等差数列高考真题复习doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题

1.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .

47

B .

1629

C .

815

D .

45

2.南宋数学家杨辉《详解九张算法》和《算法通变本末》中,提出垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差不相等,但是逐项差数之差或者高次成等差数列.在杨辉之后一般称为“块积术”.现有高阶等差数列,其前7项分别1,7,15,27,45,71,107,则该数列的第8项为( ) A .161

B .155

C .141

D .139

3.设数列{}n a 的前n 项和2

1n S n =+. 则8a 的值为( ).

A .65

B .16

C .15

D .14

4.等差数列{},{}n n a b 的前n 项和分别为,n n S T ,若231

n n a n b n =+,则2121S T 的值为( )

A .

13

15

B .

2335

C .

1117 D .

49

5.已知数列{}n a 的前n 项和2

21n S n n =+-,则13525a a a a +++

+=( )

A .350

B .351

C .674

D .675

6.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ≥,下列四个命题:①公差d 的最大值为2-;②70S <;③记n S 的最大值为M ,则M 的最大值为30;④20192020a a >.其真命题的个数是( ) A .4个

B .3个

C .2个

D .1个 7.已知数列{}n a 为等差数列,2628a a +=,5943a a +=,则10a =( ) A .29

B .38

C .40

D .58

8.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121

B .161

C .141

D .151

9.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21

2

,则该数列的项数是( ) A .8

B .4

C .12

D .16

10.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7

B .10

C .13

D .16

11.等差数列{}n a 中,若26a =,43a =,则5a =( )

A .

32

B .

92

C .2

D .9 12.《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现一月(按30天计)共织390尺”,则从第2天起每天比前一天多织( )

A .1

2尺布 B .518尺布 C .1631尺布 D .1629

尺布

13.已知等差数列{}n a 的公差d 为正数,()()111,211,

n n n a a a tn a t +=+=+为常数,则

n a =( )

A .21n -

B .43n -

C .54n -

D .n

14.已知数列{}n a 的前项和2

21n S n =+,n *∈N ,则5a =( )

A .20

B .17

C .18

D .19

15.已知{}n a 是公差为2的等差数列,前5项和525S =,若215m a =,则m =( ) A .4

B .6

C .7

D .8

16.已知等差数列{}n a 的前n 项和为n S ,且2

n S n =.定义数列{}n b 如下:

()*1m m b m m

+∈N 是使不等式()

*

n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b +++

+=( )

A .25

B .50

C .75

D .100

17.已知数列{}n a 满足25111,,25

a a a ==且

*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19

B .20

C .21

D .22

18.在等差数列{}n a 中,()()3589133224a a a a a ++++=,则此数列前13项的和是( ) A .13

B .26

C .52

D .56

19.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )

A .3、8、13、18、23

B .4、8、12、16、20

C .5、9、13、17、21

D .6、10、14、18、22

20.已知数列{}n a 中,132a =

,且满足()*

1112,22

n n n a a n n N -=+≥∈,若对于任意*

n N ∈,都有

n a n

λ

≥成立,则实数λ的最小值是( ) A .2

B .4

C .8

D .16

二、多选题

21.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每

相关文档
最新文档