt punches,with application to the piercing of skin 2005(05)203.Pereira B P.Lucas P W.Swee-Hin T Ranking the fracture toughness of thin mammalian soft tissues using the sciesots cutting test 1997(01)204.Granot I.Bartov I.Plavnik I Increased skin tearing in broilers and reduced collagen synthesis in skin in vivo and in vitro in response to the coccidicetat halofuginone 1991(07)205.Wang Y L.Attenburrow G E Strength of Brazilian Goatskin Leathers in Relation to Skin and Animal Characteristics 1994(02)206.Atkins A G.Mai Y W Elastic and Plastic Fracture 1985207.Doran C F.McCormack B A O.Macey A A simplified model to determine the contribution of strain energy in the failure process of thin biological membranes during cutting 2004(04)208.Davis S ndis B J.Adams Z H Insertion of microneedles into skin:measurement and prediction of insertion force and needle fracture force 2004(08)209.Dahan garde J M.Turlier V Treatment of neck.lines and forehead rhytids with a nonablative 1 540 nm Er:glass laser:a controlled clinical study combined with the measurement of the thickness and the mechanical properties of the skin 2004(06)210.Chaudhry H R.Bukiet B.Findley T Evaluation of residual stress in rabbit skin and the relevant material constants 1998211.Guzelsu N.Federici J F.Lira H C Measurement of skin stretch via light reflection 2003(01)212.Jones M H.Pouchak M A.Mikelsons R H A method for measuring skin tension 1988213.Alexander H.Cook T H Accounting for natural tension in the mechanical testing of human skin1977(03)214.Bischoff J E.Arruda E M.Grosh K Finite element modeling of human skin using anisotropic,nonlinear elastic constitutive model 2000215.Shergold O.Fleck N A Mechanisms of deep penetration of soft solids,with application to the injection and wounding of skin 2004216.Gunner C W.Hutton W C.Burlin T E Apparatus for measuring the recoil characteristics of humanskin in vivo 1979(01)217.Yang J.Zeng Y J.Liu X J Biomechanical properties of skin expanded by different methods in vivo 2003(04)218.Humphries W T.Wildnauer R H Thermomechanical analysis of stratum corueum.I.Technique 1971(01) 219.Fidanza F.Keys A.Anderson J T Density of body fat in man and other mammals 1953220.Phiillips R A.van Slyke D D.Hamilton P B Measurement of specific gravities of whole blood andplasma by standard copper sulphate solutions 1950221.Incropera F P.DeWitt D P Fundamentals of Heat and Mass Transfer 2001222.E1-Tonsy M M Low cost technique for measuring thermal expansion of thin polymer samples 2003(01) 223.Vlasblom D C Skin Elasticity 1967224.Lowe L B.van der Leun J C Suction blister and dermalepidermal adherence 1968225.Weigand D A.Gaylor J R Removal of stratum corneum in vivo an improvement on the cellophane tape stripping technique 1973226.Marks R.Nicholls S.Pitzbeorge D Measurement of intracorneal cohesion in man using in vivo techniques 1977(03)227.Marks R.Barton S.King C S Formation of the horny layer in psoriasis-primarily defective or secondarily affected 1979228.Dykes P J.Heggie R.Hill S A Effects of adhesive dressings on the stratum corneum of the skin 2001(02)229.Wu K S.Stefik M M.Ananthapadmanabhan K P Graded delamination behavior of human stratum corneum 2006(34)230.Chen Y.Davis B.Valdevit A Regional differences in strength at the plantar skin-fat interface 2002231.Adams M J.Briscoeb B J.Johnson S A Friction and lubrication of human skin 2007232.Sivamani R K.Goodman J.Gitis N V Coefficient of friction:tribological studies in man-an overview 2003(03)233.Dowson D Triboiogy of the skin surface 1997234.Sivamani R K.Goodman J.Gitis N V Friction coefficient of skin in real-time 2003(03)235.Sivamani R K.Stoeber B.Wu G C Clinical microneedle injection of methyl nicotinate:stratum corneum penetration 2005(02)236.Akers W A Measurements of friction injuries in man 1985237.Sivamani R K.Maibach H I Triboiogy of skin 2006238.Highiey D R.Coomey M.DenBeste M Frictional properties of skin 1977aish J S.Harborow P R.Hofman D A A hand-held friction meter 1973(01)aish S.Bottoms E The skin and friction:deviations from Amonton'slaws,and the effects of hydration and lubrication 1971(01)241.Naylor P F The skin surface and friction 1955(07)242.Prall J K Instrumental evaluation of the effects of cosmetic products on skin surfaces with particular reference to smoothness 1973243.Gerrard W A Friction and other measurements of the skin surface 1987244.Cua A B.Wilhelm K P.Malbach H I Frictional properties of human skin:relation to age,sex,and anatomical region,stratum corneum hydration and transepidermal water loss 1990245.Elsner P.Wilhelm D.Malhach H I Frictional properties of human forearm and vulvar skin:influence of age and correlation with transepidermal water loss and capacitance 1990。