2017年中考数学专题复习 图形变换问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形变换问题

【专题点拨】

数学里的变换,指一个图形(或表达式)到另一个图形(或表达式)的演变。图象变换是函数的一种作图方法。已知一个函数的图象,通过某种或多种连续方式变换,得到另一个与之相关的函数的图象,这样的作图方法叫做图象变换。

【解题策略】

从具体图形入手→解析变换形式→把握变换性质→运用性质解题→得到结论

【典例解析】

类型一:平移问题研究

例题1:(2016·山东省菏泽市·3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()

A.2 B.3 C.4 D.5

【考点】坐标与图形变化-平移.

【解析】直接利用平移中点的变化规律求解即可.

【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,

由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,

所以点A、B均按此规律平移,

由此可得a=0+1=1,b=0+1=1,

故a+b=2.

故选:A.

【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.

变式训练1:

(2016·山东省济宁市·3分)如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()

A.16cm B.18cm C.20cm D.21cm

类型二:轴对称问题研究

例题2:(2016·山东潍坊·3分)已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是2.【考点】轴对称-最短路线问题.

【解析】过M作MN′⊥OB于N′,交OC于P,即MN′的长度等于点P到点M与到边OA 的距离之和的最小值,解直角三角形即可得到结论.

【解答】解:过M作MN′⊥OB于N′,交OC于P,

则MN′的长度等于PM+PN的最小值,

即MN′的长度等于点P到点M与到边OA的距离之和的最小值,

∵∠ON′M=90°,OM=4,

∴MN′=OM•sin60°=2,

∴点P到点M与到边OA的距离之和的最小值为2.

变式训练2:

(2016·黑龙江龙东·3分)如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN 的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.

类型三:旋转问题研究

例题3:(2016·青海西宁·2分)如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM 的长为.

【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.

【解析】由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM的长.

【解答】解:∵△DAE逆时针旋转90°得到△DCM,

∴∠FCM=∠FCD+∠DCM=180°,

∴F、C、M三点共线,

∴DE=DM,∠ED M=90°,

∴∠EDF+∠FDM=90°,

∵∠EDF=45°,

∴∠FDM=∠EDF=45°,

在△DEF和△DMF中,

∴△DEF≌△DMF(SAS),

∴EF=MF,

设EF=MF=x,

∵AE=CM=1,且BC=3,

∴BM=BC+CM=3+1=4,

∴BF=BM﹣MF=BM﹣EF=4﹣x,

∵EB=AB﹣AE=3﹣1=2,

在Rt△EBF中,由勾股定理得EB2+BF2=EF2,

即22+(4﹣x)2=x2,

解得:x=,

∴FM=.

故答案为:.

变式训练3:

(2016·湖北荆门·3分)两个全等的三角尺重叠放在△ACB的位置,将其中一个三角尺绕着点C按逆时针方向旋转至△DCE的位置,使点A恰好落在边DE上,AB与CE相交于点F.已知∠ACB=∠DCE=90°,∠B=30°,AB=8cm,则CF= 2cm.

类型四:翻转问题研究

例题4:(2016·黑龙江齐齐哈尔·3分)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为﹣1 .

【考点】翻折变换(折叠问题);菱形的性质.

【解析】过点M作MF⊥DC于点F,根据在边长为2的菱形ABCD中,∠A=60°,M为AD 中点,得到2MD=AD=CD=2,从而得到∠FDM=60°,∠FMD=30°,进而利用锐角三角函数关系求出EC的长即可.

【解答】解:如图所示:过点M作MF⊥DC于点F,

∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,

∴2MD=AD=CD=2,∠FDM=60°,

∴∠FMD=30°,

∴FD=MD=,

∴FM=DM×cos30°=,

∴MC==,

∴EC=MC﹣ME=﹣1.

故答案为:﹣1.

变式训练4:

(2016·山东省德州市·4分)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.

相关文档
最新文档