2011高考数学基础知识训练(25)
2011年高考数学试卷(含答案)
2011年普通高等学校招生全国统一考试数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1) 复数212ii +-的共轭复数是 (A) 35i - (B) 35i (C) i - (D) i(2) 下列函数中,既是偶函数又在(0,+∞)单调递增的函数是(A)y=x 2(B)y=|x|+1(C)y=-x 2+1 (D)y=2-|x|(3) 执行右面的程序框图,如果输入的N 是6,那么输出的p 是 (A ) 120(B) 720 (C) 1440 (D )5040(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则两位同学参加同一个兴趣小组的概率为 (A )13 (B) 12 (C) 23 (D )34(5) 已知角θ的顶点与原点重合,始边与x 轴的正半周重合,始边在直线y=2x 上,则cos2θ= (A )45-(B) 35- (C) 35 (D )45(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(A ) (B ) (C ) (D )(7)已知直线l 过双曲线C 的一个焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB|为C 的实轴长的2倍,则C 的实轴长的2倍,则C 的离心率为 (A (C ) (B ) 2 (D )3(8)51()(2a x x x x+-的展开式中各项系数的和为2,则该展开式中常数项为 (A )-40 (C ) -20 (B ) 20 (D )40 (9)由曲线y ,直线y=x-2及y 轴所围成的图形的面积为(A )310 (B )4 (C )163(D )6 (10)已知a与b 均为单位向量,其夹角为θ,有下列四个命题12:||10,3p a b πθ⎡⎫+>⇔∈⎪⎢⎣⎭ 22:||1,3p a b πθπ⎛⎤+>⇔∈ ⎥⎝⎦3:||10,3p a b πθ⎡⎫->⇔∈⎪⎢⎣⎭ 4:||1,3p a b πθπ⎛⎤->⇔∈ ⎥⎝⎦其中的真命题是(A )14,p p (B )13,p p (C )23,p p (D )24,p p (11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=,则(A )()f x 在(0,)2π单调递减 (B )()f x 在3(,)44ππ单调递减(C )()f x 在(0,)2π单调递增 (D )()f x 在3(,)44ππ单调递增 (12)函数11y x=-的图象与函数2sin (24)y x x π=-≤≤的图象所有交点的横坐标之和等于(A) 2 (B)4 (C)6 (D)8第Ⅱ卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答,第(22)题~第(24)题为选考题,考生根据要求作答。
2011年新课标高考数学试题及答案(理科)
2011年新课标高考数学试题及答案(理科)Part IV Translation & WritingTranslationA. Translate the following sentences from Chinese intoEnglish.1) 约翰同时干许多事情。
我觉得他应当休息一下。
(work on, all at once, take a break)John works on many things all at once. I think he should takea break2) 杨教授说的话有着神奇的力量。
许多同学接受他的忠告,开始专注学业了。
(what, magical, advice, focus on)What Prof. Yang said has magical power. On his advice, many students began to focus on their schoolwork.3) 由于星期天晚上汤姆没有提示他将做何种选择,我无法弄清楚他会如何完成这项任务。
(clue, option, fgure out, accomplish) As Tom gave no clue Sunday night about which option he would choose, I can’t figure out how he will accomplish the task4) 我的父亲是极负责任的人。
虽然他总是很忙,但他设法每天都给家庭留出一些时间。
(responsibility, on the go, set aside) My father is a man of great responsibility. Though he is on the go all the time, he manages to set aside some time for the family every day.5) 这个项目的成功与否取决于我们如何确定轻重缓急。
2011年江西高考高中数学基础知识归纳
2011年江西高考高中数学基础知识归纳第一部分 集合1.理解集合中元素的意义.....是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?…2 .数形结合....是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决 3.(1) 元素与集合的关系:U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. (2)德摩根公式: ();()U U U U U U C A B C A C B C A B C A C B == .(3)A B A A B B =⇔= U U A B C B C A ⇔⊆⇔⊆U A C B ⇔=Φ U C A B R ⇔=注意:讨论的时候不要遗忘了φ=A 的情况.(4)集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空真子集有2n –2个.4.φ是任何集合的子集,是任何非空集合的真子集.第二部分 函数与导数1.映射:注意: ①第一个集合中的元素必须有象;②一对一或多对一.2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ; ⑥利用均值不等式 2222ba b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(x a 、x sin 、x cos 等);⑨平方法;⑩ 导数法 3.复合函数的有关问题: (1)复合函数定义域求法:① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)]的定义域由不等式a ≤ g(x) ≤ b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域. (2)复合函数单调性的判定:①首先将原函数)]([x g f y =分解为基本函数:内函数)(x g u =与外函数)(u f y = ②分别研究内、外函数在各自定义域内的单调性③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性. 4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
2011届高考数学基础知识复习题6
备考2011高考数学基础知识训练(6)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分) 1.0sin 600=___________2. 已知1249a =(a>0) ,则23log a = . 3. 复数1__________2ii+=-4. 若0,x >则131311424222(23)(23)4()x x x x x -+⋅--⋅-= .5. 函数2231()2x x y -+=的值域为 .6. 函数f (x )=x 3+x +1(x ∈R ),若f (a )=2,则f (-a )的值为 .7. 设Q P 和是两个集合,定义集合}{Q x P x x Q P ∉∈=-且,|,若{}4,3,2,1=P , }R x x x Q ∈<⎩⎨⎧+=,221|,则=-Q P .8. 为了保证信息安全传输必须使用加密方式,有一种方式其加密、解密原理如下:加密 发送明文 密文 密文 明文已知加密为2-=x a y (x 为明文、y 为密文),如果明文“3”通过加密后得到密文为“6”, 再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是 . 9. 方程223xx -+=的实数解的个数为 .10. 已知数列{}n a ,则“数列{}n a 为等比数列”是“数列{}lg n a 为等差数列”的______条件 (填写:充分不必要条件、必要不充分条件、充要条件、既不充分也不必要条件)11.关于函数有下列四命题),0()(>-=a xax x f : ①),0()0,()(+∞-∞ 的值域是x f ; ②)(x f 是奇函数; ③()(,0)f x -∞在及(0,)+∞上单调递增;④方程|()|(0)f x b b =≥总有四个不同的解; 其中正确的有 .12. 若函数223y x x =-+在闭区间[0,]m 上有最大值3,最小值2;则m 的取值集合为 .13. ()y f x =在(0,2)上是增函数,(2)y f x =+是偶函数,则57(1),(),()22f f f 的大小关系是 .14. 已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t=________.二、解答题(共90分,写出详细的解题步骤)15.(14分)已知集合A ={2215x x x --≤0},B={22(29)9x x m x m m --+-≥0,m R ∈}(1)若[]3,3A B ⋂=-,求实数m 的值;(2)设全集为R ,若R A C B ⊆,求实数m 的取值范围.16.(14分)已知函数()f x m n = 其中(sin cos )m x x x ωωω=+(cos sin ,2sin ),0,()n x x x f x ωωωω=-> 其中若相邻两对称轴间的距离不小于.2π(Ⅰ)求ω的取值范围;(Ⅱ)在,3,3,,,,,,=+=∆c b a C B A c b a ABC 的对边分别是角中 ,最大时当ω ABC A f ∆=求,1)(的面积.17.(14分)已知数列的等比数列公比是首项为41,41}{1==q a a n ,设 *)(log 3241N n a b n n ∈=+,数列n n n n b a c c ⋅=满足}{(1)求证:}{n b 是等差数列;(2)求数列}{n c 的前n 项和S n .18.(16分)某厂家拟在2010年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m (m ≥0)万元满足31kx m =-+(k 为常数),如果不搞促销活动,则该产品的年销售量是1万件. 已知2010年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用). (1)将2010年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2010年的促销费用投入多少万元时,厂家的利润最大?19.(16分)已知函数22()ln ()f x x a x ax a R =-+∈.(1)当a=1时,求函数()f x 最大值;(2)若函数()f x 在区间(1,+∞)上是减函数,求实数a 的取值范围.20.(16分)已知二次函数1)(2++=bx ax x f 和函数bx a bx x g 21)(2+-=, (1)若)(x f 为偶函数,试判断)(x g 的奇偶性;(2)若方程()g x x =有两个不等的实根()2121,x x x x <,则①证明函数)(x f 在(-1,1)上是单调函数;②若方程0)(=x f 的两实根为()4343,x x x x <,求使4213x x x x <<<成立的a 的取值范围.参考答案: 1、2. 解:由1249a =得2442()()93a ==, ∴422332log log ()43a ==.答案:4. 3、 135i+4.解:131311424222(23)(23)4()x x x x x -+---=11322434423x x --+=-. 答案:-23.5. 解:设1()2uy =,2232u x x =-+≥,所以结合函数图象知,函数y 的值域为1(0,]4.答案:1(0,]4.6.解:3()1f x x x -=+为奇函数,又()2f a =∴()11f a -=,故()11f a --=-,即()0f a -=.答案:0.7.解:由定义}{Q x P x x Q P ∉∈=-且,|,求P Q -可检验{}4,3,2,1=P 中的元素在不在}R x x x Q ∈<⎩⎨⎧+=,221|中,所有在P 中不在Q 中的元素即为P Q -中的元素,故=-Q P {}4.答案:{}4.8. 解:由已知,当x=3时y=6,所以326a -=,解得2a =;∴22x y =-;当y=14时,有2214x-=,解得x=4. 答案:“4”.9.解:画出函数2xy -=与23y x=-的图象,它们有两个交点,故方程223x x -+=的实数解的个数为2个.答案:2.10、 必要不充分条件11.解:x =()0f x =,故①不正确;|()|0f x =只有2个解,故④不正确;∴正确的有②③. 答案:②③.12. 解:由223y x x =-+即2(1)2y x =-+,结合图象分析知m 的取值范围为[1,2]时, 能使得函数取到最大值3和最小值2. 答案:[1,2].13. 解:结合图象分析知:()y f x =的图象是由(2)y f x =+的图象向右平移两个单位而得到的;而(2)y f x =+是偶函数,即(2)y f x =+的图象关于y 轴对称,所以()y f x =的图象关于x=2对称,画出图象可以得到75()(1)()22f f f <<. 答案:75()(1)()22f f f <<.14.解:二次函数22y x x t =--图像的对称轴为1,x =函数t x x y --=22的图像是将二次函数22y x x t =--图像在x 轴下方部分翻到x 轴上方(x 轴上方部分不变)得到的.由区间[0,3]上的最大值为2,知max (3)32,y f t ==-=解得15t =或;检验5t =时,(0)52f =>不符,而1t =时满足题意.答案:1.15. 解:(Ⅰ)∵[3,5]A =-,(][),9,B m m =-∞-⋃+∞ …………………… 4分[]3,3A B ⋂=-, ∴ 935m m -=⎧⎨≥⎩ ∴12m = …………………… 7分 (Ⅱ) {9}R C B x m x m =-<<…………………… 9分 ∵R A C B ⊆ ∴5,93m m >-<-或,…………………… 12分 ∴56m << ……………………14分16.解: (Ⅰ)x x x x x f ωωωωsin cos 32sin cos )(22⋅+-=⋅=x x ωω2sin 32cos +=)62sin(2πω+=x ………………3分0>ω ,22)(ωπωπ==∴T x f 的周期函数……………4分 由题意可知,22,22πωππ≥≥即T 解得}10|{,10≤<≤<ωωωω的取值范围是即……………………6分 (Ⅱ)由(Ⅰ)可知ω的最大值为1,)62sin(2)(π+=∴x x f 1)(=A f 21)62sin(=+∴πA ……………8分 而132666A πππ<+<ππ6562=+∴A 3π=∴A ………………10分 由余弦定理知bca cb A 2cos 222-+= 22b c bc 3,b c 3∴+-=+=又 (12)联立解得⎩⎨⎧==⎩⎨⎧==2112c b c b 或………11分23sin 21==∴∆A bc S ABC ……14分 注:或用配方法不求b ,c 值亦可17. 解:(1)由题意知,*)()41(N n a nn ∈=12log 3,2log 3141141=-=-=a b a b n n3log 3log 3log 3log 341141411411===-=-∴+++q a a a a b b nn n n n n ∴数列3,1}{1==d b b n 公差是首项的等差数列……………………7分 (2)由(1)知,*)(23,)41(N n n b a n nn ∈-==*)(,)41()23(N n n c n n ∈⨯-=∴,)41()23()41)53()41(7)41(4411132n n n n n S ⨯-+(⨯-++⨯+⨯+⨯=∴-1432)41()23()41)53()41(7)41(4)41(141+⨯-+(⨯-++⨯+⨯+⨯=n n n n n S 两式相减得132)41()23(])41()41()41[(34143+⨯--++++=n n n n S.)41()23(211+⨯+-=n n *)()41(3812321N n n S n n ∈⨯+-=∴+……………………14分18. 解:(1)由题意可知,当0=m 时,1=x ,∴13k =-即2=k ,∴231x m =-+,每件产品的销售价格为8161.5xx+⨯元.∴2010年的利润)168(]1685.1[m x xxx y ++-+⨯= m m m x -+-+=-+=)123(8484)0(29)]1(116[≥++++-=m m m …8分(2)∵0m ≥时,16(1)81m m ++≥=+.∴82921y ≤-+=,当且仅当1611m m =++,即3m =时,max 21y =.………………15分 答:该厂家2010年的促销费用投入3万元时,厂家的利润最大,最大为21万元.……16分注:导数法求解酌情给分19. 解:(1)当a=1时,2()ln f x x x x =-+,其定义域是(0,)+∞,--------- 1分2121()21x x f x x x x--'∴=-+=-------------------- 2分令()0f x '=,即2210x x x---=,解得12x =-或1x =.0x >Q ,12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴函数()f x 在区间(0,1)上单调递增,在区间(1,+∞)上单调递减∴当x=1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=.--- 6分(2)法一:因为22()ln f x x a x ax =-+其定义域为(0,)+∞,所以222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+==①当a=0时,1()0,()f x f x x'=>∴在区间(0,)+∞上为增函数,不合题意---------------------------------- 8分②当a>0时,()0(0)f x x '<>等价于(21)(1)0(0)ax ax x +->>,即1x a>. 此时()f x 的单调递减区间为1(,)a+∞.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.------------------- 12分③当a<0时,()0(0)f x x '<>等价于(21)(1)(0)ax ax x +->>,即12x a>· 此时()f x 的单调递减区间为1(,)2a -+∞,11,20.a a ⎧-≤⎪∴⎨⎪<⎩得12a ≤- 14分 综上,实数a 的取值范围是1(,][1,)2-∞-+∞U ----------- 16分 法二:22()ln ,(0,)f x x a x ax x =-+∈+∞Q2221()a x ax f x x-++'∴=由()f x 在区间(1,)+∞上是减函数,可得22210a x ax -++≤在区间(1,)+∞上恒成立.----------------------------------8 ① 当0a =时,10≤不合题意---------------------------------- 1 0② 当0a ≠时,可得11,4(1)0a f ⎧<⎪⎨⎪≤⎩即210,4210a a a a ⎧><⎪⎨⎪-++≤⎩或10,4112a a a a ⎧><⎪⎪∴⎨⎪≥≤-⎪⎩或或 ---------------------------------- 14注:发现必过定点(0,1)解题亦可1(,][1,)2a ∴∈-∞-+∞U----------------------------------1620. (Ⅰ)∵)(x f 为偶函数,∴()()f x f x -=,∴0bx =,∴0b =∴21()g x a x=-,∴函数()g x 为奇函数;……(4分) (Ⅱ)⑴由x bx a bx x g =+-=21)(2得方程(*)0122=++bx x a 有不等实根 ∴△0422>-=a b 及0≠a 得12>ab即1122b b a a -<-->或3eud 教育网 教学资源集散地。
2011年高考数学试题汇编-三角函数(含答案)
2011年高考数学试题汇编-三角函数一, 角的定义、诱导公式与三角恒等变换1.(辽宁7)设sin 1+=43πθ(),则sin 2θ= (A )79-(B )19-(C )19 (D )79【答案】A2.(福建3)若tan α=3,则2sin 2cos a α的值等于( ) A .2B .3C .4D .6【答案】D3.(全国新课标5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=( ) (A )45-(B )35-(C )35 (D )45【答案】B4.(浙江6)若02πα<<,02πβ-<<,1cos()43πα+=,3cos()423πβ-=,则cos()2βα+=( ) A .33 B .33-C.539D .69-【答案】C5.(重庆14)已知1s i n c o s 2α=+α,且0,2π⎛⎫α∈ ⎪⎝⎭,则c o s 2s i n 4πα⎛⎫α- ⎪⎝⎭的值为__________【答案】142-6.(全国大纲理14)已知a ∈(2π,π),sinα=55,则tan2α=__________【答案】43-7.(江苏7)已知,2)4tan(=+πx 则x x2tan tan 的值为__________【答案】948.(上海理6)在相距2千米的A .B 两点处测量目标C ,若0075,60CAB CBA ∠=∠=,则A .C 两点之间的距离是_______千米。
【答案】6二, 三角函数的性质1.(山东6)若函数()sin f x x ω=(ω>0)在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω= ( ) A .3 B .2 C .3/2D .2/3 【答案】C2.(湖北3)已知函数()3sin cos ,f x x x x R =-∈,若()1f x ≥,则x 的取值范围为 A .|,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭B .|22,3x k x k k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭C .5{|,}66x k x k k Z ππππ+≤≤+∈D .5{|22,}66x k x k k Z ππππ+≤≤+∈【答案】B3.(全国新课标11)设函数()sin()cos()f x x x ωϕωϕ=+++(0,||)2πωϕ><的最小正周期为π,且()()f x f x -=则 (A )()y f x =在(0,)2π单调递减 (B )()y f x =在3(,)44ππ单调递减 (C )()y f x =在(0,)2π单调递增 (D )()y f x =在3(,)44ππ单调递增【答案】A4.(安徽9)已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6f x f π≤对x R∈恒成立,且()()2f f ππ>,则()f x 的单调递增区间是(A ),()36k k k Z ππππ⎧⎫-+∈⎨⎬⎩⎭(B ),()2k k k Z πππ⎧⎫+∈⎨⎬⎩⎭(C )2,()63k k k Z ππππ⎧⎫++∈⎨⎬⎩⎭(D ),()2k k k Z πππ⎧⎫-∈⎨⎬⎩⎭【答案】C 5.(上海8)函数sin()cos()26y x x ππ=+-的最大值为_______ 。
2011年普通高等学校招生全国统一考试高考数学教师精校版含详解全国新课标理
2011年全国新课标理一、选择题(共12小题;共60分)1. 复数2+i1−2i的共轭复数是 A. −35i B. 35i C. −i D. i2. 下列函数中,既是偶函数,又在0,+∞单调递增的函数是 A. y=x3B. y=∣x∣+1C. y=−x2+1D. y=2−∣x∣3. 执行如图的程序框图,如果输入的N是6,那么输出的p是 A. 120B. 720C. 1440D. 50404. 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 A. 13B. 12C. 23D. 345. 已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ= A. −45B. −35C. 35D. 456. 在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为 A. B.C. D.7. 设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,∣AB∣为C的实轴长的2倍,则C的离心率为 A. B. C. 2 D. 38. x+ax 2x−1x5的展开式中各项系数的和为2,则该展开式中常数项为 A. −40B. −20C. 20D. 409. 由曲线y=x,直线y=x−2及y轴所围成的图形的面积为 A. 103B. 4 C. 163D. 610. 已知a与b均为单位向量,其夹角为θ,有下列四个命题:p1:∣∣a+b∣∣>1⇔θ∈0,2π3p2:∣∣a+b∣∣>1⇔θ∈2π3,πp3:∣∣a−b∣∣>1⇔θ∈0,π3p4:∣∣a−b∣∣>1⇔θ∈π3,π其中的真命题是 A. p1,p4B. p1,p3C. p2,p3D. p2,p411. 设函数f x=sinωx+φ+cosωx+φ ω>0,∣φ∣<π2的最小正周期为π,且f−x=f x,则 A. f x在0,π2单调递减 B. f x在π4,3π4单调递减C. f x在0,π2单调递增 D. f x在π4,3π4单调递增12. 函数y=11−x的图象与函数y=2sinπx−2≤x≤4的图象所有交点的横坐标之和等于 A. 2B. 4C. 6D. 8二、填空题(共4小题;共20分)13. 若变量x,y满足约束条件3≤2x+y≤96≤x−y≤9,则z=x+2y的最小值为.14. 在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1、F2在x轴上,离心率为22,过F1的直线l 交C于A、B两点,且△ABF2的周长为16,那么C的方程为.15. 已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=23,则棱锥O−ABCD的体积为.16. 在△ABC中,B=60∘,AC=3,则AB+2BC的最大值为.三、解答题(共8小题;共104分)17. 等比数列a n的各项均为正数,且2a1+3a2=1,a32=9a2a6.(1)求数列a n的通项公式;(2)设b n=log3a1+log3a2+⋯+log3a n,求数列1b n的前n项和.18. 如图,四棱锥P−ABCD中,底面ABCD为平行四边形,∠DAB=60∘,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A−PB−C的余弦值.19. 某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到了下面试验结果:A配方的频数分布表指标值分组90,9494,9898,102102,106106,110频数82042228B配方的频数分布表指标值分组90,9494,9898,102102,106106,110频数412423210(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产一件产品的利润y(单位:元)与其质量指标值t的关系式为y=−2,t<94,2,94≤t<102,4,t≥102.从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)20. 在平面直角坐标系xOy中,已知点A0,−1,B点在直线y=−3上,M点满足MB∥OA,MA⋅AB=MB⋅BA,M点的轨迹为曲线C.(1)求C的方程;(2)P为C上的动点,l为C在P点处的切线,求O点到l距离的最小值.21. 已知函数f x=a ln xx+1+bx,曲线y=f x在点1,f1处的切线方程为x+2y−3=0.(1)求a,b的值;(2)如果当x>0,且x≠1时,f x>ln xx−1+kx,求k的取值范围.22. 如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合.已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2−14x+mn=0的两个根.(1)证明:C,B,D,E四点共圆;(2)若∠A=90∘,且m=4,n=6,求C,B,D,E所在圆的半径.23. 在直角坐标系xOy中,曲线C1的参数方程为x=2cosα,y=2+2sinα,(α为参数),M是C1上的动点,P点满足OP=2OM,P点的轨迹为曲线C2.(1)求C2的方程;(2)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=π3与C1的异于极点的交点为A,与C2的异于极点的交点为B,求∣AB∣.24. 设函数f x=∣x−a∣+3x,其中a>0.(1)当a=1时,求不等式f x≥3x+2的解集;(2)若不等式f x≤0的解集为x∣x≤−1,求a的值.答案第一部分 1. C 【解析】2+i 1−2i= 2+i 1+2i1−2i 1+2i=5i 5=i2. B3. B【解析】写出每一次循环后的k 和p 的值,第六次循环后k =6和p =720,此时不满足k <N ,退出循环.4. A 【解析】记3个兴趣小组分别为1,2,3,甲参加1组记为"甲1 ",则基本事件为 " 甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3 ",共9个.记事件A 为 " 甲、乙两位同学参加同一个兴趣小组 ",其中事件A 有 "甲1,乙1;甲2,乙2;甲3,乙3 ",共3个.因此P A =39=13. 5. B6. D 【解析】此几何体为组合体,由半个圆锥和一个三棱锥组合而成.7. B8. D【解析】因为 x +ax 2x −1x 5的展开式中各项的系数和为2,所以令x =1,得a +1=2,从而a =1.2x −1x 5的展开式中的第r +1项为T r +1=C 5r 2x 5−r −1x r=C 5r 25−r −1 r x 5−2r . 当r =2时,为含x 的项;r =3时,为含x −1的项,所以展开式中的常数项为C 52⋅23−C 53⋅22=40.9. C【解析】因为直线y =x −2与y = x 的交点坐标为 4,2 ,所以所求面积为x−x +2 d x 40= 23x 32−12x 2+2x ∣∣∣04=163.10. A【解析】用p 1举例,若∣a +b∣>1,则两边平方可得2cos θ+2>1,解得0≤θ<2π3,反之也能推得成立,所以充分性和必要性都成立,p 1是真命题;同理可以证明p 4正确. 11. A 【解析】f x = 2sin ωx +φ+π4 ,所以ω=2. 又因为f x 为偶函数,所以φ+π4=π2+kπ,k ∈Z ,又∣φ∣<π2,所以φ=π4, 所以f x = 2sin 2x +π2 = 2cos2x . 12. D 【解析】如图,两个函数的图象有8个交点,且两个函数的图象都关于点 1,0 对称,故横坐标之和为8. 第二部分13. −614. x216+y28=115. 8316. 2【解析】由正弦定理AB sin C =ACsin B=BCsin A,得AB=2sin C,BC=2sin A.所以AB+2BC=2sin C+4sin A=2sin C+4sin120∘−C=4sin C+23cos C=27sin C+φ.所以AB+2BC的最大值为27.第三部分17. (1)设数列a n的公比为q,由a32=9a2a6,得a32=9a42,所以q2=19.由条件可知q>0,故q=13.由2a1+3a2=1,得2a1+3a1q=1,所以a1=13.故数列a n的通项公式为a n=13n.(2)结合(1)可得b n=log3a1+log3a2+⋯+log3a n=−1+2+⋯+n=−n n+12.故1 n =−2=−21−1.所以1 1+12+⋯+1n=−21−12+12−13+⋯+1n−1n+1=−2n n+1.所以数列1b n 的前n项和为−2nn+1.18. (1)因为∠DAB=60∘,AB=2AD,由余弦定理得BD=3AD,从而BD2+AD2=AB2,故BD⊥AD.又PD⊥底面ABCD,可得BD⊥PD.所以BD⊥平面PAD.故PA⊥BD.(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D−xyz,则A1,0,0,B 0,0,C −1,0,P0,0,1,故AB= −1,3,0,PB=0,3,−1,BC=−1,0,0.设平面PAB的法向量为n=x,y,z,则n⋅AB=0,n⋅PB=0.即−x+3y=0,3y−z=0.因此可取n=3,1,3.设平面PBC的法向量为m,则m⋅PB=0,m⋅BC=0.可取m=0,−1,− 3,所以cos m,n=−427=−27.故二面角A−PB−C的余弦值为−277.19. (1)由试验结果知,用A配方生产的产品中优质品的频率为22+8=0.3,所以用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为32+10=0.42,所以用B配方生产的产品的优质品率的估计值为0.42.(2)用B配方生产的100件产品中,其质量指标值落入区间90,94,94,102,102,110的频率分别为0.04、0.54、0.42,因此P X=−2=0.04,P X=2=0.54,P X=4=0.42,即X的分布列为X−224P0.040.540.42X的数学期望值EX=−2×0.04+2×0.54+4×0.42=2.68.20. (1)设M x,y,由已知得B x,−3,A0,−1.所以MA=−x,−1−y,MB=0,−3−y,AB=x,−2.再由题意可知 MA+MB⋅AB=0,即−x,−4−2y⋅x,−2=0.所以曲线C的方程式为y=14x2−2.(2)设P x0,y0为曲线C:y=14x2−2上一点,因为yʹ=12x,所以l的斜率为12x0.因此直线l的方程为y−y0=12x0x−x0,即x0x−2y+2y0−x02=0.则O点到l的距离d=∣002∣x0+4.又y0=14x02−2,所以d=12x2+42=12x02+4+2≥2,当x02=0时取等号,所以O点到l距离的最小值为2.21. (1)fʹx=a x+1x−ln xx+12−bx2,由于直线x+2y−3=0的斜率为−12,且过点1,1,故f1=1,fʹ1=−1 ,即b=1,a−b=−1 ,解得a=1,b=1.(2)由(1)知f x=ln x+1,所以f x−ln xx−1+kx=11−x22ln x+k−1x2−1x.考虑函数ℎx=2ln x+k−1x2−1xx>0,则ℎʹx=k−1x2+1+2xx2.(i)设k≤0,由ℎʹx=k x2+1−x−12x2知,当x≠1时,ℎʹx<0.而ℎ1=0,故当x∈0,1时,ℎx>0,可得12ℎx>0;当x∈1,+∞时,ℎx<0,可得11−x2ℎx>0.从而当x>0,且x≠1时,f x−ln x+k>0,即f x>ln xx−1+kx.(ii)设0<k<1.由于当x∈1,11−k时,k−1x2+1+2x>0,故ℎʹx>0,而ℎ1=0,故当x∈1,11−k 时,ℎx>0,可得11−xℎx<0,与题设矛盾.(iii)设k≥1.此时ℎʹx>0,而ℎ1=0,故当x∈1,+∞时,ℎx>0,可得11−x2ℎx<0,与题设矛盾.综合得,k的取值范围为−∞,0.22. (1)连接DE,根据题意在△ADE 和△ACB 中,AD ×AB =mn =AE ×AC ,即AD =AE. 又∠DAE =∠CAB ,从而△ADE ∽△ACB ,因此∠ADE =∠ACB ,所以C ,B ,D ,E 四点共圆.(2)m =4,n =6时,方程x 2−14x +mn =0的两根为x 1=2,x 2=12.故AD =2,AB =12.取CE 的中点G ,DB 的中点F ,分别过G ,F 作AC ,AB 的垂线,两垂线相交于H 点,连接DH .因为C ,B ,D ,E 四点共圆,所以C ,B ,D ,E 四点所在圆的圆心为H ,半径为DH . 由于∠A =90∘,故GH ∥AB ,HF ∥AC .HF=AG =5,DF =112−2 =5,DH=5 2.故C ,B ,D ,E 四点所在圆的半径为5 23. (1)设P x ,y ,则由条件知M x 2,y2 . 由于M 点在C 1上,所以x2=2cos α,y2=2+2sin α, 即x =4cos α,y =4+4sin α,从而C 2的参数方程为x =4cos α,y =4+4sin α,α为参数 .(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.普通高等学校招生全国统一考试高考数学教师精校版含详解完美版 射线θ=π3与C 1的交点A 的极径为 ρ1=4sin π, 射线θ=π3与C 2的交点B 的极径为 ρ2=8sin π. 所以∣AB∣=∣ρ2−ρ1∣=2 3.24. (1)当a =1时,f x ≥3x +2可化为∣x −1∣≥2.由此可得x ≥3 或 x ≤−1.故不等式f x ≥3x +2的解集为x ∣x ≥3 或 x ≤−1 .(2)由f x ≤0得∣x −a∣+3x ≤0,此不等式可化为不等式组x ≥a x −a +3x ≤0 或 x ≤a a −x +3x ≤0即x ≥a x ≤a 4 或 x ≤a x ≤−a 2因为a >0,所以不等式组的解集为x ∣x ≤−a . 由题设可得−a 2=−1,故a =2.。
高考数学基础知识专项练习(含答案)
高考数学基础知识专项练习(含答案)以下是高考数学基础知识专项练,共有20道题目,每题均有详细解答。
1.已知函数$f(x)=3x+5$,求$f(-2)$的值。
解:直接将$x=-2$代入原函数,得$f(-2)=3*(-2)+5=-1$。
答案:$-1$2.解不等式$x-8\leq12$。
解:将不等式两边加上8,得$x\leq20$。
答案:$x\leq20$3.化简$\dfrac{6x^3}{9x^4}$。
解:将分子和分母同时除以$3x$,得$\dfrac{2}{3x}$。
答案:$\dfrac{2}{3x}$4.若$3x^2-6x=a$,求$x$的值。
解:将方程移项,得$3x^2-6x-a=0$,再利用求根公式,得$x=\dfrac{2\pm\sqrt{4+3a}}{3}$。
答案:$x=\dfrac{2\pm\sqrt{4+3a}}{3}$5.已知等差数列的公差$d=3$,首项$a_1=2$,求第10项的值。
解:利用等差数列的通项公式$a_n=a_1+(n-1)d$,得$a_{10}=2+9*3=29$。
答案:$29$6.已知直角三角形两直角边分别为3和4,求斜边长。
解:使用勾股定理,得斜边长$c=\sqrt{3^2+4^2}=5$。
答案:$5$7.若$f(x)=x^2-2x+5$,求$f(3)$的值。
解:直接将$x=3$代入原函数,得$f(3)=3^2-2*3+5=7$。
答案:$7$8.已知函数$f(x)=\dfrac{1}{x+1}$,求$f(2)$的值。
解:直接将$x=2$代入原函数,得$f(2)=\dfrac{1}{2+1}=\dfrac{1}{3}$。
答案:$\dfrac{1}{3}$9.化简$2y-4y^2-3y+1$。
解:将同类项相加,得$-4y^2-y+1$。
答案:$-4y^2-y+1$10.已知函数$f(x)=\sqrt{x+3}$,求$f(1)$的值。
解:直接将$x=1$代入原函数,得$f(1)=\sqrt{1+3}=2$。
2011高考数学基础知识训练(16)
2011高考数学基础知识训练(16)一、填空题:1. 复数z =(m -1)i + m 2-1是纯虚数,则实数m 的值是 .2. 化简:AB DF CD BC +++= .3. 设211()1x x f x x x-<⎧⎪=⎨⎪⎩≥1,,,,则f (f (2))的值是 .4. 若数列{a n }的通项公式a n =21(1)n +,记12()2(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1)f ,(2)f ,(3)f 的值,推测出()f n = .5. 函数y =cos x 的图象在点(π3,12)处的切线方程是 . 6. 已知α,β均为锐角,且21sin sin -=-βα,1cos cos 3αβ-=,则c o s ()αβ-= .7. 估测函数f(x)=x e x1-的零点所在区间是_________(要求区间长度41≤,e ≈ 2.71) 8. 某海域上有A ,B ,C 三个小岛,已知A ,B 之间相距8 n mile ,A ,C 之间相距5 n mile ,在A 岛测得∠BAC 为60°,则B 岛与C 岛相距 n mile . 9.函数)23(log )(221x x x f --=的单调递增区间是 .10.若经过点P (-1,0)的直线与圆224230x y x y ++-+=相切,则这条直线在y 轴上的截距是 .11.集合A ={}2<x x ,B ={}0652<--x x x ,则A ∩B = .12.当1>x 时,不等式a x x ≥-+11恒成立,则实数a 的取值范围是 . 13.下列各函数:①1y x x =+ ②1sin sin y x x =+,π0 2x ∈(,)③2232x y x +=+ ④42x x y e e =+- 其中最小值为2的函数有 .(写出符合的所有函数的序号)14.已知y x ,满足约束条件22,022011y x y x y x x +⎪⎩⎪⎨⎧≤--≤+-≥则的最小值是 .二、解答题:15.已知函数x x x f 2)(2+=,函数()x g 与()x f 的图象关于原点对称. (1)求函数()x g 的解析式;(2)解不等式()()1--≥x x f x g .16.已知向量a =(3sin α,cos α),b =(2sin α, 5sin α-4cos α),α∈(3π2π2,),且a ⊥b .(1)求tan α的值; (2)求cos(π23α+)的值.17.已知双曲线过点(3,-2),且与椭圆224936x y +=有相同的焦点.(1)求双曲线的标准方程;(2)求以双曲线的右准线为准线的抛物线的标准方程.18.已知各项均为正数的等差数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6;等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 15;数列{c n }满足c n =a n b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和T n .19.国际上常用恩格尔系数(记作n )来衡量一个国家和地区人民生活水平的状况,它的计算公式为:%100⨯=消费支出总额食品消费支出总额n ,各种类型家庭的n 如下表所示:家庭类型 贫困 温饱 小康 富裕 最富裕 nn>60%50%<n ≤60%40%<n ≤50%30%<n ≤40%n ≤30%根据某市城区家庭抽样调查统计,2003年初至2007年底期间,每户家庭消费支出总额每年平均增加720元,其中食品消费支出总额每年平均增加120元;(1)若2002年底该市城区家庭刚达到小康,且该年每户家庭消费支出总额9600元,问2007年底能否达到富裕?请说明理由;(2)若2007年比2002年的消费支出总额增加36%,其中食品消费支出总额增加12%,问从哪一年底起能达到富裕?请说明理由.20.已知函数()3225f x x ax x =+-+. (1)若函数f x ()在(23,1)上单调递减,在(1,+∞)上单调递增,求实数a 的值; (2)是否存在正整数a ,使得f x ()在(13,12)上既不是单调递增函数也不是单调递减函数?若存在,试求出a 的值,若不存在,请说明理由.参考答案一、填空题: 1.-12.AF3.0 4.21n n ++ 5.313π226y x +--=0 6.5972 7.(0.5,0.75)不唯一 8.7 9.)1,1[- 10.1 11.(-1,2) 12.3≤a ; 13.④ 14.5二、解答题:15.解:(1)设)(x g 任一点),(00y x P ,其关于原点对称点),(00y x P --'在)(x f 图象上,则 )(2)(0200x x y -+-=-,即02002x x y +-= ……………..4分 x x x g 2)(2+-=∴ ……………..7分 (2) ()()1--≥x x f x g1||2222--+≥+-∴x x x x x , ……………..9分化简得01||||22≤--x x ,即0)1|)(|1||2(≤-+x x …………11分即不等式的解集为}11|{≤≤-x x ………………14分16. 解:(1)∵a ⊥b ,∴a ·b =0.而a =(3sin α,cos α),b =(2sin α, 5sin α-4cos α),故a ·b =6sin 2α+5sin αcos α-4cos 2α=0.………………………………2分由于cos α≠0,∴6tan 2α+5tan α-4 =0.解之,得tan α=-43,或tan α=12.………………………………………6分∵α∈(3π2π2,),tan α<0,故tan α=12(舍去).∴tan α=-43.………7分 (2)∵α∈(3π2π2,),∴3ππ24α∈(,). 由tan α=-43,求得1tan 22α=-,tan 2α=2(舍去). ∴525sin cos2525αα==-,,………………………………………………12分cos(π23α+)=ππcos cos sin sin 2323αα- =251535252-⨯-⨯ =251510+-. …………………………14分17. 解:(1)由题意,椭圆224936x y +=的焦点为(5,0±),…………………2分即c =5,∴设所求双曲线的方程为222215x y a a-=-.…………………… 4分 ∵双曲线过点(3,-2),∴229415a a -=-.∴23a =,或215a =(舍去). ……………………………………………7分∴所求双曲线的方程为22132x y -=.…………………………………………8分(2)由(1),可知双曲线的右准线为 35x =.设所求抛物线的标准方程为220y px p =->(),则65p =. ………………12分 ∴所求抛物线的标准方程为21255y x =-. …………………………………14分 18. 解(1)∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6.解之,得a 1=2,或a 1=3.………………………………………………………2分又10S n -1=a n -12+5a n -1+6(n ≥2), ②由①-②,得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0.∵a n +a n -1>0,∴a n -a n -1=5(n ≥2).…………………………………………5分 当a 1=3时,a 3=13,a 15=73.a 1, a 3,a 15不成等比数列,∴a 1≠3.当a 1=2时,a 3=12,a 15=72,有 a 32=a 1a 15.……………………………………7分∴数列{b n }是以6为公比,2为首项的等比数列,b n =2×6n -1. ……………9分(2)由(1)知,a n =5n -3 ,c n =2(5n -3)6n -1.∴T n =2[2+7×6+12×62+…+(5n -3)6n -1], ………………………11分6 T n =2[2×6+7×62+12×63+…+(5n -3)6n],∴-5 T n =2[5×6+5×62+…+5×6n -1] +4-2(5n -3)6n………………13分=1106(16)16n -⨯--+4-2(5n -3)6n =(8-10n )6n -8.T n =8(810)655nn --.……………………………………………………………16分19.解:(1)因为2002年底刚达到小康,所以n=50% …………2分 且2002年每户家庭消费支出总额为9600元,故食品消费支出总额为9600×50%=4800元 …………4分 则%40%4113200540072059600120548002007>≈=⨯+⨯+=n ,即2007年底能达到富裕…………8分(2)设2002年的消费支出总额为a 元,则%),361(7205+=⨯+a a 从而求得10000=a 元, …………10分又设其中食品消费支出总额为%),121(1205,+=⨯+b b b 则元 从而求得5000=b 元 …………12分 当恩格尔系数为%40720100001205000%30,%40%30≤++<≤<xxn 有时,解得.8.2095.5<≤x …………14分则6年后即2008年底起达到富裕 …………16分20. 解 (1)∵()3225f x x ax x =+-+在(23,1)上递减,在(1,+∞)上递增, ∴f′(x )=3x 2+2ax -2, ……………………………………………2分f′(1)=0,∴a =-12. ……………………………………………6分(2)令f′(x )=3x 2+2ax -2=0.∵△=4a 2+24>0,∴方程有两个实根,……………………………………8分分别记为x 1 x 2.由于x 1·x 2=-23,说明x 1,x 2一正一负,即在(23,1)内方程f′(x )=0不可能有两个解.……………………10分故要使得f x ()在(13,12)上既不是单调增函数也不是单调减函数的充要条件是f′(13)·f′(12)<0,即(13+23a -2)(34+a -2)<0.…………… 13分解得5542a <<. …………………………………………………………………15分∵a 是正整数,∴a =2. (16)。
2011高考数学基础知识训练(1)
2011高考数学基础知识训练(1)一、填空题 1.函数3-=x y 的定义域为___ .2.已知全集U R =,集合{1,0,1}M =-,{}2|0N x x x =+=,则=⋂)(N C M U __ .3.若1()21x f x a =+-是奇函数,则a =___ . 4.已知1x x -+=且1x >,则1x x --的值为 .5.幂函数a x y =,当a 取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如右图).设点 A (1,0),B (0,1),连接AB ,线段AB 恰好被其中的两个幂函数αx y =,βx y =的图像三等分,即有NA MN BM ==.那么βα⋅=___ .6.直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b =___ . 7.已知命题:“[1,2]x ∃∈,使022≥++a x x ”为真命题,则a 的取值范围是___ . 8. 函数4(4)(),(3)(4)x x f x f x x -≥⎧=⎨+<⎩则[(1)]f f -= .9.在用二分法...求方程3210x x --=的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为___ .10.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(,>>+=b a by ax Z 的最大值为12,则ba 231+的最小值为___ . 11.集合}2log |{21>=x x A ,),(+∞=a B ,若A B A ≠⋂时a 的取值范围是(,)c +∞,则c =___ .12.已知结论:“在正三角形ABC 中,若D 是BC 的中点,G 是三角形ABC 重心,则AGGD=2 ” .若把该结论推广到空间,则有结论:“在正四面体ABCD 中,若BCD ∆ 的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则AOOM=___ . 13.若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()x f x g x e -=,则有(),()f x g x 的解析式分别为 .14.若1||x a x -+≥12对一切x >0恒成立,则a 的取值范围是___ .二、解答题15.设非空集合A={x |-3≤x ≤a},B={y|y=3x+10,x ∈A},C={z|z=5-x,x ∈A},且B ∩C=C ,求a 的取值范围.16. 已知函数1()22xx f x =-. (1)若()2f x =,求x 的值;(2)判断函数()f x 的奇偶性,并证明你的结论. 17. 讨论函数2()(0)1axf x a x=≠-在区间(1,1)-上的单调性. 18. 即将开工的上海与周边城市的城际列车铁路线将大大缓解交通的压力,加速城市之间的流通;根据测算,如果一列火车每次拖4节车厢,每天能来回16次;如果每次拖7节车厢,则每天能来回10次;每天来回次数是每次拖挂车厢个数的一次函数,每节车厢一次能载客110人,试问每次应拖挂多少节车厢才能使每天营运人数最多?并求出每天最多的营运人数.(注:营运人数指火车运送的人数) .20. 已知f (x )是定义域为(0,+∞)的函数,当x ∈(0,1)时f (x )<0.现针对任意..正实数x 、y ,给出下列四个等式:① f (x y)=f (x ) f (y) ;② f (x y)=f (x )+f (y) ;③ f (x +y)=f (x )+f (y) ; ④ f (x +y)=f (x ) f (y) . 请选择其中的一个..等式作为条件,使得f (x )在(0,+∞)上为增函数;并证明你的结论. 解:你所选择的等式代号是 . 证明:参考答案:1.}3|{≥x x 2.}1{3.124. 解:由1x x -+=2228xx -++=,则221224,()4x x x x ---+=∴-=,又11, 2.x x x ->∴-= 答案:2.5.1 6.12ln - 7.8-≥a8. 解:[(1)][(2)][(5)](1)(4)0.f f f f f f f f -===== 答案:0 .9.)2,23(10.122511.0 12.313.解:由已知()()xf xg x e -=,用x -代换x 得:()(),xf xg x e ----=即()()xf xg x e -+=-,解得:2)(,2)(xx x x e e x g e e x f +-=-=-. 答案:2)(,2)(xx x x e e x g e e x f +-=-=-. 14.a ≤215.解:B={y|1≤y ≤3a+10},C={y|5-a ≤y ≤8};由已知B ∩C=C ,得C ⊆B ,∴518310a a -≥⎧⎨≤+⎩ ,解得243a -≤≤;又非空集合A={x |-3≤x ≤a},故a ≥-3;∴243a -≤≤,即a 的取值范围为243a -≤≤.16. 解:(1)∵1()22xx f x =-,由条件知1222x x-=,即222210x x-⨯-=,解得21x=20x>,2log (1x =∴.(2)()f x 为奇函数,证明如下:函数()f x 的定义域为实数集R ,对于定义域内的任一x ,都有111()22(2)()222xx x x x xf x f x ---=-=-=--=-, ∴函数()f x 为奇函数.17.解:设121212221211,()()11ax ax x x f x f x x x -<<<-=---则=12122212()(1)(1)(1)a x x x x x x -+--, 1212,(1,1),,x x x x ∈-< 且221212120,10,(1)(1)0,x x x x x x ∴-<+>-->于是当120,()();a f x f x ><时当120,()();a f x f x <>时 故当0a >时,函数在(-1,1)上是增函数; 当0a <时,函数在(-1,1)上为减函数.18.解:设这列火车每天来回次数为t 次,每次拖挂车厢n 节;则由已知可设b kn t +=. 由已知得⎩⎨⎧+=+=b k b k 710416,解得⎩⎨⎧=-=242b k ;242+-=∴n t .设每次拖挂n 节车厢每天营运人数为y 人;则)2640220(221102n n tn y +-=⨯⨯=; ∴当64402640==n 时,总人数最多,为15840人. 答:每次应拖挂6节车厢,才能使每天的营运人数最多,为15840人.19.解:(1)()10,0,f a b c -=∴-+= b a c =+;2224()4()b ac a c ac a c ∆=-=+-=- ,∴当a c =时,0∆=,函数()f x 有一个零点;即存在()012,x x x ∈,使0()0g x =即()()()0122f x f x f x =+⎡⎤⎣⎦成立.20.解:选择的等式代号是 ② .证明:在f (x y)=f (x )+f (y )中,令x =y =1,得f (1)= f (1)+ f (1),故f (1)=0. 又f (1)=f(x · 1x )=f (x )+f ( 1x )=0,∴f ( 1x )=-f (x ).………(※)设0<x 1<x 2,则0<x 1x 2 <1,∵x ∈(0,1)时f (x )<0,∴f ( x 1x 2)<0; 又∵f (x 1x 2 )=f (x 1)+f ( 1x 2 ),由(※)知f ( 1x 2 )=-f (x 2),∴f ( x 1x 2)=f (x 1)-f (x 2)<0; ∴f (x 1)<f(x 2) ,∴f (x )在(0,+∞)上为增函数.。
2011年高考数学试题及答案
2011年高考数学试题及答案(以下为2011年高考数学试题及答案,仅供参考)第一部分:选择题1. 已知函数 f(x) = 2x^2 + 3x - 2,那么 f(-1) 的值为多少?A. -2B. 0C. 2D. 4答案:A2. 已知等差数列 {an} 的公差 d = 4,a1 = 3,a3 = 9,那么 a10 的值为多少?A. 20B. 21C. 22D. 23答案:D3. 若sinθ = 3/5,那么cosθ 的值为多少?A. -4/5C. 3/4D. 4/5答案:A4. 已知ΔABC 中,∠B = 90°,AB = 3,BC = 4,那么 AC 的值为多少?A. 5B. 7C. 9D. 12答案:A5. 设函数 f(x) = x^3 - 2x^2 + 5x - 6,那么 f '(x) 的导数为多少?A. 3x^2 - 4x + 5B. 3x^2 - 4x - 5C. x^3 - x^2 + 5D. x^3 - x^2 - 5答案:A第二部分:填空题1. 随机抽取一个数,该数为整数的概率是 _______。
2. 在仅含正整数的数列 {an} 中,已知 a1 = 1,a2 = 2,a(n+1) = an + a(n-1),则 a5 的值为 _______。
答案:73. 下列四个数中,最小的数是 _______。
A. 0.3^0.4B. 0.4^0.3C. 0.2^0.5D. 0.5^0.2答案:C第三部分:解答题1. 解方程 2^x - 4 * 2^(x-1) + 8 * 2^(x-2) = 0。
解答:设 t = 2^x,则原方程可化简为 t - 4t + 8t = 0,即 5t = 0。
因此,t = 0。
代回原方程中,得 2^x = 0。
由指数函数图像可知,2^x 恒大于 0,所以无实数解。
2. 计算以下定积分:∫(0, π/2) sin(x) dx。
解答:∫(0, π/2) sin(x) dx = [-cos(x)](0, π/2)= -cos(π/2) + cos(0)= -0 + 1= 13. 已知等差数列 {an} 的首项 a1 = 2,公差 d = 3,若 a5 和 a9 分别为首次出现的素数,求 a5 的值。
2011高考数学选择题与填空题专项过关训练
高考数学选择题与填空题专项过关训练1.直觉思维在解数学选择题中的应用数学选择题在高考试卷中,所占的分值60分,它具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,对于能否进入最佳状态,以至于整个考试的成败起着举足轻重的作用.解答选择题的基本策略是准确、迅速。
数学思维包括逻辑思维和直觉思维两种形式,逻辑思维严格遵守数学概念和逻辑演绎的规则,而直觉思维不受固定的逻辑规则约束,它直接领悟事物本质,是一种跳跃式的预见,因此大大缩短思考时间。
在解数学选择题时,巧妙运用直觉思维,能有效提高解题速度、准确度。
培养数学直觉思维,可以从特殊结构(包括代数式的结构、图形的结构、问题的结构)、特殊数值、特殊位置、变化趋势、变化极限、范围估计、运算结果、特殊联系等方面来进行。
一、从特殊结构入手【例题1】 )A 、1B 、21C 、2D 、22此题情境设置简洁,解决方法也多,通常可以考虑作出对棱的公垂线段再转化为直角三角形求解。
不过若能意识到把这个正四面体置于一个正方体结构中(如图1),则瞬间得到结果,就是该正方体的棱长,为1,选图1二、从特殊数值入手【例题2】、已知ππ2,51cos sin ≤<=+x x x ,则tan x 的值为( )A 、43-B 、43-或34-C 、34-D 、43由题目中出现的数字3、4、5是勾股数以及x 的范围,直接意识到34sin ,cos 55x x =-=,从而得到3tan 4x =-,选C 。
【例题3】、△ABC 中,cosAcosBcosC 的最大值是( )A 、383 B 、81 C 、1 D 、21本题选自某一著名的数学期刊,作者提供了下列 “标准”解法,特抄录如下供读者比较: 设y=cosAcosBcosC ,则2y=[cos (A+B )+ cos (A-B )] cosC ,∴cos 2C- cos (A-B )cosC+2y=0,构造一元二次方程x 2- cos (A-B )x+2y=0,则cosC 是一元二次方程的根,由cosC 是实数知:△= cos 2(A-B )-8y ≥0,即8y ≤cos 2(A-B )≤1,∴81≤y ,故应选B 。
2011高考数学基础知识训练(5)
2011高考数学基础知识训练(5)一、填空题1.定义:区间[]()1212,x x x x <的长度为21x x -.已知函数||2x y =的定义域为[],a b ,值域为[]1,2,则区间[],a b 的长度的最大值与最小值的差为_________. 2.设集合A={x |x <-1或x >1},B={x |x 2log >0},则A ∩B= _______________.3. 已知扇形的圆心角为︒150,面积为,15π则此扇形的周长为_______________.4.一钟表分针长10cm ,经40分钟,分针端点所转过的弧长是_________ cm .5.在以原点为圆心,半径为1的单位圆中,一条弦AB 的长度为3,AB 所对圆心角α 的弧度数为_______________.6.已知角α的终边经过点(,6)P x --,且5cos 13α=-,则x 的值是_______________.7.α是第四象限角,5tan 12α=-,则sin α=_______________.8.已知,54)540sin(0-=+α则=-)90cos(0α_______________.9.已知2弧度的圆心角所对的弦长为4,那么这个圆心角所对弧长为______________. 10. 若'f (a)=2,则当h 无限趋近于0时,ha f h a f 2)()(--无限趋近于_________.11.已知2tan -=α,则sin cos αα的值为_______________.12.若角α的终边上一点的坐标为2sin,cos63ππ⎛⎫⎪⎝⎭tan αα+的值为_____. 13.已知α是三角形的内角,若51cos sin =+a a ,则=a tan _______________.14.给出下列四个结论:①命题“2,0"x R x x ∃∈->的否定是“2,0x R x x ∀∈-≤”;②“若22,am bm <则a b <”的逆命题为真;③函数()sin f x x x =-(x R ∈)有3个零点; ④对于任意实数x ,有()(),()(),f x f x g x g x -=--= 且x>0时,()0,()0,f x g x ''>>则x<0时()().f x g x ''> 其中正确结论的序号是 .(填上所有正确结论的序号)二、解答题 15.已知)sin()tan()tan()2cos()sin()(αππαααπαπα-------=f(1)化简)(αf .(2)若α是第三象限角,且,51)23cos(=-πα求)(αf 的值.16.已知4tan 3α=-,求:(1)tan()4πα+的值;(2)6sin cos 3sin 2cos αααα+-的值;(3)αααα22cos 5cos sin 4sin 3++的值.17.已知二次函数f (x )满足:①在x =1时有极值;②图象过点(0,-3),且在该点处的切线与直线2x +y =0平行.⑴求f (x )的解析式;⑵求函数g (x )=f (x 2)的单调递增区间.18. 某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,()21103C x x x =+(万元);当年产量不小于80千件时,()10000511450C x x x=+-(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式. (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?19.已知函数2()sin sin f x x x a =-++,若1()4f x ≤≤对一切x R ∈恒成立.求实数a 的取值范围.20.设函数.,),(2)(234R b a R x b x ax x x f ∈∈+++=其中 (1)当)(,310x f a 讨论函数时-=的单调性;(2)若函数a x x f 求处有极值仅有,0)(=的取值范围;(3)若对于任意的]0,1[1)(],2,2[-≤-∈在不等式x f a 上恒成立,求b 的取值范围.参考答案: 1. 12.{x |x >1} 3. 435π+4.340π5.π326.527.513-8.549.1sin 410. -1 11.25-12.2- 13.34-14. ①④15.解:(1) ααααααππαααπαπαtan sin sin )tan )(tan (cos sin )sin()tan()tan()2cos()sin()(a a f =--=-------=(2)51sin )2cos()23cos(=-=+=-απαπα,51sin -=∴αα 为第三象限角,562cos -=∴α.606tan sin )(-==∴a a f α16.解:(1)tan tan tan 14tan()41tan 1tan tan4παπααπαα+++==--=41134713-+=-+………(7分)(2)由(1)知, tan α=-34,所以6sin cos 3sin 2cos αααα+-=6tan 13tan 2αα+-=46()173463()23-+=--……………………(10分)(3)αααααααααα222222cos sin cos 5cos sin 4sin 3cos 5cos sin 4sin 3+++=++=591tan 5tan 4tan 322=+++ααα …………………………………………… (14分)17.解:⑴设f (x )=ax 2+bx +c ,则f '(x )=2ax +b . 由题设可得:⎪⎩⎪⎨⎧-=-='=',3)0(,2)0(,0)1(f f f 即⎪⎩⎪⎨⎧-=-==+.3,2,02c b b a 解得⎪⎩⎪⎨⎧-=-==.3,2,1c b a所以f (x )=x 2-2x -3.⑵g (x )=f (x 2)=x 4-2x 2-3,g '(x )=4x 3-4x =4x (x -1)(x +1).列表:由表可得:函数g (x )的单调递增区间为(-1,0),(1,+∞).18.解:⑴当080,*x x N <<∈时,()2250010001110250402501000033x L x x x x x ⨯=---=-+- …………(2分)当*80,x x N ≥∈时,()50010001000010000511450250120010000x L x x x xx ⨯⎛⎫=--+-=-+ ⎪⎝⎭……(4分)()()()2**140250,080,3100001200,80,x x x x N L x x x x N x ⎧-+-<<∈⎪⎪∴=⎨⎛⎫⎪-+≥∈ ⎪⎪⎝⎭⎩………………………(7分)⑵当080,*x x N <<∈时,()()21609503L x x =--+,∴ 当60x =时,()L x 取得最大值()60950L =(万元)………………(9分)当*80,x x N ≥∈时,()100001200120012002001000L x x x ⎛⎫=-+≤-=-= ⎪⎝⎭………(12分)10000,100x x x∴==当即时,()L x 取得最大值1000万元,即生产量为100千件时,该厂在这一商品的生产中所获利润最大 ……………………………………(14分)19.解:∵2()sin sin y f x x x a ==-++, 令sin t x =,则2y t t a =-++(11t -≤≤), 由于2y t t a =-++的对称轴是12t =,∴在11t -≤≤上,根据二次函数的单调性,有:当12t =时,y 取得最大值,2m ax 111()224y a a =-++=+,当1t =-时,y 取得最小值,2m in (1)(1)2y a a =--+-+=-,又∵1()4f x ≤≤对一切x R ∈恒成立,即:214y t t a ≤=-++≤对一切[11]t ∈-,恒成立, 所以有:m ax m in 41y y ≤⎧⎨≥⎩,即141534421a a a ⎧+≤⎪⇒≤≤⎨⎪-≥⎩,∴实数a 的取值范围是1534⎡⎤⎢⎥⎣⎦,.20. 解:(1)).434(434)(223++=++='ax x x x ax x x f当).2)(12(2)4104()(,3102--=+-='-=x x x x x x x f a 时令.2,21,0,0)(321===='x x x x f 得 3分当)(),(,x f x f x '变化时的变化情况如下表:所以),2()21,0()(+∞和在x f 上是增函数,在区间)2,21()0,(和-∞上是减函数 6分(2)04340),434()(22=++=++='ax x x ax x x x f 不是方程显然的根。
2011年高考数学_指数、对数函数—高考生必备基础知识
2011年高考数学_指数、对数函数—高考生必备基础知识指数函数、对数函数是高考考查的重点内容之一,本节主要帮助考生掌握两种函数的概念、图象和性质并会用它们去解决某些简单的实际问题.●难点磁场(★★★★★)设f (x )=log 2xx -+11,F (x )=x -21+f (x ). (1)试判断函数f (x )的单调性,并用函数单调性定义,给出证明; (2)若f (x )的反函数为f -1(x ),证明:对任意的自然数n (n ≥3),都有f -1(n )>1+n n ; (3)若F (x )的反函数F -1(x ),证明:方程F -1(x )=0有惟一解.●案例探究[例1]已知过原点O 的一条直线与函数y =log 8x 的图象交于A 、B 两点,分别过点A 、B 作y 轴的平行线与函数y =log 2x 的图象交于C 、D 两点.(1)证明:点C 、D 和原点O 在同一条直线上;(2)当BC 平行于x 轴时,求点A 的坐标.命题意图:本题主要考查对数函数图象、对数换底公式、对数方程、指数方程等基础知识,考查学生的分析能力和运算能力.属★★★★级题目.知识依托:(1)证明三点共线的方法:k OC =k OD .(2)第(2)问的解答中蕴涵着方程思想,只要得到方程(1),即可求得A 点坐标.错解分析:不易考虑运用方程思想去解决实际问题.技巧与方法:本题第一问运用斜率相等去证明三点共线;第二问运用方程思想去求得点A 的坐标.(1)证明:设点A 、B 的横坐标分别为x 1、x 2,由题意知:x 1>1,x 2>1,则A 、B 纵坐标分别为log 8x 1,log 8x 2.因为A 、B 在过点O 的直线上,所以228118log log x x x x =,点C 、D 坐标分别为(x 1,log 2x 1),(x 2,log 2x 2),由于log 2x 1=2log log 818x ===2log log log ,log 38282218x x x 3log 8x 2,所以OC 的斜率:k 1=118212log 3log x x x x =, OD 的斜率:k 2=228222log 3log x x x x =,由此可知:k 1=k 2,即O 、C 、D 在同一条直线上. (2)解:由BC 平行于x 轴知:log 2x 1=log 8x 2 即:log 2x 1=31log 2x 2,代入x 2log 8x 1=x 1log 8x 2得:x 13log 8x 1=3x 1log 8x 1,由于x 1>1知log 8x 1≠0,∴x 13=3x 1.又x 1>1,∴x 1=3,则点A 的坐标为(3,log 83).[例2]在xOy 平面上有一点列P 1(a 1,b 1),P 2(a 2,b 2),…,P n (a n ,b n )…,对每个自然数n 点P n位于函数y =2000(10a )x (0<a <1)的图象上,且点P n ,点(n ,0)与点(n +1,0)构成一个以P n 为顶点的等腰三角形.(1)求点P n 的纵坐标b n 的表达式;(2)若对于每个自然数n ,以b n ,b n +1,b n +2为边长能构成一个三角形,求a 的取值范围;(3)设C n =lg(b n )(n ∈N *),若a 取(2)中确定的范围内的最小整数,问数列{C n }前多少项的和最大?试说明理由.命题意图:本题把平面点列,指数函数,对数、最值等知识点揉合在一起,构成一个思维难度较大的综合题目,本题主要考查考生对综合知识分析和运用的能力.属★★★★★级题目.知识依托:指数函数、对数函数及数列、最值等知识.错解分析:考生对综合知识不易驾驭,思维难度较大,找不到解题的突破口.技巧与方法:本题属于知识综合题,关键在于读题过程中对条件的思考与认识,并会运用相关的知识点去解决问题.解:(1)由题意知:a n =n +21,∴b n =2000(10a )21+n . (2)∵函数y =2000(10a )x (0<a <10)递减,∴对每个自然数n ,有b n >b n +1>b n +2.则以b n ,b n +1,b n +2为边长能构成一个三角形的充要条件是b n +2+b n +1>b n ,即(10a )2+(10a )-1>0,解得a <-5(1+2)或a >5(5-1).∴5(5-1)<a <10.(3)∵5(5-1)<a <10,∴a =7 ∴b n =2000(107)21+n .数列{b n }是一个递减的正数数列,对每个自然数n ≥2,B n =b n B n -1.于是当b n ≥1时,B n <B n -1,当b n <1时,B n ≤B n -1,因此数列{B n }的最大项的项数n 满足不等式b n ≥1且b n +1<1,由b n =2000(107)21+n ≥1得:n ≤20.8.∴n =20. ●锦囊妙计本难点所涉及的问题以及解决的方法有:(1)运用两种函数的图象和性质去解决基本问题.此类题目要求考生熟练掌握函数的图象和性质并能灵活应用.(2)综合性题目.此类题目要求考生具有较强的分析能力和逻辑思维能力.(3)应用题目.此类题目要求考生具有较强的建模能力.●歼灭难点训练一、选择题1.(★★★★)定义在(-∞,+∞)上的任意函数f (x )都可以表示成一个奇函数g (x )和一个偶函数h (x )之和,如果f (x )=lg(10x +1),其中x ∈(-∞,+∞),那么( )A.g (x )=x ,h (x )=lg(10x +10-x +2)B.g (x )=21[lg(10x +1)+x ],h (x )= 21[lg(10x +1)-x ] C.g (x )=2x ,h (x )=lg(10x +1)-2x D.g (x )=-2x ,h (x )=lg(10x +1)+2x 2.(★★★★)当a >1时,函数y =log a x 和y =(1-a )x 的图象只可能是( )二、填空题3.(★★★★★)已知函数f (x )=⎩⎨⎧<<--≥)02( )(log )0( 22x x x x .则f --1(x -1)=_________.4.(★★★★★)如图,开始时,桶1中有a L 水,t 分钟后剩余的水符合指数衰减曲线y =ae -nt ,那么桶2中水就是y 2=a -ae -nt ,假设过5分钟时,桶1和桶2的水相等,则再过_________分钟桶1中的水只有8a . 三、解答题5.(★★★★)设函数f (x )=log a (x -3a )(a >0且a ≠1),当点P (x ,y )是函数y =f (x )图象上的点时,点Q (x -2a ,-y )是函数y =g (x )图象上的点.(1)写出函数y =g (x )的解析式;(2)若当x ∈[a +2,a +3]时,恒有|f (x )-g (x )|≤1,试确定a 的取值范围.6.(★★★★)已知函数f (x )=log a x (a >0且a ≠1),(x ∈(0,+∞)),若x 1,x 2∈(0,+∞),判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明. 7.(★★★★★)已知函数x ,y 满足x ≥1,y ≥1.log a 2x +log a 2y =log a (ax 2)+log a (ay 2)(a >0且a ≠1),求log a (xy )的取值范围.8.(★★★★)设不等式2(log 21x )2+9(log 21x )+9≤0的解集为M ,求当x ∈M 时函数f (x )=(log 22x )(log 28x )的最大、最小值. 参考答案难点磁场解:(1)由xx -+11>0,且2-x ≠0得F (x )的定义域为(-1,1),设-1<x 1<x 2<1,则F (x 2)-F (x 1)=(122121x x ---)+(11222211log 11log x x x x -+--+) )1)(1()1)(1(log )2)(2(212122112x x x x x x x x -++-+---=, ∵x 2-x 1>0,2-x 1>0,2-x 2>0,∴上式第2项中对数的真数大于1.因此F (x 2)-F (x 1)>0,F (x 2)>F (x 1),∴F (x )在(-1,1)上是增函数.(2)证明:由y =f (x )=x x -+11log 2得:2y =1212,11+-=-+y y x x x , ∴f -1(x )=1212+-x x ,∵f (x )的值域为R ,∴f --1(x )的定义域为R . 当n ≥3时,f -1(n )>1221111221112121+>⇔+->+-⇔+>+-⇔+n n n n n n n n n n . 用数学归纳法易证2n >2n +1(n ≥3),证略.(3)证明:∵F (0)=21,∴F -1(21)=0,∴x =21是F -1(x )=0的一个根.假设F -1(x )=0还有一个解x 0(x 0≠21),则F -1(x 0)=0,于是F (0)=x 0(x 0≠21).这是不可能的,故F -1(x )=0有惟一解. 歼灭难点训练一、1.解析:由题意:g (x )+h (x )=lg(10x +1) ①又g (-x )+h (-x )=lg(10-x +1).即-g (x )+h (x )=lg(10-x +1) ②由①②得:g (x )=2x ,h (x )=lg(10x +1)-2x . 答案:C2.解析:当a >1时,函数y =log a x 的图象只能在A 和C 中选,又a >1时,y =(1-a )x 为减函数.答案:B二、3.解析:容易求得f - -1(x )=⎩⎨⎧<-≥)1( 2)1( log 2x x x x ,从而: f -1(x -1)=⎩⎨⎧<-≥--).2( ,2)2(),1(log 12x x x x 答案:⎩⎨⎧<-≥--)2( ,2)2(),1(log 12x x x x 4.解析:由题意,5分钟后,y 1=ae-nt ,y 2=a -ae -nt ,y 1=y 2.∴n =51l n 2.设再过t 分钟桶1中的水只有8a ,则y 1=ae -n (5+t )=8a ,解得t =10.答案:10三、5.解:(1)设点Q 的坐标为(x ′,y ′),则x ′=x -2a ,y ′=-y .即x =x ′+2a ,y =-y ′. ∵点P (x ,y )在函数y =log a (x -3a )的图象上,∴-y ′=log a (x ′+2a -3a ),即y ′=log aa x -21,∴g (x )=log a ax -1. (2)由题意得x -3a =(a +2)-3a =-2a +2>0;a x -1=aa -+)3(1>0,又a >0且a ≠1,∴0<a <1,∵|f (x )-g (x )|=|log a (x -3a )-log aax -1|=|log a (x 2-4ax +3a 2)|·|f (x )-g (x )|≤1,∴-1≤log a (x 2-4ax +3a 2)≤1,∵0<a <1,∴a +2>2a .f (x )=x 2-4ax +3a 2在[a +2,a +3]上为减函数,∴μ(x )=log a (x 2-4ax +3a 2)在[a +2,a +3]上为减函数,从而[μ(x )]max =μ(a +2)=log a (4-4a ),[μ(x )]mi n =μ(a +3)=log a (9-6a ),于是所求问题转化为求不等式组⎪⎩⎪⎨⎧≤--≥-<<1)44(log 1)69(log 10a a a aa 的解.由log a (9-6a )≥-1解得0<a ≤12579-,由log a (4-4a )≤1解得0<a ≤54, ∴所求a 的取值范围是0<a ≤12579-. 6.解:f (x 1)+f (x 2)=log a x 1+log a x 2=log a x 1x 2,∵x 1,x 2∈(0,+∞),x 1x 2≤(221x x +)2(当且仅当x 1=x 2时取“=”号), 当a >1时,有log a x 1x 2≤log a (221x x +)2, ∴21log a x 1x 2≤log a (221x x +),21(log a x 1+log a x 2)≤log a 221x x +, 即21[f (x 1)+f (x 2)]≤f (221x x +)(当且仅当x 1=x 2时取“=”号) 当0<a <1时,有log a x 1x 2≥log a (221x x +)2, ∴21(log a x 1+log a x 2)≥log a 221x x +,即21[f (x 1)+f (x 2)]≥f (221x x +)(当且仅当x 1=x 2时取“=”号).7.解:由已知等式得:log a 2x +log a 2y =(1+2log a x )+(1+2log a y ),即(log a x -1)2+(log a y -1)2=4,令u =log a x ,v =log a y ,k =log a xy ,则(u -1)2+(v -1)2=4(uv ≥0),k =u +v .在直角坐标系uOv 内,圆弧(u-1)2+(v -1)2=4(uv ≥0)与平行直线系v =-u +k 有公共点,分两类讨论. (1)当u ≥0,v ≥0时,即a >1时,结合判别式法与代点法得1+3≤k ≤2(1+2);(2)当u ≤0,v ≤0,即0<a <1时,同理得到2(1-2)≤k ≤1-3.x 综上,当a >1时,log a xy 的最大值为2+22,最小值为1+3;当0<a <1时,log a xy 的最大值为1-3,最小值为2-22.8.解:∵2(21log x )2+9(21log x )+9≤0∴(221log x +3)( 21log x +3)≤0.∴-3≤21log x ≤-23.即21log (21)-3≤21log x ≤21log (21)23-∴(21)23-≤x ≤(21)-3,∴22≤x ≤8 即M ={x |x ∈[22,8]} 又f (x )=(log 2x -1)(log 2x -3)=log 22x -4log 2x +3=(log 2x -2)2-1.∵22≤x ≤8,∴23≤log 2x ≤3生于忧患,死于安乐《孟子•告子》舜发于畎亩之中,傅说举于版筑之间,胶鬲举于鱼盐之中,管夷吾举于士,孙叔敖举于海,百里奚举于市。
2011年高考数学难点最后突破专题讲义24
2011年高考数学难点最后突破专题讲义24难点24 直线与圆锥曲线直线与圆锥曲线联系在一起的综合题在高考中多以高档题、压轴题出现,主要涉及位置关系的判定,弦长问题、最值问题、对称问题、轨迹问题等.突出考查了数形结合、分类讨论、函数与方程、等价转化等数学思想方法,要求考生分析问题和解决问题的能力、计算能力较高,起到了拉开考生“档次”,有利于选拔的功能.●难点磁场(★★★★★)已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程. ●案例探究[例1]如图所示,抛物线y 2=4x 的顶点为O ,点A 的坐标为(5,0),倾斜角为4π的直线l 与线段OA 相交(不经过点O 或点A )且交抛物线于M 、N 两点,求△AMN 面积最大时直线l 的方程,并求△AMN 的最大面积.命题意图:直线与圆锥曲线相交,一个重要的问题就是有关弦长的问题.本题考查处理直线与圆锥曲线相交问题的第一种方法——“韦达定理法”.属★★★★★级题目.知识依托:弦长公式、三角形的面积公式、不等式法求最值、函数与方程的思想.错解分析:将直线方程代入抛物线方程后,没有确定m 的取值范围.不等式法求最值忽略了适用的条件.技巧与方法:涉及弦长问题,应熟练地利用韦达定理设而不求计算弦长,涉及垂直关系往往也是利用韦达定理,设而不求简化运算.解:由题意,可设l 的方程为y =x +m ,-5<m <0.由方程组⎩⎨⎧=+=xy mx y 42,消去y ,得x 2+(2m -4)x +m 2=0①∵直线l 与抛物线有两个不同交点M 、N ,∴方程①的判别式Δ=(2m -4)2-4m 2=16(1-m )>0, 解得m <1,又-5<m <0,∴m 的范围为(-5,0) 设M (x 1,y 1),N (x 2,y 2)则x 1+x 2=4-2m ,x 1·x 2=m 2, ∴|MN |=4)1(2m -. 点A 到直线l 的距离为d =25m +.∴S△=2(5+m )m -1,从而S △2=4(1-m )(5+m )2 =2(2-2m )·(5+m )(5+m )≤2(35522m m m ++++-)3=128.∴S △≤82,当且仅当2-2m =5+m ,即m =-1时取等号. 故直线l 的方程为y =x -1,△AMN 的最大面积为82.[例2]已知双曲线C :2x 2-y 2=2与点P (1,2)(1)求过P (1,2)点的直线l 的斜率取值范围,使l 与C 分别有一个交点,两个交点,没有交点.(2)若Q (1,1),试判断以Q 为中点的弦是否存在.命题意图:第一问考查直线与双曲线交点个数问题,归结为方程组解的问题.第二问考查处理直线与圆锥曲线问题的第二种方法——“差分法”,属★★★★★级题目.知识依托:二次方程根的个数的判定、两点连线的斜率公式、中点坐标公式.错解分析:第一问,求二次方程根的个数,忽略了二次项系数的讨论.第二问,算得以Q 为中点弦的斜率为2,就认为所求直线存在了.技巧与方法:涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率,弦的中点坐标联系起来,相互转化.解:(1)当直线l 的斜率不存在时,l 的方程为x =1,与曲线C 有一个交点.当l 的斜率存在时,设直线l 的方程为y -2=k (x -1),代入C 的方程,并整理得(2-k 2)x 2+2(k 2-2k )x -k 2+4k -6=0 (*)(ⅰ)当2-k 2=0,即k =±2时,方程(*)有一个根,l 与C 有一个交点 (ⅱ)当2-k 2≠0,即k ≠±2时Δ=[2(k 2-2k )]2-4(2-k 2)(-k 2+4k -6)=16(3-2k ) ①当Δ=0,即3-2k =0,k =23时,方程(*)有一个实根,l 与C 有一个交点. ②当Δ>0,即k <23,又k ≠±2,故当k <-2或-2<k <2或2<k <23时,方程(*)有两不等实根,l 与C 有两个交点.③当Δ<0,即k >23时,方程(*)无解,l 与C 无交点. 综上知:当k =±2,或k =23,或k 不存在时,l 与C 只有一个交点;当2<k <23,或-2<k <2,或k <-2时,l 与C 有两个交点;当k >23时,l 与C 没有交点.(2)假设以Q 为中点的弦存在,设为AB ,且A (x 1,y 1),B (x 2,y 2),则2x 12-y 12=2,2x 22-y 22=2两式相减得:2(x 1-x 2)(x 1+x 2)=(y 1-y 2)(y 1+y 2)又∵x 1+x 2=2,y 1+y 2=2 ∴2(x 1-x 2)=y 1-y 1即k AB =2121x x y y --=2但渐近线斜率为±2,结合图形知直线AB 与C 无交点,所以假设不正确,即以Q 为中点的弦不存在.[例3]如图,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2并垂直于x 轴的直线与椭圆的一个交点为B ,且|F 1B |+|F 2B |=10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:|F 2A |、|F 2B |、|F 2C |成等差数列.(1)求该弦椭圆的方程; (2)求弦AC 中点的横坐标;(3)设弦AC 的垂直平分线的方程为y =kx +m ,求m 的取值范围.命题意图:本题考查直线、椭圆、等差数列等基本知识,一、二问较简单,第三问巧妙地借助中垂线来求参数的范围,设计新颖,综合性,灵活性强,属★★★★★级题目.知识依托:椭圆的定义、等差数列的定义,处理直线与圆锥曲线的方法.错解分析:第三问在表达出“k =3625y 0”时,忽略了“k =0”时的情况,理不清题目中变量间的关系.技巧与方法:第一问利用椭圆的第一定义写方程;第二问利用椭圆的第二定义(即焦半径公式)求解,第三问利用m 表示出弦AC 的中点P 的纵坐标y 0,利用y 0的范围求m 的范围.解:(1)由椭圆定义及条件知,2a =|F 1B |+|F 2B |=10,得a =5,又c =4,所以b =22c a -=3.故椭圆方程为92522y x +=1. (2)由点B (4,y B )在椭圆上,得|F 2B |=|y B |=59.因为椭圆右准线方程为x =425,离心率为54,根据椭圆定义,有|F 2A |=54(425-x 1),|F 2C |=54(425-x 2),由|F 2A |、|F 2B |、|F 2C |成等差数列,得54(425-x 1)+54(425-x 2)=2×59,由此得出:x 1+x 2=8. 设弦AC 的中点为P (x 0,y 0),则x 0=221x x +=4.(3)解法一:由A (x 1,y 1),C (x 2,y 2)在椭圆上.得⎪⎩⎪⎨⎧⨯=+⨯=+25925925925922222121y x y x①-②得9(x 12-x 22)+25(y 12-y 22)=0, 即9×)()2(25)2(21212121x x y y y y x x --⋅+++=0(x 1≠x 2) 将k x x y y y y y x x x 1,2,422121021021-=--=+==+ (k ≠0)代入上式,得9×4+25y 0(-k1)=0 (k ≠0)即k =3625y 0(当k =0时也成立). ①②由点P (4,y 0)在弦AC 的垂直平分线上,得y 0=4k +m ,所以m =y 0-4k =y 0-925y 0=-916y 0. 由点P (4,y 0)在线段BB ′(B ′与B 关于x 轴对称)的内部,得-59<y 0<59,所以-516<m <516.解法二:因为弦AC 的中点为P (4,y 0),所以直线AC 的方程为y -y 0=-k1(x -4)(k ≠0) ③将③代入椭圆方程92522y x +=1,得 (9k 2+25)x 2-50(ky 0+4)x +25(ky 0+4)2-25×9k 2=0所以x 1+x 2=259)4(5020++k k =8,解得k =3625y 0.(当k =0时也成立)(以下同解法一).●锦囊妙计1.直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法.2.当直线与圆锥曲线相交时:涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“差分法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化.同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.●歼灭难点训练 一、选择题1.(★★★★)斜率为1的直线l 与椭圆42x +y 2=1相交于A 、B 两点,则|AB |的最大值为( )A.2B.554 C.5104 D.51082.(★★★★)抛物线y =ax 2与直线y =kx +b (k ≠0)交于A 、B 两点,且此两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则恒有( )A.x 3=x 1+x 2B.x 1x 2=x 1x 3+x 2x 3C.x 1+x 2+x 3=0D.x 1x 2+x 2x 3+x 3x 1=0 二、填空题3.(★★★★)已知两点M (1,45)、N (-4,-45),给出下列曲线方程:①4x +2y -1=0,②x 2+y 2=3,③22x +y 2=1,④22x -y 2=1,在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是_________.4.(★★★★★)正方形ABCD 的边AB 在直线y =x +4上,C 、D 两点在抛物线y 2=x 上,则正方形ABCD 的面积为_________.5.(★★★★★)在抛物线y 2=16x 内,通过点(2,1)且在此点被平分的弦所在直线的方程是_________.三、解答题6.(★★★★★)已知抛物线y 2=2px (p >0),过动点M (a ,0)且斜率为1的直线l 与该抛物线交于不同的两点A 、B ,且|AB |≤2p .(1)求a 的取值范围.(2)若线段AB 的垂直平分线交x 轴于点N ,求△NAB 面积的最大值.7.(★★★★★)已知中心在原点,顶点A 1、A 2在x 轴上,离心率e =321的双曲线过点P (6,6).(1)求双曲线方程.(2)动直线l 经过△A 1PA 2的重心G ,与双曲线交于不同的两点M 、N ,问:是否存在直线l ,使G 平分线段MN ,证明你的结论.8.(★★★★★)已知双曲线C 的两条渐近线都过原点,且都以点A (2,0)为圆心,1为半径的圆相切,双曲线的一个顶点A 1与A 点关于直线y =x 对称.(1)求双曲线C 的方程. (2)设直线l 过点A ,斜率为k ,当0<k <1时,双曲线C 的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时B 点的坐标.参考答案难点磁场解:设椭圆方程为mx 2+ny 2=1(m >0,n >0), P (x 1,y 1),Q (x 2,y 2) 由⎩⎨⎧=++=1122ny mx x y 得(m +n )x 2+2nx +n -1=0,Δ=4n 2-4(m +n )(n -1)>0,即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+(x 1+x 2)+1=0,∴n m nn m n --+-2)1(2+1=0,∴m +n =2 ①又2)210()(4=+-+n m mn n m 2,将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21故椭圆方程为22x +23y 2=1或23x 2+21y 2=1.歼灭难点训练一、1.解析:弦长|AB |=55422t -⋅⋅≤5104.答案:C2.解析:解方程组⎩⎨⎧+==bkx y ax y 2,得ax 2-kx -b =0,可知x 1+x 2=a k ,x 1x 2=-a b ,x 3=-k b,代入验证即可.答案:B二、3.解析:点P 在线段MN 的垂直平分线上,判断MN 的垂直平分线于所给曲线是否存在交点.答案:②③④4.解析:设C 、D 所在直线方程为y =x +b ,代入y 2=x ,利用弦长公式可求出|CD |的长,利用|CD |的长等于两平行直线y =x +4与y =x +b 间的距离,求出b 的值,再代入求出|CD |的长.答案:18或505.解析:设所求直线与y 2=16x 相交于点A 、B ,且A (x 1,y 1),B (x 2,y 2),代入抛物线方程得y 12=16x 1,y 22=16x 2,两式相减得,(y 1+y 2)(y 1-y 2)=16(x 1-x 2).即⇒+=--21212116y y x x y y k AB =8.故所求直线方程为y =8x -15. 答案:8x -y -15=0三、6.解:(1)设直线l 的方程为:y =x -a ,代入抛物线方程得(x -a )2=2px ,即x 2-2(a +p )x +a 2=0∴|AB |=224)(42a p a -+⋅≤2p .∴4ap +2p 2≤p 2,即4ap ≤-p 2 又∵p >0,∴a ≤-4p . (2)设A (x 1,y 1)、B (x 2,y 2),AB 的中点 C (x ,y ), 由(1)知,y 1=x 1-a ,y 2=x 2-a ,x 1+x 2=2a +2p , 则有x =222,2212121ax x y y y p a x x -+=+=+=+=p .∴线段AB 的垂直平分线的方程为y -p =-(x -a -p ),从而N 点坐标为(a +2p ,0)点N 到AB 的距离为p a p a 22|2|=-+从而S △NAB =2222224)(4221p ap p p a p a +=⋅-+⋅⋅ 当a 有最大值-4p时,S 有最大值为2p 2.7.解:(1)如图,设双曲线方程为2222b y a x -=1.由已知得321,16622222222=+==-a b a e b a ,解得a 2=9,b 2=12.所以所求双曲线方程为12922y x -=1. (2)P 、A 1、A 2的坐标依次为(6,6)、(3,0)、(-3,0), ∴其重心G 的坐标为(2,2)假设存在直线l ,使G (2,2)平分线段MN ,设M (x 1,y 1),N (x 2,y 2).则有34912441089121089122121212122222121==--⇒⎪⎪⎩⎪⎪⎨⎧=+=+=-=-x x y y y y x x y x y x ,∴k l =34 ∴l 的方程为y =34(x -2)+2, 由⎪⎩⎪⎨⎧-==-)2(3410891222x y y x ,消去y ,整理得x 2-4x +28=0. ∵Δ=16-4×28<0,∴所求直线l 不存在. 8.解:(1)设双曲线的渐近线为y =kx ,由d =1|2|2+k k =1,解得k =±1.即渐近线为y =±x ,又点A 关于y =x 对称点的坐标为(0,2). ∴a =2=b ,所求双曲线C 的方程为x 2-y 2=2.(2)设直线l :y =k (x -2)(0<k <1),依题意B 点在平行的直线l ′上,且l 与l ′间的距离为2.设直线l ′:y =kx +m ,应有21|2|2=++k m k ,化简得m 2+22k m=2.②把l ′代入双曲线方程得(k 2-1)x 2+2mkx +m 2-2=0, 由Δ=4m 2k 2-4(k 2-1)(m 2-2)=0.可得m 2+2k 2=2③ ②、③两式相减得k =2m ,代入③得m 2=52,解设m =510,k =552,此时x =2212=--k mk,y =10.故B (22,10).。
2011年普通高等学校招生全国统一考试高考数学教师精校版含详解湖北理
2011年湖北理一、选择题(共10小题;共50分)1. i为虚数单位,则1+i1−i 2011= A. −iB. −1C. iD. 12. 已知U=y y=log2x,x>1,P= y y=1x,x>2,则∁U P = A. 12,+∞ B. 0,12C. 0,+∞D. −∞,0∪12,+∞3. 已知函数f x=3sin x−cos x,x∈R.若f x≥1,则x的取值范围为 A. x kπ+π3≤x≤kπ+π,k∈ZB. x2kπ+π3≤x≤2kπ+π,k∈ZC. x kπ+π6≤x≤kπ+5π6,k∈ZD. x2kπ+π6≤x≤2kπ+5π6,k∈Z4. 将两个顶点在抛物线y2=2px p>0上,另一个顶点是此抛物线焦点的正三角形个数记为n,则A. n=0B. n=1C. n=2D. n≥35. 已知随机变量ξ服从正态分布N2,σ2,且Pξ<4=0.8,则P0<ξ<2= A. 0.6B. 0.4C. 0.3D. 0.26. 已知定义在R上的奇函数f x和偶函数g x满足f x+g x=a x−a−x+2 a>0,且a≠1.若g2=a,则f2= A. 2B. 154C. 174D. a27. 如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作.已知K、A1、A2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 A. 0.960B. 0.864C. 0.720D. 0.5768. 已知向量a=x+z,3,b=2,y−z,且a⊥b.若x,y满足不等式x+y ≤1,则z的取值范围为 A. −2,2B. −2,3C. −3,2D. −3,39. 若实数a,b满足a≥0,b≥0,且ab=0,则称a与b互补.记φa,b= a2+b2−a−b,那么φa,b=0是a与b互补的 A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要条件10. 放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M t =M 02−t 30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是−10ln2(太贝克/年),则M 60 = A. 5太贝克B. 75ln2太贝克C. 150ln2太贝克D. 150太贝克二、填空题(共5小题;共25分) 11. x 3 x 18的展开式中含x 15的项的系数为 (结果用数值表示).12. 在30瓶饮料中,有3瓶已过了保质期.从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为 (结果用最简分数表示).13. 《九章算术》"竹九节"问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为 升.14. 如图,直角坐标系xOy 所在的平面为α,直角坐标系xʹOyʹ(其中yʹ轴与y 轴重合)所在的平面为β,∠xOxʹ=45∘. (1)已知平面β内有一点Pʹ 2 2,2 ,则点Pʹ在平面α内的射影P 的坐标为 .(2)已知平面β内的曲线Cʹ的方程是 xʹ− 2 2+2yʹ2−2=0,则曲线Cʹ在平面α内的射影C 的方程是 .15. 给n 个自上而下相连的正方形着黑色或白色.当n ≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如图所示:由此推断,当n =6时,黑色正方形互不相邻的着色方案共有 种,至少有两个黑色正方形相邻的着色方案共有 种(结果用数值表示).三、解答题(共6小题;共78分).16. 设△ABC的内角A,B,C所对的边分别为a,b,c,已知a=1,b=2,cos C=14(1)求△ABC的周长;(2)求cos A−C的值.17. 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米 / 小时)是车流密度x(单位:辆 / 千米)的函数.当桥上的车流密度达到200辆 / 千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/ 千米时,车流速度为60千米/ 小时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.(1)当0≤x≤200时,求函数v x的表达式;(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆 / 小时)f x=x⋅v x可以达到最大,并求出最大值.(精确到1辆 / 小时)18. 如图,已知正三棱柱ABC−A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C−AF−E的大小为θ,求tanθ的最小值.19. 已知数列a n的前n项和为S n,且满足a1=a a≠0,a n+1=rS n n∈N∗,r∈R,r≠−1.(1)求数列a n的通项公式;(2)若存在k∈N∗,使得S k+1,S k,S k+2成等差数列,试判断:对于任意的m∈N∗,且m≥2,a m+1,a m,a m+2是否成等差数列,并证明你的结论.20. 平面内与两定点A1−a,0,A2a,0a>0连线的斜率之积等于非零常数m的点的轨迹,加上A1,A2两点所成的曲线C可以是圆、椭圆或双曲线.(1)求曲线C的方程,并讨论C的形状与m值的关系;(2)当m=−1时,对应的曲线为C1;对给定的m∈−1,0∪0,+∞,对应的曲线为C2.设F1,F2是C2的两个焦点.试问:在C1上,是否存在点N,使得△F1NF2的面积S=m a2?若存在,求tan∠F1NF2的值;若不存在,请说明理由.21. (1)已知函数f x=ln x−x+1,x∈0,+∞,求函数f x的最大值;(2)设a k,b k k=1,2,⋯,n均为正数,证明:(i)若a1b1+a2b2+⋯+a n b n≤b1+b2+⋯+b n,则a1b1a2b2⋯a n b n≤1;≤b1b1b2b2⋯b n b n≤b12+b22+⋯+b n2.(ii)若b1+b2+⋯+b n=1,则1n答案第一部分1. A 【解析】因为1+i1−i =1+i21−i2=i,所以1+i1−i2011=i2011=i4×502+3=i3=−i.2. A 【解析】因为U=y y>0,P= y0<y<12,所以∁U P=12,+∞ .3. B 【解析】因为f x=2sin x−π6≥1,所以sin x−π6≥12,可得2kπ+π6≤x−π6≤2kπ+5π6,故2kπ+π3≤x≤2kπ+π,k∈Z.4. C 【解析】如图所示,根据抛物线的对称性,正三角形的两个顶点一定关于x轴对称,过焦点作两条直线倾斜角分别为30∘和150∘,它们和抛物线的交点与抛物线焦点可形成两个正三角形.5. C【解析】因为Pξ≤0=Pξ≥4=1−Pξ<4=0.2,所以P0<ξ<2=0.5−Pξ≤0=0.3.6. B 【解析】由题意得,f−x+g−x=a−x−a x+2,即g x−f x=a−x−a x+2,可得f x=a x−a−x,g x=2,所以g2=a=2,f2=154.7. B 【解析】系统正常工作的概率为0.9×1−0.2×0.2=0.864 .8. D 【解析】因为a⊥b,所以2x+z+3y−z=0,即z=2x+3y,画出约束条件x+y ≤1所表示的平面区域,如下图所示:由图可知当x=0,y=1时,z取最大值3,当x=0,y=−1时,z取最小值−3,故z的取值范围为−3,3.9. C 【解析】充分性:若φ a ,b =0,则 a 2+b 2=a +b ,平方得ab =0.当a =0时, b 2=b ,所以b ≥0;当b =0时,a ≥0,故a 与b 互补; 必要性:若a 与b 互补,易得φ a ,b =0. 10. D【解析】Mʹ t =M 02−t⋅ −130 ln2,因为t =30时,铯137含量的变化率是−10ln2,所以Mʹ 30 =M 02−1⋅ −130 ln2=−10ln2,解得M 0=600,故M 60 =150.第二部分 11. 17【解析】展开式的通项T r +1=C 18r x18−r 3x r=C 18r⋅ −13 rx18−3r ,得18−3r 2=15,所以r =2,故展开式中含x 15的项的系数为C 182⋅ −13 2=17.12. 28145【解析】取到的2瓶饮料都没过保质期的概率是P =C 272C 302=117145,则至少取到1瓶已过保质期的概率是1−117145=28145. 13. 6766【解析】设等差数列的首项为a 1,公差为d ,可得4a 1+6d =3,3a 1+21d =4,所以a 1=1322,d =766,第5节的容积为1322+4×766=6766. 14. 2,2 , x −1 2+y 2=1【解析】(1)观察图形知P 的坐标为 2,2 ;(2)设Mʹ xʹ,yʹ 是曲线Cʹ上任意一点,Mʹ在平面α内的射影为M x ,y ,观察图形可知xʹ= ,yʹ=y ,代入方程可得曲线Cʹ在平面α内的射影C 的方程为 x −1 2+y 2=1. 15. 21,43【解析】设给n 个正方形按要求着色共有a n 种不同的着色方案,则a 1=2,a 2=3,a 3=5,a 4=8. 有a n =a n−1+a n−2,n ≥3.原因如下:对于n 个按要求着色的正方形,满足要求的a n 种着色方案分成两部分,一部分最下面是白色正方形,与n −1个正方形的着色方案一一对应,共有a n−1个;(即在n −1个正方形最下面加上一个白色正方形);另一部分最下面是黑色正方形,这时倒数第二块一定是白色正方形,与n −2个正方形的着色方案一一对应,共a n−2个;(即在n −2个正方形下面加上一白一黑两个正方形). 于是a 5=13,a 6=21.没有任何要求的六块正方形所有的着色方案有26=64种,所以至少有两个黑色正方形相邻的着色方案共有64−21=43种. 第三部分16. (1)根据余弦定理c2=a2+b2−2ab cos C=1+4−4×1=4,解得c=2.所以△ABC的周长为a+b+c=1+2+2=5.(2)由cos C=14,再结合C为三角形内角,所以sin C=1−cos2C=1−1 42=15 4,又根据正弦定理sin A=a sin C=15 4 2=15.因为a<c,可知A<C,故A为锐角,故cos A=1−sin2A=1−15=7 ,综上可得cos A−C=cos A cos C+sin A sin C=7×1+15×15=11 16.17. (1)由题意,当0≤x≤20时,v x=60;当20≤x≤200时,设v x=ax+b,再由已知得200a+b=0,20a+b=60,解得a=−1 ,b=200.故函数v x的表达式为v x=60,0≤x<20, 13200−x,20≤x≤200.(2)依题意并由(1)可得f x=60x,0≤x<20, 13x200−x,20≤x≤200,当0≤x≤20时,f x为增函数,则当x=20时,其最大值为60×20=1200;当20≤x≤200时,f x=1x200−x≤1x+200−x2=10000,当且仅当x=200−x,即x=100时,f x在区间20,200上取得最大值100003.综上,当x=100时,f x在区间0,200上取得最大值100003≈3333,即当车流密度为100辆 / 千米时,车流量可以达到最大,最大值约为3333辆 / 小时.18. (1)过E作EN⊥AC于N,连接EF.解法一:如图,连接NF,AC1,由正三棱柱的性质知,底面ABC⊥侧面A1C,又底面ABC∩侧面A1C=AC,且EN⊂底面ABC,所以EN⊥侧面A1C,NF为EF在侧面A1C内的射影.在Rt△CNE中,CN=CE cos60∘=1.则由CFCC1=CNCA=14,得NF∥AC1,又AC1⊥A1C,故NF⊥A1C.由三垂线定理知EF⊥A1C.解法二:建立如图所示的空间直角坐标系,则由已知可得A0,0,0,B 22,0,C0,4,0,A10,0,4,E 3,3,0,F0,4,1,于是CA1=0,−4,4,EF= −3,1,1.则CA1⋅EF=0,−4,4⋅ − 3,1,1=0−4+4=0,故EF⊥A1C.(2)解法一:如图,连接AF,过N作NM⊥AF于M,连接ME.由(1)知EN⊥侧面A1C,根据三垂线定理得EM⊥AF,所以∠EMN是二面角C−AF−E的平面角,即∠EMN=θ.设∠FAC=α,则0∘<α≤45∘.在Rt△CNE中,NE=EC⋅sin60∘=3,在Rt△AMN中,MN=AN⋅sinα=3sinα,故tanθ=NEMN =33sinα.又0∘<α≤45∘,∴0<sinα≤22.故当sinα=22,即α=45∘时,tanθ达到最小值,tanθ=33×2=63,此时F与C1重合.解法二:设CF=λ0<λ≤4,平面AEF的一个法向量为m=x,y,z,则由(1)得F0,4,λ,AE=3,3,0,AF=0,4,λ,于是由m⊥AE,m⊥AF,可得m·AE=0,m·AF=0,即3x+3y=0,4y+λz=0,取m=3λ,−λ,4.又由正三棱柱的性质可取侧面AC1的一个法向量为n=1,0,0,于是由θ为锐角可得cosθ=m⋅n=32 λ2+4sinθ= λ2+16 2 λ2+4所以tanθ= λ2+163λ=1+162.由0<λ≤4,得1λ≥14,即tanθ≥1+1=6,故当λ=4,即点F与点C1重合时,tanθ取得最小值63.19. (1)由已知a n+1=rS n,可得a n+2=rS n+1,两式相减可得a n+2−a n+1=r S n+1−S n=ra n+1,即a n+2=r+1a n+1.又a2=ra1=ra,所以当r=0时,数列a n为a,0,⋯,0,⋯;当r≠0,r≠−1时,由已知a≠0,所以a n≠0n∈N∗.于是由a n+2=r+1a n+1,可得a n+2n+1=r+1n∈N∗,所以a2,a3,⋯,a n,⋯成等比数列,从而当n≥2时,a n=r r+1n−2a.综上,数列a n的通项公式为a n=a,n=1, r r+1n−2a,n≥2.(2)对于任意的m∈N∗,且m≥2,a m+1,a m,a m+2成等差数列.证明如下:当r=0时,由(1)知,a n=a,n=1, 0,n≥2,所以对于任意的m∈N∗,且m≥2,a m+1,a m,a m+2成等差数列;当r≠0,r≠−1时,因为S k+2=S k+a k+1+a k+2,S k+1=S k+a k+1.若存在k∈N∗,使得S k+1,S k,S k+2成等差数列,则S k+1+S k+2=2S k,从而2S k+2a k+1+a k+2=2S k,即a k+2=−2a k+1.由(1)知,a2,a3,⋯,a n,⋯的公比r+1=−2,于是对于任意的m∈N∗,且m≥2,有a m+1=−2a m,从而a m+2=4a m,所以a m+1+a m+2=2a m,即a m+1,a m,a m+2成等差数列.综上,对于任意的m∈N∗,且m≥2,a m+1,a m,a m+2成等差数列.20. (1)设动点M,其坐标为x,y,当x≠±a时,由条件可得k MA1⋅k MA2=y⋅y=y222=m,即mx2−y2=ma2x≠±a,又A1−a,0,A2a,0的坐标满足mx2−y2=ma2,故依题意,曲线C的方程为mx2−y2=ma2.当m<−1时,曲线C的方程为x 2a2+y2−ma2=1,C是焦点在y轴上的椭圆;当m=−1时,曲线C的方程为x2+y2=a2,C是圆心在原点的圆;当−1<m<0时,曲线C的方程为x 2a +y2−ma=1,C是焦点在x轴上的椭圆;当m>0时,曲线C的方程为x 2a2−y2ma2=1,C是焦点在x轴上的双曲线.(2)由(1)知,当m=−1时,C1的方程为x2+y2=a2;当m∈−1,0∪0,+∞时,C2的两个焦点分别为F1 −a1+m,0,F2 a1+m,0.对于给定的m∈−1,0∪0,+∞,C1上存在点N x0,y0y0≠0使得S=m a2的充要条件是x02+y02=a2,y0≠0, ⋯⋯①1⋅2a 1+m y0=m a2. ⋯⋯②由①得0<y0 ≤a,由②得y0=1+m.当0< 1+m ≤a ,即1− 52≤m <0,或0<m ≤1+ 52时, 存在点N ,使S = m a 2; 当 1+m >a ,即−1<m <1− 52,或m >1+ 52时, 不存在满足条件的点N .当m ∈ 1− 52,0 ∪ 0,1+ 52时, 由NF 1 = −a 1+m −x 0,−y 0 ,NF 2 = a 1+m −x 0,−y 0 , 可得NF 1 ⋅NF 2 =x 02− 1+m a 2+y 02=−ma 2.令 NF 1 =r 1, NF 2 =r 2,∠F 1NF 2=θ,则由NF 1 ⋅NF 2 =r 1r 2cos θ=−ma 2,可得r 1r 2=−ma 2cos θ, 从而S =1r 1r 2sin θ=−ma 2sin θ=−1ma 2tan θ, 于是由S = m a 2,可得−12ma 2tan θ= m a 2, 即tan θ=−2 m . 综上可得:当m ∈ 1− 52,0 时,在C 1上存在点N ,使得S = m a 2,且tan ∠F 1NF 2=2;当m ∈ 0,1+ 52时,在C 1上存在点N ,使得S = m a 2,且tan ∠F 1NF 2=−2; 当m ∈ −1,1− 52 ∪1+ 52,+∞ 时,在C 1上不存在满足条件的点N . 21. (1)f x 的定义域为 0,+∞ ,令fʹ x =1x −1=0,解得x =1. 当0<x <1时,fʹ x >0,f x 在 0,1 内是增函数;当x >1时,fʹ x <0,f x 在 1,+∞ 内是减函数;故函数f x 在x =1处取得最大值f 1 =0.(2)(i )由(1)知,当x ∈ 0,+∞ 时,有f x ≤f 1 =0,即ln x ≤x −1.因为a k ,b k >0,从而有ln a k ≤a k −1,得b k ln a k ≤a k b k −b k k =1,2,⋯,n .求和得ln n k =1a k b k ≤ a k nk =1b k− b k n k =1. 因为 a k n k =1b k ≤ b k n k =1,所以 ln n k =1a k b k ≤0,即ln a 1b 1a 2b 2⋯a n b n ≤0,所以a 1b 1a 2b 2⋯a n b n ≤1.(ii )①先证b 1b 1b 2b 2⋯b n b n ≥1n .令a k =1nb k k =1,2,⋯,n ,则a k n k =1b k = 1n k =1=1= b k n k =1, 于是由(i )得11 b 1 12 b 2⋯ 1nb n ≤1, 即1b 1b 1b 2b 2⋯b n b n ≤n b 1+b 2+⋯+b n =n ,所以b 1b 1b 2b 2⋯b n b n ≥1. ②再证b 1b 1b 2b 2⋯b n b n ≤b 12+b 22+⋯+b n 2.记S = b k 2n k =1,令a k =b k S k =1,2,⋯,n ,则a k n k =1b k =1S b k 2n k =1=1= b k n k =1, 于是由(i )得b 1 b 1 b 2 b 2⋯ b n b n≤1, 即b 1b 1b 2b 2⋯b n bn ≤S b 1+b 2+⋯+b n =S ,所以b 1b 1b 2b 2⋯b n b n ≤b 12+b 22+⋯+b n 2. 综合①②,(ii )得证.。
[精品]2011届备考高考数学基础知识训练(附详解)25
备考2011高考数学基础知识训练(25)班级______ 姓名_________ 学号_______ 得分_______一、填空题(每题5分,共70分)1 .如图,程序执行后输出的结果为_____.2 .函数2y x-=的单调递增区间是3 .夹在两个平面间的三条平行线段相等,则这两个平面间的位置关系是_____________.4 .计算:2(1)i i+=______5 .有数学、物理、化学、英语四个课外活动供学生选择,每人任选其中一个,则甲乙两人选择同一课外活动的概率为______________实用文档实用文档6 .为了了解某市参加高考体检的学生的体能状况,经抽样调查1000名男生的肺活量(ml ),得到频率分布直方图(如图),根据图形,可得这1000名学生中肺活量在[3000,3600)的学生人数是 .7 .函数21)32sin(+-=πx A y (0>A )的最大值是27,最小值是25-,则=A_.8 .已知两条相交直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点点,五条直线最多有10个交点.由此可归纳n 条直线最多交点个数为 .9 .已知定义在R 上的函数()f x 的图象关于点3(,0)4-对称,且满足3()()2f x f x =-+,又(1)1f -=,(0)2f =-,则(1)(2)(3)(2008)f f f f ++++=________________.10.给出下列三个命题(1)设()f x 是定义在R 上的可导函数,()/f x 为函数()f x 的导函数;实用文档()/00f x =是0x 为()f x 极值点的必要不充分条件。
(2)双曲线22221124x y m m-=+-的焦距与m 有关 (3)命题“中国人不都是北京人”的否定是“中国人都是北京人”。
(4)命题“c d若->0,且bc-ad<0,则ab>0a b”其中正确结论的序号是11.过抛物线22(0)y px p =>的焦点F 的直线l ,交抛物线于,A B 两点,交其准线于C 点,若3CB BF =,则直线l 的斜率为___________.12.在正四面体ABCD 中,其棱长为a ,若正四面体ABCD 有一个内切球,则这个球的表面积为13.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一 个无盖的正六棱柱容器.当这个正六棱柱容器的 底面边长为 时,其容积最大.14.设)2,0(πα∈,函数)(x f 的定义域为[0,1],且1)1(,0)0(==f f ,当y x ≥时,有)()sin 1(sin )()2(y f x f yx f αα-+=+,则=α_________,)21(f =_________.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.15.如下的三个图,分别是一个长方体截去一个角所得多面体的直观图以及它的正视图和侧视图(单位:cm )(1)按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ',证明:BC '∥面EFG .16.已知点M (2,0)-,⊙22:1O x y +=(如图);若过点M 的直线1l 交圆于P Q 、两4E D ABC F G B 'C 'D '实用文档点,且圆孤PQ 恰为圆周的14,求直线1l 的方程.17.数列{a n }是首项a 1=4的等比数列,且S 3,S 2,S 4成等差数列.(1)求数列{a n }的通项公式; (2)设b n =log 2|a n |,T n 为数列⎭⎬⎫⎩⎨⎧⋅+11n n b b 的前n 项和,求T n .18.已知函数21sin 2()1cos ()2x f x x π-=--(1)求)(x f 的定义域;(2)已知)(,2tan ααf 求-=的值.19.已知函数ln ()x f x x=(1)求函数()f x 的单调区间;实用文档(2)设0,a >求函数()f x 在[]2,4a a 上的最小值.20.已知一动圆P 与定圆1)1(22=+-y x 和y 轴都相切,(1)求动圆圆心P 的轨迹M 的方程;(2)过定点)2,1(A ,作△ABC ,使090=∠BAC ,且动点C B ,在P 的轨迹M 上移动(C B ,不在坐标轴上),问直线BC 是否过某定点?证明你的结论。
2011年高考数学试题及答案
2011年高考数学试题及答案一、选择题(每题5分,共40分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. -1答案:B2. 如果函数f(x) = x^2 + 2x + 1在区间[-3, 1]上是减函数,那么f(x)在该区间的最大值出现在x等于:A. -3B. 1C. -2D. 0答案:A3. 不等式|x - 1| + |x - 3| < 2的解集是:A. (1, 3)B. (-∞, 2)C. [1, 3]D. (2, +∞)答案:C4. 已知三角形ABC中,∠BAC = 90°,AB = 3cm,AC = 4cm,那么BC 的长是:A. 5cmB. 6cmC. 7cmD. 8cm答案:A5. 以下哪个复数的模长为√2?A. 1 + iB. 1 - iC. -1 + iD. -1 - i答案:A6. 已知数列{an}是等差数列,且a1 = 2,a4 = 10,那么这个数列的公差d是:A. 2B. 3C. 4D. 5答案:B7. 以下哪个函数是奇函数?A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)答案:C8. 一个几何体的三视图如下,该几何体是:A. 圆柱B. 圆锥C. 立方体D. 球体答案:C二、填空题(每题4分,共24分)9. 极限lim (x→0) [sin(x)/x] 的值是 _________。
答案:110. 已知某工厂生产的产品合格率为95%,那么生产100个产品中,不合格产品的数量的期望值是 _________。
答案:511. 设随机变量X服从参数为λ的泊松分布,那么P(X=2) =_________。
答案:λ^2e^(-λ) / 2!12. 一个物体从高度为h的地方自由下落,如果不考虑空气阻力,其下落的距离s与时间t的关系为 s = _________。
答案:1/2gt^213. 一个圆的直径为10cm,那么它的半径r为 _________。
2011全国理科数学‘数列’部分高考题学习资料
(k 1)bk 1(b 2)
,
bk 1 2k 1Fra bibliotek所以当 n k 1 时,猜想成立,
由①②知,
n N * , an
nbn (b 2)
.
bn 2n
(2)(ⅰ)当 b
2 时, an
2
2n 1 2n 1
1,故 b
2 时,命题成立;
(ⅱ)当 b 2 时, b2 n 22 n 2 b2n 22 n 2n 1 bn ,
1 tan( k 1) tan k
得
tan(k 1) tan k
所以
tan(k 1) tan k 1 tan 1
n
n2
Sn
bi
tan(k 1) tan k
i1
i3
n 2 tan(k 1) tan k
(
1)
i3
tan1
tan( n 3) tan 3 n
tan 1
2、 若数列 An a1 ,a2, ...,an( n 2) 满足 an 1 a1 1(k 1,2,..., n 1) ,数列 An 为 E 数列,
bn 2n 1
(b2n 1
bn 1 2n ) (bn 2n 1 2n 1 (bn 2n )
22n 1 )
bn 1 2n 1 1 .故当 b 2 时,命题成立;
综上(ⅰ)(ⅱ)知命题成立.
5、已知数列 an 的前 n 项和为 Sn ,且满足: a1 a (a 0) , an 1 rSn (n N* ,
2
即 4 整除 n(n 1), 亦即 n 4m或n 4m 1( m N*) .
当
n 4m 1( m N*) 时, E数列 An的项满足 a4k 1 a4k 1 0, a4k 2
2011高考数学基础知识汇总_
<<返回目录
<<返回目录
要点13 空间向量与立体几何
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点14 导数及其应用
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点7 三角恒等变换
<<返回目录
<<返回目录
要点8
解三角形
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点9
数列
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
<<返回目录
要点10
不等式
<<返回目录
<<返回目录
<<返回目录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011高考数学基础知识训练(25)一、填空题1 .如图,程序执行后输出的结果为_____.2 .函数2yx -=的单调递增区间是3 .夹在两个平面间的三条平行线段相等,则这两个平面间的位置关系是_____________.4 .计算:2(1)i i +=______5 .有数学、物理、化学、英语四个课外活动供学生选择,每人任选其中一个,则甲乙两人选择同一课外活动的概率为______________6 .为了了解某市参加高考体检的学生的体能状况,经抽样调查1000名男生的肺活量(ml ),得到频率分布直方图(如图),根据图形,可得这1000名学生中肺活量在[3000,3600)的学生人数是 .7 .函数21)32sin(+-=πx A y (0>A )的最大值是27,最小值是25-,则=A _. 8 .已知两条相交直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点点,五条直线最多有10个交点.由此可归纳n 条直线最多交点个数为 .9 .已知定义在R 上的函数()f x 的图象关于点3(,0)4-对称,且满足3()()2f x f x =-+,又(1)1f -=,(0)2f =-,则(1)(2)(3)(2008)f f f f ++++= ________________.10.给出下列三个命题(1)设()f x 是定义在R 上的可导函数,()/f x 为函数()f x 的导函数;()/00f x =是0x 为()f x 极值点的必要不充分条件。
(2)双曲线22221124x y m m-=+-的焦距与m 有关 (3)命题“中国人不都是北京人”的否定是“中国人都是北京人”。
(4)命题“c d若->0,且bc-ad<0,则ab>0a b” 其中正确结论的序号是11.过抛物线22(0)ypx p =>的焦点F 的直线l ,交抛物线于,A B 两点,交其准线于C 点,若3CB BF =,则直线l 的斜率为___________.12.在正四面体ABCD 中,其棱长为a ,若正四面体ABCD 有一个内切球,则这个球的表面积为13.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一 个无盖的正六棱柱容器.当这个正六棱柱容器的 底面边长为 时,其容积最大.14.设)2,0(πα∈,函数)(x f 的定义域为[0,1],且1)1(,0)0(==f f ,当y x ≥时,有)()sin 1(sin )()2(y f x f y x f αα-+=+,则=α_________,)21(f =_________.二、解答题:15.如下的三个图,分别是一个长方体截去一个角所得多面体的直观图以及它的正视图和侧视图(单位:cm )(1)按照画三视图的要求画出该多面体的俯视图; (2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结BC ',证明:BC '∥面EFG .46422E D A BC F G B 'C 'D '216.已知点M (2,0)-,⊙22:1O x y +=(如图);若过点M 的直线1l 交圆于P Q 、两点,且圆孤PQ 恰为圆周的14,求直线1l 的方程.17.数列{a n }是首项a 1=4的等比数列,且S 3,S 2,S 4成等差数列.(1)求数列{a n }的通项公式; (2)设b n =log 2|a n |,T n 为数列⎭⎬⎫⎩⎨⎧⋅+11n n b b 的前n 项和,求T n .18.已知函数21sin 2()1cos ()2x f x x π-=--(1)求)(x f 的定义域;(2)已知)(,2tan ααf 求-=的值.19.已知函数ln ()x f x x=(1)求函数()f x 的单调区间;(2)设0,a >求函数()f x 在[]2,4a a 上的最小值.20.已知一动圆P 与定圆1)1(22=+-y x 和y 轴都相切,(1)求动圆圆心P 的轨迹M 的方程;(2)过定点)2,1(A ,作△ABC ,使090=∠BAC ,且动点C B ,在P 的轨迹M 上移动(C B ,不在坐标轴上),问直线BC 是否过某定点?证明你的结论。
Q OMP yxl 1参考答案填空题 1 .64. 2 .(,0)-∞ 3 .平行或相交; 4 .2- 5 .41 6 .450 7 .3 8 .2)1(-n n . 9 .1 10.(1)(3) 11.22k=±;12.62πa ;13.2/3 14.6π 12解答题15.解:(1)如图(2)所求多面体体积V V V =-长方体正三棱锥1144622232⎛⎫=⨯⨯-⨯⨯⨯⨯ ⎪⎝⎭2284(cm )3=.(3)证明:在长方体ABCD A B C D ''''-中, 连结AD ',则AD BC ''∥.因为E G ,分别为AA ',A D ''中点,所以AD EG '∥,4642 224622(俯视图)(正视图)(侧视图)ABCDE FGA 'B 'C 'D '从而EG BC '∥.又BC '⊄平面EFG ,所以BC '∥面EFG .16.解: PQ 为圆周的1,.42POQ π∴∠=O ∴点到直线1l 的距离为2.2设1l 的方程为22|2|21(2),,.271k y k x k k =+∴=∴=+ 1l ∴的方程为7(2).7y x =±+17.解 (1)当q=1时,S 3=12,S 2=8,S 4=16,不成等差数列.q ≠1时,q q a --1)1(22=q q a --1)1(31+qq a --1)1(41 得2q 2=q 3+q 4,∴q 2+q-2=0, ∴q=-2.∴a n =4(-2)n-1=(-2)n+1.(2)b n =log 2|a n |=log 2|(-2)n+1|=n+1.11+n n b b =)2)(1(1++n n =11+n -21+n ∴T n =⎪⎭⎫ ⎝⎛-3121+⎪⎭⎫ ⎝⎛-4131+…+⎪⎭⎫ ⎝⎛+-+2111n n=21-21+n =)2(2+n n.18.解:(1)xxx x 22cos 2sin 1)2(cos 12sin 1-=---π由0cos ≠x 得)(2Z k k x ∈+≠ππ故],2|[)(Z k k x x x f ∈+≠ππ的定义域为(2)因为,2tan -=α 故ααα2cos 2sin 1)(-=fααααα222cos cos sin 2cos sin -+= .91tan 2tan 2=+-=αα19.解:(1)定义域为(0,)+∞,21ln ()x f x x -'=,令21ln ()0xf x x-'==,则e x =, 当x 变化时,'()f x ,()f x 的变化情况如下表: ∴()f x 的单调增区间为(0,)e ;单调减区间为(,)e +∞.(2)由(1)知()f x 在(0,)e 上单调递增,在(,)e +∞上单调递减,所以, 当4a e ≤时,即4ea ≤时,()f x 在[]2,4a a 上单调递增,∴min ()(2);f x f a = 当2a e ≥时, ()f x 在[]2,4a a 上单调递减,∴min ()(4)f x f a = 当24a e a <<时,即42e ea <<时,()f x 在[]2,a e 上单调递增, ()f x 在[],4e a 上单调递减,∴{}min ()min (2),(4).f x f a f a = 下面比较(2),(4)f a f a 的大小, ∵ln (2)(4),4af a f a a-= ∴若14e a <≤,则()(2)0,f a f a -≤此时min ln 2()(2);2a f x f a a== 若12e a <<,则()(2)0,f a f a ->此时min ln 4()(4);4af x f a a==综上得: 当01a <≤时,min ln 2()(2)2af x f a a==;当1a >时,min ln 4()(4)4af x f a a==.20.解:(1)设动点P 的坐标为()x y ,,由题设知:22'(1)1||3x y x -+-=………………………………………………化简得:0x >时,2'44y x =…………………………………………x(0,e)e(e,)+∞'()f x+ 0-()f x↗1e↘0x <时,'05y =……………………………………………P 点的轨迹方程为24(0)y x x =>和'0(0)6y x =<……………………(2)设B C 、的坐标为1122()()x y x y ,、,,又(12)A ,1122BAC=90(12)(12)0AB AC x y x y ∠∴⋅=--⋅--= ,,,即1212(1)(1)(2)(2)0x x y y --+--=…………………①而BC 的直线方程为211211()()()()x x y y y y x x --=--……②'8……B C 、在抛物线24y x =上,22121244y y x x ∴==,代入①式化简得'12122()2010y y y y -+-=………③…………………………………… 把22121244y y x x ==,代入②式化简得BC 的方程为 '1212()412y y y y y x +-=……④………………………………………对比③④可知,直线BC 过点(52)-,,∴直线BC 恒过一定点(52)-,。