随机事件频率与概率
随机事件的频率与概率
随机事件的频率与概率1.随机事件的频率随机事件的频数与频率:在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例n n A f A n )(为事件A 出现的频率. 2.随机事件的概率一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,称为事件A 的概率,记作P(A).3.频率与概率的区别和联系(1) 频率本身是随机的,在试验前不能确定。
做同样次数的重复试验得到事件的频率会不同。
(2) 概率是一个确定的数,与每次试验无关。
是用来度量事件发生可能性大小的量。
(3) 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。
例1.某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这名运动员射击一次,击中10环的概率是多少分析:(1)分清m ,n 的值,用公式nm 计算; (2)观察各频率是否与某一常数接近,且在它附近摆动.解:(1)(2)从上表可以看出,这名运动员击中10环的频率在附近波动,且射击次数越多,频率越接近,故可以估计,这名运动员射击一次,击中10环的概率约为.点评:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们就可以用这个常数来刻画该随机事件发生的可能性的大小,而将频率作为其近似值.从中要进一步体会频率与概率的定义及它们的区别与联系.如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm . 例2.为了估计水库中的鱼的尾数,可以使用以下方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数.分析:用样本估计总体.解:设水库中鱼的尾数为n,n 是未知的,现在要估计n 的值,将n 的估计值记作nˆ. 假定每尾鱼被捕的可能性是相等的,从库中任捕一尾鱼,设事件A 为“带有记号的鱼”,易知P(A)=n2000. 第二次从水库中捕出500尾鱼,其中带有记号的鱼有40尾,即事件A 发生的频数n A =40,由概率的统计定义知50040)(≈A P . 所以500402000≈n . 解得n≈25 000,即nˆ=25 000.故可以估计水库中约有鱼25000尾.点评:随着试验次数的变化,事件发生的频率也可能发生变化,但总体来看频率趋于一个稳定值,所以我们也可借助于频率来对一些实际问题作出估计. 例3.某校举办2021年元旦联欢晚会,为了吸引广大同学积极参加活动,特举办一次摸奖活动.凡是参加晚会者,进门时均可参加摸奖,摸奖的器具是黄、白两色的乒乓球,这些乒乓球的大小和质地完全相同.另有一只密封良好且不透光的立方体木箱(木箱的上方可容一只手伸入).拟按中奖率为101设大奖,其余109则为小奖,大奖奖品的价值为40元,小奖奖品的价值为2元.请你运用概率的有关知识设计一个摸奖方案以满足校方的要求. 分析:借助于现有的乒乓球,使一种情况产生的可能性为101即可,并将其定为大奖的条件.解:方案一:在箱子里放10个乒乓球,其中1个黄色的,9个白色的.摸到黄球时为大奖,摸到白球时为小奖.方案二:在箱子里放5个乒乓球,3个白色的,2个黄色的.每位参加者在箱子里摸两次,每次摸一个乒乓球,并且第一次摸出后不放回.当摸到2个黄色乒乓球时为大奖,其他情况视为小奖.点评:概率知识来源于生活、生产实残,由实际问题可以总结出发生某一事件的可能性的大小,在实际生活中设计某一活动的实施方案,一般可以以希望得到的统计数据为依据,还要注意与实际相结合.。
第一讲(随机事件,频率与概率)
概率统计专业
2.《数理统计引论》
首位中科院院士
国外有关经典著作
1.《概率论的分析理论》
P.- S.拉普拉斯著
1812年版
概率论的最早著作 数理统计最早著作
2. 《统计学数学方法》
H. 克拉默著
1946年版
“赌注分配问 题 ”
Ch1-6
甲、乙两人各出同样的赌注,用掷 硬币作为博弈手段 . 每掷一次,若正面朝 上,甲得 1 分乙不得分. 反之,乙得1分, 甲不得分. 谁先得到规定分数就赢得全部 赌注. 当进行到甲还差 2分乙还差3分,就 分别达到规定分数时,发生了意外使赌局 不能进行下去,问如何公平分配赌注?
第一章 概率论的基本概念
在现实世界中发生的现象千姿百态, 概括起来无非 是两类现象: 一类是在一定条件下必然出现(或恒不出现)的现象,
例如,在标准大气压下,水加热到 100 时 必定沸腾,三角形内角和为 180 等等.
0 0
我们称这种现象为确定性现象。
读者可以从物理学、化学等其它学科中举出许多这样的实例。
概率论与数理统计
李师煜 江西理工大学数学教研室
Email: lishiyu83@
我想说
•课程的重要性 •课程要求
综合考评 期末成绩
Ch1-2
工科、经管各专业基础 考研基础
平时成绩
课时分配 授课学时 6*8=48
•如何学好
做好预习复习 多看多练多想
按时独立完成布置的作业
基本事件 —— 仅由一个样本点组成的子集 它是随机试验的直接结果,每次试验必定发 生且只可能发生一个基本事件. 必然事件——全体样本点组成的事件,记 为, 每次试验必定发生的事件.
不可能事件——不包含任何样本点的事件, 记为 ,每次试验必定不发生的事件. 复合事件: 若干个基本事件组合而成的事件。
随机事件的频率与概率
随机事件的频率与概率概率论与数理统计就是研究随机现象的统计规律的数学学科,因随机现象具有普遍性特点,概率论和数理统计也因此具有广泛的应用环境。
而在研究概率之前,我们必须先要清楚随机试验中关于随机事件发生可能性大小的度量问题,这就涉及随机事件的概率和频率。
首先必须明确随机事件的概念,即,在条件一定时,测验或观察研究对象,每进行一次条件组称为一次性试验,得到的结果为事件,在一次试验中对无法准确判断发生结果的事件为随机事件。
接着我们来分别了解频率及概率:一、频率的概念及性质举例引入:一个盒子中有10个相同的球,但5个是白色的,另外5个是黑色的,搅匀后从中任意摸取一球。
在该实验中,未将球取出来前,我们无法对实验结果进行判断,即取出的球是黑是白是未知的,但是实践经验告诉我们,如果我们从盒子中反复多次取球,会获得这样一种结果:当实验次数足够多,即n足够大时,黑、白两球出现次数几乎是相等的,即,黑、白球出现次数的比值趋于1。
条件相同时,如试验次数为n,那么这n次试验中事件A共发生的次数为nA,nA为事件A的发生频数。
而事件A的发生频率用nA/n这一比值表示,记作fn(A),即,不同对象出现的次数和总次数间的比值。
当试验次数n不断增大时,频率逐渐趋向于稳定,并与某常数接近,这一常数就是所说的时间A的概率,而频率稳定性即为统计规律性(统计规律性是指在大量试验中呈现出的数量规律),但频率与概率并不相同,由伯努利大数理论可知,当n为无穷大时,在一定意义下频率fn(A)和概率P(A)较为接近。
其中频率的值即为频数与总体数量的比值。
在n次试验中随机事件发生m次的相对频率为m/n。
而在物理学中频率用于衡量每秒物体振动次数的多少是确定的。
二、概率的概念及性质概率用于衡量事件发生的可能性大小,而随机事件A发生概率表示为P(A),取值范围在0和1之间。
在一定条件下,当P (A)=1时表示事件A一定发生;当P(A)=0时,表示事件A 没有发生的可能。
第04讲 随机事件、频率与概率 (精讲)(含答案解析)
第04讲随机事件、频率与概率(精讲)第04讲随机事件、频率与概率(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析题型一:随机事件之间关系的判断题型二:随机事件的频率与概率题型三:互斥事件与对立事件的概率第四部分:高考真题感悟知识点一:概率与频率一般地,随着试验次数n 的增大,频率偏离概率的幅度会缩小,即事件A 发生的频率()n f A 会逐渐稳定于事件A 发生的概率()P A .我们称频率的这个性质为频率的稳定性.因此,我们可以用频率()n f A 来估计概率()P A .知识点二:事件的运算定义符号表示图示并事件事件A 与事件B 至少一个发生,称这个事件为事件A 与事件B 的并事件(或和事件)A B ⋃或者A B+交事件事件A 与事件B 同时发生,称这个事件为事件A 与事件B 的交事件(或积事件)A B ⋂或者AB知识点三:事件的关系定义符号表示图示包含关系一般地,若事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B )B A Ê(或A B ⊆)互斥事件一般地,如果事件A 与事件B 不能同时发生,也就是说A B ⋂是一个不可能事件,即A B ⋂=∅,则称事件A 与事件B 互斥(或互不相容)A B ⋂=∅对立事件一般地,如果事件A 和事件B 在任何一次试验中有且仅有一个发生,即A B =Ω ,且A B ⋂=∅,那么称事件A 与事件B 互为对立,事件A 的对立事件记为AA B =Ω ,且A B ⋂=∅.(2022·全国·高一课时练习)1.袋内有3个白球和2个黑球,从中有放回地摸球,用A 表示“第一次摸得白球”,如果“第二次摸得白球”记为B ,“第二次摸得黑球”记为C ,那么事件A 与B ,A 与C 间的关系是()A .A 与B ,A 与C 均相互独立B .A 与B 相互独立,A 与C 互斥C .A 与B ,A 与C 均互斥D .A 与B 互斥,A 与C 相互独立(2022·吉林·长春市第二实验中学高一期末)2.命题“事件A 与事件B 对立”是命题“事件A 与事件B 互斥”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·全国·高一课时练习)3.给出下列说法:①若事件A ,B 满足()()1P A P B +=,则A ,B 为对立事件;②把3张红桃J ,Q ,K 随机分给甲、乙、丙三人,每人1张,事件A =“甲得红桃J ”与事件B =“乙得红桃J ”是对立事件;③一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是“两次都不中靶”.其中说法正确的个数是()A .3B .2C .1D .0(2022·全国·高一单元测试)4.已知A 与B 是互斥事件,且()0.4P A =,()0.2P B =,则()P A B = ()A .0.6B .0.7C .0.8D .0.0(2022·全国·高一课时练习)5.利用如图所示的两个转盘玩配色游戏两个转盘各转一次,观察指针所指区域的颜色(不考虑指针落在分界线上的情况).事件A 表示“转盘①指针所指区域是黄色”,事件B 表示“转盘②指针所指区域是绿色”,用样本点表示A B ⋂,A B ⋃.题型一:随机事件之间关系的判断典型例题例题1.(2022·陕西渭南·高二期末(文))6.设靶子上的环数取1~10这10个正整数,脱靶计为0环.某人射击一次,设事件A =“中靶”,事件B =“击中环数大于5”,事件C =“击中环数大于1且小于6”,事件D =“击中环数大于0且小于6”,则下列关系正确的是()A .B 与C 互斥B .B 与C 互为对立C .A 与D 互为对立D .A 与D 互斥例题2.(2022·全国·高一课时练习)7.下列结论正确的是()A .若A ,B 互为对立事件,()1P A =,则()0P B =B .若事件A ,B ,C 两两互斥,则事件A 与B C ⋃互斥C .若事件A 与B 对立,则()1P A B ⋃=D .若事件A 与B 互斥,则它们的对立事件也互斥例题3.(2022·全国·高一课时练习)8.一批产品共有100件,其中5件是次品,95件是合格品.从这批产品中任意抽取5件,给出以下四个事件:事件A :恰有一件次品;事件B :至少有两件次品;事件C :至少有一件次品;事件D :至多有一件次品.下列选项正确的是()A .ABC = B .BD 是必然事件C .A B C = D .A D C= 同类题型归类练(2022·全国·高一单元测试)9.若随机事件A ,B 互斥,且()2P A a =-,()34P B a =-,则实数a 的取值范围为()A .43,32⎛⎤ ⎥⎝⎦B .31,2⎛⎤ ⎥⎝⎦C .43,32⎛⎫ ⎪⎝⎭D .14,23⎛⎫ ⎪⎝⎭(2022·河南安阳·高一期末)10.从一批产品中逐个不放回地随机抽取三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,事件D 为“第一件是次品”则下列结论正确的是()A .B 与D 相互独立B .B 与C 相互对立C .AD ⊆D .A C ⋂=∅(2022·河北·高一阶段练习)11.从一批产品(既有正品也有次品)中取出三件产品,设{A =三件产品全不是次品},{B =三件产品全是次品},{C =三件产品有次品,但不全是次品},则下列结论中正确的是()A .A 与C 互斥B .B 与C 互斥C .任何两个都互斥D .A 与B 对立题型二:随机事件的频率与概率典型例题例题1.(2022·全国·高一课时练习)12.将容量为100的样本数据,由小到大排列,分成8个小组,如下表所示:组号12345678频数101314141513129第3组的频率和累积频率分别为()A .0.14,0.37B .114,127C .0.03,0.06D .314,637例题2.(2022·河南·高三阶段练习(理))13.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1423A.157石B.164石C.170石D.280石例题3.(2022·全国·高一专题练习)14.某购物网站开展一种商品的预约购买,规定每个手机号只能预约一次,预约后通过摇号的方式决定能否成功购买到该商品.规则如下:(ⅰ)摇号的初始中签率为0.19;(ⅱ)当中签率不超过1时,可借助“好友助力”活动增加中签率,每邀请到一位好友参与“好友助力”活动可使中签率增加0.05.为了使中签率超过0.9,则至少需要邀请________位好友参与到“好友助力”活动.例题4.(2022·全国·高一单元测试)15.某射击队统计了甲、乙两名运动员在平日训练中击中10环的次数,如下表:射击次数102050100200500甲击中10环的次数9174492179450甲击中10环的频率乙击中10环的次数8194493177453乙击中10环的频率(1)分别计算出甲、乙两名运动员击中10环的频率,补全表格;(2)根据(1)中的数据估计两名运动员击中10环的概率.同类题型归类练(2022·甘肃·兰州五十一中高一期末)16.在一次抛硬币的试验中,某同学用一枚质地均匀的硬币做了100次试验,发现正面朝上出现了48次,那么出现正面朝上的频率和概率分别为()A.0.48,0.48B.0.5,0.5C.0.48,0.5D.0.5,0.48(2022·全国·高三专题练习)17.某同学做立定投篮训练,共3场,每场投篮次数和命中的次数如表中记录板所示.第一场第二场第三场投篮次数252030投中次数161318C .0635.D .0648.(2022·山西·平遥县第二中学校高一期末)18.已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:321 421 292 925 274 632 800 478 598 663 531 297 396 021 506318 230 113 507 965据此估计,小张三次射击恰有两次命中十环的概率约为__________.(2022·全国·高二课时练习)19.为了研究某种油菜籽的发芽率,科研人员在相同条件下做了8批试验,油菜籽发芽试验的相关数据如下表.批次12345678每批粒数5101307001500200030005000发芽粒数491166371370178627094490(1)如何计算各批试验中油菜籽发芽的频率?(2)由各批油菜籽发芽的频率,可以得到频率具有怎样的特征?(3)如何确定该油菜籽发芽的概率?(2022·湖南·高一课时练习)20.某文具厂打算生产一种中学生使用的笔袋,但无法确定各种颜色的产量,于是该文具厂就笔袋的颜色随机调查了5000名中学生,并在调查到1000名,2000名,3000名,4000名,5000名时分别计算了各种颜色的频率,绘制的折线图如下:(1)随着调查次数的增加,红色的频率如何变化?(2)你能估计中学生选取红色的概率是多少吗?(3)若你是该厂的负责人,你将如何安排生产各种颜色笔袋的产量?题型三:互斥事件与对立事件的概率典型例题例题1.(2022·河北唐山·高一期末)21.甲、乙两人独立地破译一份密码,已知两人能独立破译的概率分别是0.3,0.4,则密码被成功破译的概率为()A .0.18B .0.7C .0.12D .0.58例题2.(2022·江西·高三阶段练习(理))22.甲、乙两人打台球,每局甲胜的概率为34,若采取三局两胜制,即先胜两局者获胜且比赛结束,则比赛三局结束的概率为()A .38B .427C .49D .29例题3.(2022·河南·商丘市第一高级中学高一阶段练习)23.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,假设甲、乙是唐朝的两位投壶游戏参与者,且甲、乙每次投壶投中的概率分别为21,32,每人每次投壶相互独立.若约定甲投壶2次,乙投壶3次,投中次数多者胜,则甲最后获胜的概率为()A .318B .518C .13D .19例题4.(2022·全国·高一课时练习)24.某网站登录密码由四位数字组成,某同学将四个数字0,3,2,5,编排了一个顺序作为密码.由于长时间未登录该网站,他忘记了密码.若登录时随机输入由0,3,2,5组成的一个密码,则该同学不能顺利登录的概率是()A .124B .2324C .116D .1516同类题型归类练(2022·河南商丘·高一期末)25.已知袋子中有10个小球,其中红球2个,黑球和白球共8个,从中随机取出一个,设取出红球为事件A ,取出黑球为事件B ,随机事件C 与B 对立.若()0.5P A B +=,则()P C =()A.0.3B.0.6C.0.7D.0.8(2022·河南安阳·高一期末)26.银行定期储蓄存单的密码由6个数字组成,每个数字均是0~9中的一个,小王去银行取一笔到期的存款时,忘记了密码中某一位上的数字,他决定不重复地随机进行尝试,则不超过2次就按对密码的概率为()A.9100B.320C.19100D.15(2022·黑龙江·哈尔滨三中高一期末)27.甲乙两名运动员进行射击比赛,甲的中靶概率为0.8,乙的中靶概率为0.9,则至少有一人中靶的概率为()A.0.26B.0.72C.0.74D.0.98(2022·山东聊城·高一期末)28.甲、乙两人打靶,已知甲的命中率为0.8,乙的命中率为0.7,若甲、乙分别向同一靶子射击一次,则该靶子被击中的概率为()A.0.94B.0.90C.0.56D.0.38(2020·海南·高考真题)29.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%(2020·天津·高考真题)30.已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.参考答案:1.A【分析】根据相互独立和互斥的定义即可判断,或者根据概率的乘法公式验证也可判断相互独立.【详解】方法一:由于摸球是有放回的,故第一次摸球的结果对第二次摸球的结果没有影响,故A 与B ,A 与C 均相互独立.而A 与B ,A 与C 均能同时发生,从而不互斥.方法二:标记1,2,3表示3个白球,4,5表示2个黑球,全体样本点为()()()()()()()()()(){()()()()()121314152324253435452131415132,,,,,,,,,,,,,,,()()()()()}4252435354,,,,,用古典概型概率计算公式易得12312382(),(),()205205205P A P B P C ======.而事件AB 表示“第一次摸得白球且第二次摸得白球”,所以339()()()5525P AB P A P B =⨯==,所以A 与B 相互独立:同理,事件AC 表示“第一次摸得白球且第二次摸得黑球”,326()()()5525P AC P A P C =⨯==,所以A 与C 相互独立.故选:A .2.A【分析】根据对立事件与互斥事件的概念判断即可.【详解】解:若事件A 与事件B 是对立事件,则事件A 与事件B 一定是互斥事件;若事件A 与事件B 是互斥事件,不一定得到事件A 与事件B 对立,故命题“事件A 与事件B 对立”是命题“事件A 与事件B 互斥”的充分不必要条件;故选:A 3.C【分析】根据对立事件的知识对3个说法进行分析,从而确定正确答案.【详解】①A ,B 为对立事件,需满足()()1P A P B +=和A B ⋂=∅,故①错误;②事件A =“甲得红桃J ”的对立事件为“甲未得红桃J ”,即“乙或丙得红桃J ”,故②错误;③“至少有一次中靶”包括“一次中靶”和“两次都中靶”,则其对立事件为“两次都不中靶”,故③正确.所以说法正确的个数为1个.故选:C4.C【分析】根据互斥事件和对立事件的概率公式结合题意求解即可【详解】由题意知A ,B 是互斥事件,所以()()()P A B P A P B =+ ,且()()110.40.6P A P A =-=-=,则()0.60.20.8P A B ⋃=+=.故选:C.5.A B = {(黄,绿)},A B ⋃={(黄,蓝),(黄,黄),(黄,红),(黄,绿),(黄,紫),(红,绿),(蓝,绿)}.【分析】先列举出事件A ,B 的样本点,再利用事件间运算的定义求解.【详解】由题可得:转盘①转出的颜色红黄蓝转盘②转出的颜色蓝(红,蓝)(黄,蓝)(蓝,蓝)黄(红,黄)(黄,黄)(蓝,黄)红(红,红)(黄,红)(蓝,红)绿(红,绿)(黄,绿)(蓝,绿)紫(红,紫)(黄,紫)(蓝,紫)由表可知,共有15种等可能的结果,其中A ={(黄,蓝),(黄,黄),(黄,红),(黄,绿),(黄,紫)},B ={(红,绿),(黄,绿),(蓝,绿)},所以A B = {(黄,绿)},A B ⋃={(黄,蓝),(黄,黄),(黄,红),(黄,绿),(黄,紫),(红,绿),(蓝,绿)}.6.A【分析】根据互斥事件和对立事件的定义逐个分析判断即可【详解】对于AB ,事件B 和C 不可能同时发生,但一次射击中有可能击中环数为1,所以B与C 互斥,不对立,所以A 正确,B 错误,对于CD ,事件A 与D 有可能同时发生,所以A 与D 既不互斥,也不对立,所以CD 错误,故选:A 7.ABC【分析】根据对立事件的概念,可判断AC 正确;根据互斥事件的特征,可判断B 正确,D 错误;【详解】若A ,B 互为对立事件,()1P A =,则A 为必然事件,故B 为不可能事件,则()0P B =,故A 正确;若事件A ,B ,C 两两互斥,则事件A ,B ,C 不能同时发生,则事件A 与B C ⋃也不可能同时发生,则事件A 与B C ⋃互斥,故B 正确;若事件A 与B 对立,则()()()1P A B P A P B =+= ,故C 正确;若事件A ,B 互斥但不对立,则它们的对立事件不互斥,故D 错误.故选:ABC .8.AB【分析】根据已知条件以及利用和事件、积事件的定义进行判断.【详解】对于A 选项,事件A B ⋃指至少有一件次品,即事件C ,故A 正确;对于B 选项,事件B D 指至少有两件次品或至多有一件次品,次品件数包含0到5,即代表了所有情况,故B 正确;对于C 选项,事件A 和B 不可能同时发生,即事件A B ⋂=∅,故C 错误;对于D 选项,事件A D 指恰有一件次品,即事件A ,而事件A 和C 不同,故D 错误.故选:AB .9.A【分析】根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解.【详解】由题意,知0()10()1()()1P A P B P A P B <<⎧⎪<<⎨⎪+≤⎩,即0210341221a a a <-<⎧⎪<-<⎨⎪-≤⎩,解得4332a <≤,所以实数a 的取值范围为43,32⎛⎤⎥⎝⎦.故选:A.10.B【分析】根据互斥事件,对立事件,相互独立事件的定义逐个判断即可.【详解】A为三件产品全部是次品,指的是三件产品都是正品,B为三件全是次品,C为三件产品不全是次品,包括一件次品,两件次品,三件全是正品三个事件,D为第一件是次品,指的是最少有一件次品,包括一件次品,两件次品,三件次品三个事件.由此可知A与B是互斥事件,A与C是包含,不是互斥,B与C对立故选:B.11.ABC【分析】根据已知条件,根据互斥事件和对立事件的定义,即可求解.【详解】解:由题意可知,{C=三件产品有次品,但不全是次品},包括1件次品、2件次正品,2件次品、1件次正品两个事件,{A=三件产品全不是次品},即3件产品全是正品,{B=三件产品全是次品},由此知,A与C互斥,B与C互斥,故A,B正确,A与B互斥,由于总事件中还包含“1件次品,2件次正品”,“2件次品,1件次正品”两个事件,故A与B不对立,故C正确,D错误,故选:ABC.12.A【分析】根据频数分布表和频率概念求解即可。
人教B版高中数学必修第二册课后习题 第五章 5.3.4 频率与概率
5.3.4 频率与概率课后训练巩固提升1.下列关于随机事件的频率与概率的关系的说法正确的是( )A.频率就是概率B.频率是客观存在的,与试验次数无关C.随着试验次数的增多,频率越来越接近概率D.概率是随机的,在试验前不能确定,所以A不正确;概率是客观存在的,与试验次数无关,所以B不正确;概率不是随机的,所以D不正确;很明显,随着试验次数的增多,频率越来越接近概率,故选C.2.某人将一枚硬币连抛了10次,6次出现正面.若用A表示“出现正面”这一事件,则A的( )A.概率为35B.频率为35C.频率为6D.概率接近353.随机事件A的频率mn满足( )A.mn =0 B.mn=1C.mn >0 D.0≤mn≤14.某篮球运动员的投篮命中率为98%,估算该运动员投篮1 000次命中的次数为( )A.98B.980C.20D.998次命中的次数约为98%×1000=980.A.设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品B.做100次抛硬币的试验,结果51次出现正面,因此,出现正面的概率是51100C.随机事件发生的频率一定小于这个随机事件发生的概率D.抛掷骰子100次,得到朝上的面的点数为1的结果是18次,则朝上的面的点数为1的频率是9506.在抛一枚硬币的试验中,共抛了100次,“出现正面”的频率为0.49,则“出现反面”的次数为.49次“出现正面”,故有100-49=51(次)“出现反面”.7.某工厂为了节约用电,规定每天的用电量指标为1 000 kW·h,按照上个月的用电记录,在30天中有12天的用电量超过指标.若第二个月仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是.=0.4,频率是概率的由频率的定义可知用电量超过指标的频率为1230估计值,因此该月的第一天用电量超过指标的概率约是0.4.8.容量为200的样本的频率分布直方图如图所示,根据此图计算样本数据落在区间(6,10]上的频数为,估计数据落在区间(2,10]上的概率约为.,知样本数据落在区间(6,10]上的频数为200×0.08×4=64,数据落在区间(2,10]上的概率约为(0.02+0.08)×4=0.4.0.49.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位:mm)共有100个数据,将数据分组如下表:估计纤度的数值落在区间(1.38,1.50]上的概率及纤度的数值小于等于1.42的概率.(1.38,1.50]上的频数是30+29+10=69,则纤度的=0.69,所以估计纤度的数值落数值落在区间(1.38,1.50]上的频率是69100在区间(1.38,1.50]上的概率为0.69.纤度的数值小于等于1.42的频数是4+25+30=59,则纤度的数值小于等于1.42的频率是59=0.59,所以估计纤度的数值小于等于1.42的概率为1000.59.。
第三节 随机事件的概率
第三节 随机事件的概率考试要求1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.[知识排查·微点淘金]知识点1 随机事件的频率与概率(1)频数与频率:在相同的条件S 下进行n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比值f n (A )=n An 为事件A出现的频率.(2)概率:对于给定的随机事件A ,如果随着试验次数n 的增加,事件A 发生的频率f n (A )稳定在某个常数上,则把这个常数记作P (A ),称为事件A 的概率.[微提醒],频数是一个整数,其取值范围为0≤n A ≤n ,n A ∈N ,因此随机事件A 发生的频率f n (A )=n An的可能取值介于0与1之间,即0≤f n (A )≤1.知识点2 事件的关系与运算定义符号表示包含关系一般地,对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B )B ⊇A (或A ⊆B ) 相等关系 一般地,若A ⊆B 且B ⊆A ,则称事件A 与事件B 相等 A =B 并事件(或和事件) 若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件) A ∪B (或A +B ) 交事件(或积事件) 若某事件发生当且仅当事件A 发生且事件B 发生,则称该事件为事件A 与事件B 的交事件(或积事件) A ∩B 或AB 互斥事件 若A ∩B 为不可能事件,那么称事件A 与事件B 互斥 A ∩B =∅ 对立事件若A ∩B 为不可能事件,而A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件A ∩B =∅,且A ∪B =Ω(Ω为全集)(1)互斥事件具体包括三种不同的情形:①事件A 发生且事件B 不发生;②事件A 不发生且事件B 发生;③事件A 与事件B 都不发生.(2)“事件A 与事件B 是对立事件”是“其概率满足P (A )+P (B )=1”的充分不必要条件,这里一定有事件A 或事件B 中的一个发生,且不会同时发生.知识点3 互斥事件的概率和对立事件的 概率(1)概率的加法公式如果事件A 与事件B 互斥,则P (A ∪B )=P (A )+P (B ). (2)对立事件的概率若事件A 与事件B 互为对立事件,则A ∪B 为必然事件,P (A ∪B )=1,P (A )=1-P (B ).[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”) (1)事件发生的频率与概率是相同的.(×) (2)在大量重复试验中,概率是频率的稳定值.(√) (3)两个事件的和事件是指两个事件都得发生.(×)(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.(×)2.(链接教材必修3 P 121T 4)一个人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是( )A .至多有一次中靶B .两次都中靶C .只有一次中靶D .两次都不中靶解析:选D “至少有一次中靶”的对立事件是“两次都不中靶”.3.(链接教材必修3 P 121例题)如果从不包括大、小王的52张扑克牌中随机抽取一张,取到黑桃的概率是14,取到梅花的概率是14,则取到红色牌的概率是( )A .18B .14C .12D .34解析:选C 由对立事件的概率公式得P =1-⎝⎛⎭⎫14+14=12.4.(链接教材必修3 P 123A 组T 3)某人进行打靶练习,共射击10次,其中有2次中10 环,有3次中9环,有4次中8环,有1次未中靶.假设此人射击1次,则其中靶的概率约为 ;中10环的概率约为 .答案:910 155.(混淆频率与概率)给出下列三个命题,其中正确的命题有 个.①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③随机事件发生的频率就是这个随机事件发生的概率.答案:0一、基础探究点——随机事件的关系(题组练透)1.从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件A ,则A 的对立事件是( )A .至多有一件次品B .两件全是正品C .两件全是次品D .至多有一件正品解析:选B 从四件正品、两件次品中随机取出两件,记“至少有一件次品”为事件A ,则A 的对立事件是两件全是正品.2.一袋中装有5个大小和形状完全相同的小球,其中红球3个,白球2个,从中任取2个小球,若事件“2个小球全是红球”的概率为310,则概率是710的事件是( )A .恰有一个红球B .两个小球都是白球C .至多有一个红球D .至少有一个红球解析:选C 因为710=1-310,所以概率是710的事件是“2个小球全是红球”的对立事件,应为:“一个红球一个白球”与“两个都是白球”的和事件,即为“至多有一个红球”.3.设条件甲:事件A 与事件B 是对立事件,结论乙:概率满足P (A )+P (B )=1,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若事件A 与事件B 是对立事件,则A ∪B 为必然事件.再由概率的加法公式得P (A )+P (B )=1.投掷一枚硬币3次,满足P (A )+P (B )=1,但A ,B 不一定是对立事件.如事件A :“至少出现一次正面”,事件B :“出现3次正面”,则P (A )=78,P (B )=18,满足P (A )+P (B )=1,但A ,B 不是对立事件.判断互斥、对立事件的两种方法定义法判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件.集合法①由各个事件所含的结果组成的集合彼此的交集为空集,则事件互斥.②事件A 的对立事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.[典例剖析][例1] 某险种的基本保费为a (单位:元),继续购买该保险的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数 0 1 2 3 4 ≥5 保费0.85aa1.25a1.5a1.75a2a出险次数 0 1 2 3 4 ≥5 频数605030302010(1)记A )的估计值;(2)记B 为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P (B )的估计值;(3)求续保人本年度平均保费的估计值.解:(1)事件A 发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为60+50200=0.55,故P (A )的估计值为0.55.(2)事件B 发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为30+30200=0.30,故P (B )的估计值为0.30. (3)由所给数据得:保费 0.85a a 1.25a 1.5a 1.75a 2a 频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a ·0.30+a ·0.25+1.25a ·0.15+1.5a ·0.15+1.75a ·0.10+2a ·0.05=1.1925a .因此,续保人本年度平均保费的估计值为1.1925a . [拓展变式]1.[变结论]若本例的条件不变,试求“一续保人本年度的保费不低于基本保费”的概率的估计值.解:设事件“一续保人本年度的保费不低于基本保费”为E ,事件E 对应于出险次数大于或等于1,由本例知出险次数小于1的频率为0.30,故一年内出险次数大于或等于1的频率为1-0.30=0.70,故P (E )的估计值为0.70.2.[变结论]若本例的条件不变,记F 为事件:“一续保人本年度的保费等于基本保费”.求P (F )的估计值.解:“一续保人本年度的保费等于基本保费”的事件F 发生当且仅当一年内出险次数等于1,其频率为0.25,故P (F )的估计值为0.25.1.概率与频率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.提醒:概率的定义是求一个事件概率的基本方法.[学会用活]1.在投掷一枚硬币的试验中,共投掷了100次,正面朝上的频数为51次,则正面朝上的频率为( )A .49B .0.5C .0.51D .0.49解析:选C 由题意,根据事件发生的频率的定义可知,“正面朝上”的频率为51100=0.51.三、综合探究点——互斥、对立事件的概率(多向思维)[典例剖析]思维点1 互斥、对立事件概率的计算[例2] 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.解:解法一:(利用互斥事件求概率)记事件A 1={任取1球为红球},A 2={任取1球为黑球},A 3={任取1球为白球},A 4={任取1球为绿球},则P (A 1)=512,P (A 2)=412=13,P (A 3)=212=16,P (A 4)=112.根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件的概率公式,得 (1)取出1球是红球或黑球的概率为P (A 1∪A 2)=P (A 1)+P (A 2)=512+13=34.(2)取出1球是红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=512+13+16=1112. 解法二:(利用对立事件求概率)(1)由解法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A 1∪A 2的对立事件为A 3∪A 4,所以取出1球为红球或黑球的概率为P (A 1∪A 2)=1-P (A 3∪A 4)=1-P (A 3)-P (A 4)=1-16-112=34.(2)因为A 1∪A 2∪A 3的对立事件为A 4,所以P (A 1∪A 2∪A 3)=1-P (A 4)=1-112=1112.思维点2 互斥、对立事件与统计的综合[例3] 如图所示,A 地到火车站共有两条路径L 1和L 2,现随机抽取100位从A 地到达火车站的人进行调查,调查结果如表所示:所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(1)试估计40分钟不能赶到火车站的概率;(2)分别求通过路径L 1和L 2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44人.所以用频率估计相应的概率为0.44.(2)选择L 1的有60人,选择L 2的有40人,故由调查结果得频率为 所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的频率 0.1 0.2 0.3 0.2 0.2 选择L 2的频率0.10.40.40.1(3)A 1,A 2分别表示甲选择L 1和L 2时,在40分钟内赶到火车站;B 1,B 2分别表示乙选择L 1和L 2时,在50分钟内赶到火车站.由(2)得P (A 1)=0.1+0.2+0.3=0.6,P (A 2)=0.1+0.4=0.5,P (A 1)>P (A 2),所以甲应选择L 1;P (B 1)=0.1+0.2+0.3+0.2=0.8,P (B 2)=0.1+0.4+0.4=0.9,P (B 2)>P (B 1), 所以乙应选择L 2.1.求解此类题的关键是正确判断各事件之间的关系,以及把所求事件用已知概率的事件表示出来.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P(A)求解.当题目涉及“至多”“至少”型问题时,多考虑间接法.解决与统计知识交汇考查随机事件的概率计算问题时,先读懂图表,提取有关信息,用统计知识求频数,频率,再求概率.[学会用活]2.经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解:记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则G=A+B+C,所以P(G)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)(方法一)记“至少3人排队等候”为事件H,则H=D+E+F,所以P(H)=P(D+E +F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44.(方法二)记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)=1-P(G)=0.44.限时规范训练基础夯实练1.某医院治疗一种疾病的治愈率为50%,则下列说法正确的是()A.如果第1位病人没有治愈,那么第2位病人一定能治愈B.2位病人中一定有1位能治愈C.每位病人治愈的可能性是50%D.所有病人中一定有一半的人能治愈解析:选C某医院治疗一种疾病的治愈率为50%,对于A,如果第1位病人没有治愈,那么第2位病人治愈的概率为50%,故A错误;对于B,2位病人中每个人治愈的可能性都是50%,或两人都能治愈,或有1位能治愈,或都不能治愈,故B 错误;对于C ,每位病人治愈的可能性是50%,故C 正确;对于D ,所有病人中每个人治愈的可能性都是50%,但所有病人中不一定有一半的人能治愈,故D 错误.故选C .2.从含有质地均匀且大小相同的2个红球、n 个白球的口袋中随机取出一球,若取得红球的概率是25,则取得白球的概率等于( )A .15B .25C .35D .45解析:选C ∵取得红球与取得白球为对立事件,∴取得白球的概率为P =1-25=35.3.(2021·烟台一中月考)在第3,6,16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车和6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )A .0.20B .0.60C .0.80D .0.12解析:选C “能乘上所需要的车”记为事件A ,则3路或6路车有一辆路过即事件发生.故P (A )=0.20+0.60=0.80.4.设A 与B 是互斥事件,A ,B 的对立事件分别记为A ,B ,则下列说法正确的是( ) A .A 与B 互斥 B .A 与B 互斥 C .P (A +B )=P (A )+P (B )D .P (A +B )=1解析:选C 根据互斥事件的定义可知,A 与B ,A 与B 都有可能同时发生,所以A 与B 互斥,A 与B 互斥是不正确的;P (A +B )=P (A )+P (B )正确;A 与B 既不一定互斥,也不一定对立,所以P (A +B )=1是不正确的.5.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35]上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.45解析:选D 设[25,30)上的频率为x ,由所有矩形面积之和为1,即x +(0.02+0.04+0.03+0.06)×5=1,得[25,30)上的频率为0.25.所以产品为二等品的概率为0.04×5+0.25=0.45.6.容量为20的样本数据,分组后的频数如下表: 分组 [10,20) [20,30) [30,40) [40,50) [50,60) [60,70] 频数234542的频率为 .解析:数据落在区间[10,40)的频率为2+3+420=920=0.45.答案:0.457.“键盘侠”一词描述了部分网民在现实生活中胆小怕事、自私自利,却习惯在网络上大放厥词的一种现象.某地新闻栏目对该地区群众对“键盘侠”的认可程度进行调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度,若该地区有9600人,则可估计该地区对“键盘侠”持反对态度的有 人.解析:在随机抽取的50人中,持反对态度的频率为1-1450=1825,则可估计该地区对“键盘侠”持反对态度的有9600×1825=6912(人).答案:69128.一只袋子中装有大小相同的7个红玻璃球和3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为715,取得两个绿球的概率为115,则取得两个同颜色的球的概率为 ;至少取得一个红球的概率为 .解析:由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需两互斥事件有一个发生即可,因而取得两个同色球的概率为P =715+115=815.由于事件A “至少取得一个红球”与事件B “取得两个绿球”是对立事件,则至少取得一个红球的概率为P (A )=1-P (B )=1-115=1415.答案:815 14159.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买.商品顾客人数甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98×√××(1)估计顾客同时购买乙和丙的概率;(2)估计顾客在甲、乙、丙、丁中同时购买三种商品的概率;(3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解:(1)从题中统计表可以看出,在这1000位顾客中有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2001000=0.2.(2)从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了两种商品,所以顾客在甲、乙、丙、丁中同时购买三种商品的概率可以估计为100+2001000=0.3.(3)与(1)同理可得,顾客同时购买甲和乙的概率可以估计为2001000=0.2,顾客同时购买甲和丙的概率可以估计为100+200+3001000=0.6,顾客同时购买甲和丁的概率可以估计为1001000=0.1,所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大.综合提升练10.某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x 为这种商品每天的销售量,y 为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )A .19B .110C .15D .18解析:选B 日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a ,b ,c ,日销售量为21个的2天记为A ,B ,从这5天中任选2天,可能的情况有10种:(a ,b ),(a ,c ),(a ,A ),(a ,B ),(b ,c ),(b ,A ),(b ,B ),(c ,A ),(c ,B ),(A ,B ),其中选出的2天日销售量都为21个的情况只有1种,故所求概率P =110,故选B .11.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率为17,都是白子的概率是1235.则从中任意取出2粒恰好是同一色的概率是( )A .17B .1235C .1735D .1解析:选C 设“从中取出2粒都是黑子”为事件A ,“从中取出2粒都是白子”为事件B ,“任意取出2粒恰好是同一色”为事件C ,则C =A ∪B ,且事件A 与B 互斥.所以P (C )=P (A )+P (B )=17+1235=1735,即任意取出2粒恰好是同一色的概率为1735.12.某城市2020年的空气质量状况如表所示: 污染指数T 30 60 100 110 130 140 概率p1101613730215130时,空气质量为轻微污染,则该城市2020年空气质量达到良或优的概率为 .解析:由题意可知2020年空气质量达到良或优的概率为P =110+16+13=35.答案:3513.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是 ,他属于不超过2个小组的概率是 .解析:“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P =11+10+7+86+7+8+8+10+10+11=35.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P =1-86+7+8+8+10+10+11=1315.答案:35 131514.(2021·沈阳调研)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.=0.025.故所求概率为502000(2)由题意知,样本中获得好评的电影部数是140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1=56+10+45+50+160+51=372.故所求概率估计为1-372=0.814.2000(3)增加第五类电影的好评率,减少第二类电影的好评率.创新应用练15.(2021·湖北七市联考)某电子商务公司随机抽取1000名网络购物者进行调查.这1000名购物者2018年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:购物金额分组[0.3,0.5)[0.5,0.6)[0.6,0.8)[0.8,0.9] 发放金额50100150200(2)以这1000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.解:(1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:x 0.3≤x<0.50.5≤x<0.60.6≤x<0.80.8≤x≤0.9y 50100150200频率0.40.30.280.02 这11000×(50×400+100×300+150×280+200×20)=96.(2)由获得优惠券金额y与购物金额x的对应关系及(1)知P(y=150)=P(0.6≤x<0.8)=0.28,P(y=200)=P(0.8≤x≤0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.。
23.3(1)随机事件的概率和频率
历史上有人曾经做过大量重复掷硬币的试验,结果如下表: 历史上有人曾经做过大量重复掷硬币的试验,结果如下表: m 上的 试验 ( n ) (n) ( m) 2048 4040 12000 24000 30000 72088 m/n
1
试 验 次 数 增 加
频 率 稳 定 在
1061 2048 6019 12012 14984 36124
某批乒乓球产品质量检查结果表: 某批乒乓球产品质量检查结果表:
优等品数 抽取球数
m
45 50
92 100
194 200
470 500
954 1000
1902 2000
n
n
优等品频率 m 0.9 0.92 0.97 0.94 0.954 0.951
当抽查的球数很多时,抽到优等品的 当抽查的球数很多时, 很多 m 常数0.95, 接近于常数0.95 在它附近摆动。 频率 接近于常数0.95,在它附近摆动。
n m
m n
8 6
0.75
10 8
0.80
15 12
0.80
20 17
0.85
30 25
0.83
40 32
0.80
50 38
0.76
(1)计算表中进球的频率; (1)计算表中进球的频率; 计算表中进球的频率 (2)这位运动员投篮一次 进球的概率约是多少 概率约是 这位运动员投篮一次,进球的概率约是多少 概率约是0.8 这位运动员投篮一次 进球的概率约是多少? (3)这位运动员进球的概率是 这位运动员进球的概率是0.8,那么他投 次篮一定能 那么他投10次篮一定能 这位运动员进球的概率是 那么他投 投中8次吗 次吗? 投中 次吗 不一定. 次篮相当于做10次试验 不一定 投10次篮相当于做 次试验 每次试验的结果都 次篮相当于做 次试验,每次试验的结果都 是随机的, 所以投10次篮的结果也是随机的 次篮的结果也是随机的. 是随机的 所以投 次篮的结果也是随机的 但随着投篮 次数的增加,他进球的可能性为 他进球的可能性为80%. 次数的增加 他进球的可能性为
高考数学《随机事件、频率与概率》课件
索引
3.已知随机事件 A,B 发生的概率满足条件 P(A∪B)=34,某人猜测事件A-∩B-发
生,则此人猜测正确的概率为( C )
A.1
B.12
C.14
D.0
解析 ∵事件A-∩B-与事件 A∪B 是对立事件,
∴事件A-∩B-发生的概率 P(A-∩B-)=1-P(A∪B)=1-34=14, 则此人猜测正确的概率为14.
业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整
理如下:
甲分厂产品等级的频数分布表
乙分厂产品等级的频数分布表
等级 A B C D
等级 A B C D
频数 40 20 20 20
频数 28 17 34 21
索引
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率; 解 由试加工产品等级的频数分布表知, 甲分厂加工出来的一件产品为 A 级品的概率的估计值为14000=0.4; 乙分厂加工出来的一件产品为 A 级品的概率的估计值为12080=0.28.
中奖的概率.( ×)
解析 随机事件的概率是频率的稳定值,频率是概率的近似值,故(1)错. (4)中,甲中奖的概率与乙中奖概率相同.
索引
2.(2021·珠海期末)一个人打靶时连续射击两次,与事件“至少有一次中靶”互
斥的事件是( D )
A.至多有一次中靶
B.两次都中靶
C.只有一次中靶
D.两次都不中靶
解析 “两次都不中靶”和“至少有一次中靶”,不能同时发生,故D正确.
训练1 (2020·全国Ⅰ卷)某厂接受了一项加工业务,加工出来的产品(单位:件)
按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级
频率与概率的区别
频率与概率的区别这是频率与概率的区别,是优秀的数学教案文章,供老师家长们参考学习。
频率与概率的区别第1篇频率和概率虽然都有个“率”,但是物理意义几乎完全不相同。
它们都有“率”字完全是汉字的巧合。
在英语里面,前者是frequency,后者是probability。
频率一般是大概统计数据经验值,概率是系统固有的准确值,频率是近似值,概率是准确值。
1)频率:(英语:Frequency)是单位时间内某事件重复发生的次数。
在n次重复试验中,事件A发生了m(A)次,则称:m(A)/n 为事件A发生的频率。
2)概率:它反映随机事件出现的可能性大小的量度。
随机事件是指在相同条件下,可能出现也可能不出现的事件。
例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。
设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。
经过大量反复试验,常有m/n越来越接近于某个确定的常数。
该常数即为事件A出现的概率,常用P (A) 表示。
频率与概率的区别第2篇概率是一个稳定的数值,也就是某件事发生或不发生的概率是多少。
频率是在一定数量的某件事情上面,发生的数与总数的比值。
频率是有限次数的试验所得的结果,概率是频数无限大时对应的频率。
概率和频率有什么区别和联系联系与区别1、他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值;3、频率是近似值,概率是准确值;4、频率值一般容易得到,所以一般用来代替概率。
频率与概率的区别第3篇他们都是统计系统各元件发生的可能性大小;频率一般是大概统计数据经验值,概率是系统固有的准确值;频率是近似值,概率是准确值;频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率。
频率和概率的区别与联系知识拓展概率是度量偶然事件发生可能性的数值。
假如经过多次重复试验(用X代表),偶然事件(用A代表)出现了若干次(用Y代表)。
频率与概率的关系与计算
频率与概率的关系与计算频率与概率是概率论中的重要概念,它们之间存在着密切的联系和计算方法。
频率指的是某个事件在重复试验中发生的次数与试验总数的比值,而概率则是描述事件发生可能性的数值。
本文将探讨频率与概率之间的关系以及它们的计算方法。
一、频率和概率的基本概念频率是指在一系列独立观察或试验中,某个事件发生的次数与总次数之比。
在统计学中,频率可以用来估计概率。
当试验次数足够大时,频率趋近于概率。
例如,我们抛掷一个均匀的硬币,记录正面朝上的次数,并将该次数除以总次数,得到的比值就是频率。
概率是指某个事件在所有可能事件中发生的可能性大小。
概率的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。
概率可以从分析、实验或数学模型中得出。
例如,掷骰子时,每个点数的概率都是1/6。
二、频率与概率的关系频率和概率之间存在着紧密的关系。
频率是通过实验得到的结果,反映了实际事件发生的频繁程度。
概率则是通过理论推导得到的,反映了事件发生的可能性大小。
当试验次数很大时,频率会逐渐接近概率。
这一点可以由大数定律进行解释。
三、频率和概率的计算方法频率的计算方法相对简单。
在进行一系列独立重复试验时,我们只需要记录事件发生的次数,然后将该次数除以试验的总次数即可得到频率。
例如,我们进行100次抛硬币实验,记录到正面朝上的次数为60次,那么该事件的频率为60/100=0.6。
概率的计算方法则需要根据具体情况来确定。
对于样本空间中的有限个事件,我们可以通过统计频数来计算概率。
例如,抛掷一个均匀六面骰子,每个点数出现的可能性相等,所以每个点数的概率都是1/6。
对于连续型随机事件,则需要使用积分等数学方法来计算概率。
例如,在统计身高时,我们无法用一个个具体的数值来表示概率,而是用一个区间范围来描述。
我们可以通过概率密度函数来计算某个身高在特定区间内的概率。
四、频率与概率的应用频率和概率的概念和计算方法在现实生活和科学研究中有着广泛的应用。
频率与概率的概念与计算
频率与概率的概念与计算频率与概率是概率论中重要的概念,用来描述事件发生的可能性。
本文将对频率与概率的概念进行解释,并介绍如何进行频率和概率的计算。
1. 频率的概念频率是指某个事件在一定时间内发生的次数与总观测次数的比值。
频率通常用来近似估计概率,并可以通过大量观测数据进行计算。
频率的计算公式如下:频率 = 事件发生次数 / 总观测次数2. 概率的概念概率是指某个事件发生的可能性,它介于0和1之间。
概率可以通过理论计算,也可以通过频率进行估计。
概率的计算公式如下:概率 = 事件发生次数 / 总观测次数3. 频率与概率的关系频率与概率之间存在着密切的关系。
当观测次数趋近于无穷大时,频率将逐渐接近真实的概率。
因此,频率可以作为概率的估计值。
然而,频率并不总是能够准确地估计概率,尤其在观测次数较少的情况下。
4. 频率与概率的计算例子为了更好地理解频率和概率的计算,我们来看一个实际的例子。
假设某个硬币被投掷100次,其中正面朝上的次数为60次。
我们可以用频率和概率来计算正面朝上的概率。
首先,通过频率计算:频率 = 60 / 100 = 0.6然后,通过概率计算:概率 = 60 / 100 = 0.6可以看到,通过频率和概率的计算,我们得出的结果是一样的。
这表明,在这个例子中,频率可以准确地估计概率。
5. 概率的计算方法除了通过频率进行估计外,我们还可以使用数学方法来计算概率。
根据概率论的基本原理,我们可以使用以下方法进行概率的计算:- 古典概率法:适用于各个结果的概率相等的情况。
例如,抛一枚均匀的骰子,每个面出现的概率都是1/6。
- 几何概率法:适用于连续性的随机事件。
例如,计算某个点落在一个区域内的概率。
- 统计概率法:根据大量的观测数据来估计概率。
6. 概率的性质概率具有以下几个重要的性质:- 概率的取值范围为0到1之间。
- 所有可能结果的概率之和等于1。
- 对于互斥事件,其概率之和等于各个事件概率的和。
随机事件的频率与概率
排列数 A52,即 n = A52
A 中所含样本点的个数m为
m = C21A31A21
P( A)
=
C21 A31A21 A52
=
3 5
例5 从1、2、3、4、5这五个数字中等可能 地、有放回地接连抽取三个数字,试求“三 个数字完全不同”这一事件的概率。
解:所求概率为
A53 53
=
12 25
例6(分赌注问题)甲乙两人赌技相同,各出赌 注500元,约定:谁先胜三局,谁就拿走全部赌 本1000元.现已赌了3局,甲两胜一负,因故要中 止赌博,问:这1000元要如何分配才算公平?
P( A) =
r n
=
A中包含的样本点个数 样本点总数
例3 取一颗骰子,将它抛掷一次,朝上的那一面为 奇数的概率是多少?将它连掷两次,两次掷得的点 数之和为8是多少?
解:抛掷一次的情形
Ω1 ={1,L,6}, A1表示“掷得奇数点”,则
A1 ={1,3,5}
则P(A1)=
3 6
=
1 2
抛掷二次的情形
为
P(
A)
=
G的测度 Ω 的测度
作业
n 习题1 7、9、11、15、17、18
Ω2 = {(i, j),i = 1,L,6; j = 1,L,6}
A2表示“两次掷得点数之 和为8”,则
A2 =({ 2,6), (6,2),(3,5), (5,3), (4,4)}
故P(
A2
)
=
5 36
例4 (抽球问题):设盒中有3个白球,2个红 球,现从盒中任抽2个球,求取到一红一白 的概率。
有两 人生 日相 同的 概率
二、几何概型
例9 某人的表停了,他打开收音机听电台报时,
高考数学复习考点知识讲解课件55 随机事件 频率与概率
若最高气温不低于 25,则 Y=6×450-4×450=900;
若最高气温位于区间[20,25),
则 Y=6×300+2(450-300)-4×450=300;
若最高气温低于 20,
则 Y=6×200+2(450-200)-4×450=-100.
所以,Y 的所有可能值为 900,300,-100.
Y 大于零当且仅当最高气温不低于 20,由表格数据知,最高气温不低于 20 的频率为
图示
— 返回 —
— 5—
(新教材) 高三总复习•数学
— 返回 —
3.事件的关系
定义
表示法
包含 若事件 A 发生,事件 B 一定发生 ,称事件 B⊇A
关系 B 包含事件 A(或事件 A 包含于事件 B) (或 A⊆B)
互斥 如果事件 A 与事件 B 不能同时发生 ,称 若 A∩B=∅,
事件 事件 A 与事件 B 互斥(或互不相容)
根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满
意”的概率是( C )
A.175
B.25
C.1115
D.1135
[解析] 由题意,n=4500-200-2100-1000=1200,所以对网上购物“比较满意”
或“满意”的人数为 1200+2100=3300,所以所求概率为34350000=1115.故选 C.
— 18 —
(新教材) 高三总复习•数学
考点二 随机事件的频率与概率——师生共研
ห้องสมุดไป่ตู้
— 返回 —
【例 1】 某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售
价每瓶 6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处理完.根据往年销
随机事件与概率及其概率和频率的关系
随机事件与概率及其概率和频率的关系一、引言本文将探讨随机事件与概率之间的关系,以及概率和频率之间的关联。
我们将从随机事件的定义入手,逐步介绍概率的概念和计算方法,并分析概率和频率在实际应用中的联系和差异。
二、随机事件的定义随机事件是指在一定条件下可能发生也可能不发生的事件。
通俗来说,它是具有某种不确定性的事件,例如抛硬币、掷骰子等。
随机事件的发生是由各种因素相互作用的结果,无法事先准确预测。
三、概率的基本概念3.1概率的定义概率是描述随机事件发生可能性大小的数值。
用数学语言来表达,概率就是随机事件发生的频率与总试验次数之间的比值。
它的取值范围在0到1之间,其中0代表事件不可能发生,1代表事件一定会发生。
3.2概率的计算方法等可能性事件概率的计算方法可以分为两种常见的情况:和**不等可能性事件**。
对于等可能性事件,计算概率很简单,只需要用有利结果的个数除以所有可能结果的个数即可。
古典概型对于不等可能性事件,常用的计算概率方法有、**几何概型**和**统计概型**等。
四、概率和频率的关系4.1概率和频率的定义概率和频率都可以用来描述随机事件的发生情况,但它们是从不同的角度出发进行观察和分析的。
理论上的数值概率是通过总体试验次数与事件发生次数之间的比值来衡量事件的可能性大小,是一种。
实际观察到的数值频率是通过大量的试验实验所得的事件发生次数与实验总次数之间的比值来衡量事件的发生情况,是一种。
4.2概率和频率的关联系数频率到概率的收敛概率和频率之间存在一定的关联,可以通过大量试验的频率逼近概率值,这就是。
随着试验次数的增加,频率趋于概率,两者的差距逐渐减小。
数学上可以通过极限的概念来描述概率和频率的关联,即频率趋近于概率的极限值。
4.3概率和频率的差异概率和频率之间存在一定的差异,主要有以下几个方面:观察对象不同-:概率是基于推理和理论的观察,而频率是基于实际观察和统计的结果。
试验次数要求不同-:概率不需要进行大量试验,只需要考虑总体的因素;而频率需要进行大量的试验,以实际观察到的结果进行统计。
随机事件必然事件不可能事件关系频率的稳定性频率和概率的区别与联系
一、频率的稳定性即大量重复试验时,任何结果(事件)出现的频率尽管是随机的,却“稳定”在某一个常数附近,试验的次数越多,频率与这个常数的偏差大的可能性越小,这一常数就成为该事件的概率;二、“频率”和“概率”这两个概念的区别是频率具有随机性,它反映的是某一随机事件出现的频繁程度,它反映的是随机事件出现的可能性;概率是一个客观常数,它反映了随机事件的属性。
三、随机事件的定义:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,随机事件通常用大写英文字母A、B、C等表示。
必然事件的定义:必然会发生的事件叫做必然事件;不可能事件:肯定不会发生的事件叫做不可能事件;概率的定义:1.在大量进行重复试验时,事件A发生的频率总是接近于某个常数,在它附近摆动。
这时就把这个常数叫做事件A的概率,记作P(A)。
2.m,n的意义:事件A在n次试验中发生了m次。
3.因0≤m≤n,所以,0≤P(A)≤1,必然事件的概率为1,不可能发生的事件的概率0。
四、随机事件概率的定义:对于给定的随机事件A,随着试验次数的增加,事件A发生的频率总是接近于区间[0,1]中的某个常数,我们就把这个常数叫做事件A的概率,记作P(A)。
五、必然事件包括不可能事件吗必然事件不包括不可能事件。
必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件。
必然事件发生的概率为1,但概率为1的事件不一定为必然事件。
不可能事件:概率论中把在一定条件下不可能发生的事件叫不可能事件。
必然事件和不可能事件统称为确定事件。
概率论术语:表示在一定条件下,必然出现的事情。
如从混有四件次品的产品中任意抽取五件,那么“其中必有一件是正品”就是一个必然事件。
是随机事件的一种极端情形。
必然事件发生的概率为1,但概率为1的事件不一定为必然事件连续型随机变量X,取值为样本空间中任意有限个点的概率为0,从整个样本空间剔除这有限个点,取到'非该有限个点'概率依然为1。
频率和概率的异同
频率和概率的异同
频率和概率是研究随机事件发生的可能性大小常用的特征量,它们既有区别也有联系.随机事件A发生的频率,是指在相同条件下重复n次试验,事件A发生的次数m与试验总次数n的比值,是较少数据统计的结果,是一种具体的趋势和规律.在大量重复试验时,频率具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增加,这种摆动幅度越来越小,这个常数叫做这个事件的概率.由此可见,频率是概率的近似值,随着试验次数的增多,频率会越来越接近于概率,概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性.
频率在一定程度上可以反映随机事件发生的可能性的大小,但频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率.概率是由大量数据统计后得出的结论,是一种大的整体趋势.概率是一个确定的常数,是客观存在的,与试验次数无关.
例如,掷一枚硬币,正面和反面出现的概率相等,都是,这是经过上百万次试验取得的理论数据.某人只掷20次,正面出现的频率为,反面出现的频
率仅为. 若就此下结论,出现正面的可能性一定大于出现反面的可能性就不对了.
再比如,对某品牌乒乓球质量抽查,得到如下数据:
在上述抽查试验中可以看出,当抽取的乒乓球个数较少时,优等品的频率波动较大,但当抽取的球数很大时,频率基本上稳定在0.95,在其附近摆动,所以可认为该品牌的乒乓球优等品的概率是0.95.
由此可见,概率和频率的关系是整体和具体、理论和实践、战略和战术的关系,频率随着随机事件发生次数的增加,会趋向于概率,这是求一个事件概率的最基本的方法.
概率的统计定义是用频率表示的,但它又不同于频率的定义,只是用频率来估算概率.频率是试验值,有不确定性,而概率是稳定值.。
2024-2025学年初中数学九年级上册(华师版)教案第25章随机事件的概率25.2.2频率与概率
第25章 随机事件的概率25.2 随机事件的概率2 频率与概率教学目标1.知道通过大量重复试验,可以用频率估计概率.2.掌握用列表法、画树状图法求简单事件概率的方法.3.运用频率估计概率解决实际问题.教学重难点重点:掌握用列表法、画树状图法求简单事件概率的方法. 难点:由试验得出的频率与理论分析得出的概率之间的关系.教学过程复习巩固概率:一个事件发生的可能性叫做该事件的概率. ()所有机会均等的结果关注结果发生数事件发生=P .导入新课【问题1】抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:一种是正面朝上,另一种是正面朝下.你认为正面朝上和正面朝下的可能性相同吗? 学生讨论,师归纳总结引出课题:25.2 随机事件的概率2 频率与概率探究新知探究点一 频率与概率的关系 活动1(学生互动,教师点评) 请同学们拿出准备好的硬币:(1)同桌两人做20次掷硬币的游戏,并将数据填在下表中:(2)各组分工合作,分别累计正面朝上的次数到20、40、60、80、100、120、140、160、180、200次,并完成下表:教学反思(3)请同学们根据已填的表格,完成下面的折线统计图(4)观察上面的折线统计图,你发现了什么规律? 结论:(学生回答,老师点评)当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.【总结】(老师点评总结)1. 对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.在大量重复进行同一试验时,事件A 发生的频率mn 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记做P (A )=mn.一般地,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.2. 频率与概率的关系概率是频率的稳定值,而频率是概率的近似值. 【即学即练】(小组讨论,老师点评)某篮球队教练记录该队一名主力前锋练习罚篮的结果如下: (2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,估计这次他能罚中的概率.【解】(1)表格中从左往右依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802教学反思(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率为0.8.探究点二 列表法或树状图法求概率【问题2】小明、小凡和小颖周末都想去看电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续抛掷两枚均匀的硬币,若两枚硬币都正面朝上,则小明获胜;若都反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?活动2(学生互动,教师点评)让学生每人抛掷硬币(课前准备好)20次,并记录每次的试验结果,通过观察自己的结果说明游戏是否公平.5个学生为一个小组,把5个人的试验结果数据汇总,得到小组试验数据100次,依次累计各组的试验数据,得到试验200次、300次、400次、500次…时的试验结果,全班一起填写上表.通过做试验让学生思考从试验中有哪些发现. (学生总结,教师点评) 从试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上,一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.【合作探究】议一议:在上面抛掷硬币的试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?问题1:上述问题中一次试验涉及几个因素?你是用什么方法不重复、不遗漏地列出所有可能结果的?先让学生讨论,然后找学生代表叙述自己的解答过程,最后教师给出标准答案.总共有 4 种结果,每种结果出现的可能性相同.其中, 小明获胜的结果有 1 种:(正,正).所以小明获胜的概率是14.教学反思小颖获胜的结果有 1 种:(反,反).所以小颖获胜的概率是14.小凡获胜的结果有 2 种:(正,反),(反,正).所以小凡获胜的概率是24=12. 因此,这个游戏对三人是不公平的. 问题2:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便?(学生总结,教师点评)当试验包含两步时,列表和画树状图都可以,当试验包含三步或三步以上时,画树状图比较方便.典例讲解(学生交流,老师点评)例1 如图,甲为三等分数字转盘,乙为四等分数字转盘.同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.【解】列表如下:乙甲 1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4) 3(3,1) (3,2) (3,3) (3,4)由表格可知,一共有12种等可能的结果.其中两个转盘指针指向的数字均为奇数的有4种,故P (均为奇数)=412=13. 【总结】1.列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.2.当一次试验要涉及两个以上的元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.例2 准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.(1)一次试验中两张牌的牌面数字之和可能有哪些值? (2)两张牌的牌面数字之和等于3的概率是多少?【探索思路】 (引发学生思考)一张牌有几种结果?一次试验涉及几个元素? 【解】通过画树状图的方法表示出所有可能的结果:教学反思(1)由树状图可知,两张牌的牌面数字之和可能是2,3,4. (2)总共有4种等可能的结果,两张牌的牌面数字之和为3的结果有2种,因此P (两张牌的牌面数字之和等于3)=24=12.【题后总结】在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性相等,那么我们可以利用树状图或表格不重复、不遗漏地列出所有可能的结果,从而求出某些事件发生的概率.【即学即练】 【互动】(小组讨论)经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( )A.19B.16C.13D.12由表格知,一共有9种等可能的情况,其中两辆汽车经过这个十字路口全部继续直行的有一种,所以两辆汽车经过这个十字路口全部继续直行的概率是19.【答案】A课堂练习1.“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展抽奖活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:教学反思A.当n很大时,指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2 000次,指针落在“文具盒”区域的次数大约有600次D.如果转动转盘10次,一定有3次获得文具盒2.两个正四面体骰子的各面上分别标有数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.383.把1枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是( )A.1B.12C.13D.144.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A.0B.13C.23D.15.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是( )A.12B.13C.14D.16参考答案1.D【解析】A.由题意知A选项不符合题意;由A可知,转动转盘一次,获得铅笔的概率大约是0.70,故B选项不符合题意;C.指针落在“文具盒”区域的概率大约为0.30,转动转盘2 000次,指针落在“文具盒”区域的次数大约有2 000×0.3=600(次),故C选项不符合题意;D.随机事件,结果不确定,故D选项符合题意.2.A【解析】同时投掷两个正四面体骰子,有(1,1) , (1,2) , (1,3) , (1,4) , (2,1) , (2,2) , (2,3) , (2,4) , (3,1) , (3,2) ,(3,3) , (3,4) , (4,1) , (4,2) , (4,3),(4,4)共16种结果,点数之和等于5的有(1,4) , (2,3) , (3,2) , (4,1)共4种情况,所以P(点数之和等于5)=416=14.3.D【解析】画树状图如图所示.∴P(两次都是正面朝上)=1 4 .4.B【解析】随机从1,2,-3中抽取两个数相乘,积的结果共有1×2=2,1×(-3)= -3,2×(-3)=-6三种,所以积为正数的概率是1 3 .5.D【解析】画树状图,如图所示.教学反思由图可知共有6种等可能结果,其中标号相同的只有1种,所以两球标号恰好相同的概率是1 6 .课堂小结(学生总结,老师点评)一、频率与概率的关系概率是频率的稳定值,而频率是概率的近似值.二、用列表法或树状图法求概率(1)列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.(3)当一次试验要涉及两个以上元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.布置作业教材第147页练习题,第153页习题25.2第3,4题.板书设计课题25.2 随机事件的概率2 频率与概率【问题1】一、频率与概率的关系例1【问题2】二、用列表法或树状图法求概率例2教学反思。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.“频率”和“概率”的区别 (1)频率具有随机性,它反映的是某一随机事件出现的频繁程 度,它反映随机事件出现的可能性.
(2)概率是一个客观常数,它反映了随机事件的属性.
大量重复试验时,任意结果(事件)A出现的频率尽管是随机的,
(7)某电话机在1分钟内收到2次呼叫;
(8)没有水分,种子能发芽;
(9)在常温下,焊锡熔化. 【解析】事件(1),(4)都是一定会发生的,是必然事件 . 事件(2),(8),(9)是一定不会发生的,是不可能事件 . 事件(3),(5),(6),(7)有可能发生,也有可ห้องสมุดไป่ตู้不发 生,是随机事件.
概率及其求法
知识要点
1.事件的分类
会发生 不会发生
可能发生也可能不发生
2.频数与频率
(1)前提:对于给定的随机事件A, 在相同的条件S下重复n次试验, 观察事件A 是否出现.
次数nA ; (2)频数:指的是n次试验中事件A出现的______
nA 频率:指的是事件A出现的比例fn(A)=____. n
3.概率 (1)定义:对于给定的随机事件A,如果随着试验次数的增
例1. 下列事件:①一个口袋内装有5个红球,从中任取一球是 红球;②抛掷两枚骰子,所得点数之和为9;③x2≥0(x∈R); ④方程x2-3x+5=0有两个不相等的实数根;⑤巴西足球队会在 下届世界杯足球赛中夺得冠军,其中随机事件的个数为( (A )1 (B )2 (C )3 (D )4 )
例2.指出下列事件是必然事件,不可能事件,还是随机事件. (1)某地1月1日刮西北风; (2)手电筒的电池没电,灯泡发亮; (3)一个电影院某天的上座率超过50%.
却“稳定”在某一个常数附近,试验的次数越多,频率与这一常
数的偏差大的可能性越小.这一常数就成为该事件的概率.
2.概率的性质
必然事件的概率为1,不可能事件的概率为0,随机事件A的概
率为0<P(A)<1,必然事件和不可能事件看作随机事件的两
个极端情形.
事件的分类
【技法点拨】 对事件分类的两个关键点 (1)条件:在条件S下事件发生与否是与条件相对而言的,没 有条件,无法判断事件是否发生; (2)结果发生与否:有时结果较复杂,要准确理解结果包含 的各种情况.
加,事件A发生的频率fn(A) 稳定在某个常数上,把这个常
P(A) ,称为事件A的概率. 数记作_______ [0 ,1 ] (2)范围:_________. 可能性 的 (3)意义:概率从数量上反映了随机事件发生的_______ 大小.
正确理解频率与概率 频率 概率 随机事件 A 在 n 次反复试验 随机事件 A 发生可能性 概念的 m 中发生了 m 次称 为事件 A 大小的度量 (数值 )称 A n 理解 发生的概率,记作 P(A) 的频率 (1) 频率随着试验次数的改 (1)概率是一个常数,是 变而改变, 即频率是随机的, 客观存在的,与试验次 在试验前是不确定的 (2) 在 数无关,是随机事件自 区别与 相同条件下,随着试验次数 身的一个属性 联系 的增加,随机事件发生的频 (2) 当 试 验 次 数 越 来 越 率会在某个常数附近摆动并 多时频率向概率靠近, 趋于稳定,所以可用频率作 概率是频率的稳定值 为概率的近似值 (估计值 )
1.事件的分类是确定的吗? 提示:事件的分类是相对于条件来讲的,在不同的条件下,
必然事件、随机事件、不可能事件可以相互转化.
2.在n次重复进行的试验中,事件A发生的频率为 m ,当n很
n
大时,那么P(A)与
m 的关系是______. n
【解析】根据频率与概率的关系,当n很大时,P(A)≈ 答案:P(A)≈ m
举,才能保证没有重复,也没有遗漏.
例5.射击运动员射击10次,至少8次中靶,则该随机事件的条 件为______,结果为______. 例6.下列随机事件中,一次试验各指什么?试写出试验的所有 结果. (1)抛掷两枚质地均匀的硬币多次; (2)从集合A={a,b,c,d}中任取3个元素构成集合A的子集.
2.(1)如下表
(2)根据频率与概率的关系,可以认为射手射击一次,击中 靶心的概率约是0.91.
【总结】利用频率求近似概率的技巧 随着试验次数的增加,频率会逐渐稳定在概率上,所以确定概 率时,重点根据试验次数多的对应频率来确定即可.
试验与重复试验的结果的分析
【技法点拨】
分析试验结果的方法 (1)首先要准确理解试验的条件、结果等有关定义,并能使 用它们判断一些事件,指出试验结果,这是后续学习求事件的 概率的前提和基础. (2)在写试验结果时,一般采用列举法写出,必须首先明确 事件发生的条件,根据日常生活的经验,按一定的次序一一列
【变式训练1】判断下列事件是必然事件,不可能事件,还是
随机事件. (1)抛一石块,下落; (2)在标准大气压下且温度低于0 ℃时,冰融化; (3)某人射击一次,中靶; (4)如果a>b,那么a-b>0; (5)掷一枚硬币,出现正面;
(6)从分别标有号数1,2,3,4,5的5张标签中任取一张,
得到4号签;
【技法点拨】 随机事件概率的理解及求法 (1)理解:概率可看作频率理论上的期望值,它从数量上反 映了随机事件发生的可能性的大小.当试验的次数越来越多时, 频率越来越趋近于概率.当次数足够多时,所得频率就近似地 看作随机事件的概率.
n A m 计算出频率,再由频率 (2)求法:通过公式 f( A ) n n n
估算概率.
例3.某射手射击标有6环、7环、8环、9环、10环的靶子,射击 一次,解释以下事件的含义: (1)脱靶;(2)射中8环以上.
例4.某射手在同一条件下进行射击,结果如下表:
(1)计算表中击中靶心的各个频率;
(2)这个射手射击一次,击中靶心的概率约是多少?
【解析】1.(1)事件发生,意味着射手没有打中靶子 . (2)事件发生意味着射手射中了9环或10环.
n
m . n
3.下列说法正确的有_________(填序号).
①随机事件A的概率是频率的稳定值,频率是概率的近似值; ②任意事件A发生的概率P(A)总满足0<P(A)<1; ③若事件A的概率趋近于0,即P(A)→0,则事件A是不可能事 件.
【解析】根据频率与概率的关系,①正确;随机事件的概率满
足0<P(A)<1,必然事件的概率是1,不可能事件的概率是0,