2015年甘肃省平凉市、 中考数学试题及解析解析

合集下载

2015-2016学年平凉市庄浪县九年级上期中数学试卷及答案解析

2015-2016学年平凉市庄浪县九年级上期中数学试卷及答案解析

2015-2016学年甘肃省平凉市庄浪县九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.=2 C.x2+2x=x2﹣1 D.3(x+1)2=2(x+1)2.下列函数中,不是二次函数的是()A.y=1﹣x2B.y=2(x﹣1)2+4 C.y=(x﹣1)(x+4)D.y=(x﹣2)2﹣x23.方程(x+1)(x﹣3)=5的解是()A.x1=1,x2=﹣3 B.x1=4,x2=﹣2 C.x1=﹣1,x2=3 D.x1=﹣4,x2=24.把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式时,应为()A.y=﹣(x﹣2)2+2 B.y=﹣(x﹣2)2+4 C.y=﹣(x+2)2+4 D.y=﹣(x﹣)2+3 5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣6.对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点 B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)7.以3和﹣1为两根的一元二次方程是()A.x2+2x﹣3=0 B.x2+2x+3=0 C.x2﹣2x﹣3=0 D.x2﹣2x+3=08.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+110.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144二、填空题(共8小题,每小题4分,满分32分)11.方程2x2﹣1=的二次项系数是,一次项系数是,常数项是.12.若函数y=(m﹣3)是二次函数,则m=.13.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B (8,2)(如图所示),则能使y1>y2成立的x的取值范围是.14.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.15.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m=.16.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.17.已知方程x2﹣3x+1=0的两个根是x1,x2,则:x12+x22=.18.如图,在正方形ABCD中,E为BC上的点,F为CD边上的点,且AE=AF,AB=4,设EC=x,△AEF的面积为y,则y与x之间的函数关系式是.三、解答题(共9小题,满分88分)19.用适当的方法解一元二次方程:(1)x2+3x﹣4=0(2)3x(x﹣2)=2(2﹣x)(3)x2﹣2x﹣8=0(4)(x﹣2)(x﹣5)=﹣2.20.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?21.抛物线y=﹣2x2+8x﹣6.(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.22.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?23.某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克.若销售价每涨1元,则月销售量减少10千克.(1)要使月销售利润达到最大,销售单价应定为多少元?(2)要使月销售利润不低于8000元,请结合图象说明销售单价应如何定?24.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?25.阅读下列例题:解方程x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得x1=2,x2=﹣1(舍去).当x<0时,原方程化为x2+x﹣2=0,解得x1=1(舍去),x2=﹣2.∴x1=2,x2=﹣2是原方程的根.请参照例题解方程:x2﹣|x﹣1|﹣1=0.26.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.27.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.2015-2016学年甘肃省平凉市庄浪县九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0 B.=2 C.x2+2x=x2﹣1 D.3(x+1)2=2(x+1)【考点】一元二次方程的定义.【分析】根据一元二次方程的定义解答,一元二次方程必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、ax2+bx+c=0当a=0时,不是一元二次方程,故A错误;B、+=2不是整式方程,故B错误;C、x2+2x=x2﹣1是一元一次方程,故C错误;D、3(x+1)2=2(x+1)是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.下列函数中,不是二次函数的是()A.y=1﹣x2B.y=2(x﹣1)2+4 C.y=(x﹣1)(x+4)D.y=(x﹣2)2﹣x2【考点】二次函数的定义.【分析】利用二次函数的定义,整理成一般形式就可以解答.【解答】解:A、y=1﹣x2=﹣x2+1,是二次函数,正确;B、y=2(x﹣1)2+4=2x2﹣4x+6,是二次函数,正确;C、y=(x﹣1)(x+4)=x2+x﹣2,是二次函数,正确;D、y=(x﹣2)2﹣x2=﹣4x+4,是一次函数,错误.故选D.【点评】本题考查二次函数的定义.3.方程(x+1)(x﹣3)=5的解是()A.x1=1,x2=﹣3 B.x1=4,x2=﹣2 C.x1=﹣1,x2=3 D.x1=﹣4,x2=2【考点】解一元二次方程-公式法.【专题】计算题.【分析】首先把方程化为一般形式,利用公式法即可求解.【解答】解:(x+1)(x﹣3)=5,x2﹣2x﹣3﹣5=0,x2﹣2x﹣8=0,化为(x﹣4)(x+2)=0,∴x1=4,x2=﹣2.故选:B.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是公式法.4.把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式时,应为()A.y=﹣(x﹣2)2+2 B.y=﹣(x﹣2)2+4 C.y=﹣(x+2)2+4 D.y=﹣(x﹣)2+3【考点】二次函数的三种形式.【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=﹣x2﹣x+3=﹣(x2+4x+4)+1+3=﹣(x+2)2+4.故选C.【点评】本题考查了二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣【考点】二次函数图象与系数的关系.【专题】存在型.【分析】根据二次函数的图象与系数的关系对各选项进行逐一分析即可.【解答】解:A、∵抛物线的开口向上,∴a>0,故选项A错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.故选D.【点评】本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.6.对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点 B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)【考点】二次函数的性质;抛物线与x轴的交点.【专题】计算题.【分析】根据△的符号,可判断图象与x轴的交点情况,根据二次项系数可判断开口方向,令函数式中x=0,可求图象与y轴的交点坐标,利用配方法可求图象的顶点坐标.【解答】解:A、∵△=22﹣4×(﹣1)×(﹣3)=﹣8<0,抛物线与x轴无交点,本选项错误;B、∵二次项系数﹣1<0,抛物线开口向下,本选项错误;C、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),本选项错误;D、∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),本选项正确.故选D.【点评】本题考查了抛物线的性质与解析式的关系.关键是明确抛物线解析式各项系数与性质的联系.7.以3和﹣1为两根的一元二次方程是()A.x2+2x﹣3=0 B.x2+2x+3=0 C.x2﹣2x﹣3=0 D.x2﹣2x+3=0【考点】根与系数的关系;根的判别式.【分析】由题意,可令方程为(x﹣3)(x+1)=0,去括号后,直接选择C;或把3和﹣1代入各个选项中,看是否为0,用排除法选择C;或利用两根之和等于,和两根之积等于来依次判断.【解答】解:以3和﹣1为两根的一元二次方程的两根的和是2,两根的积是﹣3,据此判断.A、两个根的和是﹣2,故错误;B、△=22﹣4×3=﹣8<0,方程无解,故错误;C、正确;D、两根的积是3,故错误.故选C.【点评】本题解答方法较多,可灵活选择解题的方法.8.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a >0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点评】本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.9.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+1【考点】二次函数图象与几何变换.【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.【解答】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.【点评】本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.10.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=144【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.【解答】解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选:D.【点评】考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.二、填空题(共8小题,每小题4分,满分32分)11.方程2x2﹣1=的二次项系数是2,一次项系数是﹣,常数项是﹣1.【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:方程2x2﹣1=化成一般形式是2x2﹣﹣1=0,二次项系数是2,一次项系数是﹣,常数项是﹣1.【点评】要确定一次项系数和常数项,首先要把法方程化成一般形式.注意在说明二次项系数,一次项系数,常数项时,一定要带上前面的符号.12.若函数y=(m﹣3)是二次函数,则m=﹣5.【考点】二次函数的定义.【分析】根据二次函数的定义解答.【解答】解:∵y=(m﹣3)是二次函数,∴,解得m=﹣5.故答案为﹣5.【点评】本题考查了二次函数的定义,要知道,形如x+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.13.已知二次函数y1=ax2+bx+c(a≠0)与一次函数y2=kx+b(k≠0)的图象相交于点A(﹣2,4),B (8,2)(如图所示),则能使y1>y2成立的x的取值范围是x<﹣2或x>8.【考点】二次函数的图象;一次函数的图象.【分析】先观察图象确定抛物线y1=ax2+bx+c和一次函数y2=kx+b(k≠0)的交点的横坐标,即可求出y1>y2时,x的取值范围.【解答】解:由图形可以看出:抛物线y1=ax2+bx+c和一次函数y2=kx+b(k≠0)的交点横坐标分别为﹣2,8,当y1>y2时,x的取值范围正好在两交点之外,即x<﹣2或x>8.故答案为:x<﹣2或x>8.【点评】此类题可用数形结合的思想进行解答,这也是速解习题常用的方法.14.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为4.【考点】二次函数的性质.【分析】已知抛物线的对称轴,利用对称轴公式可求b的值.【解答】解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.【点评】主要考查了求抛物线的顶点坐标的方法:公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=.15.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m=﹣2.【考点】一元二次方程的解.【分析】一元二次方程的解就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.将x=0代入方程式即得.【解答】解:把x=0代入一元二次方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,即m=±2.又m﹣2≠0,m≠2,取m=﹣2.故答案为:m=﹣2.【点评】此题要注意一元二次方程的二次项系数不得为零.16.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为8.【考点】抛物线与x轴的交点.【专题】判别式法.【分析】由抛物线y=2x2+8x+m与x轴只有一个公共点可知,对应的一元二次方程2x2+8x+m=0,根的判别式△=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=82﹣4×2×m=0;∴m=8.故答案为:8.【点评】此题主要考查了二次函数根的判别式的和抛物线与x轴的交点个数的关系.17.已知方程x2﹣3x+1=0的两个根是x1,x2,则:x12+x22=7.【考点】根与系数的关系.【分析】根据x1+x2=﹣,x1x2=,求出x1+x2=3,x1x2=1,再根据x12+x22=(x1+x2)2﹣2x1x2即可求求出答案.【解答】解:根据题意x1+x2=3,x1x2=1,则x12+x22=(x1+x2)2﹣2x1x2=9﹣2=7,故答案为:7.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.18.如图,在正方形ABCD中,E为BC上的点,F为CD边上的点,且AE=AF,AB=4,设EC=x,△AEF的面积为y,则y与x之间的函数关系式是y=﹣x2+4x.【考点】正方形的性质;根据实际问题列二次函数关系式.【分析】根据正方形的性质可得AB=AD,再利用“HL”证明Rt△ABE和Rt△ADF全等,根据全等三角形对应边相等可得BE=DF,然后求出CE=CF,再根据△AEF的面积等于正方形的面积减去三个直角三角形的面积列式整理即可得解.【解答】解:在正方形ABCD中,AB=AD,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,∵CE=x,∴BE=DF=4﹣x,∴y=42﹣2××4×(4﹣x)﹣x2,=﹣x2+4x,即y=﹣x2+4x.故答案为:y=﹣x2+4x.【点评】本题考查了正方形的性质,全等三角形的判定与性质,三角形的面积,熟记性质并求出三角形全等是解题的关键.三、解答题(共9小题,满分88分)19.用适当的方法解一元二次方程:(1)x2+3x﹣4=0(2)3x(x﹣2)=2(2﹣x)(3)x2﹣2x﹣8=0(4)(x﹣2)(x﹣5)=﹣2.【考点】解一元二次方程-因式分解法.【分析】(1)(3利用因式分解求得方程的解;(2)移项,利用提取公式法因式分解求得方程的解即可;(4)化为一般形式,利用因式分解法求得方程的解即可.【解答】解:(1)x2+3x﹣4=0(x+4)(x﹣1)=0x+4=0,x﹣1=0解得:x1=﹣4,x2=1;(2)3x(x﹣2)=2(2﹣x)3x(x﹣2)﹣2(2﹣x)=0(3x+2)(x﹣2)=03x+2=0,x﹣2=0解得:x1=﹣,x2=2;(3)x2﹣2x﹣8=0(x﹣4)(x+2)=0x﹣4=0,x+2=0解得:x1=4,x2=﹣2;(4)(x﹣2)(x﹣5)=﹣2x2﹣7x+12=0(x﹣4)(x﹣3)=0x﹣4=0,x﹣3=0解得:x1=4,x2=3.【点评】此题考查解一元二次方程的方法,根据方程的特点,灵活选用适当的方法求得方程的解即可.20.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?【考点】二次函数的应用.【专题】应用题.【分析】(1)已知一边长为xcm,则另一边长为(20﹣2x).根据面积公式即可解答.(2)把函数解析式用配方法化简,得出y的最大值.【解答】解:(1)已知一边长为xcm,则另一边长为(10﹣x).则y=x(10﹣x)化简可得y=﹣x2+10x(2)y=10x﹣x2=﹣(x2﹣10x)=﹣(x﹣5)2+25,所以当x=5时,矩形的面积最大,最大为25cm2.【点评】本题考查的是二次函数的应用,难度一般,重点要注意配方法的运用.21.抛物线y=﹣2x2+8x﹣6.(1)用配方法求顶点坐标,对称轴;(2)x取何值时,y随x的增大而减小?(3)x取何值时,y=0;x取何值时,y>0;x取何值时,y<0.【考点】二次函数的三种形式;二次函数的性质.【专题】计算题;配方法.【分析】(1)根据配方法的步骤要求,将抛物线解析式的一般式转化为顶点式,可确定顶点坐标和对称轴;(2)由对称轴x=﹣2,抛物线开口向下,结合图象,可确定函数的增减性;(3)判断函数值的符号,可以令y=0,解一元二次方程求x,再根据抛物线的开口方向,确定函数值的符号与x的取值范围的对应关系.【解答】解:(1)∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2,∴顶点坐标为(2,2),对称轴为直线x=2;(2)∵a=﹣2<0,抛物线开口向下,对称轴为直线x=2,∴当x>2时,y随x的增大而减小;(3)令y=0,即﹣2x2+8x﹣6=0,解得x=1或3,抛物线开口向下,∴当x=1或x=3时,y=0;当1<x<3时,y>0;当x<1或x>3时,y<0.【点评】本题考查了抛物线的顶点坐标,与x轴的交点坐标的求法及其运用,必须熟练掌握.22.某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?【考点】二次函数的应用.【专题】压轴题.【分析】本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(﹣2,﹣4.4),B的坐标是(2,﹣4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=﹣1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是﹣1.2和1.2,因此将x=1.2代入函数式中可得y≈﹣1.6,因此大门顶部宽2.4m部分离地面的高度是4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.【解答】解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.【点评】本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m 部分离地面的高度是解题的关键.23.某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克.若销售价每涨1元,则月销售量减少10千克.(1)要使月销售利润达到最大,销售单价应定为多少元?(2)要使月销售利润不低于8000元,请结合图象说明销售单价应如何定?【考点】二次函数的应用.【分析】(1)设销售单价定为每千克x元,获得利润为w元,则可以根据成本,求出每千克的利润,以及按照销售价每涨1元,月销售量就减少10千克,可求出销量.从而得到总利润关系式;(2)先计算出y=8000时所对应的x的值,然后画出函数的大致图象,再根据图象回答即可.【解答】解:(1)设销售单价定为每千克x元,获得利润为w元,则:w=(x﹣40)[500﹣(x﹣50)×10],=(x﹣40)(1000﹣10x),=﹣10x2+1400x﹣40000,=﹣10(x﹣70)2+9000,故当x=70时,利润最大为9000元.答:要使月销售利润达到最大,销售单价应定为70元;(2)令y=8000,则﹣10(x﹣20)2+9000=8000,解得x1=10,x2=30.函数的大致图象为:观察图象当10≤x≤30时,y不低于8000.所以当销售单价不小于60元而不大于80元时,商场获得的周销售利润不低于8000元.【点评】本题主要考查了二次函数的应用,能正确表示出月销售量是解题的关键.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.24.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m宽的空地,其它三侧内墙各保留1m宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m2?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题有多种解法.设的对象不同则列的一元二次方程不同.设矩形温室的宽为xm,则长为2xm,根据矩形的面积计算公式即可列出方程求解.【解答】解:解法一:设矩形温室的宽为xm,则长为2xm,根据题意,得(x﹣2)•(2x﹣4)=288,∴2(x﹣2)2=288,∴(x﹣2)2=144,∴x﹣2=±12,解得:x1=﹣10(不合题意,舍去),x2=14,所以x=14,2x=2×14=28.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.解法二:设矩形温室的长为xm,则宽为xm.根据题意,得(x﹣2)•(x﹣4)=288.解这个方程,得x1=﹣20(不合题意,舍去),x2=28.所以x=28,x=×28=14.答:当矩形温室的长为28m,宽为14m时,蔬菜种植区域的面积是288m2.【点评】解答此题,要运用含x的代数式表示蔬菜种植矩形长与宽,再由面积关系列方程.25.阅读下列例题:解方程x2﹣|x|﹣2=0解:(1)当x≥0时,原方程化为x2﹣x﹣2=0,解得x1=2,x2=﹣1(舍去).当x<0时,原方程化为x2+x﹣2=0,解得x1=1(舍去),x2=﹣2.∴x1=2,x2=﹣2是原方程的根.请参照例题解方程:x2﹣|x﹣1|﹣1=0.【考点】解一元二次方程-因式分解法;绝对值.【专题】阅读型.【分析】参照例题,应分情况讨论,主要是|x﹣1|,随着x取值的变化而变化,它将有两种情况,考虑问题要周全.【解答】解:(1)设x﹣1≥0原方程变为x2﹣x+1﹣1=0,x2﹣x=0,x1=0(舍去),x2=1.(2)设x﹣1<0,原方程变为x2+x﹣1﹣1=0,x2+x﹣2=0,解得x1=1(舍去),x2=﹣2.∴原方程解为x1=1,x2=﹣2.【点评】解本题时,应把绝对值去掉,对x﹣1正负性分类讨论,x﹣1≥0或x﹣1<0.26.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.【考点】根的判别式;等腰三角形的判定;勾股定理的逆定理.【专题】计算题.【分析】(1)根据方程解的定义把x=﹣1代入方程得到(a+c)×(﹣1)2﹣2b+(a﹣c)=0,整理得a﹣b=0,即a=b,于是根据等腰三角形的判定即可得到△ABC是等腰三角形;(2)根据判别式的意义得到△=(2b)2﹣4(a+c)(a﹣c)=0,整理得a2=b2+c2,然后根据勾股定理的逆定理得到△ABC是直角三角形.【解答】解:(1)△ABC是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)△ABC是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.也考查了勾股定理的逆定理.27.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S△MCB.【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式.(2)可根据抛物线的解析式先求出M和B的坐标,由于三角形MCB的面积无法直接求出,可将其化为其他图形面积的和差来解.过M作ME⊥y轴,三角形MCB的面积可通过梯形MEOB的面积减去三角形MCE的面积减去三角形OBC的面积求得.【解答】解:(1)依题意:,解得∴抛物线的解析式为y=﹣x2+4x+5(2)令y=0,得(x﹣5)(x+1)=0,x1=5,x2=﹣1,∴B(5,0).由y=﹣x2+4x+5=﹣(x﹣2)2+9,得M(2,9)作ME⊥y轴于点E,可得S△MCB=S梯形MEOB﹣S△MCE﹣S△OBC=(2+5)×9﹣×4×2﹣×5×5=15.【点评】本题考查了二次函数解析式的确定以及图形面积的求法.不规则图形的面积通常转化为规则图形的面积的和差.。

2015年甘肃省兰州市中考数学试卷(a卷)解析

2015年甘肃省兰州市中考数学试卷(a卷)解析

2015年甘肃省兰州市中考数学试卷(A卷)一、选择题(共15小题,每小题4分,满分60分)2.(4分)(2015•兰州)由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()4.(4分)(2015•兰州)如图,△ABC中,∠B=90°,BC=2AB,则cosA=()5.(4分)(2015•兰州)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()6.(4分)(2015•兰州)一元二次方程x2﹣8x﹣1=0配方后可变形为()8.(4分)(2015•兰州)在同一直角坐标系中,一次函数y=kx ﹣k 与反比例函数y=(k ≠0)9.(4分)(2015•兰州)如图,已知经过原点的⊙P 与x、y 轴分别交于A 、B 两点,点C 是劣弧OB 上一点,则∠ACB=( )10.(4分)(2015•兰州)如图,菱形ABCD 中,AB=4,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则的△AEF 的面积是( )4 11.(4分)(2015•兰州)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x ,则x 满足的 1+2x=1+2x=12.(4分)(2015•兰州)若点P1(x1,y1),P2(x2,y2)在反比例函数y=(k>0)的图13.(4分)(2015•兰州)二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()14.(4分)(2015•兰州)二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,15.(4分)(2015•兰州)如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()二、填空题(共5小题,每小题4分,满分20分)16.(4分)(2015•兰州)若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=.17.(4分)(2015•兰州)如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.18.(4分)(2015•兰州)在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,的值是.19.(4分)(2015•兰州)如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)20.(4分)(2015•兰州)已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.三、解答题(共8小题,满分70分)21.(10分)(2015•兰州)(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;(2)解方程:x2﹣1=2(x+1).22.(5分)(2015•兰州)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(6分)(2015•兰州)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(8分)(2015•兰州)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(9分)(2015•兰州)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.26.(10分)(2015•兰州)如图,A(﹣4,),B(﹣1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1﹣y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.27.(10分)(2015•兰州)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC 边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)28.(12分)(2015•兰州)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)2015年甘肃省兰州市中考数学试卷(A卷)参考答案与试题解析一、选择题(共15小题,每小题4分,满分60分)不是二次函数,故2.(4分)(2015•兰州)由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()4.(4分)(2015•兰州)如图,△ABC中,∠B=90°,BC=2AB,则cosA=()= cosA=5.(4分)(2015•兰州)如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()28.(4分)(2015•兰州)在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)9.(4分)(2015•兰州)如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C 是劣弧OB上一点,则∠ACB=()10.(4分)(2015•兰州)如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()4,EF=AE=2的面积是:AM=××.11.(4分)(2015•兰州)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的1+2x=1+2x=,12.(4分)(2015•兰州)若点P1(x1,y1),P2(x2,y2)在反比例函数y=(k>0)的图,=(,,=(13.(4分)(2015•兰州)二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()14.(4分)(2015•兰州)二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,﹣=15.(4分)(2015•兰州)如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()=.二、填空题(共5小题,每小题4分,满分20分)16.(4分)(2015•兰州)若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=2015.17.(4分)(2015•兰州)如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.==3===k=.18.(4分)(2015•兰州)在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,的值是n=10.=0.519.(4分)(2015•兰州)如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1=S2.(填“>”或“<”或“=”)AP a ab anMN(mn,20.(4分)(2015•兰州)已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是30°或150°.三、解答题(共8小题,满分70分)21.(10分)(2015•兰州)(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;(2)解方程:x2﹣1=2(x+1).﹣×+1+=122.(5分)(2015•兰州)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(6分)(2015•兰州)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?;,传到乙脚下的概率,24.(8分)(2015•兰州)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.影的知识可以得到比例式:,即=由平行投影可知,=,即=,25.(9分)(2015•兰州)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.AD,26.(10分)(2015•兰州)如图,A(﹣4,),B(﹣1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1﹣y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.可计算出,m+)••= m),从而可确定图象的上面,)图象过,,解得x+m+)m+,,,(﹣,27.(10分)(2015•兰州)如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC 边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)∴所求图形面积为28.(12分)(2015•兰州)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明),y=x时,联立直线和抛物线解析式可得,解得或==,且∠时,联立直线和抛物线解析式可得,解得﹣m+﹣==,且∠参与本试卷答题和审题的老师有:2300680618;HJJ;1286697702;放飞梦想;sd2011;sks;sdwdmahongye;dbz1018;zcx;sjzx;守拙;gsls;fangcao;caicl;yangwy;王学峰;522286788(排名不分先后)菁优网2015年7月11日。

2015-2016学年平凉市庄浪县九年级上期中数学试卷及答案解析

2015-2016学年平凉市庄浪县九年级上期中数学试卷及答案解析
23.某商店经销一种成本为每千克 40 元的水产品,据市场分析,若按每千克 50 元销售,一个月能 售出 500 千克.若销售价每涨 1 元,则月销售量减少 10 千克. (1)要使月销售利润达到最大,销售单价应定为多少元? (2)要使月销售利润不低于 8000 元,请结合图象说明销售单价应如何定? 24.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为 2:1.在温室内,沿前侧内墙保 留 3m 宽的空地,其它三侧内墙各保留 1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植 区域的面积是 288m2?
2015-2016 学年甘肃省平凉市庄浪县九年级(上)期中数学试卷
一、选择题(共 10 小题,每小题 3 分,满分 30 分)
1.下列方程是关于 x 的一元二次方程的是( )
A.ax2+bx+c=0 B.
=2 C.x2+2x=x2﹣1
D.3(x+1)2=2(x+1)
2.下列函数中,不是二次函数的是( ) A.y=1﹣ x2 B.y=2(x﹣1)2+4 C.y= (x﹣1)(x+4) D.y=(x﹣2)2﹣x2
第 5 页(共 22 页)
第 4 页(共 22 页)
26.已知关于 x 的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中 a、b、c 分别为△ABC 三边的长. (1)如果 x=﹣1 是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由. 27.已知:如图,二次函数 y=ax2+bx+c 的图象与 x 轴交于 A、B 两点,其中 A 点坐标为(﹣1, 0),点 C(0,5),另抛物线经过点(1,8),M 为它的顶点. (1)求抛物线的解析式; (2)求△MCB 的面积 S△MCB.

甘肃省平凉市中考数学试卷及答案

甘肃省平凉市中考数学试卷及答案

甘肃省平凉市中考数学试卷及答案(本试卷满分为150分,考题时间为120分钟)A 卷(满分100分)一、选择题(本大题共10小题,每小题4分,共40分.每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.) 1.图中几何体的主视图是2.下列运算中,计算结果正确的是A .x 2·x 3=x 6B .x 2n ÷x n -2=x n +2C .(2x 3)2=4x 9D .x 3+x 3=x3.如果两圆的半径分别为2和1,圆心距为3,那么能反映这两圆位置关系的图是4.多项式2a 2-4ab +2b 2分解因式的结果正确的是A .2(a 2-2ab +b 2)B .2a (a -2b )+2b 2C .2(a -b ) 2D .(2a -2b ) 25.如图,将三角板的直角顶点放在两条平行线a 、b 中的直线b 上,如果∠1=40°,则∠2的度数是 A .30° B .45° C .40° D .50°6.在a 2□4a □4的空格中,任意填上“+”或“-”,在所得到的代数式中,可以构成完全平方式的概率是 A .12 B .13 C .14 D .1 7.将二次函数y =x 2-2x +3化为y =(x -h )2+k 的形式,结果为A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D .y =(x -1)2+2 8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是 A .8B .5C .2 2D .39.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是 A .13 B .12 C .34D .1 10.如图,有一块矩形纸片ABCD ,AB =8,AD =6.将纸片折叠,使得AD 边落在AB 边上,折痕为AE ,再将△AED 沿DE 向右翻折,AE 与BC 的交点为F ,则CF 的长为a b 1C . B . A .D .正面A .6B .4C .2D .1二、填空题(本大题共8小题,每小题4分,共32分.只要求填写最后结果.) 11.计算8-12=_ ▲ . 12.若x +y =3,xy =1,则x 2+y 2=_ ▲ .13.为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:根据光的反射定律,利用一面镜子和皮尺,设计如图所示的测量方案:把镜子放在离树(AB )8.7m 的点E 处,然后观测考沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =2.7m ,观测者目高CD =1.6m ,则树高AB 约是_ ▲ .(精确到0.1m )14.如图(1),在宽为20m ,长为32m 的矩形耕地上修建同样宽的三条道路(横向与纵向垂直),把耕地分成若干小矩形块,作为小麦试验田国,假设试验田面积为570m 2,求道路宽为多少?设宽为x m ,从图(2)的思考方式出发列出的方程是_ ▲ .15.如图,点A 、B 在数轴上,它们所对应的数分别是-4与2x +23x -5,且点A 、B 到原点的距离相等.则x =_ ▲ .16.计算:sin 230°+tan44°tan46°+sin 260°=_ ▲ .17.抛物线y =-x 2+bx +c 的部分图象如图所示,若函数y >0值时,则x 的取值范围是_▲ .(1)(2)EB D CE18.如图,在梯形ABCD 中,AB ∥CD ,∠BAD =90°,AB =6,对角线AC 平分∠BAD ,点E 在AB 上,且AE =2(AE <AD ),点P 是AC 上的动点,则PE +PB 的最小值是_ ▲ .三、解答题(本大题共3小题,其中19题9分,20题6分,21题13分,共28分.)解答时写出必要的文字说明及演算过程.19.本题共9分(其中第Ⅰ小题4分,第Ⅱ小题5分)Ⅰ.先化简(,再从-2、-1、0、1、2中选一个你认为适合的数作为x 的值代入求值.Ⅱ.已知l 1:直线y =-x +3和l 2:直线y =2x ,l 1与x 轴交点为A .求: (1)l 1与l 2的交点坐标.(2)经过点A 且平行于l 2的直线的解析式20.已知,如图E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE ,四边形ABCD 是平行四边形吗?请说明理由.21.本题共13分(其中第Ⅰ小题6分,第Ⅱ小题7分)Ⅰ.爱养花的李先生为选择一个合适的时间去参观西安世界园艺博览会,他查阅了5月10日至16日是(星期一至星期日)每天的参观人数,得到图(1)、图(2)所示的统计图.其中图(1)是每天参观人数的统计图,图(2)是5月15日是(星期六)这一天上午、BAED F中午、下午和晚上四个时段参观人数的扇形统计图,请你根据统计图解答下面的问题: (1)5月10日至16日这一周中,参观人数最多的是日是_ ▲ ,有_ ▲ 万人,参观人数最少的是日是_ ▲ ,有_ ▲ 万人,中位数是_ ▲ .(2)5月15日是(星期六)这一天,上午的参观人数比下午的参观人数多多少人?(精确到1万人)(3)如果李先生想尽可能选择参观人数较少的时间参观世园会,你认为选择什么时间较合适?Ⅱ.如图在等腰Rt △OBA 和Rt △BCD 中,∠OBA =∠BCD =90°,点A 和点C 都在双曲线y =4x(k >0)上,求点D 的坐标.B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤过程及推理过程.) 22.(8分)如图,在平面直角坐标系中,O 为坐标原点,每个小方格的边长为1个单位长度.正方形ABCD 顶点都在格点上,其中,点A 的坐标为 (1,1).(1)若将正方形ABCD 绕点A 顺时针方向旋转,点B 到达点B 1,点C 到达点C 1,点D 到达点D 1,求点B 1、C 1、D 1的坐标.(2)若线段AC 1的长度..与点D 1的横坐标...的差.恰好是一元二次方程x 2+ax +1=0的一个根,求a 的值.第220题A BC D Ox y ABCD Oxyy =4x23.(10分)某校开展的一次动漫设计大赛,杨帆同学运用了数学知识进行了富有创意的图案设计,如图(1),他在边长为1的正方形ABCD 内作等边△BCE ,并与正方形的对角线交于点F 、G ,制作如图(2)的图标,请我计算一下图案中阴影图形的面积.24.(10分)某电脑公司各种品牌、型号的电脑价格如下表,育才中学要从甲、乙两种品牌电脑中各选择一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示).如果各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(2)该中学预计购买甲、乙两种品牌电脑共36台,其中甲品牌电脑只选了A 型号,学校规定购买费用不能高于10万元,又不低于9.2万元,问购买A 型号电脑可以是多少台?甲乙型号 ABCDE单价(元/台)6000400025005000200025.(10分)在△ABC 中,AB =AC ,点O 是△ABC 的外心,连接AO 并延长交BC 于D ,交△ABC的外接圆于E ,过点B 作⊙O 的切线交AO 的延长线于Q ,设OQ =92,BQ =32.(1)求⊙O 的半径;(2)若DE =35,求四边形ACEB 的周长.26.(10分)在梯形OABC 中,CB ∥OA ,∠AOC =60°,∠OAB =90°,OC =2,BC =4,以点O为原点,OA 所在的直线为x 轴,建立平面直角坐标系,另有一边长为2的等边△DEF ,DE 在x 轴上(如图(1)),如果让△DEF 以每秒1个单位的速度向左作匀速直线运动,开始时点D 与点A 重合,当点D 到达坐标原点时运动停止.(1)设△DEF 运动时间为t ,△DEF 与梯形OABC 重叠部分的面积为S ,求S 关于t 的函数关系式.(2)探究:在△DEF 运动过程中,如果射线DF 交经过O 、C 、B 三点的抛物线于点G ,是否存在这样的时刻t ,使得△OAG 的面积与梯形OABC 的面积相等?若存在,求出t 的值;若不存在,请说明理由.A B C QED OA B CDE GF O (1)AD E GF (2)数学试题参照答案及评分标准A卷(满分100分)一、选择题(满分40分)评分标准:答对一题得4分,不答或答错均得0分1.D 2.B 3.B 4.C 5.D 6.A 7.D 8.A 9.B10.C二、填空题(满分32分)评分标准:在每小题后的横线上填上最终结果,答对一题得4分,不答或答错和不是最终结果均得0分.11.7 13.5.2 14.(322)(2)570x x x--= 15.112.25或16.2 17.31x-<< 18.三、解答题(满分28分)19.Ⅰ.原式=2(1)(1)1x x xx--++·21xx-.=11x+·(1)(1)x xx+-=1xx-当2x=-时,原式=32(或当x==22)Ⅱ.解:(1)设直线1l与2l的交点为M,则由32y xy x=-+⎧⎨=⎩解得1,2.x y =⎧⎨=⎩∴(12)M ,.(2)设经过点A 且平行于2l 的直线的解析式为2.y x b =+ ∵直线1l 与x 轴的交点(30)A , ∴60b +=, ∴ 6.b =-则:所求直线的解析式为2 6.y x =-20.解:结论:四边形ABCD 是平行四边形. 证明:∵DF ∥BE . ∴∠AFD =∠CEB .又∵AF CE DF BE ==,, ∴△AFD ≌△CEB (SAS ). ∴AD CB =,∠DAF =∠BCE . ∴AD ∥CB .∴四边形ABCD 是平行四边形.说明:其它证法可参照上面的评分标准评分.21.Ⅰ.①15,34;10,16;22万; ②34(74%-6%)≈23(万人)③答案不唯一,只要符合题意均可得分. Ⅱ.解:点A 在双曲线4y x=上,且在△OBA 中,AB OB =,∠90OBA =°则4OB AB =. ∴2AB OB ==过点C 作CE ⊥x 轴于E CF ,⊥y 轴于F .设BE x =. 由在BCD △中90BC CD BCD ==,∠°.则CE x =. 又点C 在双曲线4y x=上 (2) 4.x x ∴+=解得10x x =>,,1.21)x OD ∴=∴=+=∴点D .B 卷(满分50分)四、解答题(本大题共50分,解答时写出必要的演算步骤及推理过程)22.解:(1)由已知111(21)(40)(32)B C D -,,,,, (2)由勾股定理得:AC =则3)是方程210x ax ++=的一根,设另一根为0x ,则0x 3)=1.03x ==3)3)]a ∴=-+=-另解:23)3)10a a ++==,23.解:连接FG 并延长交AB 于M AC ,于N , BCE △和四边形ABCD 分别是正三角形和正方形..4530MN AB MN CD BAC ABE ∴⊥⊥=︒=︒,∠,∠∴设MF x =,则 1.x +=122.BCE ABF x S S S S ∴==∴--△△阴影正方形=112==另解:14BCDF S S S =-阴影正方形四边形1111()(12)4222264=---⨯-=24.解:(1)树状图如下:共有6种选购方案:(,)A D 、(B ,D )、(C ,D )、(A ,E )、(B ,E )、(C ,E ).1(.3P A 型号被选中)=(2) 设购买A 型号x 台,由(1)知当选用方案(,)A D 时:由已知9200060005000(36)100000x x +-≤≤得8880x --≤≤,不符合题意.当选用方案()A E ,时,由已知:9200060002000(36)100000x x +-≤≤ 得57.x ≤≤答:购买A 型号电脑可以是5台,6台或7台. 25.(1)连接OB BQ ,切O 于B ..OB BQ ∴⊥在Rt OBQ △中,92OQ BQ ==,32OB ∴==. 即O 的半径是32.(2)延长BO 交AC 于F .AB BC =则.AB BC BF AC =∴⊥,又AE 是O 的直径,90ACE ABE ∴==︒∠∠.BF CE ∴∥(另解:DBF OBA OAB DCE =∠=∠=∠∠) ..33521.3325BOD CED BO ODCE DEDE BO CE OD ∴∴=⨯∴===-△∽△∴在Rt ACE △中,3,1AE CE ==,则AC =又O 是AE 的中点,1122OF CF ∴==,则 2.BF = ∴在Rt ABF △中,12AF AC ==AB ∴=在Rt ABE △,BE =(如用ABQ BEQ △∽△及解Rt ABE △得AB BE ,,计算正确也得分) 故:四边形ACEB的周长是:1+26.解:(1)DEF △是边长为2OABC 中,2460OC BC COA AB x ===︒⊥,,∠,轴5,OA AB ∴==依题意:①当201t <≤时 ②222122)(2)422t S t t <<=--=--+时,③当25t S =≤≤时(2)由已知点(00)(1(5O C B ,,,设过点O 、C 、B 的抛物线的解析式为2.y ax bx =+则255a b a b =+=+,, 解得5a b ⎧=-⎪⎪⎨⎪=⎪⎩∴该抛物线的解析式为:255y x x =-+. ∴若存在点G ,使得DCA OABC S S =△梯形;此时,设点G 的坐标为2().55x x x -+,射线DF 与抛物线的交点在x 轴上方.2115()(54)22x ∴⨯⨯=⨯+化简得2690x x -+=,解得 3.x =则此时点(3G GH x ⊥,作轴于H ,则9cot 605DH GH =︒== ∴此时9192)55t =+=(秒 故:存在时刻195t =(秒)时,OAG △与梯形OABC 的面积相等.。

平凉市2015年中学考试数学精彩试题及问题详解

平凉市2015年中学考试数学精彩试题及问题详解

市2015年初中毕业与高中阶段招生考试数学试题参考答案及评分标准A卷(100分)一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题4分,共32分.11.2(1)xy x -12.x =2 13.x ≥-1且0x ≠ 14.x >-115.75° 16.k ≥6- 17.π 18.45,63 (每空2分) 三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明,证明过程或演算步骤. 19.(6分)解:原式=12133+-- 4分=231-=- 6分20.(6分)解:原式=2(1)13()(1)(1)11x x x x x x -+-+-++÷ =2(1)1(1)(1)2x x x x x -+⋅+-- 3分 =12x x -- 5分 当10,.2x ==时原式 6分21.(8分)解:(1)如图所示,则⊙P 为所求作的圆.(注:作图3分,答语1分) 4分 (2)∵ ∠B =60°,BP 平分∠ABC ,∴ ∠ABP =30°, 5分 ∵ tan ∠ABP =APAB , ∴ AP 37分∴ S ⊙P =3π.8分A22.(8分)解:(1)∵ ∠CGD =42°,∠C =90°, ∴ ∠CDG =90°- 42°=48°, ∵ DG ∥EF , ∴CEF CDG ∠=∠=48°; 4分(2)∵ 点H ,B 的读数分别为4,13.4, ∴ 13.449.4HB =-=,5分∴ cos429.40.74 6.96(m)BC HB ︒=≈⨯≈7分答:BC 的长为6.96m .8分23.(10分)解:(1)画树状图: 列表:AB x 2+12221x x --+ 231x + - x 2-22212x x +--232x --3213x + 223x --6分(2)代数式A B 所有可能的结果共有6种,其中代数式AB是分式的有4种: 2212x x +--,2221x x --+,231x +,232x --, 所以P ( 是分式) 4263==. 10分B 卷(50分)四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分) 24.(8分)解:(1) 5 2分 (2)10%, 40 (每空1分) 4分 (3)设参加训练之前的人均进球数为x 个,则x (1+25%)=5,解得 x =4, 7分 即参加训练之前的人均进球数是4个. 8分 25.(10分)(1)证明:∵ 四边形ABCD 是平行四边形, ∴ CF ∥ED , ∴ ∠FCG =∠EDG , ∵ G 是CD 的中点, ∴ CG =DG , 在△FCG 和△EDG 中,FCG EDG CG DGCGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △FCG ≌△EDG (ASA ) 4分∴ FG =EG , ∵ CG =DG ,∴ 四边形CEDF 是平行四边形; 6分 (2)① 解:当AE =3.5cm 时,四边形CEDF 是矩形. 8分 ② 当AE =2cm 时,四边形CEDF 是菱形. 10分 26.(10分)解:(1)过点D 作x 轴的垂线,垂足为F , ∵ 点D 的坐标为(4,3), ∴ OF =4,DF =3,∴ OD =5, ∴ AD =5, 3分 ∴ 点A 坐标为(4,8), 4分 ∴ k =xy =4×8=32,∴ k =32; 5分 (2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数32y x=(x >0)的图象D '点处,过点D '做x 轴的垂线,垂足为F '. ∵ DF =3, ∴ 3,D F ''=∴ 点D '的纵坐标为3, 7分 ∵ 点D '在32y x=的图象上 ∴ 3 =32x ,解得x =323, 8分 即323220,4,333F OF F '=∴'=-= ∴ 菱形ABCD 平移的距离为203. 10分 27.(10分)解:(1)∠BAE =90° 2分 ∠CAE =∠B 4分 (2)EF 是⊙O 的切线. 5分 证明:作直径AM ,连接CM , 6分 则 ∠ACM =90°,∠M =∠B , 7分 ∴ ∠M +∠CAM =∠B +∠CAM =90°, ∵ ∠CAE =∠B ,∴ ∠CAM +∠CAE =90°, 8分 ∴ AE ⊥AM , 9分 ∵ AM 为直径,∴ EF 是⊙O 的切线. 10分 28.(12分)解:(1)根据已知条件可设抛物线的解析式为(1)(5)y a x x =--, 1分 把点A (0,4)代入上式,解得 45a , 2分 ∴ 224424416(1)(5)4(3)55555y x x x x x =--=-+=-- 3分 ∴ 抛物线的对称轴是 3x ; 4分(2)存在;P 点坐标为(3,85).如图,连接AC 交对称轴于点P ,连接BP ,AB , ∵ 点B 与点C 关于对称轴对称,∴PB =PC , ∴ AB +AP +PB =AB +AP +PC =AB +AC , ∴ 此时△PAB 的周长最小. 6分 设直线AC 的解析式为 ykx b ,把A (0,4),C (5,0)代入ykx b ,得 450b k b =⎧⎨+=⎩, 解得 454k b ⎧=-⎪⎨⎪=⎩,∴ 445y x =-+, 7分 ∵ 点P 的横坐标为3, ∴ 483455y =-⨯+=, ∴ P (3,85). 8分 (3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大. 如图,设N 点的横坐标为t ,此时点N (2424455t t t -+,)(0<t <5), 9分 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作 AD ⊥NG ,垂足为D ,由(2)可知直线AC 的解析式为 445y x =-+, 把xt 代入445y x =-+得 445y t =-+,则G (t ,445t -+),此时,NG =22442444(4)45555t t t t t -+--+=-+ 10分∵ AD +CF =OC =5, ∴ S △NAC =S △ANG +S △CGN =12NG ﹒AD +12NG ﹒CF =12NG ﹒OC =22214525(4)52102()2522t t t t t ⨯-+⨯=-+=--+ ∴ 当52t 时,△NAC 面积的最大值为252, 11分 由 52t,得 24244355y t t =-+=-, ∴ N (52,3-) 12分。

2015年甘肃省平凉市、 中考数学试题及解析

2015年甘肃省平凉市、 中考数学试题及解析

2015年甘肃省定西市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.64的立方根是()A.4B.±4 C.8D.±82.中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×1023.若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°4.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a65.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.6.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y7.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35008.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°9.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC 的值为()A.B.C.D.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共8小题,每小题4分,共32分)11.分解因式:x3y﹣2x2y+xy=.12.分式方程的解是.13.在函数y=中,自变量x的取值范围是.14.定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为.15.已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=.16.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.17.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.三、解答题(本题共5小题,共38分)19.(6分)计算:()0++(﹣1)2015﹣tan60°.20.(8分)先化简,再求值:÷(1﹣),其中x=0.21.(8分)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.(8分)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(8分)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.四、解答题(本题共5小题,共50分)24.(8分)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表8 7 6 5 4 3进球数(个)人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.25.(8分)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)26.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.27.(10分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.28.(14分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由2015年甘肃省平凉市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.64的立方根是()A.4B.±4 C.8D.±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°考点:余角和补角.分析:根据互补的两角之和为180°,可得出答案.解答:解:∵∠A=34°,∴∠A的补角=180°﹣34°=146°.故选B.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.4.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.解答:解:A、x2+x2=2x2,错误;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(﹣a2)3=﹣a6,正确;D、3a2•2a3=6a5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.5.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y考点:命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体.分析:根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可.解答:解:A、平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B、三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C、用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D、若x2=y2,则x=±y,不是x=y,故该命题是假命题;故选D.点评:本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.7.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.解答:解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°考点:圆周角定理.分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.解答:解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.9.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC 的值为()A.B.C.D.考点:相似三角形的判定与性质.分析:证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC ,得到=,借助相似三角形的性质即可解决问题.解答:解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC ==,故选D.点评:本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:证明△BPE∽△CDP,根据相似三角形的对应边的比相等求得y与x的函数关系式,根据函数的性质即可作出判断.解答:解:∵∠CPD=∠FPD,∠BPE=∠FPE,又∵∠CPD+∠FPD+∠BPE+∠FPE=180°,∴∠CPD+∠BPE=90°,又∵直角△BPE中,∠BPE+∠BEP=90°,∴∠BEP=∠CPD,又∵∠B=∠C,∴△BPE∽△CDP,∴,即,则y=﹣x2+,y是x的二次函数,且开口向下.故选C.点评:本题考查了动点问题的函数图象,求函数的解析式,就是把自变量当作已知数值,然后求函数变量y的值,即求线段长的问题,正确证明△BPE∽△CDP是关键.二、填空题(本题共8小题,每小题4分,共32分)11.分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.分式方程的解是x=2.考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.13.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0.点评:考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x>﹣1.考点:一元一次不等式的应用.专题:新定义.分析:根据运算的定义列出不等式,然后解不等式求得不等式的解集即可.解答:解:3⊕x<13,3(3﹣x)+1<13,解得:x>﹣1.故答案为:x>﹣1.点评:此题考查一元一次不等式解集的求法,理解运算的方法,改为不等式是解决问题的关键.15.已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.分析:根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.解答:解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.16.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.考点:根的判别式;一元一次方程的解.分析:由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.解答:解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.点评:本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.17.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.考点:扇形面积的计算.分析:根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.解答:解:∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,∴S阴影=S扇形OBD==π.故答案是:π.点评:本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、解答题(本题共5小题,共38分)19.计算:()0++(﹣1)2015﹣tan60°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用算术平方根定义计算,第三项利用乘方的意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+2﹣1﹣×=2﹣3=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.考点:作图—复杂作图;切线的性质.分析:(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.解答:解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.点评:本题主要考查了作图﹣复杂作图,角平分线的性质,即角平分线上的点到角两边的距离相等.同时考查了圆的面积.22.如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形.分析:(1)先根据直角三角形的两锐角互为求出∠CDG的度数,再根据两直线平行,同位角相等求出∠DEF,然后根据三角形的一个外角等于与它不相邻的两个内角的和即可求出∠EFA;(2)根据度数求出HB的长度,再根据∠CBH=∠CGD=42°,利用42°的余弦值进求解.解答:解:(1)∵∠CGD=42°,∠C=90°,∴∠CDG=90°﹣42°=48°,∵DG∥EF,∴∠CEF=∠CDG=48°;(2)∵点H,B的读数分别为4,13.4,∴HB=13.4﹣4=9.4(m),∴BC=HBcos42°≈9.4×0.74≈6.96(m).答:BC的长为6.96m.点评:本题考查了解直角三角形与平行线的性质,直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和,综合性较强,但难度不大,仔细分析图形并认真计算即可.23.有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.考点:列表法与树状图法;分式的定义.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:列表:x2+1 ﹣x2﹣2 3第一次第二次x2+1﹣x2﹣23(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.四、解答题(本题共5小题,共50分)24.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表进球数8 7 6 5 4 3(个)人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为5个;(2)选择长跑训练的人数占全班人数的百分比是10%,该班共有同学40人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.考点:扇形统计图;一元一次方程的应用;统计表.分析:(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.解答:解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个).故答案是:5;(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得x=4.即参加训练之前的人均进球数是4个.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)考点:平行四边形的判定与性质;菱形的判定;矩形的判定.专题:动点型.分析:(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.点评:本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.26.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A 在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.考点:反比例函数综合题.分析:(1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.解答:解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,过点D′做x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为.点评:此题主要考查了反比例函数综合以及反比例函数图象上点的坐标性质,得出A点坐标是解题关键.27.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.考点:切线的判定.分析:(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.解答:解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.点评:本题考查了圆周角定理,切线的判定的应用,主要考查学生运用定理进行推理的能力,注意:经过半径的外端,并且垂直于半径的直线是圆的切线.28.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.。

2015年甘肃省兰州市中考数学试卷-答案

2015年甘肃省兰州市中考数学试卷-答案

为O 21122y x y =,将1x =AP AB 1(2a =1(2MN QN c = ,P Q ,在反比例函数的图象上,【提示】解题关键在于根据矩形面积与三角形面积间的关系进行计算【考点】反比例函数的性质【解析】O 是ABC △OBC 为等边三角形,所以上时,易得)解:212(x -=1)2(x -=3)=0-22.【答案】【解析】解:作出角平分线,作出P,∴P就是所求作的圆。

【考点】尺规作图,线段垂直平分线的性质,角平分线的性质23.【答案】(1)1【解析】(1)根据题意画出树状图如下:(2)连接AE,延长AE交BF的延长线于点M,连接CG,延长CG交DH的延长线于点N。

//EF MF MFAB EF即10MF=5MF∴=在()tanND tan CND DH HN CAD∠=+∠// AB CDAC BM∴=BD AC=在BDC△BC AD∴=E H,为同理FG=BC AD=EF∴与GH【考点】全等三角形的判定及性质,特殊平行四边形的判定及性质等1=2=2b b,,解得1=25=2k b ⎧⎪⎪⎨⎪⎪⎩,, —次函数解析式为1522y x =+ 2),代入my x=,得m =)如图,设P 点坐标为1 22t (,PCA △和22解得t =-与O 相切 【解析】(1)连接ODOA OD =BAC ∠的角平分线CAD ∠=ODB ∴∠=与O 相切OAOD r ==中,30B ∠=过点A 作AC x ⊥轴于点C ,过点B 作BD x ⊥轴于点D ,ACO ∠=,又+AOC BOD ∠过点A作AC x⊥轴于点C,过点B作BD x⊥轴于点D,1⎧2221=164x16OC OD AC BD==∴,又=ACO∠AOC OBD=∠,AOC∴∠∠+AOB△为直角三角形。

2015年甘肃省兰州市中考数学试题及答案

2015年甘肃省兰州市中考数学试题及答案

第2题图第4题图第5题图2015年兰州市初中毕业生学业考试数 学(A )注意事项:1.全卷共150分,考试时间120分钟.2.考生必须将姓名、准考证号、考场、座位号等个人信息填(涂)写在答题卡上.3.考生务必将答案直接填(涂)写在答题卡的相应位置上.一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是A .31y x =-B .2y ax bx c =++C .2221s t t =-+D .21y x x=+2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是A .左视图与俯视图相同B .左视图与主视图相同C .主视图与俯视图相同D .三种视图都相同3.在下列二次函数中,其图象的对称轴为2x =-的是A .2(2)y x =+B .222y x =-C .222y x =--D .22(2)y x =-4.如图,△ABC 中,∠B = 90º,BC = 2AB ,则cos A = AB .12C D 5.如图,线段CD 两个端点的坐标分别为C (1,2)、D (2,0),以原点为位似中心,将线段CD 放大得到线段AB ,若点B 的坐标为(5,0),则点A 的坐标为 A .(2,5)B .(2.5,5)C .(3,5)D .(3,6)6.一元二次方程2810x x --=配方后可变形为A .2(4)17x +=B .2(4)15x +=C .2(4)17x -=D .2(4)15x -=7.下列命题错误..的是 A .对角线互相垂直平分的四边形是菱形 B .平行四边形的对角线互相平分 C .矩形的对角线相等D .对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y kx k =-与反比例函数(0)ky k x=≠的图象大致是9.如图,经过原点O 的⊙P 与x 、y 轴分别交于A 、B 两点,点C 是劣弧OB 上一点,则∠ACB =A .80°B .90°C .100°D .无法确定10.如图,菱形ABCD 中,AB = 4,∠B = 60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E ,F ,连接EF ,则△AEF 的面积是 A .B .C .D 11.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x ,则x 满足的方程是 A .211(1)10x +=B .210(1)9x +=C .111210x +=D .10129x +=12.若点111(,)P x y ,222(,)P x y 在反比例函数(0)ky k x=>的图象上,且x x =-12,则 A .y y <12B .y y =12C .y y >12D .y y =-12第9题图 第13题图ABD EF C第10题图ABCD13.二次函数2y ax bx c =++的图象如图,点C 在y 轴的正半轴上,且OA = OC ,则A .ac + 1= bB .ab + 1= cC . bc + 1= aD .以上都不是14. 二次函数y x x c =++2的图象与x 轴有两个交点A 1(,0)x ,B 2(,0)x ,且x x <12,点P (,)m n是图象上一点,那么下列判断正确的是A .当n <0时,m <0B .当n >0时,m x >2C .当n <0时,x m x <<12D .当n >0时,m x <115.如图,⊙O 的半径为2,AB 、CD 是互相垂直的两条直径,点P 是⊙O 上任意一点(P 与A 、B 、C 、D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q 走过的路径长为A .π4B .π2C .π6D .π3二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程220150ax bx --=有一根为x =-1,则a b += .17.如果a c ek b d f===(0)b d f ++≠,且3()a c e b d f ++=++,那么k = . 18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数ky x=图象上的两点,PA ⊥y 轴于点A ,QN ⊥x 轴于点N ,作PM ⊥x 轴于点M ,QB ⊥y 轴于点B ,连接PB 、QM ,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC = 4cm ,⊙O 是其外接圆,且半径也为4cm ,第19题图B第15题图则∠A的度数是.三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分)(1)计算:12-tan60+01π20152-+-();(2)解方程:212(1)xx-=+.22.(本小题满分5分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)第22题图ABNM O23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况; (2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD ,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH 的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是 投影的有关知识进行计算的. (2)试计算出电线杆的高度,并写出计算的过程.墙面 GHFE DC地面A B旗杆电线杆第24题图25.(本小题满分9分)如图,四边形ABCD 中,AB ∥CD ,AB ≠ CD ,BD = AC . (1)求证:AD = BC ;(2)若E 、F 、G 、H 分别是AB 、CD 、AC 、BD 的中点,求证:线段EF 与线段GH 互相垂直平分.26.(本小题满分10分)如图,A 4-(,12),B 1-(,2)是一次函数1y ax b =+与反比例函数2my x=图象的两个交点,AC ⊥ x 轴于点C ,BD ⊥ y 轴于点D . (1)根据图象直接回答:在第二象限内,当x 取何值时,120y y ->? (2)求一次函数解析式及m 的值;(3)P 是线段AB 上一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 的坐标.FC第25题图第26题图27.(本小题满分10分)如图,在Rt△ABC中,∠C = 90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC = 3,∠B = 30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面DC B第27题图28.(本小题满分12分)已知二次函数y = ax2的图象经过点(2,1).(1)求二次函数y = ax2的解析式;(2)一次函数y = mx+4的图象与二次函数y = ax2的图象交于A(x1、y1)、B(x2、y2)两点.①当32m=时(图①),求证:△AOB为直角三角形;②试判断当32m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)第28题图图①图②2015年兰州市初中毕业生学业考试 数学(A )参考答案及评分参考本答案仅供参考,阅卷时会制定具体的评分细则和评分标准. 一、选择题:本题15小题,每小题4分,共60分.二、填空题:本题5小题,每小题4分,共20分.16.2015 17.3 18.10 19.= 20.30°或150° 三、解答题:本题8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤. 21.(本小题满分10分,每题5分)解:(1)原式=11122+ ……………………………………………………… 4分 =-1.……………………………………………………………………… 5分(2)∵212(1)x x -=+,∴(1)(1)2(1)x x x +-=+, ……………………………………………………… 6分 ∴(1)(3)0x x +-=,………………………………………………………8分∴1213x x ,=-=.…………………………………………………………………10分 22.(本小题满分5分)解:作出角平分线; ………………… 1分作出垂直平分线; ………………… 2分 作出⊙P ; ……………… 4分 ∴⊙P 就是所求作的圆.…………… 5分 23.(本小题满分6分)解:(1)根据题意画出树状图如下:……………………… 4分(2)由(l )可知:三次传球有8种等可能结果,其中传回甲脚下的有2种.所以P (传球三次回到甲脚下)=2184=. …………………………………………… 5分 (3)由(l )可知:甲传球三次后球传回自己脚下的概率为14,传到乙脚下的概率为38,所以球传到乙脚下的概率大. ………………………………………………… 6分24.(本小题满分8分) 解:(l )平行………………………………………………………………………2分(2)连接AE ,延长AE 交BF 的延长线于点M ,连结CG ,延长CG 交DH 的延长线于点N∵AB ∥EF ∴EF MF MF AB MB MF FB ==+,即21010MFMF =+ ………………………3分 ∴52MF =……………………………………………………………4分∴1042552AB tan AMBBM?== …………………………………………………5分由平行投影的知识可以知道∠AMB =∠CND ∴在Rt △NHG 中,45CD tan CNDND ?= ∴315445GH HN tan HNG ===Ð………6分∵在Rt △CDN 中,45CD tan CNDND ?= ∴CD ND tan CND =仔=()DH HN + 354745tan CND ??(米)………………8分所以,电线杆长为7米25.(本小题满分9分)证明:(1)做BM ∥AC ,BM 交DC 的延长线于点M ,则∠ACD =∠BMD …………1分墙面 GH FE DC 地面A BMN旗杆电线杆甲甲甲甲 甲 乙乙乙 乙 乙 丙 丙丙丙丙第一次第二次第三次∵AB ∥CD BM ∥AC∴四边形ABMC 为平行四边形…………………………………………………2分∴AC = BM ∵BD = AC ∴BM = BD ∴∠BDM = ∠BMD ∴∠BDC = ∠ACD 在△BDC 和△ACD 中 BD AC BDC= ACD DC=CD =⎧⎪∠∠⎨⎪⎩∴△BDC ≌ △ACD………………………………………………………4分∴BC = AD ……………………………………………………………………………5分(2)连接EG 、GF 、FH 、HE…………………………………………………6分∵E 、H 为AB 、BD 的中点 ∴12EH AD = 同理12FG AD =,12EG BC =,12FH BC = ∵BC = AD ∴EG = FG = FH = EH …………………………………………………8分 ∴四边形EGFH 为菱形∴EF 与GH 互相垂直平分 ………………………………………………………………9分 26.(本小题满分10分)解:(1)当41x -<<-时,120y y ->;(2)把A (-4,12),B (-1,2)代入y=kx+b 得, 1422k+b=k+b=⎧-⎪⎨⎪-⎩,解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩, 所以一次函数解析式为1522y x =+; 把B (-1,2)代入my x=,得m =-1×2=-2; …………………………………6分 F CD(3)如图,设P 点坐标为15()22t t ,+. …………………………………………………7分∵△PCA 和△PDB 面积相等, ∴()1111541(2)22222t t ⨯⨯+=⨯⨯--, 解得52t =-, ………………………………………………………………………………9分∴P 点坐标为55()24,-. …………………………………………………………………10分 27.(本小题满分10分)解:(1)直线BC 与⊙O 相切;……………………1分连结OD ,………………………………………2分 ∵OA = OD ∴∠OAD = ∠ODA ∵∠BAC 的角平分线AD 交BC 边于D ∴∠CAD = ∠OAD ∴∠CAD = ∠ODA∴OD ∥AC ……………………………………3分 ∴∠ODB = ∠C = 90°即OD ⊥BC . ………………………………………………………………………………4分 ∴直线BC 与⊙O 相切.(2)①设OA = OD = r ,在Rt △BDO 中,∠B = 30°,∴OB = 2r ………………………………………………………………………………5分 在Rt △ACB 中,∠B = 30° ∴AB = 2AC = 6∴3r = 6 …………………………………………………………………………………6分 解得r = 2. ……………………………………………………………………7分 ②在Rt △ACB 中,∠B = 30°,∴∠BOD = 60°. …………………………………………………………………………8分∴S 扇形ODE =260223603ππ⨯==. ……………………………………………………………9分 ∴所求图形面积为:S △BOD - S 扇形ODE23π=.……………………………………10分28.(本小题满分12分)DCB解:(1)由条件得1 = 4a ,14a =,所以二次函数的解析式是214y x =…………………1分(2)①由214342y x y x ⎧=⎪⎪⎨⎪=+⎪⎩得1121x y =-⎧⎨=⎩,22816x y =⎧⎨=⎩,即A (-2,1),B (8,16) (3)过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D , 则AC = 1,OC = 2,OD = 8,BD = 16,∴1AC OC OD BD ==8 又∵∠ACO =∠ODB = 90º ∴△ACO ∽ △ODB ………………………………4分∴∠AOC = ∠OBD ∴∠AOC +∠BOD = 90º ∴∠AOB = 90º∴△AOB 为直角三角形 …………………………………………………………5分 ②△AOB 为直角三角形, ………………………………………………………………6分 证明如下:过A 作AC ⊥x 轴于C ,过B 作BD ⊥x 轴于D由2144y x y mx ⎧=⎪⎨⎪=+⎩得x 2-4mx -16 = 0 解得12x m =-22x m =+∴124(16x x m m ==- ∴221212111644y y x x =⋅=……………………………9分 ∴OC •OD = AC •BD = 16∴AC OCOD BD=………………………………………………………………………10分 又∵∠ACO =∠ODB = 90º,∴△ACO ∽△ODB ………………………………11分 ∴∠AOC =∠OBD∴∠AOC +∠BOD =90º ∴∠AOB =90º ∴△AOB 为直角三角形. (3)可能的结论为…………………………………………………………………12分图①图②如果过定点(0,4)的直线与抛物线214y x =交于A 、B 两点,O 为抛物线的顶点,那么△AOB 必为直角三角形.如果过定点(0,a 1)的直线与抛物线2y ax =交于A 、B 两点,O 为抛物线的顶点,那么△AOB 必为直角三角形.。

2015-2016年甘肃省平凉市庄浪县初三上学期期末数学试卷及参考答案

2015-2016年甘肃省平凉市庄浪县初三上学期期末数学试卷及参考答案

2015-2016学年甘肃省平凉市庄浪县初三上学期期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)点B与点A(﹣2,2)关于原点对称,点B的坐标为()A.(2,﹣2)B.(﹣2,2)C.(2,2)D.(﹣2,﹣2)3.(3分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>1C.k≠0D.k>﹣1且k≠04.(3分)下列调查中,适合用普查(全面调查)方式的是()A.了解我县流动人口数量B.了解某班学生的视力情况C.了解江苏卫视“非诚勿扰”节目的收视率D.了解一批炮弹的杀伤半径5.(3分)正八边形的每个内角为()A.120°B.135°C.140°D.144°6.(3分)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2B.3C.4D.57.(3分)如图,A,B,C为⊙O上三点,∠ABC=60°,则∠AOC的度数为()A.30°B.60°C.100°D.120°8.(3分)广州亚运会期间,某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程正确的是()A.168(1+a%)2=128B.168(1﹣a%)2=128C.168(1﹣2a%)=128D.168(1﹣a%)=1289.(3分)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b (a>b),则此圆的半径为()A.B.C.或D.a+b或a﹣b 10.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是()A.a<0B.abc>0C.a+b+c>0D.b2﹣4ac>0二、填空题(共8小题,每小题4分,满分32分)11.(4分)若式子有意义,则x的取值范围是.12.(4分)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.13.(4分)如果一条抛物线的形状与y=﹣x2+2的形状相同,且顶点坐标是(4,﹣2),则它的函数关系式是.14.(4分)已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.15.(4分)如图,⊙O是等边三角形ABC的外接圆,D、E是⊙O上两点,则∠D=度,∠E=度.16.(4分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球若干个,从中随机摸出一个球记下颜色,再把它放回盒子中,表中是多次试验得到的统计数据:摸球的次数n2005008001000摸到白球的概率0.620.6040.6010.599根本表中估计,从中随机摸出一个球,摸到白球的概率为.17.(4分)三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是.18.(4分)如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为.三、解答题(共10小题,满分88分)19.(14分)(1)解方程:①x2+4x﹣12=0;②3x2+5(2x+1)=0(2)已知|a﹣2|+=0,计算的值.20.(6分)用一个圆心角为80°,半径为4的扇形做一个圆锥,求这个圆锥的侧面积.(结果保留π)21.(8分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.22.(10分)已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线与AB的延长线交于点D.若∠CAB=30°,AB=30,求BD的长.23.(4分)一个桶里有60个弹珠,一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?24.(8分)小明用下面的方法求出方程2﹣3=0的解,请你仿照他的方法求出下面两外两个方程的解,并把你的解答过程填写在下面的表格中.方程换元法得新方程解新方程 检验 求原方程的解2﹣3=0令=t ,则2t ﹣3=0 t=t==,所以x= x +2﹣3=0x +25.(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.(1)求S 与x 之间的函数关系式(不要求写出自变量x 的取值范围); (2)当x 为何值时,S 有最大值并求出最大值. (参考公式:二次函数y=ax 2+bx +c (a ≠0),当x=﹣时,y 最大(小)值=)26.(8分)图中的粗线CD 表示某条公路的一段,其中AmB 是一段圆弧,AC 、BD 是线段,且AC 、BD 分别与圆弧相切于点A 、B ,线段AB=180m ,∠ABD=150度. (1)画出圆弧的圆心O ;(2)求A到B这段弧形公路的长.27.(10分)如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD﹣DC﹣CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?28.(12分)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D 匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.2015-2016学年甘肃省平凉市庄浪县初三上学期期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列平面图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【解答】解:∵选项A中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项A不正确;∵选项B中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,它也是轴对称图形,∴选项B正确;∵选项C中的图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,但它是轴对称图形,∴选项C不正确;∵选项D中的图形旋转180°后能与原图形重合,∴此图形是中心对称图形,但它不是轴对称图形,∴选项D不正确.故选:B.2.(3分)点B与点A(﹣2,2)关于原点对称,点B的坐标为()A.(2,﹣2)B.(﹣2,2)C.(2,2)D.(﹣2,﹣2)【解答】解:∵点B与点A(﹣2,2)关于原点对称,∴点B的坐标为;(2,﹣2).故选:A.3.(3分)关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>1C.k≠0D.k>﹣1且k≠0【解答】解:由题意知k≠0,△=4+4k>0解得k>﹣1且k≠0.故选:D.4.(3分)下列调查中,适合用普查(全面调查)方式的是()A.了解我县流动人口数量B.了解某班学生的视力情况C.了解江苏卫视“非诚勿扰”节目的收视率D.了解一批炮弹的杀伤半径【解答】解:了解我县流动人口数量,适合用抽样调查,A不合题意;了解某班学生的视力情况,适合全面调查,B符合题意;了解江苏卫视“非诚勿扰”节目的收视率,适合用抽样调查,C不合题意;了解一批炮弹的杀伤半径,适合用抽样调查,D不合题意;故选:B.5.(3分)正八边形的每个内角为()A.120°B.135°C.140°D.144°【解答】解:根据正八边形的内角公式得出:[(n﹣2)×180]÷n=[(8﹣2)×180]÷8=135°.故选:B.6.(3分)如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A.2B.3C.4D.5【解答】解:①M与A或B重合时OM最长,等于半径5;②∵半径为5,弦AB=8∴∠OMA=90°,OA=5,AM=4∴OM最短为=3,∴3≤OM≤5,因此OM不可能为2.故选:A.7.(3分)如图,A,B,C为⊙O上三点,∠ABC=60°,则∠AOC的度数为()A.30°B.60°C.100°D.120°【解答】解:∵∠ABC=60°,∴∠AOC=2∠ABC=120°.故选:D.8.(3分)广州亚运会期间,某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程正确的是()A.168(1+a%)2=128B.168(1﹣a%)2=128C.168(1﹣2a%)=128D.168(1﹣a%)=128【解答】解:连续两次降价a%,则168(1﹣a%)2=128.故选:B.9.(3分)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b (a>b),则此圆的半径为()A.B.C.或D.a+b或a﹣b【解答】解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时时,圆的直径是a+b,因而半径是;当此点在圆外时,圆的直径是a﹣b,因而半径是.则此圆的半径为或.故选:C.10.(3分)二次函数y=ax2+bx+c的图象如图所示,则下列关系式不正确的是()A.a<0B.abc>0C.a+b+c>0D.b2﹣4ac>0【解答】解:∵抛物线开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴在y轴左边,﹣<0,∴b<0,abc>0,∵抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=1时,y<0,∴a+b+c<0.故选:C.二、填空题(共8小题,每小题4分,满分32分)11.(4分)若式子有意义,则x的取值范围是x≤1.【解答】解:根据二次根式的性质,被开方数大于等于0可知:1﹣x≥0,即x ≤1时,二次根式有意义.故答案为:x≤112.(4分)阅读材料:设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则两根与方程系数之间有如下关系:x1+x2=﹣,x1•x2=.根据该材料填空:已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为10.【解答】解:由题意知,x1+x2=﹣=﹣6,x1x2=3,所以==10.故答案为:10.13.(4分)如果一条抛物线的形状与y=﹣x2+2的形状相同,且顶点坐标是(4,﹣2),则它的函数关系式是y=(x﹣4)2﹣2,y=﹣(x﹣4)2﹣2.【解答】解:∵一条抛物线的形状与y=﹣x2+2的形状相同,∴a=±,设抛物线的顶点式为y=±(x﹣h)2+k,∵顶点坐标是(4,﹣2),∴抛物线的顶点式为y=±(x﹣4)2﹣2.故答案为:y=(x﹣4)2﹣2,y=﹣(x﹣4)2﹣2.14.(4分)已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是8π.【解答】解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.15.(4分)如图,⊙O是等边三角形ABC的外接圆,D、E是⊙O上两点,则∠D=60度,∠E=120度.【解答】解:∵△ABC是等边三角形,∴∠BAC=∠ACB=60°,由圆周角定理知,∠D=∠BAC=60°,由圆内接四边形的对角互补知,∠E=180°﹣∠ACB=120°.16.(4分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球若干个,从中随机摸出一个球记下颜色,再把它放回盒子中,表中是多次试验得到的统计数据:摸球的次数n20050080010000.620.6040.6010.599摸到白球的概率根本表中估计,从中随机摸出一个球,摸到白球的概率为0.6.【解答】解:观察表格得:通过多次摸球实验后发现其中摸到白球的频率稳定在0.6左右,=0.6.则P白球故答案为:0.6.17.(4分)三角形的每条边的长都是方程x2﹣6x+8=0的根,则三角形的周长是6或12或10.【解答】解:由方程x2﹣6x+8=0,得x=2或4.当三角形的三边是2,2,2时,则周长是6;当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去;当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10.综上所述此三角形的周长是6或12或10.18.(4分)如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.则半径为2的“等边扇形”的面积为2.【解答】解:∵S=lr,∴S=×2×2=2,故答案为2.三、解答题(共10小题,满分88分)19.(14分)(1)解方程:①x2+4x﹣12=0;②3x2+5(2x+1)=0(2)已知|a﹣2|+=0,计算的值.【解答】解:(1)①∵原方程可化为(x﹣2)(x+6)=0,∴x﹣2=0或x+6=0,∴x1=2,x2=﹣6;②原方程可化为3x2+10x+5=0,∵△=100﹣4×3×5=40,∴x==,∴x1=,x2=;(2)∵|a﹣2|+=0,∴a﹣2=0,b﹣3=0,∴a=2,b=3.原式=•=•=,当a=2,b=3是,原式=.20.(6分)用一个圆心角为80°,半径为4的扇形做一个圆锥,求这个圆锥的侧面积.(结果保留π)【解答】解:∵扇形的面积==π,∴圆锥的侧面积为π.21.(8分)已知抛物线y=x2+x﹣.(1)用配方法求出它的顶点坐标和对称轴;(2)若抛物线与x轴的两个交点为A、B,求线段AB的长.【解答】解:(1)∵y=x2+x﹣=(x+1)2﹣3,∴抛物线的顶点坐标为(﹣1,﹣3),对称轴是直线x=﹣1;(2)当y=0时,x2+x﹣=0,解得:x1=﹣1+,x2=﹣1﹣,AB=|x1﹣x2|=.22.(10分)已知:如图,AB是⊙O的直径,AC是⊙O的弦,过点C作⊙O的切线与AB的延长线交于点D.若∠CAB=30°,AB=30,求BD的长.【解答】解:连接OC,∵CD是⊙O的切线,∴OC⊥CD,且OC=OA=OB=AB=15,∵∠CAB=30°,∴∠COD=2∠CAB=60°,即∠D=30°,∴在Rt△OCD中,OD=2OC=30,∴BD=OD﹣OB=15.23.(4分)一个桶里有60个弹珠,一些是红色的,一些是蓝色的,一些是白色的.拿出红色弹珠的概率是35%,拿出蓝色弹珠的概率是25%.桶里每种颜色的弹珠各有多少?【解答】解:根据题意可得:一个桶里有60个弹珠, 拿出红色弹珠的概率是35%,则有红色弹珠60×35%=21个, 拿出蓝色弹珠的概率是25%,则蓝色弹珠有60×25%=15个, 白色弹珠60﹣21﹣15=24个.答:红色弹珠有21个,蓝色弹珠有15个,白色弹珠有24个.24.(8分)小明用下面的方法求出方程2﹣3=0的解,请你仿照他的方法求出下面两外两个方程的解,并把你的解答过程填写在下面的表格中.方程换元法得新方程解新方程 检验 求原方程的解2﹣3=0令=t ,则2t ﹣3=0t=t==,所以x= x +2﹣3=0 令=t ,则t 2+2t ﹣3=0t=﹣3或t=1 t=﹣3<0,t=1>0=1,所以x=1 x +令=t ,则t 2+t ﹣2=0t=﹣2或t=1 t=﹣2<0,t=1>0=1,所以x=3【解答】解:②设=t (t ≥0).则方程即可变形为t 2+2t ﹣3=0,∴(t +3)(t ﹣1)=0,∴t+3=0或t﹣1=0,解得,t=﹣3(不合题意,舍去),或t=1;∴=1,∴x=1;③设=t.则方程即可变形为t2+t﹣2=0,∴(t+2)(t﹣1)=0,∴t+2=0或t﹣1=0,解得,t=﹣2(不合题意,舍去),或t=1;∴=1,∴x=3;故答案为:令=t,则t2+2t﹣3=0、t=﹣3或t=1、t=﹣3<0,t=1>0、=1,所以x=1;令=t,则t2+t﹣2=0、t=﹣2或t=1、t=﹣2<0,t=1>0、=1,所以x=3.25.(8分)张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD.设AB边的长为x米.矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写出自变量x的取值范围);(2)当x为何值时,S有最大值并求出最大值.=)(参考公式:二次函数y=ax2+bx+c(a≠0),当x=﹣时,y最大(小)值【解答】解:(1)由题意,得S=AB•BC=x(32﹣2x),∴S=﹣2x2+32x.(2)∵a=﹣2<0,∴S有最大值.∴x=﹣=﹣=8时,有S===128.最大∴x=8时,S有最大值,最大值是128平方米.26.(8分)图中的粗线CD表示某条公路的一段,其中AmB是一段圆弧,AC、BD是线段,且AC、BD分别与圆弧相切于点A、B,线段AB=180m,∠ABD=150度.(1)画出圆弧的圆心O;(2)求A到B这段弧形公路的长.【解答】解:(1)如图,过A作AO⊥AC,过B作BO⊥BD,AO与BO相交于O,O即圆心.(3分)说明:若不写作法,必须保留作图痕迹.其它作法略.(2)∵AO、BO都是圆弧的半径,O为圆心,∴∠OBA=∠OAB=150°﹣90°=60度.(5分)∴△AOB为等边三角形.∴AO=BO=AB=180m.(7分)∴==60π(m).∴A到B这段弧形公路的长为60πm.(10分)27.(10分)如图,某公路隧道横截面为抛物线,其最大高度为6米,底部宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”AD﹣DC﹣CB,使C、D点在抛物线上,A、B点在地面OM上,则这个“支撑架”总长的最大值是多少?【解答】解:(1)M(12,0),P(6,6).(2分)(2)设抛物线解析式为:y=a(x﹣6)2+6 (3分)∵抛物线y=a(x﹣6)2+6经过点(0,0)∴0=a(0﹣6)2+6,即a=﹣(4分)∴抛物线解析式为:y=﹣(x﹣6)2+6,即y=﹣x2+2x.(5分)(3)设A(m,0),则B(12﹣m,0),C(12﹣m,﹣m2+2m)D(m,﹣m2+2m).(6分)∴“支撑架”总长AD+DC+CB=(﹣m2+2m)+(12﹣2m)+(﹣m2+2m)=﹣m2+2m+12=﹣(m﹣3)2+15.(8分)∵此二次函数的图象开口向下.∴当m=3米时,AD+DC+CB有最大值为15米.(9分)28.(12分)如图①,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A⇒B⇒C⇒D 匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A⇒B⇒C⇒D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.【解答】解:(1)Q(1,0)(1分)Q的图象是一条直线,且过点(11,0).且点P运动速度每秒钟1个单位长度.(2分)(2)过点B作BF⊥y轴于点F,BE⊥x轴于点E,则BF=8,OF=BE=4.∴AF=10﹣4=6.在Rt△AFB中,AB==10,(3分)过点C作CG⊥x轴于点G,与FB的延长线交于点H.∵∠ABC=90°,AB=BC,∴△ABF≌△BCH.∴BH=AF=6 CH=BF=8.∴OG=FH=8+6=14,CG=8+4=12.∴所求C点的坐标为(14,12).(4分)(3)过点P作PM⊥y轴于点M,PN⊥x轴于点N,则△APM∽△ABF.∴,∴.∴AM=t,PM=t,∴PN=OM=10﹣t,ON=PM=t.设△OPQ的面积为S(平方单位),∴S=×(10﹣t)(1+t)=5+t﹣t2(0≤t≤10),(5分)说明:未注明自变量的取值范围不扣分.∵a=﹣,∴当t=﹣=时,△OPQ的面积最大.(6分)此时P的坐标为(,).(7分)(4)OP与PQ相等,组成等腰三角形,即当P点的横坐标等于Q点的横坐标的一半时,当P在BC上时,8+(t﹣10)=(t+1),解得:t=﹣15(舍去)当P在CD上时,14﹣(t﹣20)=(t+1),解得:t=,即当t=时,OP与PQ相等.当P在BA上时,t=,OP与PQ相等,(9分)∴当t=或t=时,OP与PQ相等.。

平凉市2015年中考数学试题及答案

平凉市2015年中考数学试题及答案

平凉市2015年初中毕业与高中阶段招生考试数学试题参考答案及评分标准A 卷(100分)一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题4分,共32分. 11.2(1)xy x -12.x =2 13.x ≥-1且0x ≠ 14.x >-115.75° 16.k ≥6- 17.π 18.45,63 (每空2分) 三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明,证明过程或演算步骤. 19.(6分)解:原式=121+-- 4分=231-=- 6分20.(6分)解:原式=2(1)13()(1)(1)11x x x x x x -+-+-++÷ =2(1)1(1)(1)2x x x x x -+⋅+-- 3分 =12x x -- 5分 当10,.2x ==时原式 6分21.(8分)解:(1)如图所示,则⊙P 为所求作的圆.(注:作图3分,答语1分) 4分 (2)∵ ∠B =60°,BP 平分∠ABC ,∴ ∠ABP =30°, 5分 ∵ tan ∠ABP =APAB , ∴ AP 37分∴ S ⊙P =3π.8分22.(8分)解:(1)∵ ∠CGD =42°,∠C =90°, ∴ ∠CDG =90°- 42°=48°, ∵ DG ∥EF , ∴CEF CDG ∠=∠=48°; 4分(2)∵ 点H ,B 的读数分别为4,13.4, ∴ 13.449.4HB =-=,5分ABAB ∴ cos429.40.74 6.96(m)BC HB ︒=≈⨯≈7分答:BC 的长为6.96m .8分23.(10分)解:(1)画树状图:列表:第一次第二次x 2+1- x 2-23x 2+12221x x --+ 231x + - x 2-22212x x +--232x --3213x + 223x --6分(2)代数式A B 所有可能的结果共有6种,其中代数式AB是分式的有4种: 2212x x +--,2221x x --+,231x +,232x --, 所以P ( 是分式) 4263==. 10分开 始x 2+1- x 2-23- x 2-23 x 2+13x 2+1- x 2-2第一次第二次B 卷(50分)四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)24.(8分)解:(1) 5 2分(2)10%, 40 (每空1分) 4分(3)设参加训练之前的人均进球数为x 个,则x (1+25%)=5,解得 x =4, 7分 即参加训练之前的人均进球数是4个. 8分25.(10分)(1)证明:∵ 四边形ABCD 是平行四边形,∴ CF ∥ED ,∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴ CG =DG ,在△FCG 和△EDG 中,FCG EDG CG DGCGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △FCG ≌△EDG (ASA ) 4分 ∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形; 6分(2)① 解:当AE =3.5cm 时,四边形CEDF 是矩形. 8分 ② 当AE =2cm 时,四边形CEDF 是菱形. 10分26.(10分)解:(1)过点D 作x 轴的垂线,垂足为F ,∵ 点D 的坐标为(4,3), ∴ OF =4,DF =3,∴ OD =5, ∴ AD =5, 3分 ∴ 点A 坐标为(4,8), 4分 ∴ k =xy =4×8=32,∴ k =32; 5分(2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数32y x =(x >0)的图象D '点处,过点D '做x 轴的垂线,垂足为F '.∵ DF =3, ∴ 3,D F ''=∴ 点D '的纵坐标为3, 7分 ∵ 点D '在32y x =的图象上 ∴ 3 =32x ,解得x =323, 8分 即323220,4,333F OF F '=∴'=-= ∴ 菱形ABCD 平移的距离为203. 10分 27.(10分) 解:(1)∠BAE =90° 2分 ∠CAE =∠B 4分(2)EF 是⊙O 的切线. 5分 证明:作直径AM ,连接CM , 6分则 ∠ACM =90°,∠M =∠B , 7分∴ ∠M +∠CAM =∠B +∠CAM =90°,∵ ∠CAE =∠B ,∴ ∠CAM +∠CAE =90°, 8分∴ AE ⊥AM , 9分∵ AM 为直径,∴ EF 是⊙O 的切线. 10分28.(12分)解:(1)根据已知条件可设抛物线的解析式为(1)(5)y a x x =--, 1分 把点A (0,4)代入上式,解得 45a =, 2分 ∴ 224424416(1)(5)4(3)55555y x x x x x =--=-+=-- 3分 ∴ 抛物线的对称轴是 3x =; 4分(2)存在;P 点坐标为(3,85). E C A F O M B如图,连接AC 交对称轴于点P ,连接BP ,AB ,∵ 点B 与点C 关于对称轴对称,∴PB =PC ,∴ AB +AP +PB =AB +AP +PC =AB +AC ,∴ 此时△PAB 的周长最小. 6分设直线AC 的解析式为 y kx b =+,把A (0,4),C (5,0)代入y kx b =+,得 450b k b =⎧⎨+=⎩, 解得 454k b ⎧=-⎪⎨⎪=⎩, ∴ 445y x =-+, 7分 ∵ 点P 的横坐标为3, ∴ 483455y =-⨯+=, ∴ P (3,85). 8分 (3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如图,设N 点的横坐标为t ,此时点N (2424455t t t -+,)(0<t <5), 9分 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作 AD ⊥NG ,垂足为D ,由(2)可知直线AC 的解析式为 445y x =-+, 把x t =代入445y x =-+得 445y t =-+, 则G (t ,445t -+), 此时,NG =22442444(4)45555t t t t t -+--+=-+ 10分 ∵ AD +CF =OC =5,∴ S △NAC =S △ANG +S △CGN =12NG ﹒AD +12NG ﹒CF =12NG ﹒OC =22214525(4)52102()2522t t t t t ⨯-+⨯=-+=--+ ∴ 当52t =时,△NAC 面积的最大值为252, 11分由 52t =,得 24244355y t t =-+=-, ∴ N (52,3-) 12分。

2015年中考数学试题(附答案及分析)

2015年中考数学试题(附答案及分析)

2015年中考数学试题考生须知:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上2. 用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内.答 在试题卷上无效.3.考生必须保持答题卡整洁.考试结束后,请将本试题卷和答题卡一并上交.试题卷一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案. 1、和数轴上的点一一对应的是( )(A)整数 (B)有理数 (C)无理数 (D)实数 2、化简:322)3(x x -的结果是( )(A )53x - (B )518x (C )56x - (D )518x - 3、已知一组数据54321x x x x x 、、、、的平均数是5,则另一组 新数组5432154321+++++x x x x x 、、、、的平均数是( )(A )6 (B )8 (C )10 (D )无法计算 4、下列语句中,属于命题..的是( ) (A) 作线段的垂直平分线 (B) 等角的补角相等吗 (C) 平行四边形是轴对称图形 (D) 用三条线段去拼成一个三角形5、一次函数2)3(+-=x k y ,若y 随x 的增大而增大,则k 的值可以是( ) (A )1 (B )2 (C )3 (D )46、有两个圆,⊙1O 的半径等于地球的半径,⊙2O 的半径等于一个篮球的半径,现将两个圆都向外膨胀(相当于作同心圆),使周长都增加1米,则半径伸长的较多的圆是( ) A 、⊙1O B 、⊙2O C 、两圆的半径伸长是相同的 D 、无法确定7.数学活动课上,小明,小华各画了△ABC 和△DEF,尺寸如下图,两个三角形面积分别记作S △ABC 和S △DEF ,那么你认为( )8、若不等式组 -2 x+4≥0 (x 为未知数)无解,则二次函数的图象y=ax 2-2x+1 x >a 与x 的交点( )A.没有交点B.一个交点C.两个交点D.不能确定 9.已知w 关于t 的函数:32w t t=,则下列有关此函数图像的描述正确的是( ) (A )该函数图像与坐标轴有两个交点 (B )该函数图像经过第一象限 (C )该函数图像关于原点中心对称 (D )该函数图像在第四象限 10.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形,③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案 11. 21-的倒数是 ,写出一个比-3大而比-2小的无理数是 . 12. 数据1、5、6、5、6、5、6、6的众数是 ,方差是 .13. 正方形ABCD 的边长为a cm ,E 、F 分别是BC 、CD 的中点,连接BF 、DE ,则图中阴A 第13题CEBAFD(第10题)影部分的面积是 cm 2. 14. 已知关于x 的不等式组0521x a x -⎧⎨->⎩≥,只有3个整数解,则实数a 的取值范围是 .15.具有方向的线段叫做有向线段,以A 为起点,B 为终点的有向线段记作AB u u u v,已知BC=AC AB +u u u v u u u v u u u v ,如下图所示:如果a AB =u u u v v ,BC=b u u u v v ,则AC a b =+u u u v v v。

甘肃省平凉市静宁县2015届中考数学五模试卷含答案解析

甘肃省平凉市静宁县2015届中考数学五模试卷含答案解析

2015年甘肃省平凉市静宁县中考数学五模试卷一、选择题1 . 3的相反数是()A.3 B.﹣3 C.D.﹣2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10103.如图,已知直线AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数是()A.80°B.90°C.100°D.110°4.如图,一个碗摆放在桌面上,则它的俯视图是()A.B.C.D.5.一元二次方程x2+x﹣2=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定6.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()A.B.C.D.7.下列计算错误的是()A.•=B.+=C.÷=2 D.=28.二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<﹣1 B.x>3 C.﹣1<x<3 D.x<﹣1或x>39.已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法判断10.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A.B.C.D.二、填空题11.分解因式:a3﹣a=.12.若关于x的方程﹣1=0有增根,则a的值为.13.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)14.若有意义,则x的取值范围为.15.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=.16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.17.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为.18.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=.三、解答题19.计算:(﹣2)3+×(2014+π)0﹣|﹣|+tan260°.20.若方程组的解是,求(a+b)2﹣(a﹣b)(a+b)21.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).22.如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于A北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1)23.如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)计算线段AB的长.24.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).记s=x+y.(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:当s<6时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?25.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,α=%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?26.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)27.已知如图,AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=10cm,求⊙O的直径.28.已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A 落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.2015年甘肃省平凉市静宁县中考数学五模试卷参考答案与试题解析一、选择题1 . 3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的意义,3的相反数即是在3的前面加负号.【解答】解:根据相反数的概念及意义可知:3的相反数是﹣3.故选:B.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.【解答】解:350 000 000=3.5×108.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.如图,已知直线AB、CD相交于点O,∠1=80°,如果DE∥AB,那么∠D的度数是()A.80°B.90°C.100°D.110°【考点】平行线的性质.【分析】两直线平行,同旁内角互补,由题可知,∠D和∠1的对顶角互补,根据数值即可解答.【解答】解:∵∠1=80°,∴∠BOD=∠1=80°∵DE∥AB,∴∠D=180﹣∠BOD=100°.故选C.【点评】本题应用的知识点为:两直线平行,同旁内角互补及对顶角相等.4.如图,一个碗摆放在桌面上,则它的俯视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】找到从上面看所得到的图形即可.【解答】解:从上面可看到一个圆,它的底还有一个看不见的圆,用虚线表示,故选C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,看不见的棱画成了虚线,看得见的棱画成了实线.5.一元二次方程x2+x﹣2=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1,b=1,c=﹣2,∴△=b2﹣4ac=1+8=9>0∴方程有两个不相等的实数根.故选A【点评】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.【解答】解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;D:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选C.【点评】此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.7.下列计算错误的是()A.•=B.+=C.÷=2 D.=2【考点】二次根式的混合运算.【分析】利用二次根式的运算方法逐一算出结果,比较得出答案即可.【解答】解:A、•=,计算正确;B、+,不能合并,原题计算错误;C、÷==2,计算正确;D、=2,计算正确.故选:B.【点评】此题考查二次根式的运算方法和化简,掌握计算和化简的方法是解决问题的关键.8.二次函数y=ax2+bx+c的图象如图所示,则函数值y<0时x的取值范围是()A.x<﹣1 B.x>3 C.﹣1<x<3 D.x<﹣1或x>3【考点】二次函数的图象.【专题】压轴题;数形结合.【分析】根据y<0,则函数图象在x轴的下方,所以找出函数图象在x轴下方的x的取值范围即可.【解答】解:由图象可知,当﹣1<x<3时,函数图象在x轴的下方,y<0.故选C.【点评】本题是对二次函数图象的考查,主要利用了数形结合的思想,准确识图是解题的关键.9.已知⊙O的半径是6cm,点O到同一平面内直线l的距离为5cm,则直线l与⊙O的位置关系是()A.相交 B.相切 C.相离 D.无法判断【考点】直线与圆的位置关系.【分析】设圆的半径为r,点O到直线l的距离为d,若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离,从而得出答案.【解答】解:设圆的半径为r,点O到直线l的距离为d,∵d=5,r=6,∴d<r,∴直线l与圆相交.故选:A.【点评】本题考查的是直线与圆的位置关系,解决此类问题可通过比较圆心到直线距离d与圆半径大小关系完成判定.10.如图,边长为1的正方形ABCD中,点E在CB延长线上,连接ED交AB于点F,AF=x(0.2≤x≤0.8),EC=y.则在下面函数图象中,大致能反映y与x之间函数关系的是()A.B.C.D.【考点】动点问题的函数图象.【专题】动点型.【分析】通过相似三角形△EFB∽△EDC的对应边成比例列出比例式=,从而得到y与x 之间函数关系式,从而推知该函数图象.【解答】解:根据题意知,BF=1﹣x,BE=y﹣1,且△EFB∽△EDC,则=,即=,所以y=(0.2≤x≤0.8),该函数图象是位于第一象限的双曲线的一部分.A、D的图象都是直线的一部分,B的图象是抛物线的一部分,C的图象是双曲线的一部分.故选:C.【点评】本题考查了动点问题的函数图象.解题时,注意自变量x的取值范围.二、填空题11.分解因式:a3﹣a=a(a+1)(a﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.12.若关于x的方程﹣1=0有增根,则a的值为﹣1.【考点】分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣1=0,得到x=1,然后代入化为整式方程的方程算出未知字母的值.【解答】解:方程两边都乘(x﹣1),得ax+1﹣(x﹣1)=0,∵原方程有增根∴最简公分母x﹣1=0,即增根为x=1,把x=1代入整式方程,得a=﹣1.【点评】增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是∠A=∠F或AC∥EF或BC=DE(答案不唯一).(只需填一个即可)【考点】全等三角形的判定.【专题】开放型.【分析】要判定△ABC≌△FDE,已知AC=FE,AD=BF,则AB=CF,具备了两组边对应相等,故添加∠A=∠F,利用SAS可证全等.(也可添加其它条件).【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).【点评】本题考查了全等三角形的判定;判定方法有ASA、AAS、SAS、SSS等,在选择时要结合其它已知在图形上的位置进行选取.14.若有意义,则x的取值范围为x≤且x≠﹣1.【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】本题考查了代数式有意义的x的取值范围.一般地从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得:1﹣2x≥0且x+1≠0,解得:x≤,且x≠﹣1.【点评】判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.15.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.【考点】特殊角的三角函数值;三角形内角和定理.【专题】计算题.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【解答】解:∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.【点评】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.16.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为5米.【考点】相似三角形的应用.【专题】压轴题.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.17.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则可列方程为36(1+x)2=48.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】三月份的营业额=一月份的营业额×(1+增长率)2,把相关数值代入即可.【解答】解:二月份的营业额为36(1+x),三月份的营业额为36(1+x)×(1+x)=36(1+x)2,即所列的方程为36(1+x)2=48,故答案为:36(1+x)2=48.【点评】考查列一元二次方程;得到三月份的营业额的关系是解决本题的关键.18.观察下列各式:13=1213+23=3213+23+33=6213+23+33+43=102…猜想13+23+33+…+103=552.【考点】规律型:数字的变化类.【专题】规律型.【分析】13=1213+23=(1+2)2=3213+23+33=(1+2+3)2=6213+23+33+43=(1+2+3+4)2=10213+23+33+…+103=(1+2+3…+10)2=552.【解答】解:根据数据可分析出规律为从1开始,连续n个数的立方和=(1+2+…+n)2所以13+23+33+…+103=(1+2+3…+10)2=552.【点评】本题的规律为:从1开始,连续n个数的立方和=(1+2+…+n)2.三、解答题19.计算:(﹣2)3+×(2014+π)0﹣|﹣|+tan260°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用乘方的意义化简,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣8+﹣+3=﹣5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.若方程组的解是,求(a+b)2﹣(a﹣b)(a+b)【考点】二元一次方程组的解.【专题】计算题.【分析】根据二元一次方程组解的定义,把解代入方程组得到关于a、b的二元一次方程组,求解得到a、b的值,然后代入代数式进行计算即可得解.【解答】解:∵方程组的解是,∴,解得,所以,(a+b)2﹣(a﹣b)(a+b),=(0+1)2﹣(0﹣1)(0+1),=1+1,=2.【点评】本题考查了二元一次方程组的解,根据解的定义把方程组的解代入原方程组得到关于a、b 的二元一次方程组是解题的关键.21.如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).【考点】作图—基本作图;平行线的判定.【专题】作图题.【分析】(1)根据角平分线基本作图的作法作图即可;(2)根据角平分线的性质可得∠BDE=∠BDC,根据三角形内角与外角的性质可得∠A=∠BDC,再根据同位角相等两直线平行可得结论.【解答】解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.【点评】此题主要考查了基本作图,以及平行线的判定,关键是正确画出图形,掌握同位角相等两直线平行.22.如图,一艘海上巡逻船在A地巡航,这时接到B地海上指挥中心紧急通知:在指挥中心北偏西60°方向的C地,有一艘渔船遇险,要求马上前去救援.此时C地位于A北偏西30°方向上,A地位于B地北偏西75°方向上,A、B两地之间的距离为12海里.求A、C两地之间的距离(参考数据:≈1.41,≈1.73,≈2.45,结果精确到0.1)【考点】解直角三角形的应用-方向角问题.【分析】过点B作BD⊥CA交CA延长线于点D,根据题意可得∠ACB和∠ABC的度数,然后根据三角形外角定理求出∠DAB的度数,已知AB=12海里,可求出BD、AD的长度,在Rt△CBD中,解直角三角形求出CD的长度,继而可求出A、C之间的距离.【解答】解:过点B作BD⊥CA交CA延长线于点D,由题意得,∠ACB=60°﹣30°=30°,∠ABC=75°﹣60°=15°,∴∠DAB=∠DBA=45°,在Rt△ABD中,AB=12,∠DAB=45°,∴BD=AD=ABcos45°=6,在Rt△CBD中,CD==6,∴AC=6﹣6≈6.2(海里).答:A、C两地之间的距离约为6.2海里.【点评】本题考查了解直角三角形的知识,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度,难度一般.23.如图,直线y=mx与双曲线y=相交于A、B两点,A点的坐标为(1,2)(1)求反比例函数的表达式;(2)根据图象直接写出当mx>时,x的取值范围;(3)计算线段AB的长.【考点】反比例函数与一次函数的交点问题.【专题】数形结合;待定系数法.【分析】(1)把A的坐标代入反比例函数的解析式即可求出答案;(2)求出直线的解析式,解组成的方程组求出B的坐标,根据A、B的坐标结合图象即可得出答案;(3)根据A、B的坐标.利用勾股定理分别求出OA、OB,即可得出答案.【解答】解:(1)把A(1,2)代入y=得:k=2,即反比例函数的表达式是y=;(2)把A(1,2)代入y=mx得:m=2,即直线的解析式是y=2x,解方程组得出B点的坐标是(﹣1,﹣2),∴当mx>时,x的取值范围是﹣1<x<0或x>1;(3)过A作AC⊥x轴于C,∵A(1,2),∴AC=2,OC=1,由勾股定理得:AO==,同理求出OB=,∴AB=2.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式的应用,主要考查学生的理解能力和观察图象的能力,题目比较典型,难度不大.24.如图,有A、B两个转盘,其中转盘A被分成4等份,转盘B被分成3等份,并在每一份内标上数字.现甲、乙两人同时各转动其中一个转盘,转盘停止后(当指针指在边界线上时视为无效,重转),若将A转盘指针指向的数字记为x,B转盘指针指向的数字记为y,从而确定点P的坐标为P(x,y).记s=x+y.(1)请用列表或画树状图的方法写出所有可能得到的点P的坐标;(2)李刚为甲、乙两人设计了一个游戏:当s<6时甲获胜,否则乙获胜.你认为这个游戏公平吗?对谁有利?【考点】游戏公平性;列表法与树状图法.【分析】(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率;(2)游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【解答】解:(1)请用列表或画树状图的方法写出所有可能得到的点P 的坐标;解法一:画树状图法解法二:列表法(2)这个游戏不公平.如图,其中S <6的可能性为,意味着甲获胜的可能性为,同样乙获胜的可能性为,对乙有利.【点评】此题主要考查了游戏公平性的判断.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.游戏双方获胜的概率相同,游戏就公平,否则游戏不公平.25.设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100为A级,75≤x≤85为B级,60≤x≤75为C级,x<60为D级.现随机抽取福海中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了50名学生,α=24%;(2)补全条形统计图;(3)扇形统计图中C级对应的圆心角为72度;(4)若该校共有2000名学生,请你估计该校D级学生有多少名?【考点】条形统计图;用样本估计总体;扇形统计图.【专题】图表型.【分析】(1)根据B级的人数和所占的百分比求出抽取的总人数,再用A级的人数除以总数即可求出a;(2)用抽取的总人数减去A、B、D的人数,求出C级的人数,从而补全统计图;(3)用360度乘以C级所占的百分比即可求出扇形统计图中C级对应的圆心角的度数;(4)用D级所占的百分比乘以该校的总人数,即可得出该校D级的学生数.【解答】解:(1)在这次调查中,一共抽取的学生数是:=50(人),a=×100%=24%;故答案为:50,24;(2)等级为C的人数是:50﹣12﹣24﹣4=10(人),补图如下:(3)扇形统计图中C级对应的圆心角为×360°=72°;故答案为:72;(4)根据题意得:2000×=160(人),答:该校D级学生有160人.【点评】此题考查了是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)【考点】三角形中位线定理;平行四边形的判定;菱形的判定.【专题】几何图形问题.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC且DE=BC,GF∥BC且GF=BC,从而得到DE∥GF,DE=GF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)根据邻边相等的平行四边形是菱形解答.【解答】(1)证明:∵D、E分别是AB、AC边的中点,∴DE∥BC,且DE=BC,同理,GF∥BC,且GF=BC,∴DE∥GF且DE=GF,∴四边形DEFG是平行四边形;(2)解:当OA=BC时,平行四边形DEFG是菱形.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,平行四边形的判定,菱形的判定以及平行四边形与菱形的关系,熟记的定理和性质是解题的关键.27.已知如图,AB是⊙O的直径,⊙O过BC的中点D,且DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=10cm,求⊙O的直径.【考点】切线的判定.【专题】计算题.【分析】(1)连接OD,如图,先证明OD是中位线得到OD∥AC,由于DE⊥AC,则DE⊥OD,于是根据切线的判定定理即可得到DE是⊙O的切线;(2)连接AD,如图,根据圆周角定理得到∠ADB=90°,而D是BC的中点,根据等腰三角形的判定方法得到△ABC为等腰三角形,则∠B=∠C=30°,然后在Rt△ABD中利用∠B的余弦可计算出AB的长.【解答】解:(1)连接OD,如图,∵O是AB的中点,D是BC的中点,∴OD是中位线,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线;(2)连接AD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵D是BC的中点,∴△ABC为等腰三角形,∴∠B=∠C=30°,在Rt△ABD中,∵BD=CD=10,∠B=30°,∴cosB=cos30°=,∴AB==cm,即⊙O的直径为cm.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了三角形中位线性质和等腰三角形的判定与性质.28.已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A 落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)在Rt△AOB中,根据AB的长和∠BOA的度数,可求得OA的长,根据折叠的性质即可得到OA=OC,且∠BOC=∠BOA=30°,过C作CD⊥x轴于D,即可根据∠COD的度数和OC 的长求得CD、OD的值,从而求出点C的坐标.(2)将A、C的坐标代入抛物线的解析式中,通过联立方程组即可求出待定系数的值,从而确定该抛物线的解析式.(3)根据(2)所得抛物线的解析式可得到其顶点的坐标(即C点),设直线MP与x轴的交点为N,且PN=t,在Rt△OPN中,根据∠PON的度数,易得PN、ON的长,即可得到点P的坐标,然后根据点P的横坐标和抛物线的解析式可求得M点的纵坐标,过M作ME⊥CD(即抛物线对称轴)于E,过P作PQ⊥CD于Q,若四边形CDPM是等腰梯形,那么CE=QD,根据C、M、P、D四点纵坐标,易求得CE、QD的长,联立两式即可求出此时t的值,从而求得点P的坐标.【解答】解:(1)过点C作CH⊥x轴,垂足为H;∵在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,∴OB=4,OA=2;由折叠的性质知:∠COB=30°,OC=AO=2,∴∠COH=60°,OH=,CH=3;∴C点坐标为(,3).(2)∵抛物线y=ax2+bx(a≠0)经过C(,3)、A(2,0)两点,∴,解得;∴此抛物线的函数关系式为:y=﹣x2+2x.(3)存在.∵y=﹣x2+2x的顶点坐标为(,3),即为点C,MP⊥x轴,垂足为N,设PN=t;∵∠BOA=30°,∴ON=t,∴P(t,t);作PQ⊥CD,垂足为Q,ME⊥CD,垂足为E;把x=t代入y=﹣x2+2x,得y=﹣3t2+6t,∴M(t,﹣3t2+6t),E(,﹣3t2+6t),同理:Q(,t),D(,1);要使四边形CDPM为等腰梯形,只需CE=QD,即3﹣(﹣3t2+6t)=t﹣1,解得t=,t=1(舍去),∴P点坐标为(,),∴存在满足条件的P点,使得四边形CDPM为等腰梯形,此时P点坐标为(,).。

甘肃省兰州市中考数学试题及解析(2015)

甘肃省兰州市中考数学试题及解析(2015)

甘肃省兰州市中考数学试卷(2015A卷)一、选择题(共15小题,每小题4分,满分60分)2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()4.如图,△ABC中,∠B=90°,BC=2AB,则cosA=()C D5.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()28.在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()C D9.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD ,垂足分别为E,F,连接EF,则的△AEF的面积是()311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时=1+2x=1+2x=12.若点P1(x1,y1),P2(x2,y2)在反比例函数y=(k>0)的图象上,且x1=﹣x2,则13.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()14.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P15.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P 与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()C D二、填空题(共5小题,每小题4分,满分20分)16.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=.17.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=.18.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出根据列表,可以估计出n的值是.19.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1S2.(填“>”或“<”或“=”)20.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是.三、解答题(共8小题,满分70分)21.(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;(2)解方程:x2﹣1=2(x+1).22.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.26.如图,A(﹣4,),B(﹣1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1﹣y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.27.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)28.已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)参考答案与试题解析一、选择题(共15小题,每小题4分,满分60分)不是二次函数,故2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()4.如图,△ABC中,∠B=90°,BC=2AB,则cosA=()C DAC=cosA=5.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为()28.在同一直角坐标系中,一次函数y=kx﹣k与反比例函数y=(k≠0)的图象大致是()C D9.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()3AE=2EF=AE=2,的面积是:EF×23=311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时=1+2x=1+2x=,12.若点P1(x1,y1),P2(x2,y2)在反比例函数y=(k>0)的图象上,且x1=﹣x2,则y===13.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()14.二次函数y=x2+x+c的图象与x轴的两个交点A(x1,0),B(x2,0),且x1<x2,点P==,15.如图,⊙O的半径为2,AB、CD是互相垂直的两条直径,点P是⊙O上任意一点(P 与A、B、C、D不重合),经过P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为()C D==二、填空题(共5小题,每小题4分,满分20分)217.如果===k(b+d+f≠0),且a+c+e=3(b+d+f),那么k=3.==318.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出=0.519.如图,点P、Q是反比例函数y=图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥x轴于点M,QB⊥y轴于点B,连接PB、QM,△ABP的面积记为S1,△QMN的面积记为S2,则S1=S2.(填“>”或“<”或“=”)AP a ab anMN(n=﹣20.已知△ABC的边BC=4cm,⊙O是其外接圆,且半径也为4cm,则∠A的度数是30°三、解答题(共8小题,满分70分)21.(1)计算:2﹣1﹣tan60°+(π﹣2015)0+|﹣|;2=﹣×+1+=22.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;=,传到乙脚下的概率,24.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.由平行投影可知,=,即=,25.如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E、F、G、H分别是AB、CD、AC、BD的中点,求证:线段EF与线段GH互相垂直平分.AD FG=26.如图,A(﹣4,),B(﹣1,2)是一次函数y1=ax+b与反比例函数y2=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1﹣y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连接PC,PD,若△PCA和△PDB面积相等,求点P的坐标.=,图象过,),解得y=x+,m+)PM=,,﹣(﹣,)27.如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.以AB上某一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的图形面积.(结果保留根号和π)∴所求图形面积为28.已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于点A(x1、y1)、B(x2、y2)两点.①当m=时(图①),求证:△AOB为直角三角形;②试判断当m≠时(图②),△AOB的形状,并证明;(3)根据第(2)问,说出一条你能得到的结论.(不要求证明),x时,联立直线和抛物线解析式可得或,==,且∠时,联立直线和抛物线解析式可得,解得﹣==,且∠第21页(共21页)。

2015年甘肃中考数学真题卷含答案解析

2015年甘肃中考数学真题卷含答案解析

2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是( )A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是( )A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是( )A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=( )A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为( )A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是( )9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( )A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( )A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是( )A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则( )A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( )A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是( )A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.26.(本小题满分10分)如图,A(-4,12),B(-1,2)是一次函数y1=ax+b与反比例函数y2=mx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连结PC,PD,若△PCA和△PDB面积相等,求点P的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C 根据二次函数的定义:形如y=ax 2+bx+c(a 、b 、c 为常数,且a ≠0)的函数叫做二次函数,结合各选项知,选C.2.B 左视图为,主视图为,俯视图为,故选B.评析 本题主要考查物体的三视图,属容易题.3.A 根据二次函数y=a(x-h)2+k(a ≠0)的图象的对称轴为直线x=h,知只有A 选项符合题意. 4.D 设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB 2+BC 2=√5k,∴cos A=ABAC =√5k =√55,故选D.5.B 设点A 的坐标为(x,y),由位似图形的性质知,x 1=y 2=52,得x=2.5,y=5,则点A 的坐标为(2.5,5).故选B.6.C 变形得x 2-8x=1,x 2-8x+16=1+16,(x-4)2=17,故选C. 7.D 对角线相等的平行四边形是矩形,故D 错误,选D.8.A 分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A. 9.B 根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B 连结AC,在菱形ABCD 中,AB=BC,∵∠B=60°,∴△ABC 是等边三角形,∵AE ⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF 为等边三角形,∴S △AEF =√34×(2√3)2=3√3.故选B.11.B 设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=109,故选B.12.D 由题意,得xy=k,因为k 是定值,所以当x 1=-x 2时,y 1=-y 2,故选D. 13.A 由题意得点C 的坐标为(0,c), ∵OA=OC,∴点A 的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac 2-bc+c=0, ∵c ≠0,∴ac -b+1=0, 即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO=S矩形BONQ.同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.三、解答题21.解析 (1)2-1-√3tan 60°+(π-2 015)0+|-1| =1-3+1+1=1-3+1 =-1.(2)x 2-1=2(x+1)可化为x 2-2x-3=0,解得x 1=-1,x 2=3.22.解析☉P 为所求作的圆. 23.解析 (1)如图:(2)P(三次传球后,球回到甲脚下)=28=14. (3)P(三次传球后,球回到甲脚下)=28, P(三次传球后,球传到乙脚下)=38, 因为38>28,所以球传到乙脚下的概率大.24.解析 (1)平行.(2)如图,连结CG,AE,过点E 作EM ⊥AB 于M,过点G 作GN ⊥CD 于N,则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5. 所以AM=10-2=8,由平行投影可知AM ME =CNNG ,即810=CD -35, 解得CD=7,即电线杆的高度为7米.25.证明 (1)过点B 作BM ∥AC 交DC 的延长线于点M, ∵AB ∥CD,∴四边形ABMC 为平行四边形. ∴AC=BM=BD,∴∠BDC=∠M=∠ACD. 在△ACD 和△BDC 中,{AC =BD,∠ACD =∠BDC,CD =DC,∴△ACD ≌△BDC, ∴AD=BC.(2)连结EH,HF,FG,GE,∵E,F,G,H 分别是AB,CD,AC,BD 的中点,∴HE ∥AD,且HE=12AD,FG ∥AD,且FG=12AD,EH=12AD,EG=12BC, ∴HE ∥FG 且HE=FG,∴四边形HFGE 为平行四边形. 由(1)知,AD=BC, ∴HE=EG,∴▱HFGE 为菱形,∴线段EF 与线段GH 互相垂直平分.26.解析 (1)在第二象限内,当-4<x<-1时,y 1-y 2>0. (2)∵反比例函数y 2=mx 的图象过A (-4,12), ∴m=-4×12=-2,∵一次函数y 1=ax+b 的图象过A (-4,12),B(-1,2),∴{-4a +b =12,-a +b =2,解得{a =12,b =52, ∴y 1=12x+52. (3)设P (t,12t +52),过P 作PM ⊥x 轴,PN ⊥y 轴,∴PM=12t+52,PN=-t,∵S △PCA =S △PDB ,∴12AC ·CM=12BD ·DN,即12×12(t+4)=12×1×(2-12t -52),解得t=-52, ∴P (-52,54).27.解析 (1)相切.理由如下:如图,连结OD,∵AD 平分∠BAC,∴∠1=∠2,∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD ∥AC.又∠C=90°,∴OD ⊥BC,∴BC 与☉O 相切.(2)①∵AC=3,∠B=30°,∴AB=6.设OA=OD=r,∴OB=2r.∴2r+r=6,解得r=2,即☉O 的半径是2.②由①得OD=2,OB=4,∴BD=2√3.S 阴影=12×2√3×2-60π×22360=2√3-2π3. 28.解析 (1)∵二次函数y=ax 2的图象过点(2,1),∴1=4a,∴a=1,∴二次函数的解析式为y=14x 2.(2)①证明:当m=32时,{y =32x +4,y =14x 2,解得{x 1=-2,y 1=1,{x 2=8,y 2=16,∴A(-2,1),B(8,16).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=1,OC=2,OD=8,BD=16.∴AC OC =OD BD =12,又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.②△AOB 为直角三角形,证明如下:当m ≠3时,{y =mx +4,y =14x 2,解得{x 1=2m -2√m 2+4,y 1=(m -√m 2+4)2,{x 2=2m +2√m 2+4,y 2=(m +√m 2+4)2,∴A(2m -2√m 2+4,(m-√m 2+4)2),B(2m+2√m 2+4,(m+√m 2+4)2).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=(m -√m 2+4)2,OC=-(2m-2√m 2+4),BD=(m+√m 2+4)2,OD=2m+2√m 2+4, ∴AC OC =OD BD =-m -√m 2+42, 又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.(3)如:一次函数y=mx+4的图象与二次函数y=ax2的图象的交点为A,B,则△AOB恒为直角三角形等.。

平凉市中考数学试卷真题

平凉市中考数学试卷真题

平凉市中考数学试卷真题一、选择题1. (本题共5小题,每小题2分,共10分)设函数f(x) = 2x + 1,g(x) = x^2 + 3x,若h(x) = f(g(x)),则h(2)的值为:A. 8B. 14C. 17D. 192. (本题共5小题,每小题2分,共10分)已知正方形ABCD的边长为4,点E、F分别是边CD、AB的中点,那么三角形BEF的面积是:A. 1B. 2C. 3D. 43. (本题共5小题,每小题2分,共10分)已知函数y = ax + b,当x = 2时,y = 4;当x = 5时,y = 7。

则a的值为:A. -1B. 1C. 2D. 34. (本题共5小题,每小题2分,共10分)下列各组数据中,不代表函数y = f(x) = 3x + 1的解析式的是:A. {(0, 1), (1, 4), (2, 7)}B. {(1, 4), (2, 7), (3, 10)}C. {(4, 13), (5, 16), (6, 19)}D. {(0, 2), (1, 5), (2, 8)}5. (本题共5小题,每小题2分,共10分)下列哪组函数中,f(x)是g(x)的反函数?A. f(x) = x + 2, g(x) = x - 2B. f(x) = x + 2, g(x) = x + 2C. f(x) = 2x, g(x) = 2xD. f(x) = 2x, g(x) = 2x + 1二、填空题1. (本题共5小题,每小题2分,共10分)在平面直角坐标系中,角度的度数为30°时,其对应的弧度数是$\underline{\hspace{1cm}}$.2. (本题共5小题,每小题2分,共10分)用筹码赌博,小明只能赢1元或输1元。

每次玩一次,小明的钱财增加1元的概率是0.2,亏损1元的概率是0.8。

如果玩100次,小明最有可能增加的资金是$\underline{\hspace{1cm}}$元。

甘肃省平凉市2015-2016学年九年级下数学期中试题含答案解析

甘肃省平凉市2015-2016学年九年级下数学期中试题含答案解析

2015-2016学年度第二学期九年级数学期中考试试题及解析1、下面左图是由八个相同小正方体组合而成的几何体,则其左视图是()A. B. C. D.考点:简单组合体的三视图分析:找到从左面看得到的平面图形即可.解答:左视图从左往右3列正方形的个数依次为1,3,1,故选C.2、“平凉市明天降水概率是30%”,对此消息下列说法中正确的是()A. 邳州明天将有30%的地区降水B. 邳州明天将有30%的时间降水C. 邳州明天降水的可能比较小D. 邳州明天肯定不降水考点:概率的意义分析:根据概率表示某事情发生的可能性的大小,依此分析选项可得答案.解答:根据概率表示某事情发生的可能性的大小,分析可得:A. 邳州市明天降水概率是30%,并不是有30%的地区降水,故选项错误;B. 邳州市明天降水概率是30%,并不是有30%的时间降水,故选项错误;C. 邳州市明天降水概率是30%,即可能性比较小,故选项正确;D. 邳州市明天降水概率是30%,明天有可能降水,故选项错误。

故选:C.3、二次函数y=-2(x-1)2+3的图象的顶点坐标是()A. (1,3)B. (-1,3)C. (1,-3)D. (-1,-3)考点:二次函数的性质分析:根据二次函数顶点式解析式写出顶点坐标即可.解答:二次函数y=-2(x-1)2+3的图象的顶点坐标为(1,3).故选A.4、⊙1的半径为1cm,⊙2的半径为4cm,圆心距⊙1⊙2=3cm,这两圆的位置关系是()A. 相交B. 内切C. 外切D. 内含考点:圆与圆的位置关系分析:两圆的位置关系有5种:①外离;②外切;③相交;④内切;⑤内含.若d>R+r,则两圆相离;若d=R+r,则两圆外切;若d=R-r,则两圆内切;若R-r<d<R+r,则两圆相交.本题可把半径的值代入,看符合哪一种情况.解答:∵R−r=4−1=3,⊙1⊙2=3cm.∴两圆内切。

故选B.5、当x>0时,函数y=−5x)的图象在()A. 第四象限B. 第三象限C. 第二象限D. 第一象限考点:反比例函数的性质分析:先根据反比例函数的性质判断出反比例函数的图象所在的象限,再求出x>0时,函数的图象所在的象限即可.解答:∵反比例函数y=−5x中,k=−5<0,∴此函数的图象位于二、四象限,∵x>0,∴当x>0时函数的图象位于第四象限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年甘肃省定西市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分) 1.64的立方根是( )A . 4B . ±4C . 8D . ±82.中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为( )A . 0.675×105B . 6.75×104C . 67.5×103D . 675×102 3. 若∠A=34°,则∠A 的补角为( )A . 56°B . 146°C . 156°D . 166° 4. 下列运算正确的是( )A . x 2+x 2=x 4B . (a ﹣b )2=a 2﹣b 2C . (﹣a 2)3=﹣a 6D . 3a 2•2a 3=6a 6 5. 如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是( )A .B .C .D .6. 下列命题中,假命题是( ) A . 平行四边形是中心对称图形 B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等 C .对于简单的随机样本,可以用样本的方差去估计总体的方差 D . 若x 2=y 2,则x=y7. 今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x ,根据题意列方程,则下列方程正确的是( )A . 2500x 2=3500B . 2500(1+x )2=3500C . 2500(1+x%)2=3500D . 2500(1+x )+2500(1+x )2=3500 8. △ABC 为⊙O 的内接三角形,若∠AOC=160°,则∠ABC 的度数是( )A . 80°B . 160°C . 100°D . 80°或100° 9. 如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为( )A .B .C .D .10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共8小题,每小题4分,共32分)11.分解因式:x3y﹣2x2y+xy=.12.分式方程的解是.13.在函数y=中,自变量x的取值范围是.14.定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为.15.已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=.16.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是.17.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是,2016是第个三角形数.三、解答题(本题共5小题,共38分)19.(6分)计算:()0++(﹣1)2015﹣tan60°.20.(8分)先化简,再求值:÷(1﹣),其中x=0.21.(8分)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.(8分)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(8分)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.四、解答题(本题共5小题,共50分)24.(8分)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表8 7 6 5 4 3进球数(个)人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.25.(8分)如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=cm时,四边形CEDF是矩形;②当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)26.(10分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.27.(10分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):或者.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.28.(14分)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由2015年甘肃省平凉市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.64的立方根是()A.4B.±4 C.8D.±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A.0.675×105B.6.75×104C.67.5×103D.675×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.若∠A=34°,则∠A的补角为()A.56°B.146°C.156°D.166°考点:余角和补角.分析:根据互补的两角之和为180°,可得出答案.解答:解:∵∠A=34°,∴∠A的补角=180°﹣34°=146°.故选B.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.4.下列运算正确的是()A.x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.解答:解:A、x2+x2=2x2,错误;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(﹣a2)3=﹣a6,正确;D、3a2•2a3=6a5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.5.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y考点:命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体.分析:根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可.解答:解:A、平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B、三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C、用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D、若x2=y2,则x=±y,不是x=y,故该命题是假命题;故选D.点评:本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.7.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.解答:解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°考点:圆周角定理.分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.解答:解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.9.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC 的值为()A.B.C.D.考点:相似三角形的判定与性质.分析:证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.解答:解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.点评:本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:证明△BPE∽△CDP,根据相似三角形的对应边的比相等求得y与x的函数关系式,根据函数的性质即可作出判断.解答:解:∵∠CPD=∠FPD,∠BPE=∠FPE,又∵∠CPD+∠FPD+∠BPE+∠FPE=180°,∴∠CPD+∠BPE=90°,又∵直角△BPE中,∠BPE+∠BEP=90°,∴∠BEP=∠CPD,又∵∠B=∠C,∴△BPE∽△CDP,∴,即,则y=﹣x2+,y是x的二次函数,且开口向下.故选C.点评:本题考查了动点问题的函数图象,求函数的解析式,就是把自变量当作已知数值,然后求函数变量y的值,即求线段长的问题,正确证明△BPE∽△CDP是关键.二、填空题(本题共8小题,每小题4分,共32分)11.分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.分式方程的解是x=2.考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.13.在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0.点评:考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x>﹣1.考点:一元一次不等式的应用.专题:新定义.分析:根据运算的定义列出不等式,然后解不等式求得不等式的解集即可.解答:解:3⊕x<13,3(3﹣x)+1<13,解得:x>﹣1.故答案为:x>﹣1.点评:此题考查一元一次不等式解集的求法,理解运算的方法,改为不等式是解决问题的关键.15.已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.分析:根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.解答:解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.16.关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.考点:根的判别式;一元一次方程的解.分析:由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.解答:解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.点评:本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.17.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.考点:扇形面积的计算.分析:根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.解答:解:∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,∴S阴影=S扇形OBD==π.故答案是:π.点评:本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、解答题(本题共5小题,共38分)19.计算:()0++(﹣1)2015﹣tan60°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用算术平方根定义计算,第三项利用乘方的意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+2﹣1﹣×=2﹣3=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.考点:作图—复杂作图;切线的性质.分析:(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.解答:解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.点评:本题主要考查了作图﹣复杂作图,角平分线的性质,即角平分线上的点到角两边的距离相等.同时考查了圆的面积.22.如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形.分析:(1)先根据直角三角形的两锐角互为求出∠CDG的度数,再根据两直线平行,同位角相等求出∠DEF,然后根据三角形的一个外角等于与它不相邻的两个内角的和即可求出∠EFA;(2)根据度数求出HB的长度,再根据∠CBH=∠CGD=42°,利用42°的余弦值进求解.解答:解:(1)∵∠CGD=42°,∠C=90°,∴∠CDG=90°﹣42°=48°,∵DG∥EF,∴∠CEF=∠CDG=48°;(2)∵点H,B的读数分别为4,13.4,∴HB=13.4﹣4=9.4(m),∴BC=HBcos42°≈9.4×0.74≈6.96(m).答:BC的长为6.96m.点评:本题考查了解直角三角形与平行线的性质,直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和,综合性较强,但难度不大,仔细分析图形并认真计算即可.23.有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.考点:列表法与树状图法;分式的定义.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:列表:x2+1 ﹣x2﹣2 3第一次第二次x2+1﹣x2﹣23(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.四、解答题(本题共5小题,共50分)24.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表8 7 6 5 4 3进球数(个)人数 2 1 4 7 8 2请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为5个;(2)选择长跑训练的人数占全班人数的百分比是10%,该班共有同学40人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.考点:扇形统计图;一元一次方程的应用;统计表.分析:(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.解答:解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个).故答案是:5;(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得x=4.即参加训练之前的人均进球数是4个.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE= 3.5cm时,四边形CEDF是矩形;②当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)考点:平行四边形的判定与性质;菱形的判定;矩形的判定.专题:动点型.分析:(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.点评:本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.26.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.考点:反比例函数综合题.分析:(1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.解答:解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,过点D′做x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为.点评:此题主要考查了反比例函数综合以及反比例函数图象上点的坐标性质,得出A点坐标是解题关键.27.已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.考点:切线的判定.分析:(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.解答:解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.点评:本题考查了圆周角定理,切线的判定的应用,主要考查学生运用定理进行推理的能力,注意:经过半径的外端,并且垂直于半径的直线是圆的切线.28.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.。

相关文档
最新文档