锁模脉冲激光器概述
锁模激光器原理
锁模激光器原理
嘿,大家知道吗,锁模激光器就像是一个超级有纪律的音乐团队!想象一下,激光就像是一束束音符,而锁模呢,就是让这些音符整整齐齐、有规律地排列起来,演奏出美妙的“激光乐章”。
简单来说,锁模激光器的原理就是让激光器发出的光的各个模式之间保持固定的相位关系。
这就好比一群人跑步,大家步伐一致,节奏不乱。
在这个神奇的过程中,有个关键的角色叫“锁模元件”,它就像是乐队的指挥,让所有的光都听它的指挥,乖乖地按照特定的节奏来。
通过锁模,激光束就变得超级厉害啦!它的能量会高度集中,脉冲宽度会变得非常窄,就像射出的箭一样又快又准。
生活中其实也有类似的情况哦,比如我们排队整齐地走路,或者一起合唱时保持相同的节奏,这和锁模激光器的原理有点像呢!是不是很有趣呀?这样一解释,大家是不是对锁模激光器原理有了更清楚的认识啦!。
激光的调Q与锁模
03 锁模技术
锁模技术的原理
锁模技术是一种控制激光脉冲宽度和重复频率的方法,通过在激光振荡 过程中引入周期性的相位调制,使得激光脉冲在时间上被压缩和固定。
锁模技术利用了激光的相干性,通过在激光腔内引入一个或多个调制器, 对激光的相位进行调制,使得激光脉冲在时间上呈现出周期性的变化。
锁模技术
通过在激光器中引入光学反馈,使激光器的多个纵模同时振荡并保持相位锁定状 态。通过控制反馈强度和频率,可以调节脉冲宽度和重复频率,从而实现超短脉 冲激光输出。
技术特点的比较
调Q技术
调Q激光器结构简单,脉冲能量较高 ,但脉冲宽度较大,通常在毫秒量级 。调Q技术适用于需要高功率脉冲激 光的场合,如材料加工、医疗美容等 。
激光的调q与锁模
目录
• 激光基础知识 • 调Q技术 • 锁模技术 • 调Q与锁模技术的比较 • 调Q与锁模技术的发展趋势
01 激光基础知识
激光原理简介
激光原理
激光是受激发射放大原理产生的相干光。在激光器中,通过外部激励源激发原 子或分子从低能态跃迁到高能态,再通过受激辐射放大实现光的放大。
激光产生过程
随着超快激光技术的进步,锁模技术能够实现更短脉冲宽度和更高重复频率的激光输出, 为科学研究、工业应用等领域提供更多可能性。
锁模技术的集成化与小型化
为了满足不同应用场景的需求,锁模技术将进一步实现集成化和小型化,便于携带和使 用。
锁模技术在光通信、光谱分析等领域的应用拓展
锁模技术能够产生超短脉冲激光,具有极高的时间分辨率和光谱分辨率,因此在光通信、 光谱分析等领域具有广泛的应用前景。
锁模激光器的工作原理及其特性
锁模激光器的工作原理及其特性摘要: 本文主要介绍了锁模的基本原理和实现方法,并简单介绍了锁模激光器。
关键词:锁模,速率方程,工作原理一、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。
锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。
使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。
二、锁模的概念一般非均匀加宽激光器,如果不采取特殊选模措施,总是得到多纵模输出。
并且,由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模。
每个纵模输出的电场分量可用下式表示])-([),(q q z t i q q e E t z E ϕυω+= (2.1)式中,q E 、q ω、q ϕ为第q 个模式的振幅、角频率及初相位。
各个模式的初相位q ϕ无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。
但如果使各振荡模式的频率间隔保持一定,并具有确定的相位关系,则激光器将输出一列时间间隔一定的超短脉冲。
这种激光器称为锁模激光器。
假设只有相邻两纵模振荡,它们的角频率差Ω='=L cq q πωω1-- (2.2)它们的初相位始终相等,并有01-==q q ϕϕ。
为分析简单起见,假设二模振幅相等,二模的行波光强I I I q q ==1-。
现在来讨论在激光束的某一位置(设为0=z )处激光场随时间的变化规律。
不难看出,在0=t 时,二纵模的电场均为最大值,合成行波光强是二模振幅和的平方。
由于二模初相位固定不变,所以每经过一定的时间0T 后,相邻模相位差便增加了π2,即πωω2-01-0=T T q q (2.3)因此当0mT t =时(m 为正整数),二模式电场又一次同时达到最大值,再一次发生二模间的干涉增强。
于是产生了具有一定时间间隔的一列脉冲,脉冲峰值光强为I 4,由式(2.3)可求出脉冲周期为cL T '=Ω=220π 如果二纵模初相位随机变化,则在0=z 处,合成行波光强在I 2附近无规涨落。
第六讲激光的调Q与锁模
该式说明了我们观察到的平均光强是各个 纵模光强之和。
11
如果我们能设法使这些各自独立振荡的 纵模在时间上同步,就需要把它们的相位相 互关联起来,使之有一确定的关系。一般说, 能使q+1 - q等于常数,我们就说该激光器各 模的相位q是按照q+1 - q=常数的关系被锁 定。
12
二、多模激光器模式锁定特性
8
激光的频 谱是由等间隔 (C/2L)的分离 谱线所组成, 每条谱线对应 一个纵模,各 纵模间彼此独 立,相位是在 -到之间随 机分布。在时 间域内,其强 度分布有噪声 特性。
振幅
0
v
振幅强度
t
9
当用接收器件来探测非锁模激光器输出 的光功率时,接收到的光强是所有满足阈值 条件的纵模光强的叠加。此时,某一瞬时的 输出光强为:
第六讲 激光的锁模 技术
1
6.1 锁模技术
前面讲过的调Q激光器可以获得巨脉冲, 但是最小脉冲宽度约秒量级。其原因是形成 激光脉冲需要一个建立时间。如果用腔倒空 技术,可以将脉宽压缩到1~2ns,并且由腔 长决定。 锁模技术可以实现更窄的脉宽和更高的 输出峰值功率。
2
锁模技术是从1964年发展起来的,由于 它能使激光脉冲的持续时间达到10-12秒,甚 至更窄(10-15秒)。所以也称为超短脉冲技 术。由于激光输出脉宽很窄,所以峰值功率 可以很高。这种窄脉冲高峰值功率的激光应 用甚广,在受控核聚变、等离子体物理学、 遥测技术、化学及物理动力学、生物学、高 速摄影、光通讯、光雷达、光谱学、全息学 及非线性光学等许多领域都有着重要的应用, 对于研究超高速现象及探索微观世界的规律 性具有极大的意义。
q 2 q 2 C C 2L L
n 0 n 第n个纵模频率为: 0为中心频率,为纵模间隔 设第n个纵模的振幅为An(t), i ( ) t 0 n An (t ) A0e n 其中,A0为振幅, n为初相位。
激光锁模技术
激光锁模技术顾朝晖 宁波大学光电信息工程 116170013摘要:锁模是激光技术中的一个十分重要的组成部分。
调Q 技术,受原理上的限制,其激光器输出的激光脉冲的宽度在1~30115之间。
随着科学技术的发展,在遥测技术、高时间分辨率光谱学、非线性光学、光电子学、化学动力学以及受控核聚变等许多领域要求获得脉冲宽度更窄、峰值功率更高的激光脉冲。
这推动了超短光脉冲技术的研究,发展了激光锁模技术。
关键词:锁模技术,激光脉冲引言:世界上是在1964年底首先对He-Ne 激光器实现锁模并获得了91010~10--s 的光脉冲列。
此后,激光锁模的理论和方法不断推陈出新,相继出现了红宝石、YAG 、钦玻璃及有机染料等锁模激光器,获得了ps(1210-)量级的窄脉冲。
八十年代初,Fork 等人又发展了碰撞锁模的理论,使锁模光脉冲进入了fs(1510-)量级,这是至今在实验室利用其它手段尚不能实现的最短时标。
这就为研究物质微观世界超快速过程提供了新的工具,并将开阔这些领域的新前景。
.1.激光锁模技术的原理自由运转激光器的输出一般包含若干个超过阈值的纵模,如图所示。
这些模的振幅及相位都不固定,激光输出随时间的变化是它们无规则叠加的结果,是一种时间平均的统计值。
假设在激光工作物质的净增益线宽内包含有N 个纵模,每个纵模输出的电场分量可用下式表示:那么激光器输出的光波电场是N 个纵模电场的和,即)()(q q t i q q e E t E ϕω+=)()(q q t i q q e E t E ϕω+=()()q q i t q qE t E e ωφ+=∑()()q q i t q q E t E e ωφ+=∑E q 、ωq 、φq 为第q 个模式的振幅、角频率及初位相。
各个模式的振幅E q 、初位φq 均无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。
假设有三个光波,频率分别为v 1 v 2 和 v 3,沿相同方向传播,并且有如下关系: ,在未锁定时,初相彼此无关。
关于激光器研究(文献综述)
关于锁模光纤激光器的研究前言激光器,顾名思义,即是能发射激光的装置。
1954年制成了第一台微波量子放大器,获得了高度相干的微波束。
1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,1960年T.H.梅曼等人制成了第一台红宝石激光器。
1961年A.贾文等人制成了氦氖激光器。
1962年R.N.霍耳等人创制了砷化镓半导体激光器。
以后,激光器的种类就越来越多。
按工作介质分,激光器可分为气体激光器、固体激光器、半导体激光器和染料激光器4大类。
近来还发展了自由电子激光器,大功率激光器通常都是脉冲式输出。
2004 年,Idly 提出了一种自相似脉冲光纤激光器,同时为这种光纤激光器建立了一种数值模型。
模型中采用非线性薛定谔方程(NLSE)描述脉冲在正色散光纤中的传输,引入了一个与脉冲强度相关的透过率函数将NPE 锁模机理等效成快速可饱和吸收体(SA)的作用0 模拟发现这种激光器输出的脉冲具有抛物线的形状和线性啁啾,能量可高达10nJ。
随着自相似脉冲在实验上的实现,自相似锁模光纤激光器迅速成为超短光脉冲领域的研究热点。
用Idly 模型对自相似锁模光纤激光器的研究不断取得新的进展。
在此我将对激光和激光器的原理和基于原理而做出的进一步的相关研究(如被动锁模光纤激光器)做一个大致的探讨。
主题激光器的原理非线性偏振旋转被动锁模环形腔激光器的结构如图1所示, 激光器由偏振灵敏型光纤隔离器、波分复用器、偏振控制器、输出藕合器、掺yb3+光纤组成。
其工作原理为从偏振灵敏型光纤隔离器输出的线偏振光,经过偏振控制器PCI(1/4 λ波片)后变为椭圆偏振光, 此椭圆偏振光可看成两个频率相同、但偏振方向互相垂直的线偏振光的合成, 它们在掺yb3+增益光纤中藕合传输时, 经过光纤中自相位调制和交叉相位调制的非线性作用, 产生的相移分别为其中n1x 、n1y分别为yb3+光纤沿X、Y方向的线性折射率, n2、l分别为该光纤的非线性折射率系数和长度。
第六讲激光的调Q与锁模
27
1968年开始横模锁定的研究,稍后又开 始了纵横模同时锁定的研究,70年代后又发 展了主动加被动双锁模(损耗调制加相位调 制)、主动加调Q及同步锁模等方法 。 纵模锁定的方法主要有,自锁、主动锁 模(内调制包括损耗调制和相位调制)及被 动锁模(可饱和吸收染料锁模),下面分别 加以讨论。
28
1、纵模锁定
1 t1 2 2 I ( t ) E ( t ) 0 E ( t ) dt t1 q 因为 1 t1 2 1 2 2 0 Eq cos (qt q ) dt Eq t1 q q2 1 t1 0 Eq E cos( t ) cos( t ) dt 0 q q q q q t1 q q 所以 N 1 2 I ( t )= Eq q 0 2
15
下面用数学形式来定量地分析激光输出与 相位锁定的关系。若多模激光器的所有振荡 模均有相等的振幅E0。超过阈值的纵模共有 2N+1个,各相邻模的相位差都是n ,并设处 在介质增益曲线中心的模(q=0),其角频率为 0,其相位为0,即以中心模的相位为参考相 位。
16
振幅特性
对于一个腔长为L的平行平面腔,如果忽 略了腔的非线性色散效应,则两相邻纵模的 频率间隔相等,由(1)式
5
在多模振荡时,如果使振荡模的频率间隔 保持一定,并且使各模之间只有确定的相位 关系,这时激光输出是一系列周期脉冲,这 种激光器叫做“锁模”激光器,相应的技术 叫做“锁模技术”。
6
假设在激光工作物质的净增益线宽内包 含有N个纵模,那么,这时激光器输出的光波 电场是N个纵模电场的和: N (2) E ( t ) E cos( t )
第六讲 激光的锁模 技术
1
6.1 锁模技术
锁模激光器的工作原理及其特性
锁模激光器的工作原理及其特性摘要: 本文主要介绍了锁模的基本原理和实现方法,并简单介绍了锁模激光器。
关键词:锁模,速率方程,工作原理一、引言如果在激光谐振腔内不加入任何选模装置,那么激光器的输出谱线是由许多分立的,由横纵模确定的频谱组成的。
锁模就是将多纵模激光器中各纵模的初相位关系固定,形成等时间间隔的光脉冲序列。
使各纵模在时间上同步,频率间隔也保持一定,则激光器将输出脉宽极窄、峰值功率很高的超短脉冲。
二、锁模的概念一般非均匀加宽激光器,如果不采取特殊选模措施,总是得到多纵模输出。
并且,由于空间烧孔效应,均匀加宽激光器的输出也往往具有多个纵模。
每个纵模输出的电场分量可用下式表示])-([),(q q z t i q q e E t z E ϕυω+= (2.1)式中,q E 、q ω、q ϕ为第q 个模式的振幅、角频率及初相位。
各个模式的初相位q ϕ无确定关系,各个模式互不相干,因而激光输出是它们的无规叠加的结果,输出强度随时间无规则起伏。
但如果使各振荡模式的频率间隔保持一定,并具有确定的相位关系,则激光器将输出一列时间间隔一定的超短脉冲。
这种激光器称为锁模激光器。
假设只有相邻两纵模振荡,它们的角频率差Ω='=L cq q πωω1-- (2.2)它们的初相位始终相等,并有01-==q q ϕϕ。
为分析简单起见,假设二模振幅相等,二模的行波光强I I I q q ==1-。
现在来讨论在激光束的某一位置(设为0=z )处激光场随时间的变化规律。
不难看出,在0=t 时,二纵模的电场均为最大值,合成行波光强是二模振幅和的平方。
由于二模初相位固定不变,所以每经过一定的时间0T 后,相邻模相位差便增加了π2,即πωω2-01-0=T T q q (2.3)因此当0mT t =时(m 为正整数),二模式电场又一次同时达到最大值,再一次发生二模间的干涉增强。
于是产生了具有一定时间间隔的一列脉冲,脉冲峰值光强为I 4,由式(2.3)可求出脉冲周期为cL T '=Ω=220π 如果二纵模初相位随机变化,则在0=z 处,合成行波光强在I 2附近无规涨落。
锁模激光器的产生原理
锁模激光器的产生原理
锁模的基本原理,就是激光器内放置损耗调制元件,假设激光器
的腔长时L,则激光器的震荡频率为c/2L。
调制元件的调制周期刚好是光脉冲在腔内一周所需要的的时间2L/c。
因此在谐振腔中往返运行的激光束在通过调制器的时候,总是处在相同的调制周期内。
假如调制器放在谐振腔的一端,再假设t1时刻,某一光信号受到的损耗是a(t1),则,这一信号在腔内往返一周后,将受到同样的损耗,若a(t1)≠0,则该信号在腔内往返一次则遭受到一次损耗,如果损耗大于增益的话,在信号最后会衰减为零,该部分光消失。
而a(t1)=0时,光每次通过衰减器的损耗为零,加上光波在腔内工作物质中的放大,光会不断得到放大,光波振幅不断变大。
如果腔内的损耗和增益物质控制得当,就可以产生脉冲周期为2L/c的脉冲序列输出。
现假设在增益曲线的中心处的纵模频率为v0,由于它的增益最大,首先得到振荡,通过调制器时,受到损耗调制,调制的结果是产生两个边频v0+/—vm,当损耗的变化频率和腔内纵模的频率间隔相等时,即vm=c/2L时,由调制激发的边频实际上与v0相邻的两个纵模频率相等,它们之间具有相同的振幅和相位关系,它们可以开始震荡。
而后,两个边频开始被放大,得到调制,调制后又激发新的边频,以此类推达到了锁模的目的,这些模式叠加起来发生剧烈的耦合,形成了强而窄的光脉冲序列。
彭亦超2.28。
9字腔光纤锁模激光器原理__概述说明以及解释
9字腔光纤锁模激光器原理概述说明以及解释1. 引言1.1 概述本文介绍的是9字腔光纤锁模激光器的原理、工作方式以及其在实验验证与优化方面的应用。
光纤锁模激光器已经成为现代激光技术领域中一个重要的研究课题,具有广泛的应用前景。
其中,9字腔结构是一种常见且有效的布局形式,在锁模激光器研究中被广泛采用。
1.2 文章结构本文将按照以下顺序来展开对9字腔光纤锁模激光器原理的解释和说明:首先,我们将简要介绍光纤锁模激光器基本原理,并详细探讨9字腔结构的特点和组成部分。
接下来,我们将阐述该类型激光器在不同领域中的应用情况。
然后,我们将深入解释该设备的工作原理,包括关键过程如光传输与放大机制、共振腔的特性与工作方式以及锁模效应及其影响因素。
接着,我们将介绍相关实验验证方法和优化措施,并详细阐述实验步骤、设置参数以及结果与分析。
最后,我们将总结主要研究成果,并对未来发展提出展望。
1.3 目的本文的目的是提供读者关于9字腔光纤锁模激光器原理的全面了解。
通过深入探讨其工作机制和特性,我们希望能够为研究人员提供一个清晰、准确的参考,促进对此领域的研究和应用进一步发展。
同时,我们也希望通过实验验证与优化方法的介绍,为相关科研工作者提供有益的指导,从而推动该技术在实际应用中的优化与改进。
2. 9字腔光纤锁模激光器原理:2.1 光纤锁模激光器基本原理:光纤锁模激光器是一种基于光纤放大的激光器,通过在共振腔中引入特定形状的光路径,实现对输出激光的频率和相位进行稳定控制。
该激光器主要由泵浦源、活性介质和反射镜组成。
2.2 9字腔结构介绍:9字腔是一种常用的光纤锁模激光器结构,它由两个反射镜和一个含有掺铒光纤的双环结构组成。
其中一个反射镜是高反射镜,另一个则是半透镜。
这个结构能够提供高品质因子和较窄的线宽。
2.3 锁模激光器的应用领域:锁模激光器具有频率稳定性好、输出功率高、调制带宽宽等优点,被广泛应用于通信、测量、医疗以及科学研究等领域。
激光器主动锁模相位调制_概述说明以及解释
激光器主动锁模相位调制概述说明以及解释1. 引言1.1 概述激光器是一种非常重要的光学设备,其具有高度的相干性和单色性。
激光器主动锁模相位调制是一种对输出激光进行调控的技术,通过改变激光的相位来实现对其空间和时间特性的调节。
这一技术在现代光通信、激光雷达、激光医疗等领域中得到了广泛应用。
1.2 文章结构本文将首先介绍激光器原理,包括其基本结构和工作原理。
接着将详细阐述主动锁模相位调制的原理,包括其工作机制和相关理论。
然后将探讨该技术在各个应用领域中的优势和特点。
最后,我们将介绍与该技术相关的实验设备与材料,并详细描述实验步骤与参数设置。
最后,在结果分析与讨论部分,我们会展示实验结果并进行深入讨论。
1.3 目的本文旨在全面介绍激光器主动锁模相位调制这一重要技术,并深入探讨其工作原理和应用领域。
通过对实验设备与材料的描述以及实验步骤与参数设置的讨论,我们将为读者提供一个全面理解该技术并能够在实际应用中运用的基础。
同时,我们也将展望该技术未来的研究方向和发展趋势,希望能够激发更多人对于这一领域的兴趣和研究热情。
2. 正文:2.1 激光器原理简介:激光器是一种能够产生高度聚焦和定向的准单色光束的装置。
其工作原理基于电子在外部能级间跃迁时放出能量,从而激发介质中的原子或分子进入激发态。
当这些激发态粒子回到基态时,会发出特定频率和相位的光子。
因为这些光子具有高度的相干性和定向性,所以形成了一束激光。
2.2 主动锁模相位调制原理:主动锁模相位调制是一种控制激光束特性的技术,在传统的激光器基础上引入了相位调制装置。
通过改变该装置对激光腔中光场的干涉条件,可以实现对输出激光波前形状和振荡模式进行精确控制。
主要实现方法是通过在激光腔内加入一个可调谐相位调制元件,如电偶极体或压电晶体等。
该元件可以根据控制信号改变其局域折射率并改变输出波前形状。
当施加不同的电压信号时,相位调制元件会引入不同程度的相位扰动。
利用这种方式,可以实现激光器输出波前在时间和空间上的精确调节。
激光调q技术工作原理
激光调q技术工作原理激光器是一种特殊类型的光源,它产生非常得峰值功率的光束,可用于许多应用,如通讯、激光加工和医学等。
激光调q技术(也称为调制锁模技术)是一种通过对激光器进行调制来产生时域和频域短脉冲的技术,通常用于产生纳秒及次纳秒级别的脉冲。
激光器的工作原理基于受激辐射和光放大的效应。
大多数激光器都是由放置在共振腔中的反射镜构成的。
当光子在激光器内移动时,它们被反射镜反弹,产生来回移动的光子束。
当光子与激光器内被卡在共振腔中的原子碰撞时,所产生的能量从一个原子跃迁到另一个原子,释放出一个与醇子初始相同相位的光子。
该光子在共振腔内来回移动,并与其他原子碰撞,释放出越来越多的光子,直到光子数目够多时,它将穿过其中一个反射镜而离开激光器,这时其能量变成了光子的行驶动能。
由于激光器内的光子都是同相位的,所以它们叠加在一起,使激光光束具有非常高的能量。
激光调q技术是利用了激光器中原子碰撞所产生的输运时间不稳定性,将差异放大来改善脉冲宽度,是一种用于产生短光脉冲的方法。
调q技术基于时间限制原理,其核心思想是在一个激光共振腔中引入快速可调的损失,以压缩和增强激光脉冲。
假设我们有一个较长的脉冲,在一个有损耗的介质中传输时,各个频率分量的相位将会以不同的方式改变。
如果我们能够在每个循环中引入不同的暂时频率依赖性损失,我们就可以平衡这些相位的改变。
保持光在共振腔中的时间不断的变化,可以使重叠损失产生激光脉冲宽度的缩短。
工作原理的对比激光器能够产生非常短的光脉冲,但其脉冲宽度限制了光束的光谱宽度。
激光调q技术允许光谱产生宽而短的脉冲,通过利用光的时间和频率特性在激光共振腔中进行调整,从而产生光谱宽且短的光脉冲。
结论激光调q技术在光通信、生物医学和材料加工等领域都有广泛的应用。
通过合适的短光脉冲频率和强度,可以实现高能量光谱的打击,加大力度,提高效率,从而节省时间和资源。
该技术的优势在于可利用低成本的光纤通信进行实现,还可以在非常小的空间中实现高精度光功能。
锁模激光器实验报告
锁模激光器实验报告1.引言1.1 概述概述部分的内容可以包括以下几个方面:1. 锁模激光器的定义和基本原理:介绍锁模激光器是一种利用谐振腔中的光学滤波特性来维持单纵模输出的激光器。
通过谐振腔中的光学滤波效应,锁模激光器可以抑制其他模式的干扰,使输出光束呈现出高纵模纯度和窄光谱宽度的特性。
2. 锁模激光器的特点和应用:说明锁模激光器具有较高的光谱纯度、较窄的光谱宽度、较高的相干性和光束质量等特点。
由于其优秀的性能,锁模激光器在光通信、光谱分析、光学测量、光纤传感等领域有着广泛的应用。
3. 实验背景和研究意义:介绍进行锁模激光器实验的背景和动机。
锁模激光器作为一种重要的光学器件,对于理解光学滤波原理、探索光学谐振腔性质以及应用于光学系统中具有重要的理论和实验意义。
4. 本实验报告的结构和内容安排:简要说明本实验报告的结构和内容安排,使读者对整篇文章有个整体的了解。
本实验报告包括引言部分、正文部分和结论部分,其中引言部分介绍了锁模激光器的概述和目的,正文部分主要包括锁模激光器原理和实验过程,结论部分对实验结果进行分析和总结。
以上是概述部分的内容,根据具体的实验内容和要求,可以适当增加和调整部分内容。
1.2 文章结构文章结构部分的内容应该是对整篇文章的组织和内容进行简要介绍,以让读者对文章有个整体的了解。
可以按照以下方式编写:在本实验报告中,我们将会详细介绍锁模激光器的原理和实验过程。
文章主要分为三个部分:引言、正文和结论。
引言部分主要包括三个方面的内容。
首先是对锁模激光器的概述,介绍了锁模激光器的基本特点和应用领域。
接着是文章的结构安排,即对本篇实验报告的整体框架进行介绍。
最后是对本次实验的目的进行说明,明确实验的目标和意义。
正文部分是本篇实验报告的核心内容,包括锁模激光器的原理和实验过程两个方面。
在锁模激光器原理部分,我们将详细介绍锁模激光器的工作原理、基本结构以及关键技术。
在锁模激光器实验过程部分,我们将详细描述实验所采用的具体步骤、实验条件和实验装置,并对实验进行了详细的记录和数据分析。
激光原理与技术之激光锁模技术
激光锁模技术
1
§3.1概论
调Q技术的局限性
采用PTM方式,Δt=2L/c,L为光学腔长。
c 3 108 L(ns) t 109 0.15m 2 2 c 3 108 L( ps) t 1012 0.15mm 2 2 c 3 108 L( fs ) t 1015 0.15 m 2 2
只与激光介质本身的性质有关,增益线宽越宽,脉冲宽度越窄, g 1是傅里叶变换的极限,也符合测不准关系。 1 1 PTM (2 N 1) q 2 N 1
4 峰值功率Pm
2 Pm Amax (t ) (2 N 1) 2 E 02 (2 N 1) P
2 周期性 T 等于腔内只有一个脉冲, 1 2L 2 q c 往返一次输出一个脉冲。 2N 1 2 1 1 (q )] 0 2 (2 N 1)q (2 N 1) q g
3 脉冲宽度:Amax A( ) 0 sin[
A(t ) E0
sin[
2N 1 (q t )] 2 为调制包络,0是载波 1 sin[ (q t )] 2
§3.1概论
锁模原理(二)
锁模激光器的特性
1 峰值(最大值) Amax lim A(t ) lim A(t ) (2 N 1) E0
t 0 t 2
§3.2声光驻波场振幅调制主动锁模
频域分析
5 相干叠加 1个锁模脉冲由所有同相位、相干叠加的纵模一起贡献
§3.2声光驻波场振幅调制主动锁模
设AO的驱动频率为f s,声波驻波场 Ts "出现-消失"的频率为2 f s,周期为 2 1 要求:f s f m q 2 T 1 1 c f s f m q 2 2 4L
激光器锁模的工作原理
激光器锁模的工作原理
激光器锁模是指在激光器中通过一定的控制方法,使其输出激光波长单一、线宽窄、光能稳定的特殊工作状态。
因此,激光器锁模是一种对于一般激光器性能更高的技术。
激光器的发射是通过激发激光材料中的电子使之跃迁而形成,其发射波长相对单一,但线宽相对较宽,正常情况下,一个激光器的输出往往具有多个模式,这些模式的波长并不相同,同时线宽也存在差异。
如果将这些模式输出,将会影响到激光器的使用效果与信号传输质量。
因此,锁模技术可以使激光器的性能得到提升。
激光器锁模的实现需要通过某种方法使激光器只输出一个特定波长的光,也就是只输出一个模式,即所谓“锁定模式”。
一般来说,这种锁模是基于共振腔模式的锁模技术实现的。
共振腔模式锁模通过在激光器的两端加上反射器形成一个共振腔,将激光器中的多个谐振模式限制在共振腔内并强迫它们保持同一相位,在一定条件下可以使一个谐振模式成为优先输出的模式,从而实现锁模。
同时,激光器工作的稳定性也是锁模技术的关键问题之一,因为在工作过程中激光波长的波动会导致模式的切换,甚至出现模式竞争。
要稳定输出模式,需要通过对激光器中的温度、抽运泵浦功率、电流等参数的精确控制实现。
锁模光纤激光器讲义
Байду номын сангаас
主动锁模光纤激光器
主动锁模光纤激光器的典型结构示意图
谐波锁模
主动锁模光纤激光器
输出脉冲的波形
输出脉冲的光谱
被动锁模技术(染料锁模)
利用非线性元件对光强的依赖性,来产生光脉冲的锁模方式。
E(t)的振幅极大值A(t)max=(2n+1)E0,这说明在振幅出现极值的时
刻各振荡纵模的振幅同时到达极大值。(峰值功率)Pm=N2P0 锁模后所得脉冲的宽度为Δt=[(2n+1) q]-1=1/,式中:q为
器件的纵模间隔; 为器件的振荡线宽。所以激光的带宽越宽,
则所获得的脉冲宽度越窄。(脉冲宽度)
若共有(2n+1)个纵模,则激光的电场强度可表示为:
总的光强为:
由于各纵模之间相位彼此相互独立并呈无规则变化,所以各纵 模之间相干项在时间平均下为零,平均输出光强是纵模之和,不会 出现相干加强或相干减弱时域脉冲波输出,而是呈现出存在幅度和 相位噪声的连续光输出。
锁模激光器输出特性
若使 ,即使相邻纵模间的位相差均保持为某一常 数a(通常称此为相位锁定或锁模),则第q个纵模可以表示为:
激光 输出镜 激光介质 染料盒 全反镜
1、线性放大:泵浦刚开始,工作物质对产生的诸多光脉冲进行线 性放大。 2、非线性吸收:染料被漂白,强脉冲被迅速放大,弱脉冲被吸收。 3、非线性放大:工作物质对留下的强脉冲进行非线性放大,使脉 宽被压缩。
被动锁模技术(染料锁模)
P t 线性 放大 P 非线性 吸收 t P t
锁 模 方 式
主动锁模 通过外界信号周期性调制激光器谐振腔参量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锁模脉冲激光器概述
张斌
北京工业大学 应用数理学院 010611班
指导教师:宋晏蓉
摘要 本文概述了锁模激光器的发展历史和发展方向、激光超短脉冲技术的分类及应用。
关键词 锁模,脉冲,激光器
一、引言
自从1964年第一台锁模激光器问世以来,超短脉冲激光器的研制工作已有了飞速发展,到目前为止已经可产生脉宽几个飞秒,峰值功率TW (1012瓦)级,激光波长从紫外到红外的全光谱范围的超短、超强脉冲激光器。
缩短脉冲激光器脉冲宽度的方法主要经历了三次革新,即调Q 脉冲激光器阶段、主动、被动锁模激光器阶段和克尔锁模激光器阶段。
随着超短脉冲激光技术的飞速发展,目前人们已能从克尔透镜锁模(KLM )的掺钛蓝宝石飞秒激光器中直接产生脉冲宽度不到两个光学周期的激光脉冲(对于800nm 的中心波长,一个光学周期约等于2.17fs )。
同时在得到高峰值功率的脉冲输出方面也作了很多尝试,目前利用啁啾脉冲放大技术(CPA )所能获得的最高脉冲峰值功率已经突破了200TW [1]。
由于输出的脉宽窄、峰值功率高、光谱范围宽这些特点,使超短脉冲激光器广泛应用于各个领域。
如高峰值功率的脉冲激光器被用于产生高次谐波,用于“水窗”和X 射线的应用中。
而高重复率的脉冲激光器在信息处理、通信(波分复用)、互联网及光全息技术、激光光谱等领域中均有广泛用途。
也正是由于这些重要领域对超短光脉冲源的需求,促使从事激光领域研究的人们一直在不断努力探索,用各种手段,各种方法得到脉宽越来越窄,峰值功率越来越高,波长范围连续可调并覆盖全波段的相干光脉冲,并不断地改进其锁模方式和泵浦方式,使激光器向小型化、全固化方向发展。
二、锁模脉冲激光器的发展历史
自本世纪60年代第一台激光器诞生以来,由于此新型光源具有以前光源所不具有的优点,如单色性好、相干性好、高亮度等,使激光技术得到了飞速发展,其中发展的一个重要方向是缩短输出脉冲宽度,就锁模脉冲激光技术领域来研究,大致可以分为四个发展阶段:
60年代中期~为第一阶段,其特征是各种锁模理论的建立和各种锁模方法的试验探索。
这属于超短激光脉冲的初始阶段。
s 910−s 1010−70年代中后期10-11~10-12s 为第二阶段,其特征是各种锁模方式和理论(如主动锁模、被动锁模、同步泵浦锁模等)逐步成熟,并在物理和化学领域展开了皮秒(10-12s )级的初步应用。
80年代为第三阶段,其主要特征是脉冲宽度已进入飞秒(10-15s )阶段。
它是以所谓碰撞锁模染料激光器为主要代表,该激光器就其基本的锁模原理来说依然为被动锁模,在锁模机理和方法上并没有根本突破,但是由于脉冲的碰撞效应,使该激光器不仅能够产生,而且能够稳定地运转在飞秒量级。
这展开了超快激光极其重要和十分活跃的新研究领域—飞秒激光技术与科学。
90 年代初开始了超短激光脉冲的第四阶段。
这一阶段的主要特征并不表现脉冲宽度的进一步压缩,而是在产生飞秒激光的介质方面有新突破。
具有突破性的研究是1991年,D. E. Spence [2]等人利
用氩离子激光做泵浦源,用SF14棱镜补偿腔内色散,首次研制成功以掺钛蓝宝石为增益介质的飞秒自锁模激光器,标志着固体飞秒激光器进入了一个新的发展阶段。
随后在飞秒激光领域产生了飞速的发展。
1999年,U Morger [3]等人利用低色散棱镜对和一对啁啾镜,在自锁模掺钛蓝宝石激光腔内输出小于2个光学周期的飞秒光脉冲,对应的带宽大于350nm ,重复频率为90MHz ,是当时激光振荡器输出的最短脉冲宽度。
同年,A. V. Sokolov [4]提出利用超薄气体介质引起激光脉冲频率调制,产生宽带频谱,预计可以产生小于1fs 的超短脉冲。
在1997年,I N Ross [5]等人又提出了光学参量啁啾脉冲放大技术。
1998年,Charles G. Durfee [6]等人利用多通放大技术获得了、输出能量为、峰值能量为的激光束。
fs 17mJ 414TW 26.0现在已步入二十一世纪,在产生和控制超短激光脉冲参数方面取得了巨大的进步,目前飞秒激光振荡器的输出脉宽最新达到3.4飞秒[22];采用相位相干合成技术,可以产生阿秒脉冲;缩短腔长,最高重复频率可达到160GHz [23];采用啁啾脉冲放大技术,最高输出脉冲峰值功率达到100TW [23]。
使得飞秒激光在许多方面有特殊的用途,成为当今激光技术领域研究与应用的热点。
三、超短脉冲激光器的发展方向
随着科学领域的发展,超短脉冲激光器的发展方向大致分为几个主要方向:
1、脉冲相位相干控制。
进一步把脉冲宽度压缩到阿秒量级(),同时稳定脉冲的重复频率和初始频率,得到稳定的飞秒光学频率梳,用于光频标仪器中。
s 1810−2、 压缩脉宽的同时,还要努力提高脉冲的能量。
3、 产生不同波长的激光器,并且使激光波长连续可调。
4、得到超高重复频率脉冲,以适应光时钟、光通讯的需求。
四、超短脉冲激光器的分类
超短脉冲激光器按照激光介质的不同大致可分为四类:
第一类是以有机染料为介质的飞秒激光器。
依据不同染料可以输出不同波长的飞秒脉冲,它覆盖了从紫外到红外波段,但最有效集中于红光(620nm )附近。
主要技术手段是被动锁膜,主要技术途径是两个相反方向传播的光脉冲在可饱和吸收染料中的碰撞锁模技术(CMP )。
第二类是以掺钛蓝宝(Ti:A12O 3)、掺镁橄榄石等固体材料为介质的飞秒固体激光器。
飞秒固体激光器实现了极其稳定的自锁模(SML )运动,波长范围是近红外:700nm ~1.10μm 和1.2μm ~2μm ,其二次谐波可以覆盖紫外。
第三类是以多量子阱(MQW )材料为介质的半导体激光器。
多量子阱材料具有高增益、宽谱带、强的非线性增益饱和以及非常快的恢复时间等优点。
这种激光器的主要特点是体积小、对泵浦光的要求低、输出波长可以人为的设计,而不象晶体受能级的限制,因此是一种新型的激光器类型。
第四类是以掺杂稀土元素(Er )的SiO 2为增益介质的飞秒光纤激光器。
其主要特点是结构紧凑、小巧、高效率、低损耗,尤其输出波长适宜于光通讯波段,且可以和传输光纤直接连接,实现全光光学系统。
五、超短技术的应用
飞秒激光在许多领域有重要的应用,如飞秒等离子体物理、飞秒电子学、飞秒全息光谱学、飞
秒X射线学等。
例如飞秒脉冲的可用于时间分辨光谱学;用飞秒脉冲可观测物理、化学和生物等超
快过程;飞秒脉冲可用作共焦显微镜的光源来做生物样品的三维图像;利用飞秒脉冲在半导体激发声子的反射可以用来测量半导体薄膜的厚度,以检测半导体薄膜的生长;用飞秒脉冲来做微型加工时,打出的孔光滑没有毛刺;用飞秒脉冲作为光时钟的光源。
许多交叉学科也应运而生,如飞秒激光技术在化学反应方面的应用,并由此在物理化学方面诞生了一门新学科—飞秒化学。
参考文献
1.赵玲慧、魏志义、张杰,“高峰值功率固体飞秒激光振荡器技术的进展”, 中国科学院物理研究所光
物理实验室 北京 100080
2. D E Spence, P N Kean, W Sibbett, “60fsec pulse generation from a self-mode-locked Ti:sapphire
laser[J]”. Opt, Lett, 1991, (16): 42-45.
3. U Morger, F X Karner, S H Cho, et al. “Sub-two-cycle pulses from a kerr-lens mode-locked
Ti:sapphire laser[J]”. Opt Lett, 1999(24): 411-415
4. A V Sokov, “Sub-femotosecond compression of periodic laser pulse [J]”. opt , Lett, 1999,
(24):1248-1251。