数理统计之假设检验ppt课件
合集下载
概率论与数理统计课件:假设检验
假设检验
首页 返回 退出
五、假设检验的两类错误
由于样本具有随机性,因此,当我们利用样本判断时, 可能会犯两类错误:
所作决策
真实情况
(未知)
样本未落入拒绝域 样本落入拒绝域
接受H0
拒绝H0
H0为真
正确
第一类错误
H0不真
第二类错误
正确
第一类(弃真): 第二类(取伪):
假设检验
P{拒绝H0|H0为真}= , P{接受H0|H0不真}= .
(α=0.05)
解:正态总体X~N(μ,σ2),已知σ=2
要检验的假设为
H0 : 40, H1 : 40
选择检验统计量
Z X 0 ~ N (0,1) / n
假设检验
首页 返回 退出
解:正态总体X~N(μ,σ2),已知σ=2
要检验的假设为
H0 : 40, H1 : 40
选择检验统计量
由样本数据计算,得 x 100.104 计算统计量Z的观测值,得
Z 100.104 100 0.658 1.96 0.5 / 10
没有落入 拒绝域
结论:不拒绝原假设,认为内径的值符合设计要求.
假设检验
首页 返回 退出
要检验的假设为
H0 : 100, H1 : 100
(2)未知σ2 ,选择检验统计量
没有落入 拒绝域
结论:不拒绝原假设,认为内径的值符合设计要求.
假设检验
首页 返回 退出
例2 某厂生产的固体燃料推进器的燃烧率服从正态分 布X~N(40,22),现在采用技术研发部设计的新方法 生产了一批推进器,随机测试25只,测得燃烧率的 样本均值为 x 41.25 ,假设在新方法下σ=2,问用 新方法生产的推进器的燃烧率是否有显著的提高?
数理统计之假设检验ppt课件
z2 z0.025 1.96;
x0
575.2570
5.2 102.0551.96
n 8 10
8
这说明小概率事件竟在一次试验中发生了,
故拒绝H0,可以接受H1。 即认为折断力大小有差别
完整版PPT课件
15
已知 X~N(,2), 2 已知,检验假设
H 0: 0 H 1: 0的过程分为六个步骤:
由样本算得 x543.5, s27.582 查表 t2(n1)t0.02 (4 5)2.776 这里 |t||543549|1.77t0.02(54)2.776
7.58/ 5 接受H0。新罐的平均爆破压力与过去无显著差别。
完整版PPT课件
31
例6 某工厂生产一种螺钉,标准要求是长度是32.5毫米,
假设的决定。 ❖ 基本思想(规则或前提)
小概率事件在一次试验中几乎不会发生。
完整版PPT课件
4
带概率性质的反证法 通常的反证法设定一个假设以后,如果出现的 事实与之矛盾,(即如果这个假设是正确的话,出现 一个概率等于0的事件)则绝对地否定假设.
带概率性质的反证法的逻辑是: 如果假设H0是正确的话,一次试验出现一个 概率很小的事件,则以很大的把握否定假设H0.
❖ 2 在H0成立的前提下,选择合适的统计量,这个统 计量要包含待检的参数,并求得其分布;
❖ 3 给定显著性水平 ,按分布写出小概率事件及其
概率表达式;
❖ 4 由样本计算出需要的数值;
❖ 5 判断小概率事件是否发生,是则拒绝,否接受
完整版PPT课件
9
二 单个正态总体参数的假设检验
一、总体均值 的假设检验
2
z x
2
完整版PPT课件
数理统计实验2A假设检验ppt课件
xj nj
02 17 2 11 36 43 51
实验2 假设检验
(2)参数估计
xjnj 64 xj-送修汽车数 n 30 nj- xj的频数
xj nj
02 17 2 11 36 43 51
ˆ x 1 n
xjnj
1 30
64
2.1333
pj P
X xj
ˆ xj eˆ 2.1333xj e2.1333
xj!
xj!
2.1333xj 0.118445777
xj!
实验2 假设检验
(3)观测频数对比期望频数
实验2 假设检验
(4)χ2值计算
2.1333xj pj 0.118445777 xj !
数据计算表
xj nj
pj
npj
0 2 0.11844 1 7 0.25268 2 11 0.26952 3 6 0.19166 4 3 0.10222 ≥5 1 0.06548
3.5532 7.5804 8.0856 5.7498 3.0666 1.9644
nj2/pj
实验2 假设检验
(4)χ2值计算
2.1333xj pj 0.118445777 xj !
数据计算表
xj nj
pj
npj
≤1 9 0.37112 2 11 0.26952 ≥3 10 0.35936 合计 1.0000
实验2 假设检验
均值差t检验
Significance Testing on Mean Difference
实验2 假设检验
(1)样本资料
x-温度A试件硬度样本 y-温度B试件硬度样本
x
y
85.6
86.2
《假设检验》课件
方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。
《假设检验检验》课件
《假设检验检验》PPT课 件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
高等数理统计 假设检验PPT课件
精品ppt
27
第二节 Neyman-Pearson基本引理
定义(MPT):在检验问题 (0 , 1 ) 中, 设 是 (水x ) 平为 的检 验,如果对任意一个水 平为 的检验 ,都 1 ( 有x )
E 1(x)E 11(X )
则称检验 ( x ) 是水平为 的最优势检验,记为
MPT(most powerful test)
p(xi;0)
i1
则MPT的拒绝域具有形式
_
W{x:(x)k}{x:xc}
精品ppt
36
令
c U 1 n
即可
精品ppt
37
此题中若 1 0 呢?
精品ppt
38
例题
设样本来自Poisson分布族
H 0 : 1 , H 1 : 1(1 1 )
在水平为 时,构造似然比统计量
精品ppt
H 0:0, H 1:1
定义似然检验比函数
(x) p(x;1) p( x;0 )
精品ppt
32
注2
在似然比函数具有连续分布函数时,MPT检验函 数可以取为非随机化的形式
(x)01
(x)k (x)k
其中k由 E 0(X )P 0{ (x)k} 确定
精品ppt
33
若似然比函数为离散型随机变量时,可在集合
数k,使得
E0(X)
(x) 01
p(x;1)kp(x;0) p(x;1)kp(x;0)
精品ppt
30
(2)满足该条件的检验函数 ( x )是水平为 的
MPT,反之,如果 ( x )是水平为 的MPT,则一
定存在常数k,使得 ( x ) 满足上式.
精品ppt
《假设检验》PPT课件
2 已知:z
x 0 n
~ N (0,1)
2008-2009
2 未知: z
x 0
s
n
~ N (0,1)
总体均值的检验( 2 已知)
【例】 一种罐装饮料采用自动生 产线生产,每罐的容量是 255ml,标准差为5ml。为检验 每罐容量是否符合要求,质检 人员在某天生产的饮料中随机 抽取了 40 罐进行检验,测得每 罐 平 均 容 量 为 255.8ml 。 取 显 著性水平=0.05 ,检验该天生 产的饮料容量是否符合标准要 求?
对总体参数的具体数值所作 的陈述
总体参数包括总体均值、
我认为这种新药的疗效 比原有的药物更有效!
比例、方差等
分析之前必需陈述
2008-2009
什么是假设检验?(hypothesis test)
1. 2. 3.
先对总体的参数 ( 或分布形式 ) 提出某种假设, 然后利用样本信息判断假设是否成立的过程 有参数检验和非参数检验 逻辑上运用反证法,统计上依据小概率原理
统计量的值落在拒绝域,拒绝H0,否则不拒绝H0 也可以直接利用P值作出决策
2008-2009
6.2 总体均值的检验
大样本的检验方法 小样本的检验方法
2008-2009
一个总体参数的检验
一个总体 均值
z 检验 t 检验
比例
z 检验
方差
2 检验
(单尾和双尾)
(单尾和双尾)
(单尾和双尾)
(单尾和双尾)
解: 研究者想收集证据予以证明 的假设应该是“生产过程不正常 ”。建立的原假设和备择假设为
H0 : 10cm H1 : 10cm
假设检验完整版PPT课件
H0 : 335ml H1 : 335ml
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0
1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
消费者协会接到消费者投诉,指控品牌纸包装 饮料存在容量不足,有欺骗消费者之嫌。包装 上标明的容量为250毫升。消费者协会从市场上 随机抽取50盒该品牌纸包装饮品进行假设检验。 试陈述此假设检验中的原假设和备择假设。
解:消费者协会的意图是倾向于证实饮料厂包装 饮料小于250ml 。建立的原假设和备择假设为
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0 观察到的样本统计量
样本统计量 临界值
显著性水平和拒绝域
(右侧检验 )
抽样分布
置信水平
1-
拒绝H0
0
样本统计量
临界值
第一节 假设检验概述
1、假设检验的基本思想 2、假设检验的步骤 3、两类错误和假设检验的规则
三、两类错误和假设检验的规则
(单侧检验 )
抽样分布
置信水平
拒绝H0
1-
拒绝域 临界值
0 接受域
样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
样本统计量
观察到的样本统计量
显著性水平和拒绝域
(左侧检验 )
抽样分布
置信水平
拒绝H0
1-
临界值
0
观察到的样本统计量
样本统计量
•【例2】一种罐装饮料采用自动生产线生产,每罐的容量 是255ml,标准差为5ml,服从正态分布。换了一批工人后, 质检人员在某天生产的饮料中随机抽取了16罐进行检验,
一个总体的检验
一个总体
概率论与数理统计PPT课件(共8章)第八章 假设检验
概
率
论
与
数 理
8.3
统
计 两个正态总体的假设检验
8.3.1 两个正态总体均值差的检验
1、σ12,σ22已知,关于μ1-μ2的检验
(1)提出原假设 H0 :1 2 及备择假设 H1 :1 2 .
(2)构造检验统计量 Z
(X Y)
12
2 2
,当 H0
成立时,
n1 n2
Z (X Y ) ~N (0 ,1) .
12
2 2
n1 n2
8.3.1 两个正态总体均值差的检验
1、σ12,σ22已知,关于μ1-μ2的检验
(3)对于给定的显著性水平 ,由 P{ | z | z /2} 确定 拒绝域 | z | z /2 . (4)利用样本值计算检验统计量 Z 的观测值.若| z | z /2 , 则拒绝 H0 ;若| z | z /2 ,则接受 H0 .
构造检验统计量 t
X 0 S/ n
.当 H0 成立时,由定理 6.2
可知 t X 0 ~t(n 1) . S/ n
8.2.1 单个正态总体均值的检验
2、σ2未知,关于μ的检验(t检验法)
(3)对于给定的显著性水平 ,利用 t 分布表求临界值 t/2 (n 1) , 使得 P{| t | t /2 (n 1)} ,从而确定拒绝域| t | t /2 (n 1) .
(4)利用样本值 x1 ,x2
,
,xn
计算检验统计量 t
X 0 S/ n
观测值,若 t 的观测值落在拒绝域内,则拒绝 H0 ,否则接受 H0 .
8.2.1 单个正态总体均值的检验
例 8.3 在例 8.2 中假定 2 未知,问这批瓷砖的平均抗断强度为 3.250 MPa 是否成立?
概率论与数理统计参数假设检验PPT课件
时,拒绝H0.
《概率统计》
返回
下页
结束
例3. 采用两种育苗方案作杨树的育苗试验,已知苗高的标准差
分别为σ1=20cm, σ2=18cm各取80株树苗作为样本,算得苗高样
本均值为:甲 x 6812 , 乙 y 5865
已知苗高服从正态分布,判断两种试验方案对平均苗高有无显著
差异(α=0.01)?
车床乙:1.11, 1.12, 1.18, 1.22, 1.33, 1.35, 1.36, 1.38
解:
H0
:
2 1
2 2
(
2 1
,
22分别为两台机床的方差)
选统计量
F
S12
S
2 2
~
F (9,7)
查表得 F 2 (9,7) F0.05 (9,7) 3.68
F1 2 (9,7) F0.95 (9,7) 1/ F0.05 (7,9) 0.304
H0: μ=μ0
H1: μ ≠ μ0
双侧检验
2)μ比μ0有无显著
H0: μ=μ0
H1: μ > μ0
右单侧检验
提高(增大)?
3)μ比μ0有无显著
降低(减少)?
(μ≤μ0) H0: μ=μ0
H1: μ < μ0
左单侧检验
(μ≥μ0)
要点:含等号“=”的作为原假设(这样做就是为了数学处理的方便).
《概率统计》
15 36
μ=μ0=70
显然统计量的值t = -1.4在接受域内,所以接受H0,即可以认 为全体考生平均分为70分.
《概率统计》
返回
下页
结束
例2. 一种元件,要求使用寿命不得低于1000小时,现在从一批这种元件中随 机抽取25件,测得其使用寿命的平均值为950小时,已知该元件寿命服从标准 差σ=100小时的正态分布,试在显著性水平α=0.05下确定这批元件是否合 格.
概率论与数理统计PPT课件第八章假设检验01.ppt
注:为了简便, 我们把以上的原假设和备择假 设记作
H0: p=0.35 vs H1: p>0.35. 其中的vs是versus的缩写.
10
参数检验的一般提法
一般来讲, 设X1, X2,…,Xn是来自总体X的样
本, 是总体X的未知参数, 但是已知 Θ0 Θ1,
它们是互不相交的参数集合. 对于假设
H0: Θ0 vs H1: Θ1,
根据样本,构造一个检验统计量T 和检验法则: 若与T的取值有关的一个小概率事件W发生,则 否定H0,否则接受H0,而且要求
P(W | H0 )
此时称W为拒绝域,为检验水平。
11
例 3. 某厂生产的螺钉,按标准强度为68克/mm2,
而实际生产的螺钉强度 X 服从 N ( ,3.6 2 ). 若 E ( X ) = = 68, 则认为这批螺钉符合要求,否
H1: p> 0.35. 在本问题中,如果判定H0不对,就应当承认H1.
检验: 三起交通事故的发生是相互独立的, 他们 之间没有联系.
如果H0为真, 则每一起事故发生在隧道南的 概率都是0.35, 于是这三起交通事故都发生在隧 道南的概率是
P= 0.353 ≈ 0.043.
这是一个很小的概率, 一般不容易发生.
这不是 小概率事件, 没理由拒绝原假设。在不 准备继续抽样的情况下,作出接受原假设的决 定, 即该批产品可以出厂.
5
例2: 一条新建的南北交通干线全长10公里.公路 穿过一个隧道(长度忽略不计),隧道南面3.5公里, 北面6.5公里. 在刚刚通车的一个月中, 隧道南 发生了3起交通事故, 而隧道北没有发生交通事 故,能否认为隧道南的路面更容易发生交通事故?
则认为不符合要求.为此提出如下原假设
H0: p=0.35 vs H1: p>0.35. 其中的vs是versus的缩写.
10
参数检验的一般提法
一般来讲, 设X1, X2,…,Xn是来自总体X的样
本, 是总体X的未知参数, 但是已知 Θ0 Θ1,
它们是互不相交的参数集合. 对于假设
H0: Θ0 vs H1: Θ1,
根据样本,构造一个检验统计量T 和检验法则: 若与T的取值有关的一个小概率事件W发生,则 否定H0,否则接受H0,而且要求
P(W | H0 )
此时称W为拒绝域,为检验水平。
11
例 3. 某厂生产的螺钉,按标准强度为68克/mm2,
而实际生产的螺钉强度 X 服从 N ( ,3.6 2 ). 若 E ( X ) = = 68, 则认为这批螺钉符合要求,否
H1: p> 0.35. 在本问题中,如果判定H0不对,就应当承认H1.
检验: 三起交通事故的发生是相互独立的, 他们 之间没有联系.
如果H0为真, 则每一起事故发生在隧道南的 概率都是0.35, 于是这三起交通事故都发生在隧 道南的概率是
P= 0.353 ≈ 0.043.
这是一个很小的概率, 一般不容易发生.
这不是 小概率事件, 没理由拒绝原假设。在不 准备继续抽样的情况下,作出接受原假设的决 定, 即该批产品可以出厂.
5
例2: 一条新建的南北交通干线全长10公里.公路 穿过一个隧道(长度忽略不计),隧道南面3.5公里, 北面6.5公里. 在刚刚通车的一个月中, 隧道南 发生了3起交通事故, 而隧道北没有发生交通事 故,能否认为隧道南的路面更容易发生交通事故?
则认为不符合要求.为此提出如下原假设
数理统计 假设检验共48页PPT
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
谢谢!
数理统计 假设检验
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
谢谢!
数理统计 假设检验
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 3 给定显著性水平 ,按分布写出小概率事件及其
概率表达式; ❖ 4 由样本计算出需要的数值; ❖ 5 判断小概率事件是否发生,是则拒绝,否接受
二 单个正态总体参数的假设检验
一、总体均值 的假设检验
1 . 2 已知时, 的检验
H 0: 0-----原假设(零假设) H 1: 0-----备选假设(对立假设)
其均值为μ=0.5公斤, 标准差σ=0.015公斤.
某日开工后为检验包装机是否正常,随机地抽取它所 包装的糖9袋,称得净重为(公斤)(: =0.05)
0.497 0.506 0.511 0.520 问机器是否正常? 解:先提出假设
0.518 0.515
0.524 0.498 0.512
H0: 0.5 H 1: 0.5 00.5
检验一个H0时,是根据检验统计量来判决是 否接受H0的,而检验统计量是随机的,这就有可能 判决错误.这种错误有以下两类:
H0事实上是正确的,但被我们拒绝了,称犯了 “弃真”的(或称第一类)错误.
H0事实上是不正确的,但被我们接受了,称犯 了“存伪”的(或称第二类)错误.
假设检验的两类错误 实际情况
第四章 假设检验
基本要求 理解假设检验的概念及其基本思想。 理解拒绝域、临界值、显著水平等概念。 掌握假设检验的基本步骤。 了解假设检验可能产生的两类错误。
一 假设检验基本概念
例,对某产品进行了工艺改造或研制了新产品, 要比较原产品和新产品在某一项指标上的差异, 这样我们面临选择是否接受假设
“新产品的某一项指标优于老产品”。
当H
0
为真时,
U
X
0
n
~ N(0, 1)
衡量 u x 0 的大小 n
设一临界值 k>若
u x 0 k n
就认为有较大偏差; 则认为 H
不真,拒绝
0
H
0
若
u x 0 k
n
则接受 H 0
显著性检验: P{拒绝H 0 | H 0 为真}
P
X
0
k
,
n
U X 0 ~ N(0, 1) n
已知 X~N(,2), 2 已知,检验假设
H 0: 0 H 1: 0的过程分为六个步骤:
第一步:提出原假设和备择假设
H 0:0 H 1:0
第二步:选取统计量 U X n
第三步:拒绝域为
x 0 n
z / 2
第四步:查表确定临界值 k z /2
第五步:计算 u x 0
(x)
n
第六步:判断
z 0 | u | z /2 则H0相容,接受H0 2
| u | z /2 则否定H0,接受H1
2
z x
2
P(|Z|>zα/2)=α
Z检验 α/2
φ(x)
α/2
- zα/2
zα/2
X
拒绝域 接受域 拒绝域
双侧统计检验
例2 某车间用一台包装机包装葡萄糖.包得的袋装糖
重是一个随机变量X, 且 X~N(,2) 当机器正常时,
必须作一些试验,也就是抽样。
根据得到的样本观察值 x1,x2,,xn来作出决定。
假设检验问题就是根据样本的信息,检验 关于总体的某个假设是否正确。
❖ 假设检验是一种统计推断方法
为了了解总体的某些性质,首先作出某种假 设,然后进行试验,取得样本,根据样本值,构 造统计方法,判断是否接受这个假设,即检验这 种假设是否合理,合理则接受,否则拒绝。 小概率事件在一次试验中发生的概率记为α,
抽出10个样品进行检验,测得其折断力为 55 75 7 25 7 85 6 05 7 85 7 25 7 05 7 05 9 2
看在H0条件下会不会产生不合理的现象,
样本均值 X 为 的无偏估计,X 能较好反映 的大小.
当H
为真时,
0
X
差异不能过大。
P{ X 有较大偏差} 较小
若差异较大,即小概率事件发生,则拒绝假设 H 0 .
选取统计量:U X 0 n
小概率事件在一次试验中几乎不会发生。
带概率性质的反证法 通常的反证法设定一个假设以后,如果出现的 事实与之矛盾,(即如果这个假设是正确的话,出现 一个概率等于0的事件)则绝对地否定假设.
带概率性质的反证法的逻辑是: 如果假设H0是正确的话,一次试验出现一个 概率很小的事件,则以很大的把握否定假设H0.
0 .0,50 .0,10 .1
在假设检验中,称α为显著水平、检验水平。
解决办法与基本思想
❖ 1 明确所要处理的问题,答案只能是“是”或“否” ❖ 2 取得样本,同时要知道样本的分布 ❖ 3 把“是”转化到分布上得到一个命题或假设 ❖ 4 根据样本值,按照一定的规则,作出接受或拒绝
假设的决定。 ❖ 基本思想(规则或前提)
决定
H0为真
H0不真
拒绝H0 第一类错误 正确
接受H0 正确
第二类错误
犯两类错误的概率:
P{拒绝H0|H0为真}=,
P{接受H0|H0不真}= .
显著性水平为犯第一类错误的概率.
当样本容量n固定时,一类错误概率的减少 导致另一类错误概率的增加.要同时降低两类错误, 必须增加样本容量.
在统计学中,通常控制犯第一类错误的概率. 一般事先选定一个数,(0<<1),要求犯第一类错 误的概率≤.
显著性检验:只对犯第一类错误的概率加以控制,
而不考虑犯第二类错误的概率。
P{拒绝H 0 | H 0 为真} 称 为显著性水平。
参数假设检验解题步骤
❖ 1 根据问题提出原假设H0,同时给出对立假设H1 (备选假设);
❖ 2 在H0成立的前提下,选择合适的统计量,这个统 计量要包含待检的参数,并求得其分布;
其中 0 是已知常数
在实际中,往往把不轻易否定的命题作为原假设.
例1 某车间生产铜丝,主要质量指标是折断力
X的大小。由资料可认为 X~N(57,082) 今换了一批
原料,从性能上看,估计折断力的方差不会有变化, 但不知折断力的大小有无差别。(=0.05)
解 此问题就是已知方差 2 82
检验假设 H 0: 5 7 0 , H 1: 5 7 0
k z/2
X 0 n
Z / 2
拒绝域
55 75 7 25 7 85 6 05 7 85 7 25 7 05 7 05 9 2
由样本值求出 x57.25
z2 z0.025 1.96;
x0
575.2570
5.2 102.0551.96
n 8 10
8
这说明小概率事件竟在一次试验中发生了,
故拒绝H0,可以接受H1。 即认为折断力大小有差别
概率表达式; ❖ 4 由样本计算出需要的数值; ❖ 5 判断小概率事件是否发生,是则拒绝,否接受
二 单个正态总体参数的假设检验
一、总体均值 的假设检验
1 . 2 已知时, 的检验
H 0: 0-----原假设(零假设) H 1: 0-----备选假设(对立假设)
其均值为μ=0.5公斤, 标准差σ=0.015公斤.
某日开工后为检验包装机是否正常,随机地抽取它所 包装的糖9袋,称得净重为(公斤)(: =0.05)
0.497 0.506 0.511 0.520 问机器是否正常? 解:先提出假设
0.518 0.515
0.524 0.498 0.512
H0: 0.5 H 1: 0.5 00.5
检验一个H0时,是根据检验统计量来判决是 否接受H0的,而检验统计量是随机的,这就有可能 判决错误.这种错误有以下两类:
H0事实上是正确的,但被我们拒绝了,称犯了 “弃真”的(或称第一类)错误.
H0事实上是不正确的,但被我们接受了,称犯 了“存伪”的(或称第二类)错误.
假设检验的两类错误 实际情况
第四章 假设检验
基本要求 理解假设检验的概念及其基本思想。 理解拒绝域、临界值、显著水平等概念。 掌握假设检验的基本步骤。 了解假设检验可能产生的两类错误。
一 假设检验基本概念
例,对某产品进行了工艺改造或研制了新产品, 要比较原产品和新产品在某一项指标上的差异, 这样我们面临选择是否接受假设
“新产品的某一项指标优于老产品”。
当H
0
为真时,
U
X
0
n
~ N(0, 1)
衡量 u x 0 的大小 n
设一临界值 k>若
u x 0 k n
就认为有较大偏差; 则认为 H
不真,拒绝
0
H
0
若
u x 0 k
n
则接受 H 0
显著性检验: P{拒绝H 0 | H 0 为真}
P
X
0
k
,
n
U X 0 ~ N(0, 1) n
已知 X~N(,2), 2 已知,检验假设
H 0: 0 H 1: 0的过程分为六个步骤:
第一步:提出原假设和备择假设
H 0:0 H 1:0
第二步:选取统计量 U X n
第三步:拒绝域为
x 0 n
z / 2
第四步:查表确定临界值 k z /2
第五步:计算 u x 0
(x)
n
第六步:判断
z 0 | u | z /2 则H0相容,接受H0 2
| u | z /2 则否定H0,接受H1
2
z x
2
P(|Z|>zα/2)=α
Z检验 α/2
φ(x)
α/2
- zα/2
zα/2
X
拒绝域 接受域 拒绝域
双侧统计检验
例2 某车间用一台包装机包装葡萄糖.包得的袋装糖
重是一个随机变量X, 且 X~N(,2) 当机器正常时,
必须作一些试验,也就是抽样。
根据得到的样本观察值 x1,x2,,xn来作出决定。
假设检验问题就是根据样本的信息,检验 关于总体的某个假设是否正确。
❖ 假设检验是一种统计推断方法
为了了解总体的某些性质,首先作出某种假 设,然后进行试验,取得样本,根据样本值,构 造统计方法,判断是否接受这个假设,即检验这 种假设是否合理,合理则接受,否则拒绝。 小概率事件在一次试验中发生的概率记为α,
抽出10个样品进行检验,测得其折断力为 55 75 7 25 7 85 6 05 7 85 7 25 7 05 7 05 9 2
看在H0条件下会不会产生不合理的现象,
样本均值 X 为 的无偏估计,X 能较好反映 的大小.
当H
为真时,
0
X
差异不能过大。
P{ X 有较大偏差} 较小
若差异较大,即小概率事件发生,则拒绝假设 H 0 .
选取统计量:U X 0 n
小概率事件在一次试验中几乎不会发生。
带概率性质的反证法 通常的反证法设定一个假设以后,如果出现的 事实与之矛盾,(即如果这个假设是正确的话,出现 一个概率等于0的事件)则绝对地否定假设.
带概率性质的反证法的逻辑是: 如果假设H0是正确的话,一次试验出现一个 概率很小的事件,则以很大的把握否定假设H0.
0 .0,50 .0,10 .1
在假设检验中,称α为显著水平、检验水平。
解决办法与基本思想
❖ 1 明确所要处理的问题,答案只能是“是”或“否” ❖ 2 取得样本,同时要知道样本的分布 ❖ 3 把“是”转化到分布上得到一个命题或假设 ❖ 4 根据样本值,按照一定的规则,作出接受或拒绝
假设的决定。 ❖ 基本思想(规则或前提)
决定
H0为真
H0不真
拒绝H0 第一类错误 正确
接受H0 正确
第二类错误
犯两类错误的概率:
P{拒绝H0|H0为真}=,
P{接受H0|H0不真}= .
显著性水平为犯第一类错误的概率.
当样本容量n固定时,一类错误概率的减少 导致另一类错误概率的增加.要同时降低两类错误, 必须增加样本容量.
在统计学中,通常控制犯第一类错误的概率. 一般事先选定一个数,(0<<1),要求犯第一类错 误的概率≤.
显著性检验:只对犯第一类错误的概率加以控制,
而不考虑犯第二类错误的概率。
P{拒绝H 0 | H 0 为真} 称 为显著性水平。
参数假设检验解题步骤
❖ 1 根据问题提出原假设H0,同时给出对立假设H1 (备选假设);
❖ 2 在H0成立的前提下,选择合适的统计量,这个统 计量要包含待检的参数,并求得其分布;
其中 0 是已知常数
在实际中,往往把不轻易否定的命题作为原假设.
例1 某车间生产铜丝,主要质量指标是折断力
X的大小。由资料可认为 X~N(57,082) 今换了一批
原料,从性能上看,估计折断力的方差不会有变化, 但不知折断力的大小有无差别。(=0.05)
解 此问题就是已知方差 2 82
检验假设 H 0: 5 7 0 , H 1: 5 7 0
k z/2
X 0 n
Z / 2
拒绝域
55 75 7 25 7 85 6 05 7 85 7 25 7 05 7 05 9 2
由样本值求出 x57.25
z2 z0.025 1.96;
x0
575.2570
5.2 102.0551.96
n 8 10
8
这说明小概率事件竟在一次试验中发生了,
故拒绝H0,可以接受H1。 即认为折断力大小有差别