第十一章 材料失效及强度理论

合集下载

材料力学强度理论

材料力学强度理论

材料力学强度理论
材料力学强度理论是材料力学的一个重要分支,它研究材料在外力作用下的强
度和变形特性。

材料的强度是指材料抵抗破坏的能力,而变形特性则是指材料在外力作用下的形变行为。

强度理论的研究对于材料的设计、制备和应用具有重要意义。

首先,强度理论可以帮助我们了解材料的破坏机制。

材料在外力作用下会发生
破坏,而不同的材料在受力时表现出不同的破坏模式,比如拉伸、压缩、剪切等。

强度理论可以通过实验和理论分析,揭示材料在受力时的破坏机制,为材料的设计和选用提供依据。

其次,强度理论可以指导材料的合理使用。

在工程实践中,我们需要根据材料
的强度特性来选择合适的材料,并确定合理的使用条件。

强度理论可以帮助我们评估材料在特定工况下的承载能力,从而保证材料的安全可靠使用。

此外,强度理论还可以为材料的改进和优化提供指导。

通过对材料强度特性的
研究,我们可以发现材料的强度局限性,并提出改进的方案。

比如,可以通过合金化、热处理等手段来提高材料的强度,或者通过结构设计来减小应力集中,提高材料的抗破坏能力。

综上所述,材料力学强度理论是材料科学中的重要内容,它不仅可以帮助我们
了解材料的破坏机制,指导材料的合理使用,还可以为材料的改进和优化提供指导。

在未来的研究和工程实践中,我们需要进一步深入研究强度理论,不断提高材料的强度和可靠性,为社会发展和科技进步做出贡献。

《材料力学-I》课程教学大纲

《材料力学-I》课程教学大纲

《材料力学 - I 》课程教学大纲课程中文名称:材料力学课程英文名称: Mechanics of Materials总学时: 98 讲课学时: 64 习题学时: 8实验学时: 8 上机学时: 18授课对象:机械、建筑、交通、材料、动力、能源等专业本科生先修课程:高等数学,理论力学一、课程教学目的通过本课程学习,要求学生正确理解构件的强度、刚度、稳定性等基本概念以及平衡、几何、物理三类方程在求解力学问题时的重要作用。

能熟练地计算杆件的应力与变形以及分析其强度、刚度与稳定性的能力。

通过实验课教学,培养学生具有一定的创新性、综合性的实验能力。

二、教学内容及基本要求强度、刚度、稳定性;变形固体及其理想化;外力及其分类;变形与位移。

应力状态分析:内力;应力的概念,正应力与切应力;一点的应力状态;切应力互等定律;二向应力状态分析,解析法;二向应力状态分析,图解法;三向应力状态分析;微体平衡。

应变状态分析:应变概念,线应变与切应变;位移与应变的关系;几何方程;应变协调条件,相容方程;平面应变状态分析。

材料的力学性能、应力应变关系:材料的力学性能与基本实验;轴向拉伸和压缩实验;常见工程材料的应力—应变曲线;应力松驰与蠕变;各向同性材料的广义虎克定律;应变能;各向同性材料弹性常数间的关系;各向异性材料应力—应变关系。

轴向拉压:轴向拉压杆的内力;轴向拉压杆的应力;圣文南原理;应力集中;轴向拉压杆路过··走过···需要的时候记得回来看看····因为容易得到所以得不到大家的珍惜·即使这样我们也要的变形,变形能;轴向拉压静不定问题,温度应力,装配应力;构件受慣性力作用时的应力计算。

扭转:扭转杆件的内力;圆轴扭转横截面上切应力;圆轴扭转破坏模式的分析;圆轴扭转变形与变形能;薄壁杆的自由扭转,剪力流。

弯曲:梁的内力,剪力与弯矩;剪力图与弯矩图;载荷、剪力及弯矩间的关系;纯弯曲梁的正应力;有关弯曲的讨论;弯曲切应力;开口薄壁非对称截面梁的弯曲,弯曲中心;梁的弹性弯曲变形,弹性曲线微分方程;直接积分求梁的变形;叠加原理与叠加法求变形;曲杆弯曲。

第11章复合材料层合板的强度分析

第11章复合材料层合板的强度分析

第11章 复合材料层合板的强度力分析复合材料层合板中单层板的铺叠方式有多种,每一种方式对应一种新的结构形式与材料性能。

层合板的应力状态也可以是无数种,因此各种不同应力状态下层合板的强度不可能靠实验来确定.只能通过建立一定的强度理论,将层合板的应力和基本强度联系起来。

由于层合板中各层应力不同,应力高的单层板先发生破坏,于是可以通过逐层破坏的方式确定层合板的强度。

因此,复合材料层合板的强度是建立在单层板强度理论基础上的。

另外,由层合板的刚度特性和内力可以计算出层合板各单层板的材料主方向上的应力。

这样就可以采取和研究各向同性材料强度相同的方法,根据单层板的应力状态和破坏模式,建立单层板在材料主方向坐标系下的强度准则。

本章主要介绍单层板的基本力学性能、单层板的强度失效准则,以及层合板的强度分析方法。

§11.1单层板的力学性能由层合板的结构可知,层合板是若干单向纤维增强的单层板按一定规律组合而成的。

当纤维和基体的性质、体积含量确定后,单层板材料主方向的强度与和其工程弹性常数一样,是可以通过实验唯一确定的。

11.1.1单层板的基本刚度与强度材料主方向坐标系下的正交各向异性单层板,具有4个独立的工程弹性常数,分别表示为:纤维方向(方向1)的杨氏模量1E ,垂直纤维方向(方向2)的杨氏模量2E ,面内剪切模量12G ;另外,还有两个泊松比2112,νν,但它们两个 不是独立的。

这4个独立弹性常数表示正交各向异性单层板的刚度。

单层板的基本强度也具有各向异性,沿纤维方向的拉伸强度比垂直于纤维方向的强度要高。

另外,同一主方向的拉伸和压缩的破坏模式不同,强度也往往不同,所以单层板在材料主方向坐标系下的强度指标共有5个,称为单层板的基本强度指标,分别表示为:纵向拉伸强度X t (沿纤维方向),纵向压缩强度X c (沿纤维方向),横向拉伸强度Y t (垂直纤维方向),横向压缩强度Y c (垂直纤维方向),面内剪切强度S (在板平面内)。

材料学 强度理论

材料学 强度理论

σ3
[σt ] 2
O3O2
σ1
2
σ3
[σc ] 2

[c]
L´ T´ [t]
1
代入 O1N O3O1 O2F O3O2
强度条件
1
[ [
t c
]
]
3
[ t ]
三、 各种强度理论的适用范围及其应用(The appliance range and application for all failure criteria)
阿托?莫尔(O.Mohr),1835~1918
二、莫尔强度理论(Mohr’s failure criterion)
任意一点的应力圆若与极限曲线
M
L
相接触,则材料即将屈服或剪断.
F N
公式推导
O2 O O1
T
O3
O1 N
[σt ] 2
σ1
σ3 2
O2F
[σc ] 2
σ1
σ3 2
O3O1
σ1
2
基本假说:最大伸长线应变1 是引起材料脆断破坏的因素.
脆断破坏的条件:
1
σb E
最大伸长线应变:
1
1 E [σ1
(σ2
σ3 )]
强度条件:
σ1 (σ2 σ3 ) [σ]
五、第二类强度理论
(The second types of failure criterion)
1.最大切应力理论 (第三强度理论)
(3)单元体(c)
σ1 80MPa σ2 -70MPa σ3 -140MPa
70 MPa
σr3 220MPa σr4 195MPa
(4)单元体(d)
140 MPa

材料失效及强度理论.

材料失效及强度理论.

第11章 材料失效及强度理论
11-1 常用工程材料的失效模式及强度理论概念 2)强度理论的概念 材料发生什么形式的失效?何时发生失效?失效时的应力, 即极限应力是多大?怎样建立失效判据?要解决这些问题,对于 单向应力状态情况是很容易的。那就是可以模拟实际的单向应力
状态进行轴向拉伸试验。对于脆性材料,当 b 时,材料便 发生断裂失效,这就是失效判据,强度极限 b 就是极限应力; 对于塑性材料,当 s 时,材料便发生屈服失效,这也是失 效判据,屈服点 s 也是极限应力。
11-1 常用工程材料的失效模式及强度理论概念 2)强度理论的概念 但是,材料失效是存在原因和规律的,在有限实验的基础上, 可以对材料失效的现象加以归纳、整理,对失效原因作一些假说, 即无论何种应力状态,也无论何种材料,只要失效模式相同,便 具有同一个失效原因。这样,就可以通过轴向拉伸这一简单实验 的结果,去预测材料在不同应力状态下的失效和建立材料在一般 应力状态下的失效判据。
第11章 材料失效及强度理论
11-3 关于屈服的强度理论
1)最大切应力强度理论(第三强度理论)
最大切应力理论把材料屈服失效的原因归结为最大切应力。
认为,无论材料处于何种应力状态,只要最大切应力达到材料单
向拉伸屈服时的极限最大切应力值 u ,材料就发生屈服失效。
失效原因: max
失效判据: max u
因为 所以
1

1 E
1


2
3
1u

b
E
1 2 3 b
实验证明:脆性材料在双向拉伸-压缩应力状态下,且压应
力值大于拉应力值时,该理论与实验结果大致吻合。最大拉应变

强度理论

强度理论

§10.5 强度理论一、 强度理论的概念强度理论是研究材料在复杂应力条件下强度失效的原因和失效条件的理论。

在前面的章节中,分别介绍了杆件在基本变形时的强度条件,如杆件在轴向拉、压时处于单向应力状态,其强度条件为[]max max N A σσ=≤式中许用应力[σ]是通过拉伸实验得出材料的极限应力再除以安全系数获得的。

圆轴扭转时,材料处于纯剪应力状态状态,其强度条件为[]max max t T W ττ=≤式中许用应力[τ]也是直接通过实验得出材料的极限应力再除以安全系数获得的。

梁横力弯曲时基于最大正应力作用点和基于最大切应力作用点的强度条件也是直接通过实验建立的。

但是,由于工程构件或元件所处的应力状态是多种多样的。

在复杂应力状态下,判断材料失效仅仅通过实验和这些简单应力状态下建立的强度条件是远远不够的。

人们在长期的生产实践中,综合分析材料强度的失效现象,提出了各种不同的假说。

各种假说尽管各有差异,但它们都认为:材料之所以按某种方式失效(屈服或断裂),是由于应力、应变或应变能密度等诸因素中的某一因素引起的。

按照这种假说,无论单向或复杂应力状态,造成失效的原因是相同的。

所以可将简单应力状态的实验结果,与复杂应力状态的下材料的破坏联系起来,从而建立了强度理论。

二、 材料破坏的两种基本形式综合分析材料破坏现象,可以认为构件由于强度不足将引起两种破坏形式:(1)脆性断裂:材料破坏前无明显的塑性变形,断裂面粗糙,且多发生在最大正应力作用面上,如铸铁受拉和受扭时的破坏,均属于脆性断裂。

(2)塑性屈服(流动):材料破坏前发生较大的塑性变形,破坏面较光滑,且多发生在最大剪应力作用面上,如低碳钢受拉和受扭时的破坏便属于这类破坏。

三、 工程中常用的几个强度理论1.最大拉应力理论(第一强度理论)该理论认为最大拉应力是引起断裂破坏的主要原因。

即认为不论材料处于简单应力状态还是复杂应力状态,引起材料破坏的原因是它的最大拉应力σ1达到某一极限值,材料就发生断裂。

材料科学中的材料强度与失效机制

材料科学中的材料强度与失效机制

材料科学中的材料强度与失效机制材料科学是一门从材料的制备、性能、结构等方面研究材料本质、过程与材料应用等一系列问题的学科。

材料强度是材料科学中最为重要的物理量之一,它决定了材料的使用寿命、安全性和可靠性。

本文将深入探讨材料强度的定义、测试及失效机制等方面的知识。

一、材料强度的定义材料强度指物质的承受载荷的能力。

它是一个表征物质硬度的常数,比如说可以按杨氏模量、切模、岛柱、热膨胀系数等方式来测定。

通常用于描述材料的抗拉强度、压缩强度、切割强度等性质。

材料强度考虑的载荷是材料的力学强度,也是衡量材料质量级别高低的指标。

材料强度是国家技术标准及行业标准中对材料强度的要求。

其常用的单位有百帕(BPa)、兆帕(MPa)等。

二、材料强度的测试材料强度的测试方法有很多种,常用的有:1.拉力试验:从测试样品两头夹紧,沿着材料的方向来施加力,以测得超过弹性极限的点,来求得材料的强度。

2.压缩试验:将测试样品用承受压力的装置进行压缩,以得到材料的强度。

3.切割试验:在材料的表面制造一定的凹槽,从凹槽中心处施加切割力,以测得材料的强度。

4.扭曲试验:在材料上用两个装置施加一个对材料轴线垂直的扭矩,以测得材料的强度。

以上测试模型不是全部,但是可以给予人们一个大致了解,材料的强度是可以通过若干种不同的试验模型来得到的。

三、材料失效机制失效机制是指在外力作用下,材料发生的失效方式与过程。

根据不同的失效特点的及其产生的原因,主要存在以下几种失效机制:1.化学腐蚀在特定的环境下,材料与其他组分接触时,可能发生化学反应,形成化合物或新的材料。

这些化学反应可能导致材料内部结构的损坏、重构,影响材料强度,最终导致材料失效。

2.磨损在材料表面之间产生相对运动时,由于两个相对表面之间产生的接触力,会导致材料表面的质量损失。

磨损是一种常见的失效机制,它最常见于机械材料及其配件中。

3.断裂当材料受到的外力超过其极限,材料就会发生断裂。

断裂可能发生在材料的任意位置,也可能累及整个材料。

2013春材料力学II 26-第十一章材料失效及强度理论

2013春材料力学II 26-第十一章材料失效及强度理论



第四强度理论的屈服线
19 s 0.577 s 两个强度理论,在纯切
应力状态时差别最大 。
第11章 材料失效及强度理论
11-3 关于屈服的强度理论
工程构件的强度达到极限状态(即发生强度失效)的条件 是什么?怎样才能保证构件安全可靠的工作? 以最大切应力理论为例,来回 答这个问题。 现有材料相同的四个构件,其 危险点应力状态如图所示。
r 3 1 3 [ ]
21
第11章 材料失效及强度理论
例11-1 直径为d=0.1m的圆杆受力如图,T=7kNm,F=50kN, 为铸
铁构件,[]=40MPa,试用第一强度理论校核杆的强度。
T F A T F
解:危险点A的应力状态如图:
F 4 50 103 6.37MPa A 0.12
11 X1 12 X 2 1F 0 力法的典型方程 21 X1 22 X 2 2F 0 q q 1 1 l 2 2l 1 3 7 l 3 X2 11 l 2 EI 2 3 EI 6 EI 2EI 2 1 l2 1 l3 l EI X1 12 l EI 2 2 EI 2 l 1 l 1 l3 21 l 11 12 EI 2 2 EI l 2 1 l 2l 1 l 3 X2=1 22 EI 2 3 3 EI 22 21 X1=1 9 ql 4 M2 M1 X 1F X2 l 1 16 EI q ql2 1 ql 4 2 F 1F 20 4 EI X1 9ql / 20, X 2 3ql / 40 2 ql / 40 M ql 2 / 2 MF 2F M M1 X1 M2 X 2 M F 1

材料力学强度理论

材料力学强度理论

材料力学强度理论
材料力学强度理论是材料力学的重要分支,它研究材料在外力作用下的变形和破坏规律,对于工程结构的设计和材料的选用具有重要的指导意义。

材料力学强度理论主要包括极限强度理论、能量强度理论和应变强度理论等。

首先,极限强度理论是最早形成的材料力学强度理论之一。

它认为材料的破坏取决于材料内部的最大应力达到其抗拉强度或抗压强度时所对应的应变状态。

极限强度理论的优点是简单易行,适用范围广,但其缺点是只考虑了材料的强度,忽略了材料的变形性能,因此在工程实践中应用受到了一定的限制。

其次,能量强度理论是在极限强度理论的基础上发展起来的。

它认为材料的破坏取决于单位体积内的应变能达到一定数值时所对应的应变状态。

能量强度理论考虑了材料的变形性能,能够更准确地描述材料的破坏过程,因此在工程实践中得到了广泛的应用。

最后,应变强度理论是在能量强度理论的基础上进一步发展起来的。

它认为材料的破坏取决于应变状态达到一定数值时所对应的应力状态。

应变强度理论综合考虑了材料的强度和变形性能,能够更全面地描述材料的破坏规律,因此在工程实践中得到了广泛的应用。

总的来说,材料力学强度理论对于工程结构的设计和材料的选用具有重要的指导意义。

不同的强度理论各有其优缺点,工程师需要根据具体的工程要求和材料性能选择合适的强度理论进行分析和计算。

在今后的研究和工程实践中,我们还需要进一步深入理解材料的力学性能,不断完善和发展材料力学强度理论,为工程结构的安全可靠提供更加科学的依据。

强度理论课件

强度理论课件
详细描述
第三强度理论考虑了等效应力和等效应变的影响,认为当材料受到的等效应力或等效应变超过其等效 应力或等效应变极限时,材料会发生断裂。这种理论适用于各种类型的材料,包括脆性和塑性材料。
第四强度理论
总结词
基于形状改变比能或最大剪切应变能,当材料受到的形状改变比能或剪切应变能超过其形状改变比能极限或剪切 应变能极限时,材料发生断裂。
详细描述
第四强度理论考虑了形状改变比能和剪切应变能的影响,认为当材料受到的形状改变比能或剪切应变能超过其形 状改变比能极限或剪切应变能极限时,材料会发生断裂。这种理论适用于各种类型的材料,包括脆性和塑性材料 。
03
强度理论的计算方法
弹性力学方法
弹性力学是研究弹性物体在外力作用下的应力、应变和位移 的学科。在强度理论中,弹性力学方法通过建立物体的应力应变关系,推导出强度准则,用于评估结构在不同外力作用 下的稳定性。
非线性或复杂环境下的应用还存在局限性。
参数确定困难
02
强度理论中的一些参数,如材料的弹性模量、屈服强度等,在
实际应用中往往难以准确测定。
忽略微观结构影响
03
强度理论通常基于宏观尺度,忽略了材料的微观结构和缺陷对
强度的影响。
强度理论的发展趋势
多尺度分析
随着计算技术的发展,强度理论正朝着多尺度方向发展,以综合考 虑微观、细观和宏观尺度对材料强度的影响。
弹性力学方法基于连续介质力学的基本原理,通过求解微分 方程或积分方程来获得物体的应力分布和位移场,进而分析 结构的强度和稳定性。
有限元方法
有限元方法是数值分析中的一种方法,通过将连续的物体 离散化为有限个小的单元(如三角形、四边形等),然后 对每个单元进行求解,最后将所有单元的解组合起来得到 整个物体的解。

第11章 强度失效分析与设计准则讲解

第11章 强度失效分析与设计准则讲解


按照畸变能密度理论,屈服判据为
第 11
vd

1
6E
[(1
2 )2

( 2
3)2
( 3
1)2 ]

1
3E

2 s


1 2
[( 1


2
)2

(
2


3
)2

(
3


1)2
]


s







力 三. 强度设计准则及其适用范围

为保证完成其正常功能,所设计的结构或构件




建立一般应力状态下强度失效判据与设
计准则的思路:

假设失效的共同原因,从而建立失效判
11
据,以及相应的设计准则,以保证所设计的

工程构件或工程结构不发生失效,并且具有
一定的安全裕度。







程 二、失效准则

学 ●最大拉应力理论(无裂纹体脆性断裂准则、第一强度理论)
该理论不论材料处于什么应力状态,引起材料脆性断裂
则 松弛失效— 在一定的温度下,应变保持不变,应力随 着时间增加而降低,从而导致构件失效。
工 强度失效形式:



脆性断裂:是指材料经过弹性变形后只发生很小塑
性变形或无塑性变形时就突然断裂的现象。

塑性屈服:是指材料通过弹性变形后发生显著的塑
11
性变形,从而使构件的形状发生不良的永久变形。

材料力学第11章 压杆稳定

材料力学第11章 压杆稳定

长度系数
一端固定,另一端自由 两端铰支
2 1
一端固定,另一端铰支
2 0.7
3
两端固定
1 0.5
2
第十一章 压杆稳定
§11.3 欧拉公式的使用范围 临界应力总图
一、欧拉临界应力公式及其使用范围 二、中柔度压杆的临界应力 三、小柔度压杆的临界应力 四、临界应力总图
§11.3 欧拉公式的使用范围 临界应力总图
2E 2
O 小 0 中 p 大
柔柔

度度

压压

杆杆

可见:压杆的临界应力随着其柔度的增大而减小
§11.3 欧拉公式的使用范围 临界应力总图
例1 图示用No.28a工字钢制成的立柱,两端固定,
试求立柱的临界压力。
解:1.求
F
查表:i imin iy 2.50 cm, A 55.4 cm2
ymax
欧拉公式适用于小变形情况
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
1.一端固定、另一端自由
Fcr
Fcr
2EI
Fcr (2l)2
l
l
l
Fcr
§11.2 细长压杆临界压力的欧拉公式
二、其他约束下细长压杆的临界压力
解法:比较变形法
2.两端固定
b=20
b 2.57 MPa
h=45
cr a b y 289.6 MPa
Fcr cr A 261 kN y
n
Fcr F
4.35
nst
∴ 连杆安全
l 1=800

复合材料失效及其强度理论

复合材料失效及其强度理论
Ke r s cmp s emae as s egh;a g ; dmii ywod :o oi tr l;t n t d mae mn o ct t i r y Ab tat alr n l sr c :F i ea dd唧 u o o oi tr l a o lxDo c ¥ n eeh v enh n rd tert a mo esfc s go f mp s em e as r c mpe rc ̄ ,a dt r a ebe u de so h o i l d l oui n c t a i e h f e c n c tr n detbi — i i re aa s al h s
o ecaat sc cm ois d e fc o m tx en r m n,neae dp c鹧o o pse 曲 nt. ei ,o e u- nt r e ts f o pse et a i,r f c et i r c r e ncm ois g1 Bs e f t t h h c ri o i ta t e n h f r io e tf a o n t I d s r p h
h ee rho ae as t tersac fm tr l s g t i  ̄n h.U ie t - her se hszd i hsp p r w i rvdsasr so l nf ds , i  ̄ t o yi mp ai ht e nti a e , hc poie ei f d唧 h e
批注本地保存成功开通会员云端永久保存去开通
维普资讯
第 2O 年 第 2 1 6 O a .O6
Vo . . o 2 1 1 N .
复 合 材 料 失效 及 其 强度 理 论
王宝来 , 吴世平 , 梁 军

示范教学材料失效与强度理论-29页精品文档

示范教学材料失效与强度理论-29页精品文档

现有材料相同的四个构件,其 危险点应力状态如图所示。
由于存在强度分析的诸多不确 定因素,那么,B 构件比 D 构 件更安全一些。
为了有足够的强度储备,以保
证构件能安全可靠地工作,将
材料的屈服点、屈服线等比例
缩小 n( n >1)倍,变为
1
3

s
n
§11-3 许用应力 强度条件
1、许用应力
以最大切应力强度理论为例
3)两个强度理论的比较 13 s
1 2(1 2)2(2 3)2(3 1)2s
Mises理论考虑了 2 的影响
实验研究表明, Mises与实 验结果更吻合 纯切应力状态时差别最大
§11-3 许用应力 强度条件 1、许用应力
以上的强度理论,描述的是材料进入极限状态的条件 和失效判据的表达式 工程构件的强度达到极限状态(即发生强度失效)的
§11-2 工程中常度理论的比较 13 s
1 2(1 2)2(2 3)2(3 1)2s
Mises理论考虑了 2 的影响
实验研究表明, Mises与实 验结果更吻合
§11-2 工程中常用的强度理论 2、关于屈服的强度理论
Tresca屈服线6个顶点
假设
连接 6 个顶点的直线
曲线会处处光
用曲线连接 6 个顶点
滑,可用一个 方程描述
§11-2 工程中常用的强度理论
2、关于屈服的强度理论
2)形变应变能强度理论(第四强度理论)
讨论
1 2(1 2)2(2 3)2(3 1)2s
物理意义:
Mises没有给予解释 形变应变能 八面体上的切应力
§11-3 许用应力 强度条件
2、强度条件
以最大切应力强度理论为例

11-2强度理论

11-2强度理论




材Leabharlann 力学(Ⅰ)电子教案应力状态和强度理论
20
(5) 强度理论的相当应力
上述四个强度理论所建立的强度条件可统一写 作如下形式:
r
式中,r是根据不同强度理论以危险点处主应力表 达的一个值,它相当于单轴拉伸应力状态下强度条 件≤[]中的拉应力,通常称r为相当应力。表71示出了前述四个强度理论的相当应力表达式。
材料力学(Ⅰ)电子教案
应力状态和强度理论
12
(1) 最大拉应力理论(第一强度理论) 受铸铁等材 料单向拉伸时断口为最大拉应力作用面等现象的启迪, 第一强度理论认为,在任何应力状态下,当一点处三 个主应力中的拉伸主应力1达到该材料在单轴拉伸试 验或其它使材料发生脆性断裂的试验中测定的极限应 力u时就发生断裂。 可见,第一强度理论关于脆性断裂的判据为 1 u 而相应的强度条件则是 1 其中,[]为对应于脆性断裂的许用拉应力,[]= u/n,而n为安全因数。
从上列屈服判据和强度条件可见,这一强度理 论没有考虑复杂应力状态下的中间主应力2对材料发 生屈服的影响;因此它与试验结果会有一定误差(但 偏于安全)。 (4) 形状改变能密度理论(第四强度理论) 注意到 三向等值压缩时材料不发生或很难发生屈服,第四 强度理论认为,在任何应力状态下材料发生屈服是 由于一点处的形状改变能密度vd达到极限值vdu所致。
材料力学(Ⅰ)电子教案
应力状态和强度理论
13
(2)最大伸长线应变理论(第二强度理论) 从大 理石等材料单轴压缩时在伸长线应变最大的横向发 生断裂(断裂面沿施加压应力的方向,即所谓纵向) 来判断,第二强度理论认为,在任何应力状态下, 当一点处的最大伸长线应变1达到该材料在单轴拉 伸试验、单轴压缩试验或其它试验中发生脆性断裂 时与断裂面垂直的极限伸长应变u时就会发生断裂。 可见,第二强度理论关于脆性断裂的判据为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脆性断裂──最大拉应力理论、最大拉应变理论 材料破坏
屈服失效──最大切应力理论、形变应变能理论
第11章 材料失效及强度理论
11-2 关于断裂的强度理论
1)最大拉应力强度理论(第一强度理论)
把材料脆断失效的原因归结为最大拉应力。只要最大拉应力 达到材料单向拉伸脆断时的极限拉应力值(即强度极限) 1u , 材料就发生脆断失效。
第11章 材料失效及强度理论
11-5 许用应力 强度条件
1)相当应力 综上所述,当由强度理论来建立各种应力状态下材料失效判据时, 是将主应力的某一综合值与材料单向拉伸时极限应力相比较。主 应力的这一综合值称为相当应力,用 r 表示。
•第一强度理论 •第二强度理论
r1
1
b
r2
1
2
3
b
•第三强度理论
r3
第11章 材料失效及强度理论
莫尔认为:最大剪应力 是使物体破坏的主要因素, 但滑移面上的摩擦力也不可 忽略(莫尔摩擦定律)。综 合最大剪应力及最大正应力 的因素,莫尔得出了他自己 的强度理论。
阿托?莫尔(O.Mohr),1835~1918
1)两个概念:
第11章 材料失效及强度理论
(1)极限应力圆:材料失效时对应的一
材料屈服失效的原因归结为最大切应力。认为,无论材料
处于何种应力状态,只要最大切应力达到材料单向拉伸屈
服时的极限最大切应力值 u,材料就发生屈服失效。
• 失效原因: max
• 失效判据: max
u
因为
1
2 max
1
3
1 u 2s
所以
1
3
s
第11章 材料失效及强度理论
11-3 关于屈服的强度理论 1)最大切应力强度理论(第三强度理论) 第三强度理论曾被许多塑性材料的试验结果所证实,且 稍偏于安全。这个理论所提供的计算式比较简单,故它在工 程设计中得到了广泛的应用。该理论没有考虑中间主应力σ2 的影响,其带来的最大误差不超过15%,而在大多数情况下 远比此为小。
四个强度理论的强度条件:
n 为安全系数
r1 1
r2
1
2
3
r3 1 3 r4
1 2
(
1
2 )2 ( 2
3 )2 ( 3
1 )2
3
tu
cu
o O2 3
O3 O1
1 tu
莫尔理论危险条件的推导
(2)实用范围:实用于 破坏形式为屈服的构件及 其拉压极限强度不等的处 于复杂应力状态的脆性材 料的破坏(岩石、混凝土 等)。
第11章 材料失效及强度理论
双切应力强度理论
西安交通大学俞茂宏教授1961年提出: 认为材料的屈服是由两个较大的主切应力引起的。当两 个较大主切应力之和达到材料在单向拉伸屈服时的极限 双切应力之和时,材料就发生屈服(流动)破坏。
系列应力圆
(2)极限曲线:极限应力圆的包络线
(envelope)。

t
极限应力圆 s
极限应力圆的包络线
s3
O

s2
s1
近似包络线
第11章 材料失效及强度理论
2)莫尔强度理论:任意一点的应力圆若与极限曲线相接触
,则材料即将屈服或断裂。
M

(1)破坏判据:
K
P
L N
1


tu cu
第11章 材料失效及强度理论
11-1 常用工程材料的失效模式及强度理论概念 2)强度理论的概念
材料发生什么形式的失效?何时发生失效?失效时的 应力,即极限应力是多大?怎样建立失效判据?
单向应力状态情况:
•脆性材料,当
b 时,材料便发生断裂失效,这就是
失效判据,强度极限 b就是极限应力;
•塑性材料,当
第11章 材料失效及强度理论
11-1 常用工程材料的失效模式及强度理论概念 1)常用工程材料的失效模式
屈服 材料的两种基本失效模式
断裂
简单应力状态(单向应力状态与纯切应力状态),材料的失 效现象取决于材料本身的力学性能:
脆性材料发生脆性断裂失效 塑性材料发生屈服失效
复杂应力状态下,材料发生哪种失效,还将取决于应力状态。 例如,在三向压应力状态,即使是非常好的脆性材料,也不 会发生断裂失效。
第 11 章 材料失效及强度理论
11.1常用工程材料的失效模式及强度理论 概念 11.2 关于断裂的强度理论 11.3关于屈服的强度理论 11.4 弯曲与扭转的组合
引言
第11章 材料失效及强度理论
a) 低碳钢拉伸断裂 c) 铸铁压缩破坏
b) 铸铁拉伸断裂 F
引言
第11章 材料失效及强度理论
a) 低碳钢扭转破坏 b) 铸铁扭转破坏
按某种强度理论进行强度校核时, 要保证满足如下两个 条件:
1. 所用强度理论与在这种应力状态下发生的破坏形式相对应;
2. 用以确定许用应力 [ 的,也必须是相应于该破坏形式的极 限应力。
第11章 材料失效及强度理论
注意
塑性材料(如低碳钢)在三向拉伸应力状态下呈脆断 破坏,应选用第一强度理论。 例 (a) 一钢质球体防入沸腾的热油中,将引起爆裂,试 分析原因。
• 失效原因: 1
因为
1
1E 1
•失效判据: 1 1u
2
3
b
1u E
所以
1
2
3
b
最大拉应变理论能很好解释大理石在轴向压缩时(试件与 实验机夹板间摩擦力较断的构件。
第11章 材料失效及强度理论
11-3 关于屈服的强度理论 1)最大切应力强度理论(第三强度理论)
第11章 材料失效及强度理论
11-1 常用工程材料的失效模式及强度理论概念 2)强度理论的概念
强度理论:关于材料失效原因与规律的假说或学说。
强度理论必须经受实验与实践的检验。实际上,也正是 在反复实验与实践基础上,强度理论才得到发展并日趋完 善。目前,有许多种强度理论,本课只介绍工程中常用的 几种强度理论。
将等比例缩小 n( n >1)倍,变为
s

s
n
r3
1
3n
称为材料的许用应力
n 为安全系数
r3
1
3
第11章 材料失效及强度理论 11-5 许用应力 强度条件 2)许用应力
为了有足够的强度储备,以保证构件能安全可靠地工作,将等 比例缩小 n( n >1)倍,变为
s

s
n
r3
1
3n
称为材料的许用应力
3)强度条件
s 时,材料便发生屈服失效,这也是失效
判据,屈服点 也s 是极限应力。
第11章 材料失效及强度理论 11-1 常用工程材料的失效模式及强度理论概念 2)强度理论的概念
材料发生什么形式的失效?何时发生失效?失效时的 应力,即极限应力是多大?怎样建立失效判据?
危险点是复杂应力状态时 σ1、σ2、 σ3 之间有任意比值,不可能通过做 所有情况的试验来确定其极限应力值。
破坏判据:
t 13 +t 12 = s s; (t 12 ? t 23 ) t 13 +t 23 = s s; (t 12 ? t 23 )
主应力表示:
s1
-
s2
+s 3 2
=s s;
(s 1
- s2 2
?
s2
- s3) 2
s2
+s 3 2
-
s3
=s s;
(s 1
- s2 2
?
s2
- s3) 2
实用于破坏形式为屈服的材料
r4
1 2
302
1102

1402

128MPa
第11章 材料失效及强度理论
11-5 许用应力 强度条件 2)许用应力 工程构件的强度达到极限状态(即发生强度失效)的条件是 什么?怎样才能保证构件安全可靠的工作?
以最大切应力强度理论为例:
r3
13
s
为了有足够的强度储备,以保证构件能安全可靠地工作,
ef
1
6E
2
1
2
e fu
1
3E
2 s
2
2
3
2
3
1
所以 1
2
2
2
1
2
2
3
3
1
s
第11章 材料失效及强度理论
小结 塑性材料
第三强度理论 可进行偏保守(安全)设计。
第四强度理论 可用于更精确设计,要求对材 料强 度指标 、载荷计算较有把握。
第一强度理论 用于脆性材料的拉伸、扭转。 脆性材料
第二强度理论 仅用于石料、混凝土等少数材料。
第11章 材料失效及强度理论
11-3 关于屈服的强度理论
2)形变应变能强度理论(第四强度理论)
材料屈服失效的原因归结为形变应变能。认为,无论材料 处于何种应力状态,只要形变应变能达到材料单向拉伸屈
服时的极限形变应变能 efu ,材料就发生屈服失效。
•失效原因:ef
•失效判据: e f e fu
因为
• 失效原因: 1
• 失效判据: 1
1u
b即 1
b
这一理论没有考虑 2和 3 对材料失效的影响。此外,对 于没有拉应力的三向压应力状态,不能应用此理论。
实用范围:实用于破坏形式为脆断的构件。
第11章 材料失效及强度理论
11-2 关于断裂的强度理论 2)最大拉应变强度理论(第二强度理论)
把材料脆断失效的原因归结为最大拉应变。只要最大拉应变 达到材料单向拉伸脆断时的极限拉应变值 1u ,材料就发生脆 断失效。
相关文档
最新文档