线性系统理论(s0)

合集下载

线性系统理论总结ppt

线性系统理论总结ppt

线性系统理论总结ppt
一、线性系统简介
1.线性系统定义:
线性系统是指用线性微分方程、线性积分方程和线性算子(算子运算)来表示、描述和分析的一个系统。

这种系统的输入输出之间的关系可以表
示为线性函数的形式。

2.线性系统的实例:
线性系统的例子包括信号处理、控制系统、数字图像处理、模式识别
等等。

线性系统的应用也很广泛,可以应用在机器人、汽车、航空、通信、医疗和金融等行业中。

二、线性系统的演示
1.系统模型:
线性系统通常用状态空间模型来描述,该模型由一组线性微分方程以
及输入、输出和内部状态变量组成。

该模型的工作原理是:系统的输入到
达模型的输入,系统的内部状态变量发生改变,然后将内部状态变量产生
的输出发送到系统的输出端。

2.系统特性:
线性系统具有许多特性,包括平衡点、平稳性、稳定性、反馈和动力
学建模等等。

这些特性是线性系统能够更好地实现高效操作和有效控制的
基础。

三、线性系统的分析
1.状态变量分析:
状态变量是描述系统当前状态的量,它们通过系统的状态转移方程的变化反映系统的行为。

状态变量的分析包括:求出状态变量的收敛状态,判断系统的稳。

线性系统理论

线性系统理论

系统:系统一词来源于英文system的音译,即若干部分相互联系、相互作用,形成的具有某些功能的整体。

中国著名学者钱学森认为:系统是由相互作用相互依赖的若干组成部分结合而成的,具有特定功能的有机整体,而且这个有机整体又是它从属的更大系统的组成部分。

线性系统:线性系统是一数学模型,是指用线性运算子组成的系统。

相较于非线性系统,线性系统的特性比较简单。

线性系统需满足线性的特性,若线性系统还满足非时变性(即系统的输入信号若延迟τ秒,那么得到的输出除了这τ秒延时以外是完全相同的),则称为线性时不变系统。

线性系统理论:系统控制的理论与实践被认为是20世纪中对人类生产和社会生活活动产生重大影响的科学领域之一。

其中,线性系统理论是系统控制理论的一个最为基本的与成熟发展的分支。

概述:线性系统科学技术是一门应用性很强的学科,面对着各种各样错综错杂的系统,控制对象可能是确定性的,也可能是随机性的,控制方法可能是常规控制,也可能需要最优化控制。

控制理论和社会生产及科学技术的发展密切相关,近代得到极为迅速的发展。

线性系统理论是现代控制理论中最基础、最成熟的分支,是控制科学重要课程之一。

线性系统理论内容丰富、思想深刻、方法多样、充满美感,不仅提供了对线性控制系统进行建模、分析、综合系统完整的理论,而且其中蕴涵着许多处理复杂问题的方法,这些方法使系统的建模、分析、综合得以简化,为系统控制理论的其它分支乃至其它学科提供了可借鉴的思路,它们是解决复杂问题的一条有效途径。

主要特点:与经典线性控制理论相比,现代线性系统理论的主要特点是:研究对象一般是多变量线性系统;除输入变量和输出变量外,还着重考虑描述系统内部状态的状态变量;在分析和综合方法方面以时域方法为主,兼而采用频域方法;使用更多的数学工具,除经典理论中使用的拉普拉斯变换外,现代线性系统理论大量使用线性代数、矩阵理论和微分方程理论等。

线性系统理论

线性系统理论

n
de s t IA BK f* s s si (5-4) i 1
§3 状态重构问题
3—1状态观测器的基本思想:
1) 状态观测器的基本思想
状态重构的可能性
x 所谓状态重构(估计)问题,
~x
即能否用系统的可量测参量(输
x 出和输入)来重新构造一个状态 , 使之在一定的指标下和
系统的真实状态等价.当线性定常系统的状态完全能观测时,
xABKxBu
yCDKxDu K
(5-3)
A-BK
所谓极点配置法, 就是通过状态反馈阵的选取,使以上闭环系统 的极点, 即特征值恰好处于所希望的一组极点的位置上.
§2 SISO状态反馈系统的极点配置
该定理即: SISO系统可通过状态反馈任意配置极点 的充要条件为该受控系统是状态完全能控的.
注1
注2
当原 n维系统的 n个状态中有l个可直接量测或通过输出的线性变
换可得到, 则只需为剩下的nl 个状态设计 nl 维的状态观测器,
这样的状态观测器称为降阶观测器.
返回
§6 降维观测器的设计
6—1 分离出n-l个需要估计的状态变量设计观测器
x AxBv
y C x
CRln
若 ran(kC)l ,即有 l个状态可量测或通过线性变换得到. 则可
第五章 状态反馈和极点配置
第 15组 胡勇 富剑华 檀立欣 宁晨旭 李龙
秋记与你分享
静思笃行 持中秉正
第五章 状态反馈与状态观测器
主要内容:
§1
状态反馈与输出 反馈义
§2
SISO态反馈系统 的极点配置法
§3
状态重构问题
§4
状态观测器的极 点配置
§5

电子工程中的线性系统理论

电子工程中的线性系统理论

电子工程中的线性系统理论线性系统理论是电子工程中非常重要的一部分内容。

其涉及到信号处理、控制系统、通信系统等多个领域。

本文将对线性系统理论的定义、特征、基本理论等方面进行简要介绍。

一、线性系统的定义线性系统是指其输入和输出具有线性关系的系统。

简单地说,就是许多输入信号叠加组成的输出信号,与单独输入信号的输出信号相加之和完全相同。

其中输入信号可以是电压、电流、功率等,输出信号也可以是同样的类型。

例如,如果一个系统的输入信号为 $x_1$ 和 $x_2$,对应的输出信号为 $y_1$ 和 $y_2$,则该系统是线性的,当且仅当:$$y_1 = ax_1 + bx_2 \\y_2 = cx_1 + dx_2$$其中 $a,b,c,d$ 均为常量。

二、线性系统的特征1. 叠加性:线性系统具有叠加性,即当系统中输入信号为$x_1$ 和 $x_2$ 时,对应的输出信号分别为 $y_1$ 和 $y_2$,则系统中同时输入 $x_1+x_2$ 时,输出信号为 $y_1+y_2$。

2. 抑制性:线性系统具有抑制性,即输入信号越大,输出信号越小。

如果输入信号的某一部分被视为噪声,则线性系统可以减小噪声的影响,同时保持信号的大部分原始信息。

3. 延时特性:线性系统具有延时特性,即在特定的时间段内输入信号可以得到响应。

例如,音频系统在接收到输入信号后需要一定时间来处理信号,并绘制出相应的声音波形。

三、线性系统的基本理论1. 系统函数和频率响应系统函数是将输入信号转换为输出信号的函数,通常用$H(s)$ 或 $H(jw)$ 表示,其中 $s$ 是连续时间变量,$jw$ 是离散时间变量,表示系统的频率响应。

频率响应是指系统在不同频率下的输出功率和输入功率之比,通常用 $H(jw)$ 表示。

2. 系统的稳定性稳定性是指系统在输入端输入有限信号时输出端不会产生无限响应的性质。

在线性系统中,通常采用相对稳定性来描述系统的稳定性,这意味着系统相对于任意有限的输入信号都稳定。

线性系统理论全

线性系统理论全

稳定性判据与判定方法
稳定性判据
在控制工程中,常用的稳定性判据有Routh判据、Nyquist判据、 Bode判据等。这些判据通过分析系统的特征方程或频率响应来判 断系统的稳定性。
判定方法
除了使用稳定性判据外,还可以通过时域仿真、频域分析、根轨 迹法等方法来判定系统的稳定性。这些方法各有优缺点,适用于 不同类型的线性系统和不同的问题背景。
100%
线性偏差分方程
处理离散空间和时间的问题,如 数字滤波器和图像处理等。
80%
初始条件与边界条件
在差分方程中,初始条件确定系 统的起始状态。
状态空间模型
状态变量与状态方程
表示系统内部状态的变化规律 ,揭示系统动态特性。
输出方程
描述系统输出与状态变量和输 入的关系,反映系统对外部激 励的响应。
状态空间表达式的建立
复频域分析法
拉普拉斯变换
将时域信号转换为复频域信号,便于分析系统的稳定性和动态性 能。
系统函数
描述Байду номын сангаас统传递函数的复频域表示,反映系统的固有特性和对输入信 号的响应能力。
极点、零点与稳定性
通过分析系统函数的极点和零点分布,可以判断系统的稳定性以及 动态性能。
04
线性系统稳定性分析
BIBO稳定性
01
线性系统理论全

CONTENCT

• 线性系统基本概念 • 线性系统数学模型 • 线性系统分析方法 • 线性系统稳定性分析 • 线性系统能控性与能观性分析 • 线性系统优化与综合设计
01
线性系统基本概念
线性系统定义与性质
线性系统定义
满足叠加性与均匀性的系统。
线性系统性质

线性系统理论课件

线性系统理论课件
3
系统的线性性和非线性性 线性系统的分类 定常系统:参数不随时间变化 时变系统;参数是时间t 的函数
4
2、线性系统理论的主要任务 主要研究线性系统状态的运动规律和改变
这种运动规律的可能性和方法,建立和揭示 系统结构、参数、行为和性能间的确定的和 定量的关系。 分析问题:研究系统运动规律 综合问题:研究改变运动规律的可能性和方法
9
线性系统理论的主要学派 (1)线性系统的状态空间法 (2)线性系统的几何理论 (3)线性系统的代数理论 (4)多变量频域方法
10
7
3、线性系统理论的发展过程 20世纪50年代:古典线性系统理论已发展成熟, 传递函数,频率响应法 不足:难于处理多输入—多输出系统 20世纪60年代:现代系统与控制理论 状态空间法 解决:多输入—多输出系统

系统与控制理论 线性系统理论 最优控制理论 最优估计理论 随机控制理论 非线性系统理论 大系统理论
5
建立数学模型 数学模型的基本要素是变量、参量、常数 和它们之间的关系 变量:状态变量、输入变量、输出变量、 扰动变量 参量:系统的参数或表征系统性能的参数 常数:不随时间改变的参数
6
时间域模型:微分方程组或差分方程组 可用于常系数系统 和变系数系统
频率域模型:用传递函数、频率响应 适用于常系数系统
线性系统理论课件
1
第一章 绪论
1、线性系统理论的研究对象 线性系统,是一种理想化的模型; 可以用线性微分方程或差分方程来描述; 系统是由相互关联和相互作用的若干组成部 分按一定规律组合而成的具有特定功能的整 体; 动态系统---动力学系统
2
动力学系统--可用一组微分方程或差分方程 来描述; 当数学方程具有线性属性时,相应的系统 为线性系统; 线性系统满足叠加性; 线性系统可以用数学变换(付里叶变换, 拉普拉斯变换)和线性代数

线性系统理论综述

线性系统理论综述

线性系统理论课程大作业论文线性系统理论综述及其应用这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。

一.线性系统理论研究内容综述系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。

动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。

表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。

从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。

线性系统理论是系统控制理论最为成熟和最为基础的分支。

他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。

现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。

线性系统的理论和方法是建立在建模的基础上。

在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。

分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。

系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。

线性系统理论

线性系统理论

线性系统理论一、主要内容本课程是一门信息科学的专业基础课程,阐述分析和综合线性多变量系统的理论、方法和工程上的实用性,本理论在控制技术、计算方法和信号处理等领域有着广泛的应用。

1、系统、系统模型,线性系统理论基本内容2、状态、状态空间,状态和状态空间的数学描述,连续变量动态的状态空间描述,系统输入输出描述与状态空间描述的关系,LTI系统的特征结构,状态方程的约当规范型,系统状态方程与传递函数矩阵的关系,组合系统的状态空间描述3、连续时间LTI系统的运动分析,状态转移矩阵和脉冲响应矩阵,连续时间LTV系统的运动分析,连续时间LTI系统的时间离散化,离散时间线性系统的运动分析4、线性系统的能控性和能观测性,连续时间LTI系统的能控性和能观测性判据,离散时间线性系统的能控性和能观测性判据5、对偶系统和对偶性原理,时间离散化线性系统保持能控性和能观测性的条件,能控和能观测规范型,连续时间LTI系统的结构分解6、系统外部和内部稳定性,李亚普诺夫稳定的基本概念,李亚普诺夫第二方法的主要定理,连续时间线性系统的状态运动稳定性判据,离散时间线性系统的状态运动稳定性判据7、系统综合问题,状态反馈和输出反馈,状态重构和状态观测器,降维状态观测器,状态观测器状态反馈系统的等价性问题二、线性系统及其研究的对象一般说来,许多物理系统在其工作点的附近都可以近似地用一个有限维的线性系统来描述,这不仅是由于线性系统便于从数学上进行处理,更为重要的,它可以在相当广泛的范围内反映系统在工作点附近的本质。

因此,线性系统理论研究对象是 (线性的)模型系统,不是物理系统。

控制理论发展到今天,包括了众多的分支,如最优控制,鲁棒控制,自适应控制等。

但可以毫不夸张地说,线性系统的理论几乎是所有现代控制理论分支的基础,也是其它相关学科如通讯理论等的基础。

三、研究线性系统的基本工具研究有限维线性系统的基本工具是线性代数或矩阵论。

用线性代数的基本理论来处理系统与控制理论中的问题,往往易于把握住问题的核心而得到理论上深刻的结果。

线性系统理论主要内容本课程是一门信息科学的专业基础课程

线性系统理论主要内容本课程是一门信息科学的专业基础课程

线性系统理论一、主要内容本课程是一门信息科学的专业基础课程,阐述分析和综合线性多变量系统的理论、方法和工程上的实用性,本理论在控制技术、计算方法和信号处理等领域有着广泛的应用。

1、系统、系统模型,线性系统理论基本内容2、状态、状态空间,状态和状态空间的数学描述,连续变量动态的状态空间描述,系统输入输出描述与状态空间描述的关系,LTI系统的特征结构,状态方程的约当规范型,系统状态方程与传递函数矩阵的关系,组合系统的状态空间描述3、连续时间LTI系统的运动分析,状态转移矩阵和脉冲响应矩阵,连续时间LTV系统的运动分析,连续时间LTI系统的时间离散化,离散时间线性系统的运动分析4、线性系统的能控性和能观测性,连续时间LTI系统的能控性和能观测性判据,离散时间线性系统的能控性和能观测性判据5、对偶系统和对偶性原理,时间离散化线性系统保持能控性和能观测性的条件,能控和能观测规范型,连续时间LTI系统的结构分解6、系统外部和内部稳定性,李亚普诺夫稳定的基本概念,李亚普诺夫第二方法的主要定理,连续时间线性系统的状态运动稳定性判据,离散时间线性系统的状态运动稳定性判据7、系统综合问题,状态反馈和输出反馈,状态重构和状态观测器,降维状态观测器,状态观测器状态反馈系统的等价性问题二、线性系统及其研究的对象一般说来,许多物理系统在其工作点的附近都可以近似地用一个有限维的线性系统来描述,这不仅是由于线性系统便于从数学上进行处理,更为重要的,它可以在相当广泛的范围内反映系统在工作点附近的本质。

因此,线性系统理论研究对象是 (线性的)模型系统,不是物理系统。

控制理论发展到今天,包括了众多的分支,如最优控制,鲁棒控制,自适应控制等。

但可以毫不夸张地说,线性系统的理论几乎是所有现代控制理论分支的基础,也是其它相关学科如通讯理论等的基础。

三、研究线性系统的基本工具研究有限维线性系统的基本工具是线性代数或矩阵论。

用线性代数的基本理论来处理系统与控制理论中的问题,往往易于把握住问题的核心而得到理论上深刻的结果。

线性系统理论

线性系统理论
线性系统理论
王晶 信息学院自动化系 jwang@
参考教材



线性系统理论,郑大钟,清华大学出版社 Linear System Theory and Design, ChiTsong Chen, Oxford University Press 线性系统理论,段广仁,哈尔滨工业大学 出版社 线性系统理论和设计,仝茂达 ,中国科 大出版社
洪奕光,程代展,《非线性系统的分析与控制 》




代数理论:抽象化、形式化、符号化。用抽象
代数工具来研究线性系统,特点就是把系统各变量 之间的关系看作某些代数结构之间的映射关系,从 而把线性系统的分析,描述完全的形式化,抽象化, 变成纯粹的代数问题。 起源:60年代,Kalman运用模论工具对域上线性系 统的研究,随后在比域更弱的代数系上,如环、群、 泛代数、集合上建立了线性系统代数理论。 R.E.Kalman, P.L.Falb and M.A.Arbib, Topics in Mathematical System Theory,McGraw-Hill,1969





多变量频域方法,实质是以状态空间为基础,采 用频率域的系统描述和计算方法,只适用于定常系 统。分类:频率域设计方法(MIMO-SISO,推广 经典频域理论)和多项式矩阵理论(采用传递函数 矩阵的矩阵分式描述,基于多项式矩阵的计算与变 换)。 H.H.Rosenbrock, State Space and Multivariable Theory, Nelson, London,1970. A.G.J.MacFarlane ed., Complex Variable Methods for Linear Multivariable Feedback Systems, Taylorand Francis Ltd., 1980

线性系统理论04共26页

线性系统理论04共26页

0L
1
0
a 0 a 1 a 2 L a n 1
1
新 的 反 馈 阵 : K I k 0 k1 L k n 1



x&I ( A I y cxI
bI K
I
)x
bIv
状态反馈与极点配置
0
0
AI bI KI M
0
(a0 k0)
1 0 M 0 (a1 k1)
x&
1 0
0 0
x
1 1
u
y 2 1 x
设计状态观测器,使其极点为-10,-10。
状态观测器:实现-全维状态观测器
检测系统的能观性:
因为L
c cA
2 2
1 0
满秩,系统能观,可构造观测器。
A
Gc
1 0
0 0
g1 g2
2
1
1 2g1
2g2
g1
g2
f
()
det[ I
(A
Gc)]
det
(1 2g1 2g2
)
2 (2g1 g2 1) g2
g1
g2
状态观测器:实现-全维状态观测器
与期望值比较,得
2g1 g2 1 20
g2 100

因此,G
g1
g
2
60.5 1 0 0
所 以 : x&ˆ ( A G c ) xˆ b u G y
120 2 0 0
➢ 降维状态观测器:估计不能由输出计算得到的其他状态变量
x & A x B u x R n , u R r yCx yRm
若系统是完全能观的,C的秩是m,m个完全状态变 量可以直接计算出来,而只需构造一个状态观测器估 计出其他 (n-m)各状态变量。

线性系统理论_1

线性系统理论_1

第一篇线性系统理论尽管任何实际系统都含有非线性因素,但在一定条件下,许多实际系统可用线性模型充分地加以描述,加之在数学上处理线性系统又较为方便,因此线性控制系统理论在控制工程学科领域中占有重要地位,是应用最优控制、最优估计与滤波、系统辨识、自适应控制等现代控制理论及构造各类现代控制系统的基础.众所周知,经典线性控制系统理论以传递函数为主要数学工具,侧重研究系统外部特性,这种方法在分析设计单变量系统时卓有成效,但随着航空航天、工业过程控制等高技术的发展,系统越来越复杂,需要分析与设计多变量系统。

5O年代末、60年代初,学者卡尔曼等人将古典力学中的状态、状态空间概念加以发展与推广,用来描述多变量控制系统,并深刻揭示了用状态空间描述的系统的内部结构特性,如可控性与可观测性,从而奠定了现代线性控制系统的理论基础。

在此基础上形成了适于多变量系统的状态反馈、输出反馈等新的反馈设计方法,以实现系统闭环极点的任意配置、消除或抑制扰动、稳定并精确地跟踪、解除或削弱交叉耦合影响,达到满足系统的各项动、静态性能指标要求。

本篇将系统介绍现代线性系统理论的基本内容。

第一章介绍状态空间分析法一般理论,主要介绍定常连续、时变连续、离散系统状态空间数学模型的建立及其解的特性.第二章介绍系统以状态空间描述后内部结构特性(含稳定性、可控性、可观测性)的分析方法,详细论证了定常系统各种结构特性的判别准则,对时变系统情况只作简介;其中应用李雅普诺夫理论所作的稳定性分析只限于线性系统。

第三章着重介绍用状态反馈实现闭环极点任意配置的系统综合方法。

第一章状态空间分析法经典控制理论中基于传递函数建立起来的如频率特性、根轨迹等一整套图解分析设计方法,对单输入-单输出系统极为有效,至今仍在广泛成功地应用。

- 1 -- 2 -由于60年代以来,控制工程向复杂化、高性能方向发展,需处理多输入-多输出、时变、非线性等方面的问题,加之数字计算机技术的卓越成果,有可能对这些复杂系统进行分析设计和实时控制,于是推动了状态空间分析设计方法的形成和发展.运用状态空间描述系统,是现代控制理论的重要标志,它弥补了用传递函数描述系统的许多不足之处,诸如传递函数对于处在系统内部的中间变量不便描述,甚至对某些中间变量还不能够描述,忽略了初始条件的影响。

线性系统理论

线性系统理论

线性系统理论20世纪50年代以后,随着航天等技术的发展和控制理论应用范围的扩大,经典线性控制理论的局限性日趋明显,它既不能满足实际需要,也不能解决理论本身提出的一些新问题。

这种状况推动线性系统的研究,在1960年以后从经典阶段发展到现代阶段。

美国学者R.E.卡尔曼首先把状态空间法应用于对多变量线性系统的研究,提出了能控性和能观测性这两个基本概念,并提出相应的判别准则。

1963年他又和E.G.吉尔伯特一起得出揭示线性系统结构分解的重要结果,为现代线性系统理论的形成和发展作了开创性的工作。

1965年以后,现代线性系统理论又有新发展。

出现了线性系统几何理论、线性系统代数理论和多变量频域方法等研究多变量系统的新理论和新方法。

随着计算机技术的发展,以线性系统为对象的计算方法和计算机辅助设计问题也受到普遍重视。

主要特点与经典线性控制理论相比,现代线性系统理论的主要特点是:①研究对象一般是多变量线性系统,而经典理论主要以单输入单输出系统为研究对象。

因此,现代线性系统理论具有大得多的适用范围。

②除输入变量和输出变量外,还着重考虑描述系统内部状态的状态变量,而经典理论只考虑系统的外部性能(输入与输出的关系)。

因此,现代线性系统理论所考虑的问题更为全面和更为深刻。

③在分析和综合方法方面以时域方法为主,兼而采用频域方法。

而经典理论主要采用频域方法。

因此,现代线性系统理论能充分利用这两种方法。

而时域方法对动态描述要更为直观。

④使用更多的数学工具,除经典理论中使用的拉普拉斯变换外,现代线性系统理论大量使用线性代数、矩阵理论和微分方程理论,对某些问题还使用泛函分析、群论、环论、范畴论和复变函数论等较高深的数学工具。

因此,现代线性系统理论能探讨更一般更复杂的问题。

线性系统理论第三章(2)

线性系统理论第三章(2)

§3—2单变量系统的实现3—2—1可控性、可观测性与零、极点对消问题本节首先研究单变量系统动态方程的的可控性、可观性与传递函数零、极点相消问题之间的关系。

考虑单变量系统,其动态方程为x Ax b cx ,u y =+=&(3—32)(3—32)式对应的传递函数为c I A b c I A b I A 1()()()()()adj s N s g s s s D s --=-==-(3—33)式中:c I A bI A()()()N s adj s D s s =-=-()0N s =的根称为传递函数()g s 的零点,()D s = 0的根称为传递函数g (s )的极点。

下面是本节的主要结果。

定理3—8 动态方程(3—32)可控、可观测的充分必要条件是g (s )无零、极点对消,即()D s 和N (s )无非常数的公因式。

证明 首先用反证法证明条件的必要性。

若有0s s =既使0()0N s =,又使0()0D s =,由(3—33)式即得I A c I A b 000,()0s adj s -=-= (3—34)利用恒等式I A I A I A I A I I A1()()()()adj s s s s s ----=-=-可得I A I A I ()()()s adj s D s --=(3—35)将0s s =代入(3—35)式,并利用(3—34)式,可得I A A I A 000()()s adj s adj s -=-(3—36)将上式前乘c 、后乘b 后即有cA I A b c I A b 00000()()()0adj s s adj s s N s -=-==将(3—36)式前乘cA 、后乘b 后即有cA I A b cA I A b 2000()()0adj s s adj s -=-=依次类推可得c I A b cA I A b 00()()0()0N s adj s adj s =-=-=cA I A b cA I A b 2010()0()0n adj s adj s --=-=M这组式子又可表示为c cA I A b cA 01()0n adj s -轾犏犏犏-=犏犏犏犏臌M (3—37)因为动态方程可观测,故上式中前面的可观性矩阵是可逆矩阵,故有I A b 0()0adj s -=(3—38)又由于系统可控,不妨假定A b ,具有可控标准形(3—1)的形式,直接计算可知I A b 00101()0n s adj s s -轾犏犏犏-=?犏犏犏犏臌M(3—39)出现矛盾,矛盾表明()N s 和()D s 无相同因子,即()g s 不会出现零、极点相消的现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绪论 课程目的:
学习、掌握线性多变量系统的分析、设计方法。 了解控制理论领域最新研究成果。
主要内容: í
状态空间法: ü多输入多输出系统描述、实现 多输入多输出系统描述。 (传递函数矩阵 状态空间) 。
绪论
ü能控、能观性。 ü稳定性分析 。 ü极点配置。 ü解耦。 ü观测器。 í 频域理论: ü矩阵分式描述
p研究对象为线性系统: 实际系统理想化了的模型, 可用线性微分方程或差分方程来描述。 p研究动态系统,动力学系统: 用一组微分方程或差分方程来描述, 对系统的运动和各种性质给出严格和定量的数学描述。 数学方程具有线性属性时,则为线性系统,满足叠加性。
í
í
绪论
例:某系统的数学描述为L,任意两个输入变量 u1和
时域(状态空间)
绪论
4、学习线性系统理论的重要性:
线性系统理论的重要性在于它的基础性,其大量的概念、 方法、原理和结论,对于系统和控制理论的许多学科分支,如 最优控制、非线性控制、随机控制、系统辩识、信号检测和估 í 计、过程控制、数字滤波和通讯系统等,成为学习和研究这些 学科的必不可少的预备知识。
绪论
p分析理论 u定量分析:系统对于某个输入信号的响应和性能。 u定性分析:稳定性、能控性、能观测性等。
p 综合理论
综合是分析的一个反命题 三个基本问题: 可综合性问题、综合算法、工程实现问题
í
绪论
7、线性系统理论的发展过程
p1950年代中期:经典线性系统理论 数学基础:拉普拉斯变换 数学模型:传递函数 分析和综合方法:频率响应法 í 适用于:单输入—单输出线性定常系统 多输入—多输出系统难于处理
绪论
8、线性系统理论的主要学派
①线性系统的状态空间法 状态方程和输出方程:输入变量、状态变量和输出变量 间关系的向量方程。 时间域方法 í 数学基础是线性代数 分析和综合:矩阵运算和矩阵变换。
绪论
②线性系统的几何理论 对线性系统的研究化为状态空间中的几何问题。 数学工具:几何形式的线性代数。 能控性和能观测性表述为不同的状态子空间的几何性质。 新概念:(A,B)不变子空间,(A,B)能控子空间。 í 优点:简捷明了,不用矩阵运算, 结果比较容易化为相应的矩阵运算,抽象。
绪论
í u 多项式矩阵设计方法 数学模型:传递函数矩阵的矩阵分式描述。 多项式矩阵计算和变换。 分析和综合线性定常系统的理论和方法。 罗森布罗克、沃罗维奇(W.A.Wolovich)70年代初提出。 优点:物理直观性强,便于设计调整等。
绪论
参考书:
ü《线性系统理论》(第二版)郑大钟,清华大学出版社 ü《现代控制理论》于长官著,哈尔滨工业大学出版社 ü《现代控制理论的工程应用》曹永岩等著,浙江大学出版社 ü《线性系统理论基础》尤昌德编,电子工业出版社 ü《线性系统》[美]T.凯拉斯著,科学出版社 ü《线性系统理论和设计》仝茂达编著,中国科技大学出版社 ü《现代控制理论与工程》王积伟主编,高等教育出版社 í
绪论
1、控制理论的发展史
ü1784年 , James Watt 发明蒸汽机调速装置——反馈的应用。 ü1868年,J.C. Maxwell 稳定判据(系数代数判据)。 ü1877年,E.J. Routh 稳定性分析——代数判据。 ü1895年,A. Hurwitz 稳定性分析——代数判据。 ü1945年, H.W. Bode 频率法。 ü1948年, W.R. Evans 根轨迹法。 至此,古典控制理论(传递函数法)体系确定。 í
绪论
6、线性系统理论的主要任务
p研究线性系统状态的运动规律和改变这个运动规律的可 能性和方法。 建立系统结构、参数、行为和性能间的确定的和定量的 关系。 í u分析问题:研究系统运动规律,认识系统。 u综合问题:研究改变运动规律的可能性和方法,改造系统。
绪论
p 模型问题 ü变量:状态变量、输入变量、输出变量、扰动变量。 ü参量:系统的参数或表征系统性能的参数。 ü常量:不随时间改变的参数。 ü时间域模型:微分方程组或差分方程组。 ü频率域模型:传递函数和频率响应。 ü建模方法:实验法、解析法。 í
绪论
3、状态空间法的特点(与古典控制理论比较)
①在把握控制系统的动力学本质(内在特性)的基础上,进行 合理的设计。 ②控制性能指标是明确的,可以得到最佳设计(系统化的设计 方法)。 ③需要知道描述控制系统全体的数学模型(缺一不可)。 ④难以利用人们的经验,直观性差。 1970年代后期,状态空间法的应用,遇到了困难,进入了 反省时期。 í
绪论
③线性系统的代数理论 用抽象代数工具研究线性系统。 把系统的各组变量间关系看作为某些代数结构之间的 映射关系。 线性系统的描述和分析——形式化和抽象化,变为纯粹 í 的代数问题。
绪论
④多变量频域方法 以状态空间法为基础,采用频率域的系统描述和频率域 的计算方法,来分析和综合线性定常系统。 u 频率域设计方法 多输入—多输出系统化为一系列单输入—单输出系统来 í 处理,把经典频率法的方法推广到多变量系统中。 英国学派:罗森布罗克、麦克法伦等提出。
绪论
2、古典控制理论的局限性
①局限于线性定常系统:难以解决非线性、时变系统等问题。 ②采用输入/输出描述(传函),忽视了系统结构的内在特性, 难以解决多输入多输出系统(耦合)。 ③处理方法上,只提供分析方法,而不是综合方法。 故设计方法为试行错误法,无法得到“最好的设计”。
í
给定传递函数
闭环特性分析
与给定指标比较
绪论
ü1950年代 , 是个控制理论的“混乱时期”。 ü1960年代 , 产生了“现代控制理论”(状态空间法)。 Pontryagin 极大值原理 Bellman Kallman 极点配置 观测器 内模原理 至1970年代前半期,为状态空间法的全盛时期。 í 动态规划法 可控、可观性理论
u2以及任意两个有限常数 c1和 c2 ,必有:
L ( c1u1 + c 2 u 2 ) = c1 L ( u1 ) + c 2 L ( u 2 )
数学处理上的简便性,可使用的数学工具: 数学变换(傅里叶变换,拉普拉斯变换)、线性代数 实际系统——非线性的,有条件地线性化。 线性定常系统——方程中每个系数均为常数。 线性时变系统——方程中有为时间 t 的函数的系数。
绪论
p1960年代:现代线性系统理论 传递函数:外部输入—输出描述 状态空间法:内部描述 单入—单出系统、多入—多出系统 能控性和能观测性:表征系统结构特性的概念 p1960年代后期,1970年代: í 几何理论:从几何方法角度来研究线性系统的结构和特征 代数理论:以抽象代数为工具 多变量频域理论:推广经典频率法
绪论
ü1980年代 , 在计算机技术的支持下,多变量系统的频域设计 法出现了。 H.H. Rosenbrock ; A.G.J. Macfarlane 既约分解表示法 最优控制 自适应控制 í 鲁棒控制 H∞控制 模糊控制 英国学派
频域(传函) í μ控制 1981 既约分解 古典理论 H∞控制 设计 1988 1960 状态空间 1970 1976 解析
相关文档
最新文档