中考数学圆复习教案

合集下载

中考数学专题复习教案圆

中考数学专题复习教案圆

中考数学专题复习教案圆公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-圆综合复习教学目标】1、回顾、思考本章所学的知识及思想方法,并能用自己的方式进行梳理,使所学知识系统化2、进一步丰富对圆及相关结论的认识,并能有条理地、清晰地阐明自己的观点3、通过复习课的教学,感受归纳的思想方法,养成反思的习惯【重点难点】圆的有关概念和性质的应用【课堂活动】一、圆的有关概念和性质二知识点详解(一)、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

(二)、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;(三)、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;3、直线与圆相交 ⇒ d r < ⇒ 有两个交点; (四)、圆与圆的位置关系外离(图1)⇒ 无交点 ⇒ d R r >+; 外切(图2)⇒ 有一个交点 ⇒ d R r =+; 相交(图3)⇒ 有两个交点 ⇒ R r d R r -<<+; 内切(图4)⇒ 有一个交点 ⇒ d R r =-; 内含(图5)⇒ 无交点 ⇒ d R r <-; (五)、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

九年级数学上册24圆复习教案新人教版(1)

九年级数学上册24圆复习教案新人教版(1)

第24章圆一、复习目标1、了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、•弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.2、探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.3、进一步认识和理解正多边形和圆的关系和正多边的有关计算.4、熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.二、课时安排2三、复习重难点1。

理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,•探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.2。

掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.四、教学过程(一)知识梳理1、圆的有关概念:2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线。

(2)圆是中心对称图形,对称中心为圆心。

3、垂径定理及其推论:定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

(2)弦的垂直垂直平分线经过圆心,并且平分弦所对的两条弧。

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.(4)圆的两条平行弦所夹的弧相等。

4、圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。

5、圆周角:(1)定义:顶点在圆上,并且两边都和圆相交的角叫圆周角.(2)定理:一条弧所对的圆周角等于它所对的圆心角的一半。

(3)推论:①圆周角的度数等于它所对弧的度数的一半。

②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等。

③直径所对的圆周角是直角;90的圆周角所对的弦是直径。

中考数学专题复习教案圆

中考数学专题复习教案圆

圆综合复习教学目标】1、回顾、思考本章所学的知识及思想方法,并能用自己的方式进行梳理,使所学知识系统化2、进一步丰富对圆及相关结论的认识,并能有条理地、清晰地阐明自己的观点3、通过复习课的教学,感受归纳的思想方法,养成反思的习惯【重点难点】圆的有关概念与性质的应用【课堂活动】一、圆的有关概念与性质二知识点详解(一)、圆的概念集合形式的概念: 1、圆可以瞧作就是到定点的距离等于定长的点的集合;2、圆的外部:可以瞧作就是到定点的距离大于定长的点的集合;3、圆的内部:可以瞧作就是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹就是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹就是这个角的平分线;4、到直线的距离相等的点的轨迹就是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹就是:平行于这两条平行线且到两条直线距离都相等的一条直线。

(二)、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;(三)、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;(四)、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;A(五)、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不就是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 就是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其她3个结论。

九年级圆复习教案5篇

九年级圆复习教案5篇

九年级圆复习教案5篇教案在书写的时候,我们需要考虑联系实际,制定教案是一件值得深思的事情,我们要保持清晰的思路,下面是作者为您分享的九年级圆复习教案5篇,感谢您的参阅。

九年级圆复习教案篇1第一单元第一课一复习生词二背诵最后一段(共两句,最后是省略号)三课文中作者的感情是自豪、赞美,体现了民族团结的精神。

四、抄写窗外安静的句子。

(读书读得认真)五、字音、字形傣昌戴(戈)舞()六、这是一所什么样的学校?(美丽、团结)第二课一、生词二、课文感情:热爱大自然,大自然给我的们生活带来了乐趣。

三、课文写了哪两件事?(第一件:哥俩在草地上玩耍,互相往对方脸上吹蒲公英的绒毛。

第二件:我发现了草地会变色及其变色的原因)四、草地为什么会变色?(花朵张开时,它是金色的,草地也是金色的;花朵合拢时,金色的花瓣被包住,草地就变成绿色的了。

)五、一本正经:很庄严,很严肃。

引人注目:引起人的注意。

第三课一、读课文,读准字音二、生词三、背诵课文第二自然段,这段写了什么?(天都峰又高又陡)四、老爷爷和我爬上天都峰后,为什么要互相道谢?(能从他人身上汲取力量,善于向他人学习,他们个人的奋斗和努力。

)五、多音字si似乎互相似相shi似的相片园地一、我的发现真假好人发现晃眼朝阳假放假好爱好发头发晃摇晃朝朝向二、背《小儿垂钓》三、记住“读读认认”里的生字四、用下面两个词造句十分:好像:第二单元第五课一、读课文二、写生词三、注意易错的字:步胸或低四、把课文描写灰雀的句子背下来(公园里有一棵高大的……非常惹人喜爱)五、列宁是怎样对待小男孩儿的,小男孩是一个怎样的人?(列宁尊重、爱护小男孩,小男孩是一个诚实天真的人)第六课一、读课文,读准字音二、会写生词三、易听写的词:摆弄清准备胶卷杂志社四、高尔基是一个怎样的人?小男是一个怎样的人?(高尔基关心爱护小男孩,小男孩崇敬、热爱高尔基)五、小男孩摆弄了很久很久,说明什么?(从高尔基和小男孩两个方面去回答)六、高尔基的三步曲:童年在人间我的大学第七课1、熟读课文2、听写词语3、容易错的字:旅考遗4、李四光是怎么提问题的?(这么重的大石头从天上掉下来,力量一定非常大。

九年级数学《圆的基本性质》复习课教案

九年级数学《圆的基本性质》复习课教案

九年级数学《圆的基本性质》复习课教案教学目标:熟悉本章所有的定理。

教学重点:圆中有关的定理教学难点:圆中有关的定理的应用教学方法:谈话法教学辅助:多媒体教学过程:1、2、在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。

固定的端点O叫做圆心,线段OA叫做半径,以点O为圆心的圆,记作☉O,读作“圆O3、篮球是圆吗?–圆必须在一个平面内?以3cm为半径画圆,能画多少个??以点O为圆心画圆,能画多少个??由此,你发现半径和圆心分别有什么作用?–半径确定圆的大小;圆心确定圆的位置?圆是“圆周”还是“圆面”?–圆是一条封闭曲线?圆周上的点与圆心有什么关系?4、点与圆的位置关系?圆是到定点(圆心)的距离等于定长(半径)的点的集合。

?圆的内部是到圆心的距离小于半径的点的集合。

?圆的外部是到圆心的距离大于半径的点的集合。

?由此,你发现点与圆的位置关系是由什么来决定的呢?5、圆的有关性质思考:确定一条直线的条件是什么?类比联想:是否也存在由几个点确定一个圆呢?讨论:经过一个点,能作出多少个圆?经过两个点,如何作圆,能作多少个?经过三个点,如何作圆,能作多少个?6、经过三角形的三个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,三角形叫做圆的内接三角形。

7、垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

?如图,P为⊙O的弦BA延长线上一点,PA=AB=2,PO =5,求⊙O的半径。

?关于弦的问题,常常需要过圆心作弦的垂线段,这是一条非常重要的辅助线。

?圆心到弦的距离、半径、弦长构成直角三角形,便将问题转化为直角三角形的问题。

8、(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧。

圆的两条平行弦所夹的弧相等9、圆的性质?圆是轴对称图形,每一条直径所在的直线都是对称轴。

初三第一轮复习圆与相似教学案

初三第一轮复习圆与相似教学案

初三第一轮复习圆与相似(一)教学案夏湾中学黄欣一、教学目标:1利用圆的相关定理帮助寻找三角形的相似条件.2 会用相似三角形的性质解决有关线段长,线段的平方及图形面积问题.3掌握圆与相似三角形的解题思路.二、复习回顾:回顾相似三角形的性质及判定方法1.相似三角形的性质:2.相似三角形的判定方法(类比借用全等三角形判定的简记法):三、基础练习:在⊙O中,弦AB,CD相交于点P,连接AC.已知AC=2,BD=4,AP=1.(1)证明△ACP ∽△DBP; (2) 求线段DP的长.四、中考变式:(2013 绥化)在⊙O中,弦AB,CD相交于点P,点A为CD弧中点,连接AC,BD,AD,已知AP=2,BP=4.(1) 证明△ADP ∽△ABD ; (2) 求线段2AD的值.五、 中考链接: (湖北黄冈)如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连接AC,过点C 作CD ⊥AB 于D 点,E 是AB 上一点,直线CE 与⊙O 相交于点F,连接AF 与线段CD 的延长线交于点G .(1)试说明:△ACG ∽△AFC.(2)若AG=2,AF=6,求以AC 为边的正方形面积.六、小结: 你的收获七、拓展提升:在半径为r 的⊙O 中,直径AB ⊥直径CD ,P 为弧BC 上任意一点,PD 交AB 于E 点,PA 交CD 于F 点.求证: (1) (2)四边形ADEF 的面积为2r .2AD AE DF=•八巩固练习:1.如图,AD是△ABC的高,AE是△ABC的外接圆直径. 求证:AB·AC = AE·AD证明:连结BE∵ AE⊙O的直径,AD⊥BC∴∠ABE = ∠ = 90°∵∠E = ∠∴△ABE ∽△∴()()() () =∴ AB·AC = AE·AD2.如图,⊙O是△ABC的外接圆,∠BAC的平分线与BC边和外接圆分别相交于D和E.求证:AD·EC = AC·BD证明:3.△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E.若AB=6,CD=2,求CE的长。

初三数学圆复习教案

初三数学圆复习教案

初三数学圆知识精讲
一. 圆教学内容:
1. 圆的内容包括:圆的有关概念和基本性质,直线和圆的位置关系,圆和圆的位置关系,正多边形和圆。

2. 主要定理:
(1)垂径定理及其推论。

(2)圆心角、弧、弦、弦心距之间的关系定理。

(3)圆周角定理、弦切角定理及其推论。

(4)圆内接四边形的性质定理及其推论。

(5)切线的性质及判定。

(6)切线长定理。

(7)相交弦、切割线、割线定理。

(8)两圆连心线的性质,两圆的公切线性质。

(9)圆周长、弧长;圆、扇形,弓形面积。

(10)圆柱、圆锥侧面展开图及面积计算。

(11)正n边形的有关计算。

二. 中考聚焦:
圆这一章知识在中考试题中所占的分数比例大约如下表:
圆的知识在中考中所占的比例大,题型多,常见的有填空题、选择题、计算题或证明题,近年还出现了一些圆的应用题及开放型问题、设计型问题,中考的压轴题都综合了圆的知识。

三. 知识框图:。

中考数学圆复习教案

中考数学圆复习教案

1.圆的有关性质【知识梳理】1. 圆的有关概念和性质(1)圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

③弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧.,简称弧,用符号“厂”表示,以CD为---- —-端点的弧记为“ UD”,读作“圆弧CD”或“弧CD”。

半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。

优弧:大于半圆的弧叫做优.弧劣弧:小于半圆的弧叫做劣弧.。

(为了区别优弧和劣弧,优弧用三个字母表示。

)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。

⑦圆心角:顶点在圆心的角叫做圆心角..⑧弦心距:从圆心到弦的距离叫做弦心距..(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2. 与圆有关的角(1) 圆心角:顶点在圆心的角叫圆心角。

圆心角的度数等于它所对的弧的度数.(2) 圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。

人教版数学九年级初三上册 中考复习圆的综合题 名师教学教案 教学设计反思

人教版数学九年级初三上册 中考复习圆的综合题 名师教学教案 教学设计反思

《中考复习圆的综合题》微课敎學设计玉州区名山中学庞业献敎學过程∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B= ,⊙O的半径是4,求EC 的长.(1)证明:∵AB是直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵∠DAC=∠B,∴∠DAC+∠BAD=90°,∴∠BAC=90°,∴BA⊥AC,∴AC是⊙O的切线.(2)解:∵∠BCE=∠B,∴EC=EB,设EC=EB=x,在Rt△ABC中,tan∠B==,AB=8,∴AC=4,在Rt△AEC中,∵EC2=AE2+AC2,∴x2=(8﹣x)2+42,解得x=5,∴CE=5.四、玉林中考23题总结满分技法1.解有关切线问题的基本思路:抓“相切”,连接圆心与切点2.证明切线的方法:①若已知直线与圆的公共点,则连接圆心与公共点,证出所连半径垂直于已知直线即可.即“连半径,证垂线”;②若未给出直线与圆的公共点,则过圆心作已知直线的垂线段,证出所作垂线段的长度与圆的半径相等即可,即“作垂直,证半径”3.证明两角相等的方法①在两个直角三角形中通过同角或等角的余角相等来证明②利用半径相等,转化到等腰三角形中利用等边对等角来证明4.证明两线段相等的方法:敎學过程①若所证两线段相连不共线,则可以考虑将两条线段放到一个三角形中,利用等腰或等边三角形等角对等边来证明;②若所证两线段相连共线,则可以考虑等腰三角形三线合一或直角三角形斜边上的中线等于斜边的半来证明;③若所证两线段平行,则可以考虑特殊四边形对边相等来证明5.求线段长时②题干中出现三角函数时,一般考虑用三角函数解题;②若题于中不含三角函数,一般考虑用相似三角形或勾股定理解题。

五、玉林中考23题练习(2019.玉林)如图,在△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O 分别交于AC,BC于点D,E,过点E作⊙O的切线EF交AC于点F,连接BD.(1)求证:EF是△CDB的中位线;(2)求EF的长.敎學过程让学生先做后点评。

初三数学圆的综合复习教案

初三数学圆的综合复习教案

圆综合复习一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R的弧长.圆心角为n°,半径为R,弧长为l的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l的圆柱的体积为,侧面积为2πRl,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.【经典例题精讲】例1 如图23-2,已知AB为⊙O直径,C为上一点,CD⊥AB于D,∠OCD的平分线CP交⊙O于P,试判断P点位置是否随C点位置改变而改变?例2下列命题正确的是( )A.相等的圆周角对的弧相等B.等弧所对的弦相等C.三点确定一个圆D.平分弦的直径垂直于弦.解:A.在同圆或等圆中相等的圆周角所对的劣弧相等,所以A不正确.B.等弧就是在同圆或等圆中能重合的弧,因此B正确.C.三个点只有不在同一直线上才能确定一个圆.D.平分弦(不是直径)的直径垂直于此弦.故选B.例3 四边形ABCD内接于⊙O,∠A︰∠B︰∠C=1︰2︰3,求∠D.分析:圆内接四边形对角之和相等,圆外切四边形对边之和相等.解:设∠A=x,∠B=2x,∠C=3x,则∠D=∠A+∠C-∠B=2x.x+2x+3x+2x=360°,x=45°.∴∠D=90°.小结:此题可变形为:四边形ABCD外切于⊙O,周长为20,且AB︰BC︰CD=1︰2︰3,求AD的长.例4为了测量一个圆柱形铁环的半径,某同学采用如下方法:将铁环平放在水平桌面上,用一个锐角为30°的三角板和一个刻度尺,用如图23-4所示方法得到相关数据,进而可以求得铁环半径.若测得PA=5cm,则铁环的半径是__________cm.分析:测量铁环半径的方法很多,本题主要考查切线长性质定理、切线性质、解直角三角形的知识进行合作解决,即过P点作直线OP⊥PA,再用三角板画一个顶点为A、一边为AP、大小为60°的角,这个角的另一边与OP的交点即为圆心O,再用三角函数知识求解.解:.小结:应用圆的知识解决实际问题,应将实际问题变成数学问题,建立数学模型.例5已知相交于A、B两点,的半径是10,的半径是17,公共弦AB=16,求两圆的圆心距.解:分两种情况讨论:(1)若位于AB的两侧(如图23-8),设与AB交于C,连结,则垂直平分AB,∴.又∵AB=16∴AC=8.在中,.在中,.故.(2)若位于AB的同侧(如图23-9),设的延长线与AB交于C,连结.∵垂直平分AB,∴.又∵AB=16,∴AC=8.在中,.在中,.故.注意:在圆中若要解两不等平行弦的距离、两圆相切、两圆相离、一个点到圆上各点的最大距离和最小距离、相交两圆圆心距等问题时,要注意双解或多解问题.三、相关定理:1.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

初中圆复习教案

初中圆复习教案

初中圆复习教案一、教学目标:1. 知识与技能:使学生掌握圆的基本概念、性质和公式,能够运用圆的知识解决实际问题。

2. 过程与方法:通过复习,提高学生的逻辑思维能力、空间想象能力和解决实际问题的能力。

3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。

二、教学内容:1. 圆的基本概念:圆的定义、圆心、半径、直径等。

2. 圆的性质:圆的对称性、旋转性、弧和弦的性质等。

3. 圆的公式:圆的周长公式、圆的面积公式等。

4. 圆的实际应用:解决实际问题,如圆的周长和面积的计算等。

三、教学过程:1. 复习导入:通过提问方式复习圆的基本概念,引导学生回顾圆的定义、圆心、半径、直径等。

2. 知识梳理:引导学生自己总结圆的性质,如对称性、旋转性、弧和弦的性质等。

3. 公式回顾:复习圆的周长公式和面积公式,让学生能够熟练运用。

4. 实例讲解:通过具体的实例,讲解如何运用圆的知识解决实际问题,如计算圆的周长和面积等。

5. 练习巩固:布置一些练习题,让学生独立完成,检验复习效果。

6. 总结提升:对本节课的复习内容进行总结,强调重点知识点,激发学生对数学的兴趣。

四、教学策略:1. 采用问题驱动法,引导学生主动思考,复习圆的基本概念。

2. 利用总结法,让学生自己梳理圆的性质,培养学生的逻辑思维能力。

3. 通过实例讲解,让学生了解圆的知识在实际中的应用,提高学生的解决实际问题的能力。

4. 布置练习题,让学生独立完成,巩固所学知识。

五、教学评价:1. 课堂参与度:观察学生在课堂上的发言和提问情况,评价学生的参与度。

2. 练习完成情况:检查学生练习题的完成情况,评价学生的掌握程度。

3. 课后反馈:收集学生的课后反馈,了解学生的学习效果。

六、教学资源:1. 教材:人教版初中数学教材。

2. 课件:圆的复习课件。

3. 练习题:相关圆的练习题。

4. 教学工具:黑板、粉笔、投影仪等。

七、教学时间:1课时八、教学反思:在本节课的复习中,要注重学生的参与和反馈,及时调整教学方法和节奏,确保学生能够掌握圆的基本概念、性质和公式。

初中数学圆专题复习教案

初中数学圆专题复习教案

圆专题复习一、教学目标1、熟练掌握圆的有关性质2、掌握直线与圆、圆与圆的位置关系的判定3、熟练掌握圆的有关计算4、能正确解答与圆有关的证明题二、考点框架1、圆及其有关概念,弧、弦、圆心角的关系,点与圆、直线与圆以及圆与圆的位置关系2、圆周角与圆心角的关系、直径所对圆周角的特征3、三角形的内心和外心,切线的概念4、切线长定理,?计算弧长及扇形的面积,计算圆锥的侧面积和全面积三、重点及难点1、圆的有关性质和判定定理2、与圆有关的证明题知识点框架圆的基本性质圆的有关概念圆的有关性质三角形的内心和外心直线与圆、圆与圆的位置关系直线与圆的位置关系切线的定义和性质三角形与圆的特殊位置关系圆与圆的位置关系圆的有关计算圆周长公式n°的圆心角所对的弧长公式圆心角为n°的扇形面积公式圆的综合概念的运用位置关系及定理的运用计算公式的运用你的疑问知识点归纳一、圆的基本性质1、圆的有关概念(1)圆(2)圆心角(3)圆周角(4)弧(5)弦2、圆的有关性质(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.(2)垂直于弦的直径平分这条弦,并且平分弦所对的弧.????推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.???(3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90度的圆周角所对的弦是直径3.三角形的内心和外心:?(1)确定圆的条件:不在同一直线上的三个点确定一个圆.????(2)三角形的外心:三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理(3)三角形的内心:在三角形中,三个角的角平分线的交点是这个三角形内切圆的圆心4.?圆心角的度数等于它所对弧的度数.圆周角的度数等于它所对弧的度数一半.????同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半.二、直线与圆、圆与圆的位置关系1.?直线与圆的位置关系(1)相离(2)相切(3)相交2. 切线的定义和性质:若直线只与圆交与一点,则这条直线被称为圆的切线. 切线与圆的半径所在直线垂直.从圆外一点引同一个圆的两条切线,切点与圆外一点之间的的距离相等。

圆复习课教案初中数学

圆复习课教案初中数学

圆复习课教案初中数学教学目标:1. 复习并巩固圆的基本概念、性质和公式;2. 提高学生解决与圆相关的实际问题的能力;3. 培养学生的逻辑思维能力和团队合作精神。

教学内容:1. 圆的基本概念:圆的定义、圆心、半径;2. 圆的性质:圆的对称性、圆的周长和面积公式;3. 与圆相关的实际问题:圆的周长和面积的计算、圆的直径和半径的关系。

教学过程:一、导入(5分钟)1. 复习圆的定义:一个平面上所有点到一个固定点的距离都相等的点的集合;2. 引导学生回顾圆的基本性质,如对称性、周长和面积公式等。

二、自主学习(15分钟)1. 学生自主复习圆的性质,总结圆的周长和面积公式;2. 学生通过练习题巩固圆的性质和公式的应用。

三、合作探究(15分钟)1. 学生分组讨论与圆相关的实际问题,如圆的周长和面积的计算、圆的直径和半径的关系;2. 各小组选取一道实际问题,进行展示和讲解,其他小组成员进行评价和补充。

四、巩固练习(15分钟)1. 学生独立完成练习题,巩固圆的性质和公式的应用;2. 教师选取部分学生的练习题进行讲解和分析,指出错误和不足之处。

五、总结和反思(5分钟)1. 学生总结本节课的收获和不足,制定下一步的学习计划;2. 教师对学生的表现进行评价,鼓励学生继续努力。

教学评价:1. 学生课堂参与度:观察学生在课堂上的发言和练习情况,了解学生的学习状态;2. 学生练习题完成情况:检查学生的练习题,评估学生对圆的性质和公式的掌握程度;3. 学生合作探究能力:评价学生在小组合作中的表现,如沟通、协作、解决问题等能力。

教学资源:1. 圆的性质和公式PPT;2. 与圆相关的实际问题练习题。

初三数学复习教案圆的性质与判定

初三数学复习教案圆的性质与判定

初三数学复习教案圆的性质与判定初三数学复习教案圆的性质与判定一、导言数学中的几何部分涉及到很多基本概念和性质,其中圆是一个重要的概念。

本教案将从圆的性质与判定入手,为初三学生进行数学复习提供指导。

二、圆的定义圆是平面上的一个几何图形,它的每一点到一个固定点的距离都相等。

这个固定点叫做圆心,圆心到圆上任意一点的距离称为半径。

三、圆的性质1. 圆周上的点到圆心的距离相等;2. 圆的直径是通过圆心的两点之间的线段,直径的长度是半径的两倍;3. 圆的任意弦都可以看作是一个直径所对应的角;4. 圆的内切正多边形的每条边都刚好与圆相切;5. 圆与直线的相交情况有三种:相离、相切、相交;6. 位于圆内的点到圆心的距离小于半径;7. 位于圆外的点到圆心的距离大于半径;8. 圆上的所有点到圆心的距离都等于半径。

四、判定圆的性质1. 判定一个图形是否为圆:如果一个图形的每一个点到固定点的距离都相等,那么这个图形就是圆。

2. 判定两个圆是否相交:如果两个圆的圆心距离小于两个圆的半径之和,那么这两个圆就相交。

3. 判定两个圆是否相切:如果两个圆的圆心距离等于两个圆的半径之和,那么这两个圆就相切。

4. 判定一个点是否在圆上:如果一个点到圆心的距离等于圆的半径,那么这个点就在圆上。

5. 判定一个点是否在圆内:如果一个点到圆心的距离小于圆的半径,那么这个点就在圆内。

6. 判定一个点是否在圆外:如果一个点到圆心的距离大于圆的半径,那么这个点就在圆外。

五、实例演练1. 已知圆A的半径为5cm,圆B的半径为3cm,求它们的圆心距离。

解:两个圆的圆心距离可以通过勾股定理求得,即圆心距离的平方等于两个圆心连线的长度减去两个圆的半径之和的平方。

代入数据进行计算,得到圆心距离为4cm。

2. 已知点P(-2, 3)距圆O(0, 0)的距离为5cm,判断点P和圆O的位置关系。

解:计算点P到圆心O的距离,即点P与圆心O的连线的长度。

通过勾股定理求得距离为√((-2-0)^2+(3-0)^2)=√(4+9)=√13约等于3.61cm。

新人教版九年级数学上册第24章《圆》复习教案

新人教版九年级数学上册第24章《圆》复习教案

回顾与思考(2)教学目标(一)教学知识点1.了解点与圆,直线与圆以及圆和圆的位置关系.2.了解切线的概念,切线的性质及判定.3.会过圆上一点画圆的切线.(二)能力训练要求1.通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.2.通过探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式,发展学生的探索能力.3.通过画圆的切线,训练学生的作图能力.4.通过全章内容的归纳总结,训练学生各方面的能力.(三)情感与价值观要求1.通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点.教学重点1.探索并了解点与圆、直线与圆、圆与圆的位置关系.2.探索切线的性质;能判断一条直线是否为圆的切线;会过圆上一点画圆的切线.教学难点探索各种位置关系及切线的性质.教学方法学生自己交流总结法.教具准备投影片五张:第一张:(记作A)第二张:(记作B)第三张:(记作C)第四张:(记作D)第五张:(记作E)教学过程Ⅰ.回顾本章内容[师]上节课我们对本章的所有知识进行了回顾,并讨论了这些知识间的关系,绘制了本章知识结构图,还对一部分内容进行了回顾,本节课继续进行有关知识的巩固.Ⅱ.具体内容巩固一、确定圆的条件[师]作圆的问题实质上就是圆心和半径的问题,确定了圆心和半径,圆就随之确定.我们在探索这一问题时,与作直线类比,研究了经过一个点、两个点、三个点可以作几个圆,圆心的分布和半径的大小有什么特点.下面请大家自己总结.[生]经过一个点可以作无数个圆.因为以这个点以外的任意一点为圆心,以这两点所连的线段为半径就可以作一个圆.由于圆心是任意的,因此这样的圆有无数个.经过两点也可以作无数个圆.设这两点为A、B,经过A、B两点的圆,其圆心到A、B两点的距离一定相等,所以圆心应在线段AB的垂直平分线上,在AB的垂直平分线上任意取一点为圆心,这一点到A或B 的距离为半径都可以作一个经过A、B两点的圆.因此这样的圆也有无数个.经过在同一直线上的三点不能作圆.经过不在同一直线上的三点只能作一个圆.要作一个圆经过A、B、C三点,就要确定一个点作为圆心,使它到三点A、B、C的距离相等,到A、B两点距离相等的点在线段AB 的垂直平分线上,到B、C两点距离相等的点应在线段B、C的垂直平分线上,那么同时满足到A、B、C三点距离相等的点应既在AB的垂直平分线上,又在BC的垂直平分线上,既两条直线的交点,因为交点只有一个,即确定了圆心.这个交点到A点的距离为半径,所以这样的圆只能作出一个.[师]经过不在同一条直线上的四个点A、B、C、D能确定一个圆吗?[生]不一定,过不在同一条直线上的三点,我们可以确定一个圆,如果另外一个点到圆心的距离等于半径,则说明四个点在同一个圆上,如果另外一个点到圆心的距离不等于半径,说明四个点不在同一个圆上.例题讲解(投影片A)矩形的四个顶点在以对角线的交点为圆心的同一个圆上吗?为什么?[师]请大家互相交流.[生]解:如图,矩形ABCD的对角线AC和BD相交于点O.∵四边形ABCD为矩形,∴OA=OC=OB=OD.∴A、B、C、D四点到定点O的距离都等于矩形对角线的一半.∴A、B、C、D四点在以O为圆心,OA为半径的圆上.二、三种位置关系[师]我们在本章学习了三种位置关系,即点和圆的位置关系;直线和圆的位置关系;圆和圆的位置关系.下面我们逐一来回顾.1.点和圆的位置关系[生]点和圆的位置关系有三种,即点在圆外;点在圆上;点在圆内.判断一个点是在圆的什么部位,就是看这一点与圆心的距离和半径的大小关系,如果这个距离大于半径,说明这个点在圆外;如果这个距离等于半径,说明这个点在圆上;如果这个距离小于半径,说明这个点在圆内.[师]总结得不错,下面看具体的例子.(投影片B)1.⊙O的半径r=5cm,圆心O到直线l的距离d=OD=3 m.在直线l上有P、Q、R 三点,且有PD=4cm,QD>4cm,RD<4cm,P、Q、R三点对于⊙O的位置各是怎样的?2.菱形各边的中点在同一个圆上吗?分析:要判断某些点是否在圆上,只要看这些点到圆心的距离是否等于半径.[生]1.解:如图(1),在Rt△OPD中,∵OD =3,PD =4,∴OP =222234OD PD +-+=5=r .所以点P 在圆上.同理可知OR =22OD DR +<5,OQ =22OD DQ +>5.所以点R 在圆内,点Q 在圆外.2.如图(2),菱形ABCD 中,对角线AC 和BD 相交于点O ,E 、F 、G 、H 分别是各边的中点.因为菱形的对角线互相垂直,所以△AOB 、△BOC 、△COD 、△DOA 都是直角三角形,又由于E 、F 、G 、H 分别是各直角三角形斜边上的中点,所以OE 、OF 、OG 、OH 分别是各直角三角形斜边上的中线,因此有OE =12AB ,OF =12BC ,OG =12CD ,OH =12AD ,而AB =BC =CD =DA .所以OE =OF =OG =OH .即各中点E 、F 、G 、H 到对角线的交点O 的距离相等,所以菱形各边的中点在同一个圆上.2.直线和圆的位置关系[生]直线和圆的位置关系也有三种,即相离、相切、相交,当直线和圆有两个公共点时,此时直线与圆相交;当直线和圆有且只有一个公共点时,此时直线和圆相切;当直线和圆没有公共点时,此时直线和圆相离.[师]总结得不错,判断一条直线和圆的位置关系有哪些方法呢?[生]有两种方法,一种就是从公共点的个数来判断,上面已知讨论过了,另一种是比较圆心到直线的距离d 与半径的大小.当d <r 时,直线和圆相交;当d =r 时,直线和圆相切;当d >r 时,直线和圆相离.[师]很好,下面我们做一个练习.(投影片C)如图,点A的坐标是(-4,3),以点A为圆心,4为半径作圆,则⊙A与x轴、y轴、原点有怎样的位置关系?分析:因为x轴、y轴是直线,所以要判断⊙A与x轴、y轴的位置关系,即是判断直线与圆的位置关系,根据条件需用圆心A到直线的距离d与半径r比较.O是点,⊙A与原点即是求点和圆的位置关系,通过求OA与r作比较即可.[生]解:∵A点的坐标是(-4,3),∴A点到x轴、y轴的距离分别是3和4.又因为⊙A的半径为4,∴A点到x轴的距离小于半径,到y轴的距离等于半径.∴⊙A与x轴、y轴的位置关系分别为相交、相切.由勾股定理可求出OA的距离等于5,因为OA>4,所以点O在圆外.[师]上面我们讨论了直线和圆的三种位置关系,下面我们要对相切这种位置关系进行深层次的研究,即切线的性质和判定.[生]切线的性质是:圆的切线垂直于过切点的直径.切线的判定是:经过直径的一端,并且垂直于这条直径的直线是圆的切线.[师]下面我们看它们的应用.(投影片D)1.如图(1),在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一点,以BD为直径的⊙O切AC于点E,求AD的长.2.如图(2),AB是⊙O的直径,C是⊙O上的一点,∠CAE=∠B,你认为AE与⊙O相切吗?为什么?分析:1.由⊙O与AC相切可知OE⊥AC,又∠C=90°,所以△AOE∽△ABC,则对应边成比例,OA OEBA BC=.求出半径和OA后,由OA-OD=AD,就求出了AD.2.根据切线的判定,要求AE与⊙O相切,需求∠BAE=90°,由AB为⊙O的直径得∠ACB=90°,则∠BAC+∠B=90°,所以∠CAE+∠BAC=90°,即∠BAE=90°.[师]请大家按照我们刚才的分析写出步骤.[生]1.解:∵∠C=90°,AC=12,BC=9,∴由勾股定理得AB=15.∵⊙O切AC于点E,连接OE,∴OE⊥AC.∴OE∥BC.∴△OAE∽△BAC.∴OA OEAB BC=,即AB OE OEAB BC-=.∴15159OE OE-=.∴OE=458∴AD=AB-2OD=AB-2OE=15-458×2=154.2.解:∵AB是⊙O的直径,∴∠ACB=90°.∴∠CAB+∠B=90°.∴∠CAE=∠B,∴∠CAB+∠CAE=90°,即BA⊥AE.∵BA为⊙O的直径,∴AE与⊙O相切.3.圆和圆的位置关系[师]还是请大家先总结内容,再进行练习.[生]圆和圆的位置关系有三大类,即相离、相切、相交,其中相离包括外离和内含,相切包括外切和内切,因此也可以说圆和圆的位置关系有五种,即外离、外切、相交、内切、内含.[师]那么应根据什么条件来判断它们之间的关系呢?[生]判断圆和圆的位置关系;是根据公共点的个数以及一个圆上的点在另一个圆的内部还是外部来判断.当两个圆没有公共点时有两种情况,即外离和内含两种位置关系.当每个圆上的点都在另一个圆的外部时是外离;当其中一个圆上的点都在另一个圆的内部时是内含.当两个圆有唯一公共点时,有外切和内切两种位置关系,当除公共点外,每个圆上的点都在另一个圆的外部时是外切;当除公共点外,其中一个圆上的点都在另一个圆的内部时是内切.两个圆有两个公共点时,一个圆上的点有的在另一个圆的内部,有的在另一个圆的外部时是相交.两圆相交只要有两个公共点就可判定它们的位置关系是相交.[师]只有这一种判定方法吗?[生]还有用圆心距d和两圆的半径R、r之间的关系能判断外切和内切两种位置关系,当d=R+r时是外切,当d=R-r(R>r)时是内切.[师]下面我们还可以用d与R,r的关系来讨论出另外三种两圆的位置关系,大家分别画出外离、内含和相交这三种位置关系.探索它们之间的关系,它们的关系可能是存在相等关系,也有可能是存在不等关系.(让学生探索)大家得出结论了吗?是不是这样的.当d>R+r时,两圆外离;当R-r<d<R+r时,两圆相交;当d<R-r(R>r)时,两圆内含.(投影片E)设⊙O1和⊙O2的半径分别为R、r,圆心距为d,在下列情况下,⊙O1和⊙O2的位置关系怎样?①R=6cm,r=3cm,d=4cm;②R=6cm,r=3cm,d=0;③R=3cm,r=7cm,d=4cm;④R=1cm,r=6cm,d=7cm;⑤R=6cm,r=3cm,d=10cm;⑥R=5cm,r=3cm,d=3cm;⑦R=3cm,r=5cm,d=1cm.[生](1)∵R-r=3cm<4cm<R+r=9cm,∴⊙O1与⊙O2的位置关系是相交;(2)∵d<R-r,∴两圆的位置关系是内含;(3)∵d=r-R,∴两圆的位置关系是内切;(4)∵d=R+r,∴两圆的位置关系是外切;(5)∵d>R+r,∴两圆的位置关系是外离;(6)∵R-r<d<R+r,∴两圆的位置关系是相交;(7)∵d<r-R,∴两圆的位置关系是内含.三、有关外接圆和内切圆的定义及画法[生]过不在同一条直线上的三个点可以确定一个圆,这个圆叫做三角形的外接圆,外接圆的圆心叫三角形的外心,它是三角形三边垂直平分线的交点.因为画圆的关键是确定圆心和半径,所以作三角形的外接圆时,只要找三边垂直平分线的交点,这就是圆心,以这点到三角形任一顶点间的距离为半径就可作出三角形的外接圆.和三角形三边都相切的圆;叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫三角形的内心.因此,作三角形的内切圆时,只要作两条角平分线就找到了圆心,以这点与任一边之间的距离为半径,就可作出三角形的内切圆.Ⅲ.课堂练习1.画三个半径分别为2cm、2.5cm、4cm的圆,使它他们两两外切.2.两个同心圆中,大圆的弦AB和AC分别和小圆相切于点D和E,则DE与BC的位置关系怎样?DE与BC之间有怎样的数量关系?(DE 12 BC)Ⅳ.课时小结本节课巩固了如何确定圆;点和圆、直线和圆、圆和圆之间的位置关系;如何作三角形的外接圆和内切圆.Ⅴ.课后作业复习题 B组Ⅵ.活动与探究如图,⊙O是Rt△ABC的内切圆,∠ACB=90°,AB=13,AC=12,求图中阴影部分的面积.分析:根据图形,阴影部分的面积等于三角形ABC的面积与⊙O的面积差,由勾股定理可求出直角边BC的长度,则能求出S△ABC,要求圆的面积,则需求⊙O的半径OD或OE、OF.连接OA、OB、OC,则把△ABC分成三个三角形,即△OAB,△OBC、△OCA,则有S△ABC=S△OAB+S △OBC+S△OCA,从中可求出半径.解:如图连接OA、OB、OC,则△ABC分成三个三角形,△OAB、△OBC、△OCA,OE、OF、OD分别是三角形各边上过切点的半径.∴S△OAB=12AB·OF,S△OBC=12BC·OD,S△OCA=12CA·OE.∵S△ABC=S△OAB+S△OBC+S△OCA,∴12AC·BC=12AB·OF+12BC·OD+12CA·OE.∵OD=OE=OF,∴AC·BC=(AB+BC+CA)·OD.在Rt△ABC中,AB=13,AC=12,由勾股定理得BC=5.∴12×5=(12+13+5)·OD.∴OD=2.∴S阴影=S△ABC-S⊙O=12×12×5-π·22=30-4π.板书设计回顾与思考一、确定圆的条件二、三种位置关系;1.点和圆的位置关系;2.直线和圆的位置关系.3.圆和圆的位置关系三、有关外接圆和内切圆的定义及画法四、课堂练习五、课时小结六、课后作业。

初三《圆》单元复习教案

初三《圆》单元复习教案

初三《圆》单元复习教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN《圆》章节知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内 ⇒ d r < ⇒ 点C 在圆内;2、点在圆上 ⇒ d r = ⇒ 点B 在圆上;3、点在圆外 ⇒ d r > ⇒ 点A 在圆外;练习题:一个圆的直径为cm 8,到圆心的距离为cm 5,则该点在圆三、直线与圆的位置关系1、直线与圆相离 ⇒ d r > ⇒ 无交点;2、直线与圆相切 ⇒ d r = ⇒ 有一个交点;A3、直线与圆相交⇒d r<⇒有两个交点;练习题:、一个点到圆的最短距离为cm3,到圆的最长距离为cm9,则这个圆的半径为四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

图4图5推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

人教版九年级数学上册第二十四章 :圆 复习教案设计

人教版九年级数学上册第二十四章 :圆  复习教案设计

(1)两圆外离⇔d>R+r ;(2)两圆外切⇔d>R+r(3)两圆相交⇔R-r<d<R+r(4)两圆内切⇔d=R-r ;(5)两圆内含⇔d<R-r 。

四、典型例题例1.如图,⊙1O 与⊙2O 内切,它们的半径分别为3和1,过1O 作⊙2O 的切线,切点为A,则1O A 的长为( )A .2B .4C .3D .5思路分析:连结12O O ,2O A ,得到直角三角形12O O A ,再利用勾股定理求1O A 的长。

解:∵1O A 与⊙2O 相切, ∴2O A ⊥1O A ,且2O A =1。

∵⊙1O 与⊙2O 内切, ∴12O O =3-1=2在12Rt O O A ∆中,22221122213O A O O O A =-=-= ∴13O A =故选C 。

小结:连结过切点的半径2O A 和两圆的圆心距12O O ,构造直角三角形达到解题目的,在圆中,有关半径、弦长、弦心距之间的计算,常用的处理方法是利用半径、半弦长、弦心距组成直角三角形,再结合勾股定理求解。

例2.如图,已知等腰ABC ∆,以腰AB 为直径作⊙O ,交底边BC 于P,PE ⊥AC,垂足为E 。

求证:PE 是⊙O 的切线。

思路分析:要正PE 是⊙O 的切线,已知PE 与⊙O 有交点P ,所以只要连结OP 垂直于PE 即可。

证明:连结OP 。

∵AB=AC,∴∠B=∠C∵OB=OP,∴∠B=∠OPB∵∠OPB=∠C,∴OP ∥AC∵PE ⊥AC,∴OP ⊥PE∴PE 是⊙O 的切线。

小结:在证明直线和圆相切时,若已知直线经过圆上一点,常连结这点和圆心的半径,再证所作半径与这条直线垂直。

例3.已知点P 到⊙O 的最短距离是3cm ,最长距离是9 cm ,求⊙O 半径。

思路分析:由题意知P 点在不在圆上,那么应有两种情况:P 点在圆内或P 点在圆外。

解:(1)当点P 在圆内时,如图35-3,3PA cm =,9PB cm =,则12AB PB PA cm =+= ∴⊙O 的半径是6cm 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七篇圆专题二十七圆的有关概念与性质一、考点扫描二、考点训练1.用直角钢尺检查某一工件是否恰好是半圆环形,根据图1-3-54所表示的情形,四个工件哪一个肯定是半圆环形()2.如图2,点A,B,C在⊙O上,AO∥BC,∠OAC=20°,则∠AOB的度数是()A.10°B.20°C.40°D.70°3.如图3,已知⊙O的半径为5mm,弦AB=8mm,则圆心O到AB的距离是()A.1mm B.2mmm C.3mm D.4mm4.(2004、北京,4分)如图1-3-8,PA、PB是⊙O的切线,切点分别为A 、B,点C在⊙O上.如果∠P=50○,那么∠ACB等于()A.40○B.50○C.65○D.130○5..(20XX年长春市)如图5,BD为⊙O的直径,∠A=30°,则∠CBD的度数为()A.30° B.60° C.80° D.120°6.(20XX年绵阳市)如图6,AB是⊙O的直径,BC,CD,DA是⊙O的弦,且BC=CD=DA,则∠BCD等于() A.100° B.110° C.120° D.130°7.如图l-3-12,四边形ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为()A.50°B.80°C.100°D.130°8.如图1-3-13是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是()A.180°B.15 0°C.135°D.120°9.如图1-3-14所示,直线AB交圆于点A,B,点M 的圆上,点P在圆外,且点M,P在AB的同侧,∠AMB=50°.设∠APB=x°,当点P移动时,则x 的变化范围是。

10.(20XX年太原市)A,B,C是平面内的三点,AB=3,BC=3,AC=6,下列说法正确的是()A.可以画一个圆,使A,B,C都在圆上;B.可以画一个圆,使A,B在圆上,C在圆外;C.可以画一个圆,使A,C在圆上,B在圆外;D.可以画一个圆,使B,C在圆上,A在圆内三、例题剖析1、如图8,△ABC为⊙O的内接三角形,O为圆心,OD⊥AB,垂足为D,OE⊥AC,•垂足为E,•若DE=3,则BC=________.2、如图9,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=8cm,AG=1cm,DE=2cm,则EF=_______cm.3、(20XX年金华市)如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=6,BC=3.(1)求sin∠BAC的值;(2)如果OE⊥AC,垂足为E,求OE的长;(3)求tan∠ADC的值.(结果保留根号)4、(20XX年上海市)如图,已知⊙O为△ABC的外接圆,•圆心O•在这个三角形的高CD上,E,F分别是边AC和BC上的中点,试判断四边形CEDF的形状,并加以说明.四、综合应用1、(20XX年青岛市)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,•求这个圆形截面的半径.专题二十八与圆有关的位置一、考点扫描点与圆有关的位置关系与圆有关的位置关系直线与圆有关的位置关系圆与圆有关的位置关系二、考点训练1.如图1,⊙O的半径为4cm,直线L•⊥OA,•垂足为O,•则直线L•沿射线OA•方向平移_____cm时与⊙O相切.2.两圆有多种位置关系,图2中不存在的位置关系是______.3.已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心3cm为半径作圆,则⊙O与BC的位置关系是________.4.(20XX年大连市)如图3,AB是⊙O的切线,OB=2OA,则∠B的度数是_______.5.(20XX年贵阳市)如图4,B是线段AC上的一点,且AB:AC=2:5,分别以AB、AC•为直径画圆,则小圆的面积与大圆的面积之比为_______.6.(20XX年大连市)已知⊙O1的半径为1cm,⊙O2的半径为4cm,O1O2长为3cm,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.相交D.内切7.(20XX年嘉兴市)生活处处皆学问,如图5,眼镜镜片所在的两圆的位置关系是(• )A.外离B.外切C.内含D.内切8、已知∠AOB=30°,C是射线OB上的一点,且OC=4,若以C为圆心,r为半径的圆与射线OA有两个不同的交点,则r的取值范围是________.9、如图6,从一块直径为a+b的圆形纸板上挖去直径分别为a和b的两个圆,则剩下的纸板面积是______.10、如图7,已知⊙O的直径AB与弦AC的夹角为35°,过点C的切线PC与AB的延长线交于点P,那么∠P 等于()A.15°B.20°C.25°D.30°11、(20XX年舟山市)我们知道,“两点之间线段最短”,“直线外一点与直线上各点连接的所有线段中,垂线段最短”.在此基础上,人们定义了点与点的距离,点到直线的距离.类似地,如图8所示,若P是⊙O外一点,直线PO交⊙O于A、•B•两点,PC切⊙O于点C,则点P到⊙O的距离是()A.线段PO的长度;B.线段PA的长度;C.线段PB的长度;D.线段PC的长度12、(2004、潍坊)Rt△ABC中,∠C=90°,∠AC=3cm,BC=4cm,给出下列三个结论:①以点C为圆心1.3 cm长为半径的圆与AB相离;②以点C为圆心,2.4cm长为半径的圆与AB相切;③以点C为圆心,2.5cm长为半径的圆与AB相交.上述结论中正确的个数是()A.0个B.l个C.2个D.3个三、例题剖析1、(20XX年宿迁市)如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.2、如图1-3-15,⊙O1和⊙O2外切于点A,直线BD切⊙O1于点B,交⊙O2于点C、D,直线DA交⊙O1于点E.求证:(1)∠BAC=∠ABC+∠D(2)AB2=AC·AE.四、综合应用1、(2005、绍兴,3分)如图1-3-32,两圆轮叠靠在墙边,已知两轮半径分别为4和1,则它们与墙的切点A、B间的距离为_________.2、已知在ΔABC中,∠ACB=90º,AC=3cm, BC=4cm,以点C为圆心,r为半径画⊙C,(1)当⊙C与线段AB只有一个交点时,求半径r的范围;(2)当⊙C与线段AB有两个交点时,求半径r的范围;专题二十九圆的切线的性质和判定一、考点扫描现实情境⎧⎪⎧⎪⎨⎨⎩⎪⎪⎩圆的切线的性质--三角形内切圆应用:d=r圆的切线的判定判定定理圆的切线性质与判定综合应用二、考点训练1.已知⊙O的半径为8cm,如一条直线和圆心O的距离为8cm,那么这条直线和这个圆的位置关系是() A.相离 B.相切 C.相交 D.相交或相离2.如图1,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O 的半径为()A.45cm B.25cm C.213cm D.13m3.如图2,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,•2cm•为半径作⊙M,•当OM=______cm时,⊙M与OA相切.4.已知:如图3,AB为⊙O直径,BC交⊙O于点D,DE⊥AC于E,要使DE是⊙O的切线,•那么图中的角应满足的条件为_______(只需填一个条件).5.(20XX年四川省)如图4,AB为半圆O的直径,CB是半圆O的切线,B是切点,AC•交半圆O于点D,已知CD=1,AD=3,那么cos∠CAB=________.6.(20XX年武汉市)如图5,BC为半⊙O的直径,点D是半圆上一点,过点D作⊙O•的切线AD,BA⊥DA于A,BA交半圆于E,已知BC=10,AD=4,那么直线CE与以点O为圆心,2.5为半径的圆的位置关系是________.7.(20XX年宜昌市)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°8.(20XX年山西省)如图,⊙O的半径为1,圆心O 在正三角形的边AB•上沿图示方向移动.当⊙O移动到与AC边相切时,OA三、例题剖析1、(20XX年宁夏自治区)已知:如图,AB是⊙O的直径,P是⊙O外一点,PA⊥AB,•弦BC∥OP,请判断PC是否为⊙O的切线,说明理由.2、如图,⊙O是△ABC的内切圆,D、E、F分别是切点,判定△DEF的形状(按角分类),并说明理由.3、如图,⊙O的直径AB=6cm,D为⊙O上一点,∠BAD=30°,过点D的切线交AB•的延长线于点C.求:(1)∠ADC的度数;(2)AC的长.4、如图,直线AB切⊙O于点A,点C、D在⊙O上.试探求:(1)当AD为⊙O的直径时,如图①,∠D与∠CAB 的大小关系如何?•并说明理由.(2)当AD不为⊙O的直径时,如图②,∠D与∠CAB 的大小关系同②一样吗?•为什么?5、(20XX年包头市)在图1和图2中,已知OA=OB,AB=24,⊙O的直径为10.(1)如图1,AB与⊙O相切于点C,试求OA的值;(2)如图2,若AB与⊙O相交于D、E两点,且D、E均为AB的三等分点,试求tanA的值.四、综合应用1、(20XX年绵阳市)已知在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD 为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O的切线;(3)若AC=3,tanB=43,求⊙O的半径长.专题三十与圆有关的计算一、考点扫描二、考点训练1.已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是_______cm,扇形的面积是________cm2.2.如图1,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是______cm2.3.如图2,圆锥的底面半径为6cm,高为8cm,那么这个圆锥的侧面积是_______cm2.4.如图3,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的半径为R,扇形的圆心角等于120°,则r与R 之间的关系是( •)A.R=2r B.R=r C.R=3r D.R=4r5.如图4,圆锥的底面半径为3cm,母线长为5cm,则它的侧面积是()A.60πcm2 B.45πcm2 C.30πcm2 D.15πcm2 6.(20XX年南通市)已知圆锥侧面展开图的圆心角为90°,•则该圆锥的底面半径与母线长的比为() A.1:2 B.2:1 C.1:4 D.4:1 7.(20XX年江阴市)将直径为64cm的圆形铁皮,做成的材料损耗),那么每个圆锥容器的高为()A .815cm B.817cm C.163cm D.16cm 8.(20XX年徐州市)如图5,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,•OA=3,OC=1,分别连结AC、BC,则圆中阴影部分的面积为()A.12πB.πC.2πD.4π9.如图6,PA切圆O于A,OP交圆O于B,且PB=1,PA=3,则阴影部分的面积S=______.10.如图7,在边长为4cm的正方形ABCD•中,•分别以各边为直径向正方形内依次作弧 AB弧BC弧CD弧DA,点E是四段弧的交点.一只蚂蚁由点A出发沿路径弧 AB弧BC弧CD弧DA顺序不断地爬行,当它行走了2006πcm•时,•停止爬行,•此时,•蚂蚁所处的位置是点_______.(填A,B,C,D,E之一)11.(20XX年长春市)如图9,将圆桶中的水倒入一个直径为40cm,高为55cm•的圆口容器中,圆桶放置的角度与水平线的夹角为45°,若使容器中的水面与圆桶相接触,•则容器中水的深度至少应为()A.10cm B.20cm C.30cm D.35cm 三、例题剖析14.(20XX年贵阳市)如图10,这是一个由圆柱体材料加工而成的零件,•它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB=12cm,高BC=8cm,求这个零件2、(20XX年南充市)如图,底面半径为1,母线长为4的圆锥,•一只小蚂蚁若从A点出发,绕侧面一周又回到A点,它爬行的最短路线长是()A.2 B.42C.43D.53、半径为1的圆的内接正三角形、正四边形、正六边形的边心距分别为多少?它们的长不能构成三角形吗?若能将构成什么形状的三角形?若不能说明理由.4、如图1-3-23,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B′C″的位置,设BC=1,AC= 3 ,则顶点A运动到A″的位置时,点A经过的路线与直线l所围成的面积是____________(计算结果不取近似值)四、综合应用1、(20XX年烟台市)如图,O是圆柱形木块底面的圆心,过底面的一条弦AD,•沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm,若弧AmD的长为底面周长的32,如图所示:(1)求⊙O的半径;(2)求这个圆柱形木块的表面积.(结果可保留根号)。

相关文档
最新文档