动力学答案

动力学答案
动力学答案

作业 动力学

1、质量为m=1kg 的质点,在平面内运动、其运动方程为t x 4=,3215t y -=(SI 制),则在t =3s 时,所受合外力为……………………………………………………………(③ ) ① j i 3912-; ② j 12-; ③ j

36-; ④ j i +6。

2、质量m=2.0kg 的物体,其运动方程为j t i t r

)35(42-+= (SI 制),则物体的轨道方程为(2)5(9

4-=

y x 或010094042

=+--x y y )

,t=2秒时物体的受力大小为( 16 )牛顿。 3、质量为1kg 的球以15m/s 的速度垂直的落在地板上,又以10m/s 的速度弹回,碰撞时地板所受的冲量大小I 为(25N.s ),若球与地板接触的时间为0.02s ,作用在地板上的平均冲力F 为(1250N )。

4、质点系所受外力的矢量和恒为零,则…………………………………………………(② ) ① 质点系的总动量恒定不变,质点系内各质点的动量都不改变; ② 质点系的总动量恒定不变,质点系内各质点的动量可以改变;

③ 质点系的总动量可以改变,质点系内质点的动量恒定不变; ④ 质点系的总动量和质点系内各质点的动量都可以改变。

5、质量m =2kg 的物体,以初速v 0=20m/s 沿x 轴正方向运动,受到与速率成正比的阻力f 的作用,f = -v /2 (SI),则当它速度降至10m/s 米/秒时,它前进的距离=?x ( 40m );在这段路程中阻力所做的功=f A (-300J )。

6、A 、B 两质点m A >m B ,受到相等的冲量作用,则………………………………………(③ ) ① A 比B 的动量增量少; ② A 比B 的动量增量大; ③ A 与B 的动量增量相等; ④ A 与B 的动能增量相等。

7、小球A 与B 的质量相同,B 球原来静止,A 以速度u 与B 做对心碰撞。这两球碰撞后的速度v 1和v 2的可能值是…………………………………………………………………(② ) ① –u ,2u ; ② u/4,3u/4; ③ –u/4,5u/4; ④

u 21,2/3u -

8、一物体质量M =2kg ,在合外力F =(3+2t )i (SI)的作用下,从静止出发沿水平X 轴作直线运动,则当t =1s 时物体的速度v 1=( 2m/s )。

9、质量为10kg 的物体,沿X 轴无摩擦的运动,设t=0时物体位于原点,速度为零。若物体在合外力F=3+4t N 的作用下运动了3s ,则物体速度为( 2.7 m.s -1),加速度为(1.5 m.s -2)。 10、质量为m 的小球从4/1的圆弧槽的顶端由静止开始滑下,槽的质量为M ,圆弧的半径为R ,忽略所有摩擦,小球滑离圆弧槽的速率为……………………( ② ) ①、Rg 2 ②、()m M MRg +/2 ③、M m M MRg m /)/(2+ ④、m m M MRg M

/)(2+

11、质量为m 的质点,受力F 作用,一段时间后,速度方向改变α 角,而速度v 大小仍然保持不变,则该力的冲量大小为……………………………………( ② )

①、???

??2sin αmv ②、??? ??2sin 2αmv ③、??? ??2cos αmv ④、??

?

??2cos 2αmv 12、质量为6kg 的物体,沿X 轴无摩擦的运动,设t=0时物体位于原点,速度为零。当物体在F=3+4x N 的作用下移动了3m ,物体速度和加速度分别为………………( ① ) ①、3 m.s -1,2.5 m.s -2 ②、9 m.s -1,2.5 m.s -2③、4.5 m.s -1, 2.5 m.s -2④、2.5 m.s -1, 2.5 m.s -2 13、(8分)如图所示,质量为0.02kg 的子弹水平地射入一端固定在弹簧上的木块内,弹簧被压缩10cm ,已知木块质量为8.98kg ,弹簧的劲度系数是100N/m ,设木块与平面间的动摩擦系数为0.2,求子弹的速度。

解:设子弹的速度为0V

,与木块碰撞满足动量守恒:

()V m M V m

+=0,V 为碰撞后两者的共同速度。…………(3分)

碰撞后,对于m,M 和弹簧系统而言,应用功能原理,有

()-

=

+-2

21kl

gl m M μ()2

2

1V

m M +,………………………………(3分)

代入可得:3190=V m/s ,方向水平向左。 ……………………………(2分) 14、质点在恒力F 的作用下由静止开始作直线运动,已知在时间Δt 1内,速率由0增加到v ;在时间Δt 2内,由v 增加到2v 。设该力在Δt 1内,冲量大小为I 1,所作的功为A 1;在Δt 2内,冲量的大小为I 2,所作的功为A 2,则……………………………( ④ )

①A 1 = A 2, I 1 < I 2 ②A 1 = A 2, I 1 > I 2 ③ A 1>A 2, I 1 = I 2 ④A 1<A 2, I 1 = I 2 15、质量为m 的小球沿半球形碗的光滑的内面,以角速度ω在一水平面内作匀速圆周运动,碗的半径为R ,则该小球作匀速圆周运动的水平面离碗底的高度为…( ① ) ①、)1(2

R

g

R ω-

②、

R g

2

ω

③、

R g

2

ω ④、)1(2

g

R ω

-

16、(10分)如图,两个带有理想缓冲器的小车,质量分别为1m 和2m ,2m 不动,1m 以速度0v 与2m 相撞,已知两车缓冲弹簧的倔强系数分别为1k 和2k (弹簧本身的质量忽略不计)。

在不计摩擦的情况下,求两车相对静止时其间的作用力。

根据动量和能量守恒,分别有

()v m m v m 2101+= ……………………………………………………………(3分) ()2

222

112

212

012

12

12

121x k x k v m m v m +

+

+=

…………………………………(3分)

且2211x k x k = …………………………………………………………………(2分) 可得 ()()

21212

1210

11k k m m m m k k v x k F ++== (2)

)

机械系统动力学

机械系统动力学报告 题目:电梯机械系统的动态特性分析 姓名: 专业: 学号:

电梯机械系统的动态特性分析 一、课题背景介绍 随着社会的快速发展,城市人口密度越来越大,高层建筑不断涌现,因此,现在对电梯的提出了更高的要求,随着科技的进步,在满足客观需求的基础上,电梯向着舒适性,高速,高效的方向发展。在电梯的发展过程中,安全性和功能性一直是电梯公司首要考虑的因素,其中舒适性也要包含在电梯的设计中,避免出现速度或者加速度出现突变,或者电梯运行过程中的振动引起人们的不适。因此,在电梯的设计过程中,对电梯进行动态特性分析是十分必要的。 二、在MATLAB中编程、绘图。 通过同组小伙伴的努力,已经得到了该系统的简化模型与运动方程。因此进行编程: 该系统的微分方程:[][][]{}[]Q x k x c x M= + ? ? ? ? ? ? + ? ? ? ? ? ?? ? ? ,其中矩阵[M]、 [C]、[K]、[Q]都已知。 该系统的微分方程是一个二阶一元微分方程,在MATLAB中,提供有求解常微分方程数值解的函数,其中在MATLAB中常用的求微分方程数值解的有7个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。 ode是MATLAB专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta

算法;和他采用相同算法的变步长求解器还有ode23。 ode45表示采用四阶,五阶Runge-Kutta单步算法,截断误差为(Δx)^3。解决的是Nonstiff(非刚性)常微分方程。 ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。 Ode45函数调用形式如下:[T,Y]=ode45(odefun,tspan,y0) 相关参数介绍如下: 通过以上的了解,并对该微分方程进行变换与降阶,得出程序。MATLAB程序: (1)建立M函数文件来定义方程组如下: function dy=func(t,y) dy=zeros(10,1); dy(1)=y(2); dy(2)=1/1660*(-0.006*y(2)+0.003*y(4)-0.0006*y(10)-1.27*10^7*y(1)+1.27*10^7*y (3)+2.54*10^6*y(9)); dy(3)=y(4); dy(4)=1/1600*(+0.03*y(2)-0.007*y(4)+0.003*y(6)+1.27*10^7*y(1)-7.274*10^8*y(3 )+1.27*10^7*y(5)); dy(5)=y(6);

结构动力学试卷B卷答案

华中科技大学土木工程与力学学院 《结构动力学》考试卷(B卷、闭卷) 2013~2014学年度第一学期成绩 学号专业班级姓名 一、简答题(每题5分、共25分) 1、刚度法和柔度法所建立的体系运动方程间有何联系?各在什么情况下使用方便? 答:从位移协调的角度建立振动方程的方法为柔度法。从力系平衡的角度建立的振动方程的方法为刚度法。这两种方法在本质上是一致的,有着相同的前提条件。在便于求出刚度系数的体系中用刚度法方便。同理,在便于求出柔度系数的体系中用柔度法方便。在超静定结构中,一般用刚度法方便,静定结构中用柔度法方便。 2、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样? 答:动力系数是指最大动位移[y(t)]max与最大静位移yst的比值,其与体系的自振频率和荷载频率θ有关。当单自由度体系中的荷载作用在质量处才有位移动力系数与内力动力系数一样的结果。 3、什么叫临界阻尼?怎样量测体系振动过程中的阻尼比?若要避开共振应采取何种措施? 答:当阻尼增大到体系在自由反应中不再引起振动,这时的阻尼称为临界阻尼。根据公式即测出第k次振幅和第k+n次振幅即可测出阻尼比。 措施:○1可改变自振频率,如改变质量、刚度等。○2改变荷载的频率。○3可改变阻尼的大小,使之避开共振。 4、振型正交的物理意义是什么?振型正交有何应用?频率相等的两个主振型互相正交吗? 答:物理意义:第k主振型的惯性力与第i主振型的位移做的功和第i主振型的惯性力与第k主振型的静位移做的功相等,即功的互等定理。 作用:○1判断主振型的形状特点。○2利用正交关系来确定位移展开公式中的系数。 5、应用能量法求频率时,所设的位移函数应满足什么条件?其计算的第一频率与精确解相比是偏高还是偏低?什么情况下用能量法可得到精确解? 答:所设位移函数要满足位移边界条件,同时要尽可能与真实情况相符。第一频率与精确解相比偏高。如果所假设的位移形状系数与主振型的刚好一致,则可以得到精确解。

机械设计基础第十四章 机械系统动力学

第十四章 机械系统动力学 14-11、在图14-19中,行星轮系各轮齿数为123z z z 、、,其质心与轮心重合,又齿轮1、2对质心12O O 、的转动惯量为12J J 、,系杆H 对的转动惯量为H J ,齿轮2的质量为2m ,现以齿轮1为等效构件,求该轮系的等效转动惯量J ν。 2222 2121221 12323121 13212 1 13222 12311212213121313 ( )()()()1()()()( )()()()o H H H o H J J J J m z z z z z z z z z O O z z z z z z z O O J J J J m z z z z z z z z νννωωω ωωωω ωω ωωωωνω=+++=-= += +=+-=++++++解: 14-12、机器主轴的角速度值1()rad ?从降到时2()rad ?,飞轮放出的功 (m)W N ,求飞轮的转动惯量。 max min 122 2 121 ()2 2F F Wy M d J W J ?ν??ωωωω==-=-? 解: 14-15、机器的一个稳定运动循环与主轴两转相对应,以曲柄和连杆所组成的转动副A 的中心为等效力的作用点,等效阻力变化曲线c A F S ν-如图14-22所示。等效驱动力a F ν为常数,等效构件(曲柄)的平均角速度值25/m rad s ?=, 3 H 1 2 3 2 1 H O 1 O 2

不均匀系数0.02δ=,曲柄长度0.5OA l m =,求装在主轴(曲柄轴)上的飞轮的转动惯量。 (a) W v 与时间关系图 (b )、能量指示图 a 2 24()2 3015m Wy=25N m 25 6.28250.02 c va OA vc OA OA va F W W F l F l l F N Mva N J kg m νν=∏?∏=∏+==∏= =?解:稳定运动循环过程 14-17、图14-24中各轮齿数为12213z z z z =、,,轮1为主动轮,在轮1上加力矩1M =常数。作用在轮 2 上的阻力距地变化为: 2r 22r 020M M M ??≤≤∏==∏≤≤∏=当时,常数;当时,,两轮对各自中心的转动惯量为12J J 、。轮的平均角速度值为m ω。若不均匀系数为δ,则:(1)画出以轮1为等效构件的等效力矩曲线M ν?-;(2)求出最大盈亏功;(3)求飞轮的转动惯量F J 。 图14-24 习题14-17图 40Nm 15∏ 12.5∏ 22.5∏ 15Nm ∏ 2∏ 2.5∏ 4∏ 25∏ 1 1 z 2 z 2 r M 2 M ∏ 2∏ 2?

2016结构动力学(硕)答案.pdf

《结构动力学》试题(硕) 一、名词解释:(每题3分,共15分) 约束动力系数广义力虚功原理达朗贝原理 二、简答:(每题5分,共20分) 1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关?2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么?3.简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是什么? 答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有: 0T m n m , 0T m n k (式中m 、n 为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。 利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的 N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦) 。分别求解每一个正规坐标的反应,然后根据 叠加V=ΦY 即得出用原始坐标表示的反应。由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。若体系为非线性,可采用逐步积分法进行反应分析。 4.什么是结构的动力自由度?动力自由度与静力自由度的区别何在? 答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。 静力自由度是指确定体系在空间中的位置所需的独立参数的数目。 前者是由于系统的弹性变形而引起各质点的位移分量; 而后者则是指结构中的刚体由于约束不够而产生的刚 体运动。三、计算(每题13分,共65分) 1.图1所示两质点动力体系,用 D ’Alembert 原理求运动方程。图1

2.图2所示,一长为l,弯曲刚度为EI的悬臂梁自由端有一质量为m的小球,小球又被支承 在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。 图2 3.图3所示,一重mg的圆柱体,其半径为r,在一半径为R的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。

结构力学练习题及答案

一.是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题分4小题,共 11分) 1 . (本小题 3分) 图示结构中DE 杆的轴力F NDE =F P /3。( ). 2 . (本小题 4分) 用力法解超静定结构时,只能采用多余约束力作为基本未知量。 ( ) 3 . (本小题 2分) 力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。( ) 4 . (本小题 2分) 用位移法解超静定结构时,基本结构超静定次数一定比原结构高。 ( ) 二.选择题(将选中答案的字母填入括弧内)(本大题分5小题,共21分) 1 (本小题6分) 图示结构EI=常数,截面A 右侧的弯矩为:( ) A .2/M ; B .M ; C .0; D. )2/(EI M 。 2. (本小题4分) 图示桁架下弦承载,下面画出的杆件内力影响线,此杆件是:( ) A.ch; B.ci; C.dj; D.cj. 2

3. (本小题 4分) 图a 结构的最后弯矩图为: A. 图b; B. 图c; C. 图d; D.都不对。( ) ( a) (b) (c) (d) 4. (本小题 4分) 用图乘法求位移的必要条件之一是: A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。 ( ) 5. (本小题3分) 图示梁A 点的竖向位移为(向下为正):( ) A.F P l 3 /(24EI); B. F P l 3 /(!6EI); C. 5F P l 3 /(96EI); D. 5F P l 3 /(48EI). 三(本大题 5分)对图示体系进行几何组成分析。 F P =1

研究生《机械系统动力学》试卷及答案

太原理工大学研究生试题 姓名: 学号: 专业班级: 机械工程2014级 课程名称: 《机械系统动力学》 考试时间: 120分钟 考试日期: 题号 一 二 三 四 五 六 七 八 总分 分数 1 圆柱型仪表悬浮在液体中,如图1所示。仪表质量为m ,液体的比重为ρ,液体的粘性阻尼系数为r ,试导出仪表在液体中竖直方向自由振动方程式,并求固有频率。(10分) 2 系统如图2所示,试计算系统微幅摆动的固有频率,假定OA 是均质刚性杆,质量为m 。(10分) 3 图3所示的悬臂梁,单位长度质量为ρ,试用雷利法计算横向振动的周期。假定梁的 变形曲线为?? ? ?? -=x L y y M 2cos 1π(y M 为自由端的挠度)。(10分) 4 如图4所示的系统,试推导质量m 微幅振动的方程式并求解θ(t)。(10分) 5 一简支梁如图5所示,在跨中央有重量W 为4900N 电机,在W 的作用下,梁的静挠度δst=,粘性阻尼使自由振动10周后振幅减小为初始值的一半,电机n=600rpm 时,转子不平衡质量产生的离心惯性力Q=1960N ,梁的分布质量略去不计,试求系统稳态受迫振动的振幅。(15分) 6 如图6所示的扭转摆,弹簧杆的刚度系数为K ,圆盘的转动惯量为J ,试求系统的固有频率。(15分) 7如图7一提升机,通过刚度系数m N K /1057823?=的钢丝绳和天轮(定滑轮)提升货载。货载重量N W 147000=,以s m v /025.0=的速度等速下降。求提升机突然制动时的钢丝绳最大张力。(15分) 8某振动系统如图8所示,试用拉个朗日法写出动能、势能和能量散失函数。(15分) 太原理工大学研究生试题纸

结构动力学习题解答一二章

第一章 单自由度系统 1、1 总结求单自由度系统固有频率的方法与步骤。 单自由度系统固有频率求法有:牛顿第二定律法、动量距定理法、拉格朗日方程法与能量守恒定理法。 1、 牛顿第二定律法 适用范围:所有的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析,得到系统所受的合力; (2) 利用牛顿第二定律∑=F x m && ,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 2、 动量距定理法 适用范围:绕定轴转动的单自由度系统的振动。 解题步骤:(1) 对系统进行受力分析与动量距分析; (2) 利用动量距定理J ∑=M θ &&,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 3、 拉格朗日方程法: 适用范围:所有的单自由度系统的振动。 解题步骤:(1)设系统的广义坐标为θ,写出系统对于坐标θ的动能T 与势能U 的表达式;进一步写求出拉格朗日函数的表达式:L=T-U ; (2)由格朗日方程 θθ ??- ???L L dt )(&=0,得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 4、 能量守恒定理法 适用范围:所有无阻尼的单自由度保守系统的振动。 解题步骤:(1)对系统进行运动分析、选广义坐标、写出在该坐标下系统的动能T 与势能U 的表达式;进一步写出机械能守恒定理的表达式 T+U=Const (2)将能量守恒定理T+U=Const 对时间求导得零,即 0) (=+dt U T d ,进一步得到系统的运动微分方程; (3) 求解该方程所对应的特征方程的特征根,得到该系统的固有频率。 1、2 叙述用衰减法求单自由度系统阻尼比的方法与步骤。 用衰减法求单自由度系统阻尼比的方法有两个:衰减曲线法与共振法。 方法一:衰减曲线法。 求解步骤:(1)利用试验测得单自由度系统的衰减振动曲线,并测得周期与相邻波峰与波谷的幅值i A 、1+i A 。 (2)由对数衰减率定义 )ln( 1 +=i i A A δ, 进一步推导有 2 12ζ πζδ-= ,

结构力学试题及答案汇总(完整版)

. ... . 院(系) 建筑工程系 学号 三 明 学院 姓名 . 密封 线 内 不 要 答 题 密封……………………………………………………………………………………………………… ……………………………………………结构力学试题答案汇总 一、选择题(每小题3分,共18分) 1. 图 示 体 系 的 几 何 组 成 为 : ( A ) A. 几 何 不 变 , 无 多 余 联 系 ; B. 几 何 不 变 , 有 多 余 联 系 ; C. 瞬 变 ; D. 常 变 。 (第1题) (第4题) 2. 静 定 结 构 在 支 座 移 动 时 , 会 产 生 : ( C ) A. 力 ; B. 应 力 ; C. 刚 体 位 移 ; D. 变 形 。 3. 在 径 向 均 布 荷 载 作 用 下 , 三 铰 拱 的 合 理 轴 线 为: ( B ) A .圆 弧 线 ; B .抛 物 线 ; C .悬 链 线 ; D .正 弦 曲 线 。 4. 图 示 桁 架 的 零 杆 数 目 为 : ( D ) A. 6; B. 7; C. 8; D. 9。 5. 图 a 结 构 的 最 后 弯 矩 图 为 : ( A ) A .图 b ; B .图 c ; C .图 d ; D .都不 对 。 6. 力 法 方 程 是 沿 基 本 未 知 量 方 向 的 : ( C ) A .力 的 平 衡 方 程 ; B .位 移 为 零 方 程 ; C .位 移 协 调 方 程 ; D .力 的 平 衡 及 位 移 为 零 方 程 。

. ... . 二、填空题(每题3分,共9分) 1.从 几 何 组 成 上 讲 , 静 定 和 超 静 定 结 构 都 是___几何不变____ 体 系 , 前 者___无__多 余 约 束 而 后 者____有___多 余 约 束 。 2. 图 b 是 图 a 结 构 ___B__ 截 面 的 __剪力__ 影 响 线 。 3. 图 示 结 构 AB 杆 B 端 的 转 动 刚 度 为 ___i___, 分 配 系 数 为 ____1/8 ____, 传 递 系 数 为 ___-1__。 三、简答题(每题5分,共10分) 1.静定结构内力分析情况与杆件截面的几何性质、材料物理性质是否相关? 为什么? 答:因为静定结构内力可仅由平衡方程求得,因此与杆件截面的几何性质无关, 与材料物理性质也无关。 2.影响线横坐标和纵坐标的物理意义是什么? 答:横坐标是单位移动荷载作用位置,纵坐标是单位移动荷载作用在此位置时物 理量的影响系数值。 四、计算分析题,写出主要解题步骤(4小题,共63分) 1.作图示体系的几何组成分析(说明理由),并求指定杆1和2的轴力。(本题16分) (本题16分)1.因为w=0 所以本体系为无多约束的几何不变体系。(4分) F N1=- F P (6分); F N2=P F 3 10(6分)。 2.作 图 示 结 构 的 M 图 。(本题15分)

机械动力学考试答案

图4 机器安装示意图 88、一个质量20Kg 的机器,按图4所示方式安装。若弹簧的总刚度 为17KN/m ,总阻尼为300m s N ?。试求初始条mm x 250=,s mm x 3000= 时的振动响应。 88、解:由0=++kx x c x m 代入数据后得 08501501017300203=++=?++x x x x x x (8分) 其中,152=a ,8502=n ω,计算阻尼比和固有圆频率 17.2826.012.291126.02 .295.722=-?=-=<===ζωωωζn d n a (4分) 将初始条件代入 00020020arctan )(ax x x ax x x A d d +=++= ω?ω (4分) 得: o d d ax x x mm ax x x A 3.555.25.730017.2825arctan arctan )(4.30)17.2825.7300(25)(0002220020?+?=+==?++=++= ω?ω(2分)

则系统的振动响应为 4. 305.7+ =-t x t(2分)e sin( 28 ) 96 .0 . 17

1. “机械动力学”主要研究哪些内容,请以任一机器为对象举例说明研究内容及其相互关系。 答:机械动力学是研究机械在力的作用下的运动和机械在运动中产生的力,并从力与运动的相互作用的角度进行机械设计和改进的科学。动力学主要研究内容概括起来有:1,共振分析;2,振动分析与动载荷计算;3,计算机与现代测试技术的运用;4,减震与隔振。柴油机上的发动机,发动机不平衡时会产生很强的地面波,从而产生噪声,而承受震动的结构,发动机底座,会由于振动引起的交变应力而导致材料的疲劳失效,而且振动会加剧机械零部件的磨损,如轴承和齿轮的磨损等,并使机械中的紧固件如螺母等变松。在加工时还会导致零件加工质量变差。通过对共振的研究和分析,使机械的运转频率避免共振区,避免机械共振事故的发生,通过振动分析与动载荷计算可以求出在外力作用下机械的真实运动,运用计算机和现代测试技术对机械的运行状态进行检测,以及故障诊断,模态分析以及动态分析,现实中机器运转时由于各种激励因素的存在,不可避免发生振动,为了减小振动,通常在机器底部加装弹簧,橡胶等隔振材料。 2.简述在刚性运动前提下,如何进行运动构件的真实运动分析求解(请列出步骤)? 答:首先建立等效力学模型,将复杂的机械系统简化为一个构件,即等效构件,根据质点系动能定理,将作用于机械系统上的所有外力和外力矩、所有构件的质量和转动惯量,都向等效构件转化;其次计算等效构件上的等效量(包括等效力矩,等效力,等效质量,等效转动惯量);再次建立等效构件的运动方程式,有两种形式,能量形式和力矩形式;最后通过方程式求出等效构件的角速度函数和角加速度函数,这样便可以求出机械系统的真实运动规律。 3.在弹性运动假设下,有哪些弹性动力学建模方法,各有什么特点?请解释“瞬时刚化” 的概念。) 答:弹性动力学模型有集中参数模型和有限元模型。集中参数模型建立起的运动方程为常微分方程,但是由于质量简化过多,模型粗糙,精度比较差;有限元建立的运动方程也为常微分方程,但相较集中参数模型精确,适应性广,可以模拟复杂形状的构件,运算模型统一。瞬时刚化:机构在运动到循环中的某一位置时,可将机构的形状和作用在其上的载荷瞬时冻结起来,从而可瞬时的将机构看做一个刚体结构。

机械系统动力学试题

机械系统动力学试题 一、 简答题: 1.机械振动系统的固有频率与哪些因素有关?关系如何? 2.简述机械振动系统的实际阻尼、临界阻尼、阻尼比的联系与区别。 3.简述无阻尼单自由度系统共振的能量集聚过程。 4. 简述线性多自由度系统动力响应分析方法。 5. 如何设计参数,使减振器效果最佳? 二、 计算题: 1、 单自由度系统质量Kg m 10=, m s N c /20?=, m N k /4000=, m x 01.00=, 00=? x ,根据下列条件求系统的总响应。 (a ) 作用在系统的外激励为t F t F ωcos )(0=,其中N F 1000=, s rad /10=ω。 (b ) 0)(=t F 时的自由振动。 2、 质量为m 的发电转子,它的转动惯量J 0的确定采用试验方法:在转子径向R 1的地方附加一小质量m 1。试验装置如图2所示,记录其振动周期。 a )求发电机转子J 0。 b )并证明R 的微小变化在R 1=(m/m 1+1)·R 时有最小影响。 3、 如图3所示扭转振动系统,忽略阻尼的影响 J J J J ===321,K K K ==21 (1)写出其刚度矩阵; (2)写出系统自由振动运动微分方程; (2)求出系统的固有频率; (3)在图示运动平面上,绘出与固有频率对应的振型图。 1 θ(图2)

(图3) 4、求汽车俯仰振动(角运动)和跳振(上下垂直振动)的频率以及振 动中心(节点)的位置(如图4)。参数如下:质量m=1000kg,回转半径r=0.9m,前轴距重心的距离l1=0.1m,后轴距重心的距离l2=1.5m,前弹簧刚度k1=18kN/m,后弹簧刚度k2=22kN/m (图4) 5、如5图所示锻锤作用在工件上的冲击力可以近似为矩形脉冲。已知 工件,铁锤与框架的质量为m1=200 Mg,基础质量为m2=250Mg,弹簧垫的刚度为k1=150MN/m,土壤的刚度为k2=75MN/m.假定各质量的初始位移与速度均为零,求系统的振动规律。

《机械动力学》——期末复习题及答案

《机械动力学》期末复习题及答案1、判断 1.机构平衡问题在本质上是一种以动态静力分析为基础的动力学综合,或动力学设计。 答案:正确 2.优化平衡就是采用优化的方法获得一个绝对最佳解。 答案:错误 3.惯性力的计算是建立在主动构件作理想运动的假定的基础上的。 答案:正确 4.等效质量和等效转动惯量与机械驱动构件的真实速度无关。 答案:正确 5.作用于等效构件上的等效力(或等效力矩)所作的功等于作用于系统上的外力所作的功。答案: 错误 6.两点动代换后的系统与原有系统在静力学上是完全等效的。 答案:错误 7.对于不存在多余约束和多个自由度的机构,动态静力分析是一个静定问题。 答案:错误 8.摆动力的完全平衡常常会导致机械结构的简单化。 答案:错误 9.机构摆动力完全平衡的条件是:机构运动时,其总质心作变速直线运动。 答案:错误 10.等效质量和等效转动惯量与质量有关。 答案:错误 11.平衡是在运动设计完成之前的一种动力学设计。 答案:错误 12.在动力分析中主要涉及的力是驱动力和生产阻力。 答案:正确 13.当取直线运动的构件作为等效构件时,作用于系统上的全部外力折算到该构件上得到等效力。答案:正确 14.摆动力的平衡一定会导致机械结构的复杂化。 答案:错误 15.机器人操作机是一个多自由度的闭环的空间机构。 答案:错误 16.质量代换是将构件的质量用若干集中质量来代换,使这些代换质量与原有质量在运动学上等效答案:正确 17.弹性动力分析考虑构件的弹性变形。 答案:正确 18.机构摆动力矩完全平衡的条件为机构的质量矩为常数。 答案:错误

19.拉格朗日方程是研究约束系统静力动力学问题的一个普遍的方法。 答案:正确 20.在不含有变速比传动而仅含定速比传动的系统中,传动比为常数。 答案:正确 21.平衡分析着眼于全部消除或部分消除引起震动的激振力。 答案:正确 22.通路定理是用来判断能否实现摆动力完全平衡的理论。 答案:错误 23.无论如何,等效力与机械驱动构件的真实速度无关。 答案:正确 24.综合平衡不仅考虑机构在机座上的平衡,同时也考虑运动副动压力的平衡和输入转矩的平衡。答案:正确 25.速度越快,系统的固有频率越大。 答案:错误 26.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除惯性载荷。 答案:正确 27.优化综合平衡是一个多目标的优化问题,是一种部分平衡。 答案:正确 28.机构摆动力完全平衡的条件为机构的质量矩为常数。 答案:正确 29.当以电动机为原动机时,驱动力矩是速度的函数。 答案:错误 30.为了使得等效构件的运动与机构中该构件的运动一致,要将全部外力等效地折算到该机构上这 一折算是依据功能原理进行的。 答案:正确 2、单选 1.动力学反问题是已知机构的(),求解输入转矩和各运动副反力及其变化规律。 A.运动状态 B.运动状态和工作阻力 C.工作阻力 D.运动状态或工作阻力 答案:B 2.平衡的实质就是采用构件质量再分配等手段完全地或部分地消除()。 A.加速度 B.角加速度 C.惯性载荷 D.重力 答案: C 3.摆动力的完全平衡常常会导致机械结构的()。 A.简单化

13结构动力学习题

1.1 不计轴向变形,图示体系的振动自由度为2。 1.2 不计轴向变形,图示体系的振动自由度为1。 1.3 不计轴向变形,图示体系的振动自由度为2。 1.4 结构的自振频率不仅与质量和刚度有关,还与干扰力有关。 1.5 单自由度体系,考虑阻尼时,频率变小。 1.6 弹性力与位移反向,惯性力与加速度反向,阻尼力与速度反向。 1.7 如简谐荷载作用在单自由度体系的质点上且沿着振动方向,体系各截面的内力和位移动力系数相同。 1.8 在建立质点振动微分方程时,考虑不考虑质点的重力,对动位移无影响。 1.9 图示体系在简谐荷载作用下,不论频率比如何,动位移y(t) 总是与荷载P(t) 同向。 1.10 多自由度体系自由振动过程中,某一主振型的惯性力不会在其它主振型上做功。 二、单项选择题 2.1 在单自由度体系受迫振动的动位移幅值计算公式中,yst是 A 质量的重力所引起的静位移 B 动荷载的幅值所引起的静位移 C 动荷载引起的动位移 D 质量的重力和动荷载复制所引起的静位移 2.2 无阻尼单自由度体系的自由振动方程:。则质点的振幅y max= 2.3 多自由度振动体系的刚度矩阵和柔度矩阵的关系是 2.4 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是

2.5 图示四结构,柱子的刚度、高度相同,横梁刚度为无穷大,质量相同,集中在横梁上。它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,那么它们的关系是 2.6 已知两个自由度体系的质量矩阵为,Y22等于 A -0.5 B 0. 5 C 1 D -0.25 2.7 不计阻尼,不计自重,不考虑杆件的轴向变形,图示体系的自振频率为 2.8 图示四个相同的桁架,只是集中质量m的位置不同,,它们的自振频率自左至右分别为ω1,ω2,ω3,ω4,(忽略阻尼及竖向振动作用,各杆EA为常数),那么它们的关系是 2.9 设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是 A ω越大β也越大 B θ越大β也越大 C θ/ω越接近1,β绝对值越大Dθ/ω越大β也越大 2.10 当简谐荷载作用于有阻尼的单自由度体系时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是

工程力学结构动力学复习题

工程力学结构动力学复习题

工程力学结构动力学复习题 一、简答题 1、结构的动力特性主要指什么?对结构做动力分析可分为哪几个阶段? 2、何谓结构的振动自由度?它与机动分析中的自由度有何异同? 3、何谓动力系数?简谐荷载下动力系数与哪些因素有关? 4、动力荷载与静力荷载有什么区别?动力计算与静力计算的主要差别是什么? 5、为什么说结构的自振频率和周期是结构的固有性质?怎样改变他们? 6、简述振型分解法是如何将耦联的运动方程解耦的. 7、时域法求解与频域法求解振动问题各有何特点? 8、什么叫动力系数,动力系数大小与哪些因素有关?单自由度体系位移动力系数与内力动力系数是否一样? 答:动力放大系数是指动荷载引起的响应幅值与动荷载幅值作为静荷载所引起的结构静响应 之比值。简谐荷载下的动力放大系数与频率比、

阻尼比有关。当惯性力与动荷载作用线重合时,位移动力系数与内力动力系数相等;否则不相等。原因是:当把动荷载换成作用于质量 的等效荷载时,引起的质量位移相等,但内力并不等效,根据动力系数的概念可知不会相等。 9、振型正交性的物理意义是什么?振型正交性有何应用? 答:由振型关于质量、刚度正交性公式可知,i 振型上的惯性力在j 振型上作的虚功为0。 由此可知,既然每一主振型相应的惯性力在其他主振型上不做功,那么它的振动能量就不会 转移到别的主振型上去。换句话说,当一个体系只按某一主振型振动时,不会激起其他主振 型的振动。这说明各个主振型都能单独出现,彼此线性无关。这就是振型正交的物理意义。 一是可用于校核振型的正确性;二是在已知振型的条件下,可以通过折算质量与折算刚度计 算对应的频率。而更主要的是任一同阶向量均可用振型的线性组合来表示,在受迫振动分析中,利用振型的正交性,在阻尼矩阵正交的假设下可使运动方程解藕。 10、什么是阻尼、阻尼力,产生阻尼的原因一般

结构动力学硕答案

结构动力学硕答案 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

《结构动力学》试题(硕) 一、 名词解释:(每题3分,共15分) 约束 动力系数 广义力 虚功原理 达朗贝原理 二、简答:(每题5分,共20分) 1. 为什么说自振周期是结构的固有性质?它与结构哪些固有量有关? 2. 阻尼对自由振动有什么影响?减幅系数的物理意义是什么? 3. 简述用振型叠加法求解多自由度体系动力响应的基本原理及适用条件分别是 什么? 答:振型叠加法的基本原理是利用了振型的正交性,既对于多自由度体系,必有: 0T m n m φφ=,0T m n k φφ= (式中m φ、n φ为结构的第m 、n 阶振型,m 、k 为结构的质量矩阵和刚度矩阵)。 利用正交性和正规坐标,将质量与刚度矩阵有非对角项耦合的N 个联立运动微分方程转换成为N 个独立的正规坐标方程(解耦)。分别求解每一个正规坐标的反应,然后根据叠加V=ΦY 即得出用原始坐标表示的反应。 由于在计算中应用了叠加原理,所以振型叠加法只适用于线性体系的动力分析。若体系为非线性,可采用逐步积分法进行反应分析。 4. 什么是结构的动力自由度?动力自由度与静力自由度的区别何在? 答:动力自由度是指结构体系在任意瞬时的一切可能变形中,决定全部质量位置所需的独立参数的数目。 静力自由度是指确定体系在空间中的位置所需的独立参数的数目。前者是由于系统的弹性变形而引起各质点的位移分量;而后者则是指结构中的刚体由于约束不够而产生的刚体运动。 三、 计算(每题13分,共65分) 1. 图1所示两质点动力体系,用D ’Alembert 原理求运动方程。 图1 2. 图2所示,一长为l ,弯曲刚度为EI 的悬臂梁自由端有一质量为m 的小 球,小球又被支承在刚度为k2的弹簧上,忽略梁的质量,求系统的固有频率。 图2 3.图3所示,一重mg 的圆柱体,其半径为r ,在一半径为R 的弧表面上作无滑动的滚动,求在平衡位置(最低点)附近作微振动的固有频率。 图3 4.图4所示三层钢架结构,假定结构无阻尼,计算下述给定初始条件产生的自由振动。 初始条件 y(0)={0.060.050.04}m y (0)= {0.0 0.30.0 }m/s 图4

机械系统动力学

《机械系统动力学》 机械系统动力学中分析中的 仿真前沿 学院:机械工程学院 专业:机制一班 姓名:董正凯 学号:S12080201006

摘要 计算机及其相应技术的发展为建立机械系统仿真提供了一个有效的手段,机械系统动力学中的许多难题均可以采用仿真技术来解决,本文主要讲述了目前在机械系统动力学的分析中仿真技术主要的研究重点及其研究中主要存在的问题。 关键词:机械系统动力学仿真系统建模

机械系统动力学中分析中的仿真前沿 机械专业既是一个传统的专业,又是一个不断融合新技术、不断创新的专业。随着科技的发展,计算机仿真技术越来越广泛地应用在各个领域。基于多体系统动力学的机械系统动力学分析与仿真技术,从二十世纪七十年代开始吸引了众多研究者,已解决了自动化建模和求解问题的基础理论问题,并于八十年代形成了一系列商业化软件,到了九十年代,机械系统动力学分析与仿真技术更已能成熟应用于工业界。 目前的研究重点表现在以下几个方面: (1)柔性多体系统动力学的建模理论 多刚体系统的建模理论已经成熟,目前柔性多体系统的建模成了一个研究热点,柔性多体系统动力学由于本身既存在大范围的刚体运动又存在弹性变形运动,因而其与有限元分析方法及多刚体力学分析方法有密切关系。事实上,绝对的刚体运动不存在,绝对的弹性动力学问题在工程实际中也少见,实际工程问题严格说都是柔性多体动力学问题,只不过为了问题的简化容易求解,不得不化简为多刚体动力学问题、结构动力学问题来处理。然而这给使用者带来了不便,同一个问题必须利用两种分析方法处理。大多商用软件系统采用的浮动标架法对处理小变形部件的柔性系统较为有效,对包含大变形部件的柔体多体系统会产生较大仿真分析误差甚至完全错误的仿真结论。最近提出的绝对节点坐标方法,是对有限元技术的拓展和较大创新,在常规有限元中梁单元、板壳单元采用节点微小转动作为节点坐标,因而不能精确描述刚体运动。绝对节点坐标法则采用节点位移和节点斜率作为节点坐标,其形函数可以描述任意刚体位移。利用这种方法梁和板壳可以看作是等参单元,系统的质量阵为一常数阵,然而其刚度阵为强非线性阵,这与浮动标架法有截然不同的区别。这种方法已成功应用于手术线的大变形仿真中。寻求有限元分析与多刚体力学的统一近年来成为多体动力学分析的一个研究热点,绝对节点坐标法在这方面有极大的潜力,可以说绝对节点坐标法是柔性多体力学发展的一个重要进展。另外,各种柔性多体的分析方法之间是否存在某种互推关系也引起了人们的注意,如两个主要分析方法:浮动标架法、绝对节点坐标法之间是否可以互推?这些都具有重大理论意义。 另外柔性多体系统动力学中由于大范围的刚体运动与弹性变形运动相互耦合,采用浮动标架法时,即便是小变形问题,由于处于高速旋转仍会产生动力刚化现象。如果仅仅采用小变形理论,将产生错误的结论,必须计及动力刚化效应。动力刚化现象已成为柔性多体动力学的一个重要研究方面。如何利用简单的补偿方法来考虑动力刚化是问题的关键。 柔性多体系统动力学中关于柔性体的离散化表达存在三种形式:基于有限元分析的模态表达,基于试验模态分析的模态表达和基于有限元节点坐标的有限元列式。有限元列式由于大大地增加了系统的求解规模使其应用受到限制,因而一般采用模态分析方法,对模态进行模态截断、模态综合,从而缩减系统的求解规模。为了保证求解精度,同时又能提高求解速度如何进行模态截断、模态综合就成了一个关键问题。再者如何充分利用试验模态分析的结果也是一个关键性研究课题,这一方面的研究还不够深入。 柔性多体系统动力学可以计算出每一时刻的弹性位移,通过计算应变可计算计算出应力。由于一般的多柔体分析程序不具备有限元分析功能,因而柔性体的应力分析都是由有限元程序处理。由于可以计算出每个柔性体的应力的变化历

结构动力学思考题解答

结构动力学思考题 made by 云屹 思考题一 1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同? 主要区别为: (1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响; (2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化; (3)动力学的求解方法通常与荷载类型有关,静力学一般无关。 运动方程的不同: 动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。 2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数; 静力自由度:确定结构体系在空间中的几何位置的独立参数。 意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。 3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体 4、在结构振动的过程中引起阻尼的原因有哪些? (1)材料的摩擦或材料变形引起的热耗散; (2)构件连接处或结构构件与非结构构件之间的摩擦; (3)结构外部介质的阻尼。 5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变? 如果满足条件: (1)线性问题; (2)重力的影响预先被平衡; 则动位移的运动方程不会改变,否则会改变。 思考题二 1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]? k ij:由第j自由度的单位位移所引起的第i自由度的力; m ij:由第j自由度的单位加速度所引起的第i自由度的力。 依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。

结构力学试题及答案汇总完整版

. .. . 院(系) 建筑工程系 学号 三明学院 姓名 . 密封线内不要答题 密封…………………………………………………………………………………………………………………………………………………… 结构力学试题答案汇总 一、选择题(每小题3分,共18分) 1. 图 示 体 系 的 几 何 组 成 为 : ( A ) A. 几 何 不 变 , 无 多 余 联 系 ; B. 几 何 不 变 , 有 多 余 联 系 ; C. 瞬 变 ; D. 常 变 。 (第1题) (第4题) 2. 静 定 结 构 在 支 座 移 动 时 , 会 产 生 : ( C ) A. 力 ; B. 应 力 ; C. 刚 体 位 移 ; D. 变 形 。 3. 在 径 向 均 布 荷 载 作 用 下 , 三 铰 拱 的 合 理 轴 线 为: ( B ) A .圆 弧 线 ; B .抛 物 线 ; C .悬 链 线 ; D .正 弦 曲 线 。 4. 图 示 桁 架 的 零 杆 数 目 为 : ( D ) A. 6; B. 7; C. 8; D. 9。 5. 图 a 结 构 的 最 后 弯 矩 图 为 : ( A ) A .图 b ; B .图 c ; C .图 d ; D .都不 对 。 6. 力 法 方 程 是 沿 基 本 未 知 量 方 向 的 : ( C ) A .力 的 平 衡 方 程 ; B .位 移 为 零 方 程 ; C .位 移 协 调 方 程 ; D .力 的 平 衡 及 位 移 为 零 方 程 。

. .. . 二、填空题(每题3分,共9分) 1.从 几 何 组 成 上 讲 , 静 定 和 超 静 定 结 构 都 是___几何不变____体 系 , 前 者___无__多 余 约 束 而 后 者____有___多 余 约 束 。 2. 图 b 是 图 a 结 构 ___B__ 截 面 的 __剪力__ 影 响 线 。 3. 图 示 结 构 AB 杆 B 端 的 转 动 刚 度 为 ___i___, 分 配 系 数 为 ____1/8 ____, 传 递 系 数 为 ___-1__。 三、简答题(每题5分,共10分) 1.静定结构力分析情况与杆件截面的几何性质、材料物理性质是否相关? 为什么? 答:因为静定结构力可仅由平衡方程求得,因此与杆件截面的几何性质无关,与材料物理性质也无关。 2.影响线横坐标和纵坐标的物理意义是什么? 答:横坐标是单位移动荷载作用位置,纵坐标是单位移动荷载作用在此位置时物理量的影响系数值。 四、计算分析题,写出主要解题步骤(4小题,共63分) 1.作图示体系的几何组成分析(说明理由),并求指定杆1和2的轴力。(本题16分) (本题16分)1.因为w=0 所以本体系为无多约束的几何不变体系。(4分) F N1=- F P (6分); F N2= P F 3 10(6分) 。 2.作 图 示 结 构 的 M 图 。(本题15分)

作业(二)答案:单自由度机械系统动力学等效转动惯量等效力矩汇编

作业(二)单自由度机械系统动力学等效转动惯量等效力矩 1.如题图1所示的六杆机构中,已知滑块5的质量为m 5=20kg ,l AB =l ED =100mm ,l BC =l CD =l EF =200mm ,φ1=φ2=φ3=90o ,作用在滑块5上的力P=500N .当取曲柄AB 为等效构件时,求机构在图示位置的等效转动惯量和力P的等效力矩. 图1 答案:解此题的思路是:①运动分析求出机构处在该位置时,质心点的速度及各构件的角速度. ②根据等效转动惯量,等效力矩的公式求出. 做出机构的位置图,用图解法进行运动分析. V C =V B =ω1×l AB ω2=0 V D =V C =ω1×l AB 且ω3=V C /l CD =ω1 V F =V D =ω1×l AB (方向水平向右) ω4=0 由等效转动惯量的公式: e J =m 5(V F /ω1)2 =20kg ×(ω1×l AB /ω1)2 =0.2kgm 2 由等效力矩的定义: e M =500×ω1×l AB ×cos180o /ω1=-50Nm (因为VF 的方向 与P方向相反,所以α=180o ) ∑=+=n i i Si Si i e J v m J 1 2 1 21 ])( )( [ωωω∑=±=n i i i i i i e M v F M 1 1 1 )]( )( cos [ωωωα

2.题图2所示的轮系中,已知各轮齿数:z 1=z 2’=20,z 2=z 3=40,J 1=J 2’=0.01kg ·m 2,J 2=J 3=0.04kg ·m 2.作用在轴O3上的阻力矩M3=40N ·m .当取齿轮1为等效构件时,求机构的等效转动惯量和阻力矩M3的等效力矩. 图2 答案:该轮系为定轴轮系. i 12=ω1/ω2=(-1)1z 2/z 1 ∴ ω2=-ω1/2=-0.5×ω1 ω2’=ω2=-0.5×ω1 i 2’3=ω2’/ω3=(-1)1z 3/z 2’ ∴ ω3=0.25×ω1 根据等效转动惯量公式 e J = J 1×(ω1/ω1)2 +J 2×(ω2/ω1)2 +J 2’×(ω2’/ω1)2 +J 3×(ω3/ω1)2 =J 1+J 2/4+J 2’/4 +J 3/16 =0.01+0.04/4+0.01/4+0.04/16 =0.025 kg ·m 2 根据等效力矩的公式: e M =M 3×ω3/ω1=40×0.25ω1/ω1=10N ·m 3.在题图3所示减速器中,已知各轮的齿数:z 1=z 3=25,z 2=z 4=50,各轮的转动惯量J 1=J 3=0.04kg ·m 2,J 2=J 4=0.16kg ·m 2,(忽略各轴的转动惯量),作用在轴Ⅲ上的阻力矩M 3=100N ·m .试求选取轴 ∑=+=n i i Si Si i e J v m J 12 1 21 ])( ( [ωωω∑=±=n i i i i i i e M v F M 11 1 )]( )( cos [ωωωα

相关文档
最新文档