浙江省台州市2021届新高考数学二模试卷含解析
浙江省台州市2021届新高考数学第二次调研试卷含解析
浙江省台州市2021届新高考数学第二次调研试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.各项都是正数的等比数列{}n a 的公比1q ≠,且2311,,2a a a 成等差数列,则3445a a a a ++的值为( )A.12 B.12C.12D.12或12【答案】C 【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比q 所满足的等量关系式,解方程即可得结果.详解:根据题意有213122a a a +=⋅,即210q q --=,因为数列各项都是正数,所以q =3445112a a a a q +===+,故选C.点睛:该题应用题的条件可以求得等比数列的公比q ,而待求量就是1q,代入即可得结果. 2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =- D .221y x =-【答案】B 【解析】 【分析】根据共轭复数定义及复数模的求法,代入化简即可求解. 【详解】z 在复平面内对应的点的坐标为(),x y ,则z x yi =+,z x yi =-,∵12z zz +=+,1x =+,解得221y x =+. 故选:B. 【点睛】本题考查复数对应点坐标的几何意义,复数模的求法及共轭复数的概念,属于基础题. 3.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A .74B .32C .2D .54【答案】C 【解析】由函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到[]1212g x sin x sin x πωπωω=-=-()()(),函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,可得3x π=时,()g x 取得最大值,即23122k πωππωπ⨯-=+(),k Z ∈,0ω>,当0k =时,解得2ω=,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出()g x ,根据函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得3x π=时,()g x 取得最大值,求解可得实数ω的值.4.函数()231f x x x =-+在[]2,1-上的最大值和最小值分别为( ) A .23,-2 B .23-,-9 C .-2,-9 D .2,-2【答案】B 【解析】 【分析】由函数解析式中含绝对值,所以去绝对值并画出函数图象,结合图象即可求得在[]2,1-上的最大值和最小值. 【详解】依题意,()151,2323111,13x x f x x x x x ⎧+-≤<-⎪⎪=-+=⎨⎪---≤≤⎪⎩,作出函数()f x 的图象如下所示;由函数图像可知,当13x =-时,()f x 有最大值23-, 当2x =-时,()f x 有最小值9-. 故选:B. 【点睛】本题考查了绝对值函数图象的画法,由函数图象求函数的最值,属于基础题.5.设函数()210100x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( )A .(]0101, B .(]099, C .(]0100, D .()0+∞,【答案】B 【解析】 【分析】画出函数图像,根据图像知:1210x x +=-,341x x =,31110x ≤<,计算得到答案. 【详解】()21010 lg 0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,,,画出函数图像,如图所示:根据图像知:1210x x +=-,34lg lg x x =-,故341x x =,且31110x ≤<. 故()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-. 故选:B .【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键. 6.若复数z 满足1zi i =-(i 为虚数单位),则其共轭复数z 的虚部为( ) A .i - B .iC .1-D .1【答案】D 【解析】 【分析】由已知等式求出z ,再由共轭复数的概念求得z ,即可得z 的虚部. 【详解】 由zi =1﹣i ,∴z =()()111·i i i i i i i ---==--- ,所以共轭复数z =-1+i ,虚部为1故选D . 【点睛】本题考查复数代数形式的乘除运算和共轭复数的基本概念,属于基础题.7.设曲线(1)ln y a x x =--在点()1,0处的切线方程为33y x =-,则a =( )A .1B .2C .3D .4【答案】D 【解析】 【分析】利用导数的几何意义得直线的斜率,列出a 的方程即可求解 【详解】 因为1y a x'=-,且在点()1,0处的切线的斜率为3,所以13a -=,即4a =. 故选:D 【点睛】本题考查导数的几何意义,考查运算求解能力,是基础题 8.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A .内切B .相交C .外切D .相离【答案】B 【解析】 化简圆到直线的距离,又两圆相交. 选B9.下列四个图象可能是函数35log |1|1x y x +=+图象的是( )A .B .C .D .【答案】C 【解析】 【分析】首先求出函数的定义域,其函数图象可由35log ||x y x=的图象沿x 轴向左平移1个单位而得到,因为35log ||x y x=为奇函数,即可得到函数图象关于(1,0)-对称,即可排除A 、D ,再根据0x >时函数值,排除B ,即可得解. 【详解】∵35log |1|1x y x +=+的定义域为{}|1x x ≠-,其图象可由35log ||x y x=的图象沿x 轴向左平移1个单位而得到,∵35log ||x y x=为奇函数,图象关于原点对称,∴35log |1|1x y x +=+的图象关于点(1,0)-成中心对称.可排除A 、D 项. 当0x >时,35log |1|01x y x +=>+,∴B 项不正确.故选:C 【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.10.若函数()()222cos 137f x x x m x m m =+-+++-有且仅有一个零点,则实数m 的值为( )A B C .4- D .2【答案】D 【解析】 【分析】推导出函数()y f x =的图象关于直线1x =-对称,由题意得出()10f -=,进而可求得实数m 的值,并对m 的值进行检验,即可得出结果. 【详解】()()()221cos 138f x x m x m m =+-+++-Q ,则()()()2222111cos 1138cos 38f x x m x m m x m x m m -+=-++--++++-=-++-,()()()2222111cos 1138cos 38f x x m x m m x m x m m --=--+---+++-=-++-,()()11f x f x ∴-+=--,所以,函数()y f x =的图象关于直线1x =-对称.若函数()y f x =的零点不为1x =-,则该函数的零点必成对出现,不合题意.所以,()10f -=,即2280m m +-=,解得4m =-或2.①当4m =-时,令()()()214cos 140f x x x =+-+-=,得()()24cos 141x x +=-+,作出函数()4cos 1y x =+与函数()241y x =-+的图象如下图所示:此时,函数()4cos 1y x =+与函数()241y x =-+的图象有三个交点,不合乎题意;②当2m =时,()cos 11x +≤Q ,()()()212cos 120f x x x ∴=+-++≥,当且仅当1x =-时,等号成立,则函数()y f x =有且只有一个零点. 综上所述,2m =. 故选:D. 【点睛】本题考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出()10f -=,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题. 11.函数cos 2320,2y x x x π⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,3π⎡⎤⎢⎥⎣⎦C .,62ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎤⎢⎥⎣⎦【答案】D 【解析】 【分析】利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果. 【详解】因为cos 23sin 2y x x =-2sin(2)2sin(2)66x x ππ=-=--,由3222,262k x k k πππππ+-+∈Z ≤≤,解得5,36k x k k Z ππππ+≤≤+∈,即函数的增区间为5[,],36k k k ππππ++∈Z ,所以当0k =时,增区间的一个子集为[,]32ππ. 故选D. 【点睛】本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.12.如图是一个几何体的三视图,则该几何体的体积为( )A .23B .43C .233D .43【答案】A 【解析】 【分析】根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积. 【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,2AD =,3AE =2AB =.∴该几何体的体积为1232232V =⨯= 故选:A.【点睛】本题考查三视图及棱柱的体积,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
浙江省台州市2021届新高考数学仿真第二次备考试题含解析
浙江省台州市2021届新高考数学仿真第二次备考试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某中学2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图:则下列结论正确的是( ).A .与2016年相比,2019年不上线的人数有所增加B .与2016年相比,2019年一本达线人数减少C .与2016年相比,2019年二本达线人数增加了0.3倍D .2016年与2019年艺体达线人数相同【答案】A【解析】【分析】设2016年高考总人数为x ,则2019年高考人数为1.2x ,通过简单的计算逐一验证选项A 、B 、C 、D.【详解】设2016年高考总人数为x ,则2019年高考人数为1.2x ,2016年高考不上线人数为0.3x , 2019年不上线人数为1.20.280.3360.3x x x ⨯=>,故A 正确;2016年高考一本人数0.3x ,2019年高考一本人数1.20.260.3120.3x x x ⨯=>,故B 错误; 2019年二本达线人数1.20.40.48x x ⨯=,2016年二本达线人数0.34x ,增加了0.480.340.410.34x x x-≈倍,故C 错误; 2016年艺体达线人数0.06x ,2019年艺体达线人数1.20.060.072x x ⨯=,故D 错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为简单的统计类的题目.2.若某几何体的三视图如图所示,则该几何体的表面积为( )A .240B .264C .274D .282【答案】B【解析】【分析】 将三视图还原成几何体,然后分别求出各个面的面积,得到答案.【详解】由三视图可得,该几何体的直观图如图所示,延长BE 交DF 于A 点,其中16AB AD DD ===,3AE =,4AF =,所以表面积()3436536246302642S ⨯=⨯+⨯+⨯+⨯+=. 故选B 项. 【点睛】本题考查三视图还原几何体,求组合体的表面积,属于中档题 3.已知0a b >>,椭圆1C 的方程22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 和2C 的离心率之32C 的渐近线方程为( ) A .20x ±=B .20x y ±=C .20x y ±=D .20x y ±= 【答案】A【解析】【分析】根据椭圆与双曲线离心率的表示形式,结合1C 和2C 的离心率之积为32,即可得,a b 的关系,进而得双曲线的离心率方程.【详解】椭圆1C 的方程22221x y a b +=,双曲线2C 的方程为22221x y a b-=,则椭圆离心率1e a=,双曲线的离心率2e a =,由1C 和2C即122e e a a ==,解得2b a =±,所以渐近线方程为2y x =±,化简可得0x ±=,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.4.已知集合{|12},{|15}=-<=-A x x B x x 剟?,定义集合*{|,,}==+∈∈A B z z x y x A y B ,则*(*)B A B 等于( )A .{|61}-<x x …B .{|112}<x x …C .{|110}-<x x …D .{|56}-<x x …【答案】C【解析】【分析】根据*A B 定义,求出*A B ,即可求出结论.【详解】 因为集合{|15}=-B x x 剟,所以{|51}=--B x x 剟, 则*{|61}=-<A B x x …,所以*(*){|110}=-<B A B x x ….故选:C.【点睛】本题考查集合的新定义运算,理解新定义是解题的关键,属于基础题.5.设m ,n 为直线,α、β为平面,则m α⊥的一个充分条件可以是( )A .αβ⊥,n αβ=I ,m n ⊥B .//αβ,m β⊥C .αβ⊥,//m βD .n ⊂α,m n ⊥ 【答案】B【解析】【分析】根据线面垂直的判断方法对选项逐一分析,由此确定正确选项.【详解】对于A 选项,当αβ⊥,n αβ=I ,m n ⊥时,由于m 不在平面β内,故无法得出m α⊥. 对于B 选项,由于//αβ,m β⊥,所以m α⊥.故B 选项正确.对于C 选项,当αβ⊥,//m β时,m 可能含于平面α,故无法得出m α⊥.对于D 选项,当n ⊂α,m n ⊥时,无法得出m α⊥.综上所述,m α⊥的一个充分条件是“//αβ,m β⊥”故选:B【点睛】本小题主要考查线面垂直的判断,考查充分必要条件的理解,属于基础题.6.已知3log a =ln3b =,0.992c -=,则,,a b c 的大小关系为( )A .b c a >>B .a b c >>C .c a b >>D .c b a >> 【答案】A【解析】【分析】根据指数函数与对数函数的单调性,借助特殊值即可比较大小.【详解】因为331log log 2<=, 所以12a <. 因为3>e ,所以ln3ln 1b e =>=,因为00.991>->-,2x y =为增函数,所以0.991221c -=<< 所以b c a >>,故选:A.【点睛】本题主要考查了指数函数、对数函数的单调性,利用单调性比较大小,属于中档题.7.若非零实数a 、b 满足23a b =,则下列式子一定正确的是( )A .b a >B .b a <C .b a <D .b a > 【答案】C【解析】【分析】令23a b t ==,则0t >,1t ≠,将指数式化成对数式得a 、b 后,然后取绝对值作差比较可得.【详解】令23a b t ==,则0t >,1t ≠,2lg log lg 2t a t ∴==,3lg log lg 3t b t ==, ()lg lg lg lg 3lg 20lg 2lg 3lg 2lg 3t t t a b -∴-=-=>⋅,因此,a b >. 故选:C.【点睛】 本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题. 8.下列结论中正确的个数是( )①已知函数()f x 是一次函数,若数列{}n a 通项公式为()n a f n =,则该数列是等差数列;②若直线l 上有两个不同的点到平面α的距离相等,则//l α;③在ABC ∆中,“cos cos A B >”是“B A >”的必要不充分条件;④若0,0,24a b a b >>+=,则ab 的最大值为2.A .1B .2C .3D .0【答案】B【解析】【分析】根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【详解】解:①已知函数()f x 是一次函数,若数列{}n a 的通项公式为()n a f n =,可得1(n n a a k k +-=为一次项系数),则该数列是等差数列,故①正确;②若直线l 上有两个不同的点到平面α的距离相等,则l 与α可以相交或平行,故②错误;③在ABC ∆中,(),0,B A π∈,而余弦函数在区间()0,π上单调递减,故 “cos cos A B >”可得“B A >”,由“B A >”可得“cos cos A B >”,故“cos cos A B >”是“B A >”的充要条件,故③错误;④若0,0,24a b a b >>+=,则42a b =+≥2ab ≤,当且仅当22a b ==时取等号,故④正确;综上可得正确的有①④共2个;故选:B【点睛】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题.9.设函数()21010 0x x x f x lgx x ⎧++≤⎪=⎨>⎪⎩,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( )A .(]0101, B .(]099, C .(]0100, D .()0+∞,【答案】B【解析】【分析】 画出函数图像,根据图像知:1210x x +=-,341x x =,31110x ≤<,计算得到答案. 【详解】 ()21010 lg 0x x x f x x x ⎧++≤⎪=⎨>⎪⎩,,,画出函数图像,如图所示: 根据图像知:1210x x +=-,34lg lg x x =-,故341x x =,且31110x ≤<. 故()()(]1234330110,99x x x x x x ⎛⎫∈ ⎪⎭-⎝+-=-. 故选:B .【点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.10.若i为虚数单位,则复数22sin cos33z iππ=-+的共轭复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】由共轭复数的定义得到z,通过三角函数值的正负,以及复数的几何意义即得解【详解】由题意得22sin cos33z iππ=--,因为23sin03π-=<,21cos032π-=>,所以z在复平面内对应的点位于第二象限.故选:B【点睛】本题考查了共轭复数的概念及复数的几何意义,考查了学生概念理解,数形结合,数学运算的能力,属于基础题.11.斜率为1的直线l与椭圆22xy14+=相交于A、B两点,则AB的最大值为()A.2 B.45C.410D.810【答案】C【解析】【分析】设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值.【详解】解:设直线l的方程为y=x+t,代入24x+y2=1,消去y得54x2+2tx+t2﹣1=0,由题意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦长|AB|=4254102t-⨯≤.故选:C.【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.12.某几何体的三视图如图所示,则该几何体的最长棱的长为()A.5B.4C.2D.22【答案】D【解析】【分析】先根据三视图还原几何体是一个四棱锥,根据三视图的数据,计算各棱的长度.【详解】根据三视图可知,几何体是一个四棱锥,如图所示:由三视图知:2AD = ,3,2,CE SD == 所以2SC DC ==, 所以222222,22SA SD AD SB SC BC =+==+= 所以该几何体的最长棱的长为22故选:D【点睛】本题主要考查三视图的应用,还考查了空间想象和运算求解的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。
2021年全国新高考Ⅰ、II卷数学试题(解析版)
A. B. C. D.
【答案】C
【解析】
【分析】将式子进行齐次化处理,代入 即可得到结果.
【详解】将式子进行齐次化处理得:
.
故选:C.
【点睛】易错点睛:本题如果利用 ,求出 的值,可能还需要分象限讨论其正负,通过齐次化处理,可以避开了这一讨论.
7.若过点 可以作曲线 的两条切线,则()
【答案】(1).5(2).
【解析】
【分析】(1)按对折列举即可;(2)根据规律可得 ,再根据错位相减法得结果.
【详解】(1)对折 次可得到如下规格: , , , , ,共 种;
(2)由题意可得 , , , , , ,
设 ,
则 ,
两式作差得
,
因此, .
故答案为: ; .
【点睛】方法点睛:数列求和 常用方法:
【详解】因为函数 的单调递增区间为 ,
对于函数 ,由 ,
解得 ,
取 ,可得函数 的一个单调递增区间为 ,
则 , ,A选项满足条件,B不满足条件;
取 ,可得函数 的一个单调递增区间为 ,
且 , ,CD选项均不满足条件.
故选:A.
【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成 形式,再求 的单调区间,只需把 看作一个整体代入 的相应单调区间内即可,注意要先把 化为正数.
【详解】圆 的圆心为 ,半径为 ,
直线 的方程为 ,即 ,
圆心 到直线 的距离为 ,
所以,点 到直线 的距离的最小值为 ,最大值为 ,A选项正确,B选项错误;
如下图所示:
当 最大或最小时, 与圆 相切,连接 、 ,可知 ,
, ,由勾股定理可得 ,CD选项正确.
故选:ACD.
浙江省台州市2021届新高考数学二月模拟试卷含解析
浙江省台州市2021届新高考数学二月模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2021年某省将实行“312++”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为 A .18B .14C .16D .12【答案】B 【解析】 【分析】 【详解】甲同学所有的选择方案共有122412C C =种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有133C =种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率31124P ==,故选B . 2.函数()()()sin 0,0f x x ωϕωϕπ=+><<的图象如图所示,为了得到()cos g x x ω=的图象,可将()f x 的图象( )A .向右平移6π个单位 B .向右平移12π个单位C .向左平移12π个单位D .向左平移6π个单位 【答案】C 【解析】 【分析】根据正弦型函数的图象得到()sin 23f x x π⎛⎫=+ ⎪⎝⎭,结合图像变换知识得到答案. 【详解】由图象知:7212122T T ππππ=-=⇒=,∴2ω=. 又12x π=时函数值最大,所以2221223k k πππϕπϕπ⨯+=+⇒=+.又()0,ϕπ∈, ∴3πϕ=,从而()sin 23f x x π⎛⎫=+⎪⎝⎭,()cos 2sin 2sin 22123g x x x x πππ⎡⎤⎛⎫⎛⎫==+=++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 只需将()f x 的图象向左平移12π个单位即可得到()g x 的图象,故选C. 【点睛】已知函数()sin (0,0)y A x B A ωϕω=++>>的图象求解析式 (1)max min max min ,22y y y y A B -+==.(2)由函数的周期T 求2,.T πωω= (3)利用“五点法”中相对应的特殊点求ϕ,一般用最高点或最低点求. 3.函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到函数()y g x =的图象,并且函数()g x 在区间[,]63ππ上单调递增,在区间[,]32ππ上单调递减,则实数ω的值为( ) A .74B .32C .2D .54【答案】C 【解析】由函数()sin (0)f x x ωω=>的图象向右平移12π个单位得到[]1212g x sin x sin x πωπωω=-=-()()(),函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,可得3x π=时,()g x 取得最大值,即23122k πωππωπ⨯-=+(),k Z ∈,0ω>,当0k =时,解得2ω=,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出()g x ,根据函数()g x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得3x π=时,()g x 取得最大值,求解可得实数ω的值.42,SA 是一条母线,P 点是底面圆周上一点,则P 点到SA 所在直线的距离的最大值是( )A .3B .3C .3D .4【答案】C 【解析】分析:作出图形,判断轴截面的三角形的形状,然后转化求解P 的位置,推出结果即可.详解:圆锥底面半径为5,高为2,SA 是一条母线,P 点是底面圆周上一点,P 在底面的射影为O ;543SA =+=,OA SO >,过SA 的轴截面如图:90ASQ ∠>︒,过Q 作QT SA ⊥于T ,则QT QS <,在底面圆周,选择P ,使得90PSA ∠=︒,则P 到SA 的距离的最大值为3,故选:C点睛:本题考查空间点线面距离的求法,考查空间想象能力以及计算能力,解题的关键是作出轴截面图形,属中档题.5.已知(2sin,cos ),(3,2cos )2222x x x xa b ωωωω==r r ,函数()f x a b =r r ·在区间4[0,]3π上恰有3个极值点,则正实数ω的取值范围为( )A .85[,)52B .75[,)42C .57[,)34D .7(,2]4【答案】B 【解析】 【分析】先利用向量数量积和三角恒等变换求出()2sin()16f x x πω=++ ,函数在区间4[0,]3π上恰有3个极值点即为三个最值点,,62x k k Z ππωπ+=+∈解出,,3k x k Z ππωω=+∈,再建立不等式求出k 的范围,进而求得ω的范围. 【详解】解: ()232cos 3cos 12xf x x x x ωωωω=+=++ 2sin()16x πω=++令,62x k k Z ππωπ+=+∈,解得对称轴,3k x k Z ππωω=+∈,(0)2f =,又函数()f x 在区间4[0,]3π恰有3个极值点,只需 243333πππππωωωω+≤<+解得7542ω≤<. 故选:B . 【点睛】本题考查利用向量的数量积运算和三角恒等变换与三角函数性质的综合问题.(1)利用三角恒等变换及辅助角公式把三角函数关系式化成()++y A x t ωϕsin =或()++y A x t ωϕcos = 的形式; (2)根据自变量的范围确定+x ωϕ的范围,根据相应的正弦曲线或余弦曲线求值域或最值或参数范围. 6.关于函数()sin 6f x x π⎛⎫=-- ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭的单调性,下列叙述正确的是( ) A .单调递增 B .单调递减C .先递减后递增D .先递增后递减【答案】C 【解析】 【分析】先用诱导公式得()sin cos 63f x x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭,再根据函数图像平移的方法求解即可.【详解】函数()sin cos 63f x x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭的图象可由cos y x =向左平移3π个单位得到,如图所示,()f x 在,2ππ⎛⎫⎪⎝⎭上先递减后递增.故选:C 【点睛】本题考查三角函数的平移与单调性的求解.属于基础题. 7.设i 是虚数单位,若复数103m i++(m R ∈)是纯虚数,则m 的值为( ) A .3- B .1-C .1D .3【答案】A 【解析】 【分析】根据复数除法运算化简,结合纯虚数定义即可求得m 的值. 【详解】由复数的除法运算化简可得1033m m i i+=+-+, 因为是纯虚数,所以30m +=, ∴3m =-, 故选:A. 【点睛】本题考查了复数的概念和除法运算,属于基础题.8.已知1F ,2F 是椭圆与双曲线的公共焦点,P 是它们的一个公共点,且21PF PF >,椭圆的离心率为1e ,双曲线的离心率为2e ,若112PF F F =,则2133e e +的最小值为( ) A.6+ B.6+C .8D .6【答案】C 【解析】 【分析】由椭圆的定义以及双曲线的定义、离心率公式化简2133e e +,结合基本不等式即可求解. 【详解】设椭圆的长半轴长为a ,双曲线的半实轴长为a ',半焦距为c , 则1ce a=,2c e a =',设2PF m =由椭圆的定义以及双曲线的定义可得:1222m PF PF a a c +=⇒=+,2122mPF PF a a c ''-=⇒=- 则2133e e +33322633322m m c c a c c c m m c a c c c c ⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭=+=+=++'⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭68≥+=当且仅当73a c =时,取等号. 故选:C . 【点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.9.已知复数z 在复平面内对应的点的坐标为(1,2)-,则下列结论正确的是( ) A .2z i i ⋅=- B .复数z 的共轭复数是12i - C .||5z = D .13122z i i =++ 【答案】D 【解析】 【分析】首先求得12z i =-+,然后根据复数乘法运算、共轭复数、复数的模、复数除法运算对选项逐一分析,由此确定正确选项. 【详解】由题意知复数12z i =-+,则(12)2z i i i i ⋅=-+⋅=--,所以A 选项不正确;复数z 的共轭复数是12i --,所以B选项不正确;||z ==C 选项不正确;12(12)(1)1311222z i i i i i i -+-+⋅-===+++,所以D 选项正确. 故选:D 【点睛】本小题考查复数的几何意义,共轭复数,复数的模,复数的乘法和除法运算等基础知识;考查运算求解能力,推理论证能力,数形结合思想.10.设()y f x =是定义域为R 的偶函数,且在[)0,+∞单调递增,0.22log 0.3,log 0.3a b ==,则( ) A .()()(0)f a b f ab f +>> B .()(0)()f a b f f ab +>> C .()()(0)f ab f a b f >+> D .()(0)()f ab f f a b >>+【答案】C 【解析】 【分析】根据偶函数的性质,比较+,a b ab 即可. 【详解】解:0.22lg0.3lg0.3+log 0.3log 0.3+lg0.2lg 2a b =+=55lg 0.3lglg 0.3lg 22lg5lg 2lg5lg 2⨯⨯==--⨯⨯()0.22lg 0.3lg 0.3log 0.3log 0.3lg 0.2lg 2lg 0.3lg 0.3lg 0.3lg 0.3lg 5lg 2lg 5lg 2lg 0.3lg 0.3lg 5lg 210lg 0.3lg3lg 5lg 2ab =⨯=⨯-⨯⨯==⨯⨯-⨯-=⨯⨯=-⨯显然510lglg 23<,所以+a b ab < ()y f x =是定义域为R 的偶函数,且在[)0,+∞单调递增,所以()()(0)f ab f a b f >+> 故选:C 【点睛】本题考查对数的运算及偶函数的性质,是基础题.11.已知随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.若21211p p <<<,则( ) A .()()12E E ξξ<,()()12D D ξξ< B .()()12E E ξξ<,()()12D D ξξ> C .()()12E E ξξ>,()()12D D ξξ< D .()()12E E ξξ>,()()12D D ξξ>【答案】B 【解析】 【分析】根据二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,再根据21211p p <<<和二次函数的性质求解. 【详解】因为随机变量i ξ满足()()221kkk i i i P k C p p ξ-==-,1,2i =,0,1,2k =.所以i ξ服从二项分布, 由二项分布的性质可得:()()(),1i i i i i E p D p p ξξ==-,因为21211p p <<<, 所以()()12E E ξξ<,由二次函数的性质可得:()()1f x x x =-,在1,12⎡⎤⎢⎥⎣⎦上单调递减, 所以()()12D D ξξ>. 故选:B 【点睛】本题主要考查二项分布的性质及二次函数的性质的应用,还考查了理解辨析的能力,属于中档题. 12.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-=B .2nn a =C .21nn S =- D .121n n S -=-【答案】C 【解析】 【分析】先利用等比数列的性质得到3a 的值,再根据24,a a 的方程组可得24,a a 的值,从而得到数列的公比,进而得到数列的通项和前n 项和,根据后两个公式可得正确的选项. 【详解】因为{}n a 为等比数列,所以2324a a a =,故3364a =即34a =,由24241016a a a a +=⎧⎨=⎩可得2428a a =⎧⎨=⎩或2482a a =⎧⎨=⎩,因为{}n a 为递增数列,故2428a a =⎧⎨=⎩符合.此时24q =,所以2q =或2q =-(舍,因为{}n a 为递增数列).故3313422n n n n a a q ---==⨯=,()1122112n n nS ⨯-==--.故选C. 【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a =;(2)公比1q ≠时,则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S --L 为等比数列(0n S ≠ )且公比为nq .二、填空题:本题共4小题,每小题5分,共20分。
浙江省台州市2021届新高考第二次大联考数学试卷含解析
浙江省台州市2021届新高考第二次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设()'f x 函数()()0f x x >的导函数,且满足()()2'f x f x x>,若在ABC ∆中,34A π∠=,则( )A .()()22sin sin sin sin f A B f B A <B .()()22sinC sin sin sin f B f B C< C .()()22cos sin sin cos f A B f B A >D .()()22cosC sin sin cos f B f B C >【答案】D 【解析】 【分析】根据()()2'f x f x x >的结构形式,设()()2f x g x x =,求导()()()32xf x f x g x x '-'=,则()0g x '>,()g x 在()0,∞+上是增函数,再根据在ABC ∆中,34A π∠=,得到04π<∠<B ,04π<∠<C ,利用余弦函数的单调性,得到cos sin ∠>∠C B ,再利用()g x 的单调性求解. 【详解】 设()()2f x g x x=, 所以 ()()()32xf x f x g xx'-'=,因为当0x >时,()()2'f x f x x>, 即()()20xf x f x x'->,所以()0g x '>,()g x 在()0,∞+上是增函数, 在ABC ∆中,因为34A π∠=,所以04π<∠<B ,04π<∠<C , 因为cos sin 4π⎛⎫∠=+∠⎪⎝⎭C B ,且042ππ<∠<+∠<B B ,所以sin sin 4π⎛⎫∠<+∠ ⎪⎝⎭B B ,即cos sin ∠>∠C B ,所以()()22cos sin s sin f C f B co CB>,即()()22cosC sin sin cos f B f B C > 故选:D 【点睛】本题主要考查导数与函数的单调性,还考查了运算求解的能力,属于中档题. 2.若函数()3cos 4sin f x x x =+在x θ=时取得最小值,则cos θ=( ) A .35B .45-C .45D .35-【答案】D 【解析】 【分析】利用辅助角公式化简()f x 的解析式,再根据正弦函数的最值,求得()f x 在x θ=函数取得最小值时cos θ的值. 【详解】解:34()3cos 4sin 5cos sin 5sin()55f x x x x x x α⎛⎫=+=+=+ ⎪⎝⎭,其中,3sin 5α=,4cos 5α=, 故当22k πθαπ+=-()k ∈Z ,即2()2k k Z πθπα=--∈时,函数取最小值()5fθ=-,所以3cos cos(2)cos()sin 225k ππθπααα=--=--=-=-, 故选:D 【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题.3.过抛物线22(0)y px p =>的焦点作直线交抛物线于A B ,两点,若线段AB 中点的横坐标为3,且8AB =,则抛物线的方程是( )A .22y x =B .24y x =C .28y x =D .210y x =【答案】B 【解析】 【分析】利用抛物线的定义可得,12||||||22p pAB AF BF x x =+=+++,把线段AB 中点的横坐标为3,||8AB =代入可得p 值,然后可得出抛物线的方程. 【详解】设抛物线22(0)y px p =>的焦点为F,设点()()1122,,,A x y B x y ,由抛物线的定义可知()1212||||||22p pAB AF BF x x x x p =+=+++=++, 线段AB 中点的横坐标为3,又||8AB =,86p ∴=+,可得2p =, 所以抛物线方程为24y x =. 故选:B. 【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,利用抛物线的定义是解题的关键.4.甲、乙、丙、丁四位同学高考之后计划去、、A B C 三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为 ( ) A .8 B .7C .6D .5【答案】B 【解析】根据题意满足条件的安排为:A (甲,乙)B (丙)C (丁);A (甲,乙)B (丁)C (丙);A (甲,丙)B (丁)C (乙); A (甲,丁)B (丙)C (乙); A (甲)B (丙,丁)C (乙);A (甲)B (丁)C (乙,丙);A (甲)B (丙)C (丁,乙);共7种,选B. 5.若1tan 2α=,则cos2=α( ) A .45-B .35- C .45D .35【答案】D 【解析】 【分析】直接利用二倍角余弦公式与弦化切即可得到结果. 【详解】 ∵1tan 2α=, ∴22222211cos sin 1tan 34cos21cos sin 1tan 514ααααααα---====+++, 故选D 【点睛】本题考查的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考查学生的运算能力和转化能力,属于基础题型.6.已知()()11,101,012x f x f x x x ⎧--<<⎪+⎪=⎨⎪≤<⎪⎩,若方程()21f x ax a -=-有唯一解,则实数a 的取值范围是( )A .{}()81,-⋃+∞B .{}()116,12,2⎛⎤-⋃⋃+∞⎥⎝⎦C .{}()18,12,2⎡⎤-⋃⋃+∞⎢⎥⎣⎦D .{}[]()321,24,-⋃⋃+∞【答案】B 【解析】 【分析】求出()f x 的表达式,画出函数图象,结合图象以及二次方程实根的分布,求出a 的范围即可. 【详解】解:令10x -<<,则011x <+<, 则1(1)2x f x ++=, 故21,101(),012x x f x x x ⎧--<<⎪⎪+=⎨⎪<⎪⎩„,如图示:由()21f x ax a -=-, 得()(21)1f x a x =+-,函数(21)1y a x =+-恒过1(2A -,1)-,由1(1,)2B ,(0,1)C ,可得1121112ABk +==+,2OA k =,11412AC k +==,若方程()21f x ax a -=-有唯一解, 则122a <„或24a >,即1a 12<„或2a >; 当22111ax a x +-=-+即图象相切时, 根据0∆=,298(2)0a a a --=, 解得16(0a =-舍去),则a 的范围是{}()116,12,2⎛⎤-⋃⋃+∞ ⎥⎝⎦, 故选:B .【点睛】本题考查函数的零点问题,考查函数方程的转化思想和数形结合思想,属于中档题.7.已知点P 不在直线l 、m 上,则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可. 【详解】Q 点P 不在直线l 、m 上,∴若直线l 、m 互相平行,则过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行,即必要性成立,若过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行,则直线l 、m 互相平行成立,反证法证明如下:若直线l 、m 互相不平行,则l ,m 异面或相交,则过点P 只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点P 可以作无数个平面,使得直线l 、m 都与这些平面平行”是“直线l 、m 互相平行”的充要条件, 故选:C . 【点睛】本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键.8.已知函数()222,02,0x x x f x x x x ⎧-+≥⎪=⎨-<⎪⎩,若关于x 的不等式()()20f x af x +<⎡⎤⎣⎦恰有1个整数解,则实数a 的最大值为( )A .2B .3C .5D .8【答案】D 【解析】 【分析】画出函数()f x 的图象,利用一元二次不等式解法可得解集,再利用数形结合即可得出. 【详解】解:函数()f x ,如图所示()()()()()200f x af x f x f x a +<⇒+<⎡⎤⎣⎦当0a >时,()0a f x -<<,由于关于x 的不等式()()20f x af x +<⎡⎤⎣⎦恰有1个整数解 因此其整数解为3,又()3963f =-+=- ∴30a -<-<,()48a f -≥=-,则38a <≤ 当0a =时,()20f x <⎡⎤⎣⎦,则0a =不满足题意; 当0a <时,()0f x a <<-当01a <-≤时,()0f x a <<-,没有整数解 当1a ->时,()0f x a <<-,至少有两个整数解 综上,实数a 的最大值为8 故选:D 【点睛】本题主要考查了根据函数零点的个数求参数范围,属于较难题.9.已知函数()2ln e x f x x =,若关于x 的方程21[()]()08f x mf x -+=有4个不同的实数根,则实数m 的取值范围为( ) A .3(0,)4B. C.3()24D.2【答案】C 【解析】 【分析】求导,先求出()f x在(x ∈单增,在)x ∈+∞单减,且max 1()2f x f ==知设()f x t =,则方程21[()]()08f x mf x -+=有4个不同的实数根等价于方程 2108t mt -+=在1(0,)2上有两个不同的实数根,再利用一元二次方程根的分布条件列不等式组求解可得.【详解】依题意,2432ln (12ln )()e x xe xe x xf x x x '⋅--==, 令()0f x '=,解得1ln 2x =,x =x ∈时,()0f x '>,当)x ∈+∞,()0f x '<,且12f ==, 故方程2108t mt -+=在1(0,)2上有两个不同的实数根,故121212011()()022010t t t t t t ∆>⎧⎪⎪-->⎪⎨⎪<+<⎪>⎪⎩,210211082401m m m ⎧->⎪⎪⎪-+>⎨⎪<<⎪⎪⎩解得3,)24m ∈. 故选:C. 【点睛】本题考查确定函数零点或方程根个数.其方法:(1)构造法:构造函数()g x (()g x '易求,()=0g x '可解),转化为确定()g x 的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出()g x 的图象草图,数形结合求解;(2)定理法:先用零点存在性定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.10.已知a r ,b r ,c r 是平面内三个单位向量,若a b ⊥r r,则232a c a b c +++-r r r r r 的最小值( )A B .C D .5【答案】A 【解析】 【分析】由于a b ⊥r r,且为单位向量,所以可令()1,0a =r ,()0,1b =r ,再设出单位向量c r 的坐标,再将坐标代入232a c a b c +++-r r r r r中,利用两点间的距离的几何意义可求出结果.【详解】解:设(),c x y =r ,()1,0a =r ,()0,1b =r ,则221x y +=,从而232+++-=r r r r r a c a b c==≥=故选:A 【点睛】此题考查的是平面向量的坐标、模的运算,利用整体代换,再结合距离公式求解,属于难题.11.已知ABC ∆的内角,,A B C 的对边分别是,,,a b c 且444222222a b c a b ca b +++=+,若c 为最大边,则a b c +的取值范围是( )A .1⎛ ⎝⎭B .(C .1⎛ ⎝⎦D .【答案】C 【解析】 【分析】由444222222a b c a b c a b+++=+,化简得到cos C 的值,根据余弦定理和基本不等式,即可求解. 【详解】由444222222a b c a b c a b +++=+,可得222422222(2)a b c a b c a b ++-=+, 可得22222222222()c a b c a b a b c a b+-++-=+, 通分得2222222222()()0a b c c a b a b a b+---+=+, 整理得222222()a b c a b +-=,所以22221()24a b c ab +-=,因为C 为三角形的最大角,所以1cos 2C =-, 又由余弦定理2222222cos ()c a b ab C a b ab a b ab =+-=++=+-2223()()()24a b a b a b +≥+-=+,当且仅当a b =时,等号成立,所以)c a b >+,即a b c +≤,又由a b c +>,所以a b c +的取值范围是. 故选:C. 【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.12.某部队在一次军演中要先后执行六项不同的任务,要求是:任务A 必须排在前三项执行,且执行任务A 之后需立即执行任务E ,任务B 、任务C 不能相邻,则不同的执行方案共有( ) A .36种 B .44种 C .48种 D .54种【答案】B 【解析】 【分析】分三种情况,任务A 排在第一位时,E 排在第二位;任务A 排在第二位时,E 排在第三位;任务A 排在第三位时,E 排在第四位,结合任务B 和C 不能相邻,分别求出三种情况的排列方法,即可得到答案. 【详解】六项不同的任务分别为A 、B 、C 、D 、E 、F ,如果任务A 排在第一位时,E 排在第二位,剩下四个位置,先排好D 、F ,再在D 、F 之间的3个空位中插入B 、C ,此时共有排列方法:222312A A =;如果任务A 排在第二位时,E 排在第三位,则B ,C 可能分别在A 、E 的两侧,排列方法有122322=12C A A ,可能都在A 、E 的右侧,排列方法有2222=4A A ;如果任务A 排在第三位时,E 排在第四位,则B ,C 分别在A 、E 的两侧11222222=16C C A A ; 所以不同的执行方案共有121241644+++=种. 【点睛】本题考查了排列组合问题,考查了学生的逻辑推理能力,属于中档题. 二、填空题:本题共4小题,每小题5分,共20分。
2021年普通高等学校招生全国统一考试数学试题(新高考Ⅱ)-含解析
2021年普通高等学校招生全国统一考试数学试题(新高考Ⅱ)一、单选题(本大题共18小题,共80.0分)1.对于任意x∈[1,2],不等式x2+mx+1<0恒成立,则实数m取值范围是()A. (−∞,−2)B. (−∞,−52) C. (−2,2) D. (−2,2]2.已知命题p:∃x∈R,x2+2ax+a+2≤0,若命题p是假命题,则实数a的取值范围是()A. (−2,1)B. [−1,2]C. (−1,2)D. (0,2]3.已知实数a、b、c满足b+c=6−4a+3a2,c−b=4−4a+a2,则a、b、c的大小关系是()A. c≥b>aB. a>c≥bC. c>b>aD. a>c>b4.《几何原本》中的几何代数法(以几何方法研究代数问题)成为了后世数学家处理问题的重要依据.通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.如图所示的图形,在AB上取一点C,使得AC=a,BC=b,过点C作CD⊥AB交圆周于D,连接OD.作CE⊥OD交OD于E.由CD≥DE可以证明的不等式为()A. √ab≥2aba+b (a>0,b>0) B. a+b2≥√ab(a>0,b>0)C. √a2+b22≥a+b2(a>0,b>0) D. a2+b2≥2ab(a>0,b>0)5.函数f(x)=ax+b(x+c)2的图象如图所示,则下列结论成立的是()A. a >0,b >0,c <0B. a <0,b >0,c >0C. a <0,b >0,c <0D. a <0,b <0,c <06. 若f(x)满足关系式f(x)+2f(1x )=3x ,则f(2)的值为( )A. 1B. −1C. −32D. 327. 在函数y =|x|(x ∈[−1,1])的图象上有一点P(t,|t|),此函数与x 轴、直线x =−1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )A.B.C.D.8. 函数f(x)在(−∞,+∞)上单调递减,且为奇函数.若f(1)=−1,则满足−1≤f(x −2)≤1的x 的取值范围是( )A.B.C. [0,4]D. [1,3]9. 已知f(x)={(a −3)x +a +2,x <1,−ax 2+x,x ≥1在(−∞,+∞)上单调递减,则实数a 的取值范围为( )A. (0,3)B. [12,3)C. [23,3)D. [12,23]10. 已知λ∈R ,函数f(x)={x −2,x ≥λ,x 2+x −2,x <λ,若方程f(x)=0恰有2个实数解,则λ的取值范围是( )A. (−2,1]B. (−2,1]∪(2,+∞)C. (−2,1]∪[2,+∞)D. (−2,1)∪[2,+∞)11. 复数2−i1−3i 在复平面内对应的点所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限12. 设集合U ={1,2,3,4,5,6},A ={1,3,6},B ={2,3,4},则A⋂(∁U B )=( )A. {3}B. {1,6}C. {5,6}D. {1,3}13. 抛物线y 2=2px(p >0)的焦点到直线y =x +1的距离为√2,则p =( )A. 1B. 2C. 2√2D. 414. 北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为S =2πr 2(1−cosα)(单位:km 2),则S 占地球表面积的百分比约为( )A. 26%B. 34%C. 42%D. 50%15. 正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A. 20+12√3B. 28√2C. 563D. 28√2316. 某物理量的测量结果服从正态分布N (10,σ2),下列结论中不正确的是( )A. σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. σ越小,该物理量在一次测量中大于10的概率为0.5C. σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等17. 已知a =log 52,b =log 83,c =12,则下列判断正确的是( )A. c <b <aB. b <a <cC. a <c <bD. a <b <c18. 已知函数f (x )的定义域为R ,f (x +2)为偶函数,f (2x +1)为奇函数,则( )A. f (−12)=0B. f (−1)=0C. f (2)=0D. f (4)=0二、多选题(本大题共10小题,共48.0分) 19. 下列说法正确的是( )A. 函数f(x)=log a(2x+1)−1的图象过顶点(0,0)B. 已知函数f(x)是定义在R上的奇函数,当x≤0时,f(x)=x(x+1),则当x>0时,f(x)的解析式为f(x)=x−x2(x>0)C. 若函数y=f(x−2020)是奇函数,则y=f(x)的图象关于点(−2020,0)对称D. 函数y=2√x2+2的最小值为220.下列式子,可以是x2<1的一个充分不必要条件的有()A. x<1B. 0<x<1C. −1<x<1D. −1<x<021.下列选项中的两个集合相等的有()A. P={x|x=2n,n∈Z},Q={x|x=2(n+1),n∈Z}B. P={x|x=2n−1,n∈N∗},Q={x|x=2n+1,n∈N+}C. P={x|x2−x=0},Q={x|x=1+(−1)n2,n∈Z}D. P={x|y=x+1},Q={(x,y)|y=x+1}22.已知a,b∈R∗且a+b=1,那么下列不等式中,恒成立的有()A. ab≤14B. ab+1ab≥174C. √a+√b≤√2D. 1a+12b≥2√223.若x∈R,f(x)是y=2−x2,y=x这两个函数中的较小者,则f(x)()A. 最大值为2B. 最大值为1C. 最小值为−1D. 无最小值24.已知f(x)=ax2+bx+c(a>0),分析该函数图象的特征,若方程f(x)=0一根大于3,另一根小于2,则下列不等式一定成立的是()A. 2<−b2a<3 B. 4ac−b2<0 C. f(2)<0 D. f(3)<025.下列统计量中,能度量样本x1,x2,⋯,x n的离散程度的是()A. 样本x1,x2,⋯,x n的标准差B. 样本x1,x2,⋯,x n的中位数C. 样本x1,x2,⋯,x n的极差D. 样本x1,x2,⋯,x n的平均数26.如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点,则满足MN⊥OP的是()A. B.C. D.27.已知直线l:ax+by−r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A. 若点A在圆C上,则直线l与圆C相切B. 若点A在圆C内,则直线l与圆C相离C. 若点A在圆C外,则直线l与圆C相离D. 若点A在直线l上,则直线l与圆C相切28.设正整数n=a0⋅20+a1⋅2+⋯+a k−1⋅2k−1+a k⋅2k,其中a i∈{0,1},记ω(n)=a0+a1+⋯+a k,则()A. ω(2n)=ω(n)B. ω(2n+3)=ω(n)+1C. ω(8n+5)=ω(4n+3)D. ω(2n−1)=n三、单空题(本大题共11小题,共49.0分)29.已知幂函数的图象经过点(3,19),则这个幂函数的解析式为______ .30.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(x−1)<f(2)的x的取值范围是______ .31.若不等式ax2−bx−1≥0的解集为[−12,−13],则不等式x2−bx−a<0的解集为______ .32.已知函数f(x)满足:f(p+q)=f(p)f(q),f(1)=3,则f2(1)+f(2)f(1)+f2(2)+f(4)f(3)+f2(3)+f(6)f(5)+f2(4)+f(8)f(7)+f2(5)+f(10)f(9)的值为______.33.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x−x2,则函数f(x)的解析式为______.34.若f(x)=−x2+2ax与g(x)=2x−3+ax−1在区间[2,4]上都是减函数,则a的取值范围是______.35.已知函数f(x)={x+4x,0<x<4,−x2+10x−20,x≥4,若存在0≤x1<x2<x3< x4,使得f(x1)=f(x2)=f(x3)=f(x4),则x1x2x3x4的取值范围是______.36.已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为.37.写出一个同时具有下列性质①②③的函数f(x):_______.①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.38.已知向量a⃗+b⃗ +c⃗=0⃗,|a⃗|=1,|b⃗ |=|c⃗|=2,a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗=_______.39.已知函数f(x)=|e x−1|,x1<0,x2>0,函数f(x)的图象在点A(x1,f(x1))和点B(x2,f(x2))的两条切线互相垂直,且分别交y轴于M,N两点,则|AM||BN|取值范围是_______.四、解答题(本大题共12小题,共140.0分)40.已知集合A={x|2−a≤x≤2+a}(a≥0),B={x|(x−1)(x−4)≥0}.(1)当a=2时,求A∪(∁R B);(2)若A∩B=⌀,求实数a的取值范围.41.已知函数f(x)=ax+bx 的图象经过点A(1,0),B(2,−32).(1)求函数f(x)的解析式;(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;(3)求f(x)在区间[12,1]上的值域.42. 已知a >0,b >0,a +b =1,求证:(1)a 2+b 2≥12; (2)1a+1b +1ab≥8.43. 已知函数f(x)=2x 2x 2+1. (1)求f(2)+f(12),f(3)+f(13)的值; (2)求证:f(x)+f(1x )是定值;(3)求f(1)+f(2)+f(12)+f(3)+f(13)+⋯+f(2020)+f(12020)的值.44. 国庆放假期间高速公路免费是让实惠给老百姓,但也容易造成交通堵塞.在某高速公路上的某时间段内车流量y(单位:千辆/小时)与汽车的平均速度v(单位:千米/小(0<v≤120,c为常数),当汽车平均速度为时)之间满足的函数关系y=1840vv2+20v+c100千米/小时时,车流量为10千辆/小时.(1)在该时间段内,当汽车的平均速度v为多少时车流量y达到最大值?(2)为保证在该时间段内车流量至少为10千辆/小时,则汽车的平均速度应控制在什么范围内?45.已知关于x的不等式ax2−x+1−a≤0.(1)当a∈R时,解关于x的不等式;(2)当x∈[2,3]时,不等式ax2−x+1−a≤0恒成立,求a的取值范围.46.记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式a n;(2)求使S n>a n成立的n的最小值.47.在▵ABC中,角A、B、C所对的边长分别为a、b、c,b=a+1,c=a+2.(1)若2sinC=3sinA,求▵ABC的面积;(2)是否存在正整数a,使得▵ABC为钝角三角形⋅若存在,求出a的值;若不存在,说明理由.48.在四棱锥Q−ABCD中,底面ABCD是正方形,若AD=2,QD=QA=√5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B−QD−A的平面角的余弦值.49.已知椭圆C的方程为x2a2+y2b2=1(a>b>0),右焦点为F(√2,0),且离心率为√63.(1)求椭圆C的方程;(2)设M,N是椭圆C上的两点,直线MN与曲线x2+y2=b2(x>0)相切.证明:M,N,F三点共线的充要条件是|MN|=√3.50.一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=p i(i=0,1,2,3).(1)已知p0=0.4,p1=0.3,p2=0.2,p3=0.1,求E(X);(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+p1x+p2x2+p3x3=x的一个最小正实根,求证:当E(X)≤1时,p=1,当E(X)>1时,p<1;(3)根据你的理解说明(2)问结论的实际含义.51.已知函数f(x)=(x−1)e x−ax2+b.(1)讨论f(x)的单调性;(2)从下面两个条件中选一个,证明:f(x)有一个零点.①12<a≤e22,b>2a;②0<a<12,b≤2a.答案和解析1.【答案】B【解析】【分析】本题考查二次不等式恒成立问题解法,考查转化思想和运算能力,属于基础题.由二次函数的图象和性质可得1+m+1<0且4+2m+1<0,解不等式可得所求范围.【解答】解:任意x∈[1,2],不等式x2+mx+1<0恒成立,由y=x2+mx+1为开口向上的抛物线,可得1+m+1<0且4+2m+1<0,即为m<−2且m<−5,2,解得m<−52故选:B.2.【答案】C【解析】【分析】本题考查了简易逻辑的应用问题,也考查了转化思想的应用问题和不等式恒成立的问题,是基础题.根据命题p是假命题,得¬p是真命题,转化为不等式恒成立的问题,从而求出实数a的取值范围.【解答】解:∵命题p:∃x∈R,x2+2ax+a+2≤0是假命题,则¬p是真命题,即∀x∈R,x2+2ax+a+2>0恒成立,∴4a2−4(a+2)<0,即a2−a−2<0,解得−1<a<2,∴a的取值范围是(−1,2).故选C.3.【答案】A【解析】解:由c−b=4−4a+a2=(2−a)2≥0,∴c≥b.再由b+c=6−4a+3a2①c−b=4−4a+a2②①−②得:2b=2+2a2,即b=1+a2.∵1+a2−a=(a−12)2+34>0,∴b=1+a2>a.∴c≥b>a.故选A.把给出的已知条件c−b=4−4a+a2右侧配方后可得c≥b,再把给出的两个等式联立消去c后,得到b=1+a2,利用基本不等式可得b与a的大小关系.本题考查了不等式的大小比较,考查了配方法,训练了基本不等式在解题中的应用,是基础题.4.【答案】A【解析】解:由射影定理可知CD2=DE⋅OD,即DE=DC2ODaba+b2=2aba+b,由DC≥DE得√ab≥2aba+b,故选:A.根据圆的性质、勾股定理、三角形三边大小关系以及基本不等式的性质判断即可.本题考查了圆的性质、射影定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.5.【答案】C【解析】【分析】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.分别根据函数的定义域,函数零点以及f(0)的取值范围进行判断即可.【解答】解:函数在x =x 0处无意义,由图象x 0>0,所以−c >0,得c <0,f(0)=bc 2>0,∴b >0,由f(x)=0得ax +b =0,即x =−b a ,即函数的零点x =−b a >0,∴a <0,综上a <0,b >0,c <0,故选:C . 6.【答案】B【解析】解:∵f(x)满足关系式f(x)+2f(1x )=3x ,∴{f(2)+2f(12)=6,①f(12)+2f(2)=32,②, ①−②×2得−3f(2)=3,∴f(2)=−1,故选:B .由已知条件得{f(2)+2f(12)=6,①f(12)+2f(2)=32,②,由此能求出f(2)的值. 本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用.7.【答案】B【解析】解:由题意知,当t >0时,S 的增长会越来越快,故函数S 图象在y 轴的右侧的切线斜率会逐渐增大,故选:B .利用在y 轴的右侧,S 的增长会越来越快,切线斜率会逐渐增大,从而选出正确的选项.本题考查函数图象的变化特征,函数的增长速度与图象的切线斜率的关系,体现了数形结合的数学思想.8.【答案】D【解析】【分析】本题考查函数的单调性,函数的奇偶性,属于中档题.由题干中函数的单调性及奇偶性,可将不等式−1≤f(x −2)≤1化为−1≤x −2≤1,即可解得答案.【解答】解:∵函数f(x)为奇函数,若f(1)=−1,则f(−1)=−f(1)=1,又∵函数f(x)在(−∞,+∞)上单调递减,−1≤f(x −2)≤1,∴f(1)≤f(x −2)≤f(−1),∴−1≤x −2≤1,解得:1≤x ≤3,所以x 的取值范围是[1,3].故选D .9.【答案】C【解析】解:x <1时,f(x)=(a −3)x +a +2在(−∞,1)递减,则a −3<0,解得:a <3①,x ≥1时,f(x)=−ax 2+x 在[1,+∞)递减,则{a >012a≤1,解得:a ≥12②,当x =1时,2a −1≥−a +1,解得:a ≥23③,综合①②③,a 的取值范围是[23,3),故选:C .根据函数在各个区间的性质,结合函数的单调性,求出a 的范围即可.本题考查了函数的单调性问题,考查常见函数的性质,是一道常规题.10.【答案】B【解析】解:由x−2=0,得x=2,由x2+x−2=0,得x=−2或x=1.则当λ≤−2时,方程f(x)=0仅有一个实数解x=2;当−2<λ≤1时,方程f(x)=0恰有两个实数解x=−2,x=2;当1<λ≤2时,方程f(x)=0恰有三个实数解x=−2,x=1,x=2;当λ>2时,方程f(x)=0恰有两个实数解x=−2,x=1.∴若方程f(x)=0恰有2个实数解,则λ的取值范围是(−2,1]∪(2,+∞).故选:B.分别求出两段函数的零点,把λ分段,由两段函数在不同区间内的零点个数得答案.本题考查分段函数的应用,考查分类讨论的数学思想,考查逻辑思维能力与推理运算能力,是中档题.11.【答案】A【解析】【分析】本题考查了复数的除法以及代数表示及其几何意义,属于基础题.利用复数的除法可化简2−i1−3i,从而可求对应的点的位置.【解答】解:,所以该复数对应的点为(12,12 ),该点在第一象限,故选A.12.【答案】B【解析】【分析】本题考查了集合交集与补集的混合运算,属于基础题.先根据补集的定义求出∁U B={1,5,6},再由交集的定义可求A∩(∁U B).【解答】解:由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6}.故选B.13.【答案】B【解析】【分析】本题考查了抛物线的基础知识和点到直线的距离公式,题目较易.首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p的值.【解答】解:抛物线的焦点坐标为(p2,0),其到直线x−y+1=0的距离为d=|p2−0+1|√1+1=√2,解得p=2(p=−6舍去).故选B.14.【答案】C【解析】【分析】本题重在考查学生对数学知识的理解运用能力和直观想象能力,属于中档题.由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【解答】解:如图所示,由题意可得,S占地球表面积的百分比约为:2πr2(1−cosα)4πr2=1−cosα2=1−64006400+360002≈0.42=42%.故选C.15.【答案】D【解析】【分析】本题考查了棱台的结构特征与体积的求法,考查了数形结合思想.由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【解答】解:作出图形,连接该正四棱台上下底面的中心,如图所示,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高ℎ=√22−(2√2−√2)2=√2,下底面面积S1=16,上底面面积S2=4,所以该棱台的体积V=13ℎ(S1+S2+√S1S2)=13×√2×(16+4+√64)=283√2.故选D.16.【答案】D【解析】【分析】本题考查了正态分布的相关知识,属于中档题.由正态分布密度曲线的特征逐项判断即可得解.【解答】解:对于A,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A正确;对于B,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C正确;对于D,因为该物理量一次测量结果落在(9.9,10.0)的概率与落在(10.2,10.3)的概率不同,所以一次测量结果落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D错误.故选D.17.【答案】C【解析】【分析】本题考查了对数的单调性与大小比较,合理转化是关键.利用对数函数的单调性可比较a、b与c的大小关系,由此可得出结论.【解答】=log82√2<log83=b,即a<c<b.解:a=log52<log5√5=12故选C.18.【答案】B【解析】【分析】本题是对函数奇偶性和周期性的综合考查,属于拔高题.推导出函数f(x)是以4为周期的周期函数,由已知条件得出f(1)=0,结合已知条件可得出结论.【解答】解:因为函数f(x+2)为偶函数,则f(2+x)=f(2−x),可得f(x+3)=f(1−x),因为函数f(2x+1)为奇函数,则f(1−2x)=−f(2x+1),所以,f(1−x)=−f(x+1),所以,f(x+3)=−f(x+1)=f(x−1),即f(x)=f(x+4),故函数f(x)是以4为周期的周期函数,因为函数F(x)=f(2x+1)为奇函数,则F(0)=f(1)=0,故f(−1)=−f(1)=0,其它三个选项未知.故选B.19.【答案】BC【解析】解:对于A:函数f(x)=log a(2x+1)−1的图象过顶点(0,−1),即当x=0时,f(0)=−1,故A错误;对于B:函数f(x)是定义在R上的奇函数,当x≤0时,f(x)=x(x+1),则当x>0时,−x<0,所以f(−x)=(−x)(−x+1),整理得f(x)=x−x2(x>0),所以f(x)的解析式为f(x)=x−x2(x>0),故B正确;对于C:函数y=f(x−2020)是奇函数,则y=f(x)的图象关于点(−2020,0)对称,故C正确;对于D:函数y=2√x2+2=√x2+2√x2+2,设√x2+2=t(t≥√2),所以y=t+1t,y′=1−1t2>0,函数在[√2,+∞)上单调递增,所以y min=√22=3√22,故D错误.故选:BC.直接利用对数函数的性质,函数的奇偶性和关系式的确定,函数的导数与单调性的关系,函数的导数与函数的最值的关系判定A、B、C、D的结论.本题考查的知识要点:对数函数的性质,函数的奇偶性和关系式的确定,函数的导数与单调性的关系,利用函数的导数求函数的最值,主要考查学生的运算能力和转换能力及思维能力,属于基础题.20.【答案】BD【解析】解:对于A,x<1时,x2有可能大于1,比如−3<1,(−3)2>1,故A错误;对于B,0<x<1⇒x2<1,故B正确;对于C,−1<x<1⇔x2<1,故C错误.对于D,−1<x<0⇒x2<1,故D正确;故选:BD.对于A,x<1是x2<1的不充分不必要条件;对于B,0<x<1是x2<1的一个充分不必要条件;对于C,−1<x<1是x2<1的充要条件;对于D,−1<x<0是x2<1的一个充分不必要条件.本题考查命题的充分非必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,是基础题.21.【答案】AC【解析】【分析】利用集合相等的定义和集合中的元素的性质,对各个选项逐个判断即可.本题考查了集合相等的性质,考查了学生对集合的元素的理解,属于中档题.【解答】解:选项A:因为集合P,Q表示的都是所有偶数组成的集合,所以P=Q;选项B:集合P中的元素是由1,3,5,…,所有正奇数组成的集合,集合Q是由3,5,7…,所有大于1的正奇数组成的集合,即1∉Q,所以P≠Q;选项C:集合P={0,1},集合Q中:当n为奇数时,x=0,当n为偶数时,x=1,所以Q={0,1},则P=Q;选项D:集合P表示的是数集,集合Q表示的是点集,所以P≠Q;综上,选项AC表示的集合相等,故选:AC.22.【答案】ABC【解析】解:∵a ,b ∈R ∗且a +b =1,∴a +b =1≥2√ab ,即ab ≤14,当且仅当a =b =12时,等号成立,即选项A 正确; 令t =ab ,则t ∈(0,14],∴y =ab +1ab =t +1t 在t ∈(0,14]上单调递减, ∴当t =14时,y 取得最小值,为174,即ab +1ab ≥174,故选项B 正确;∵(√a +√b)2=a +b +2√ab =1+2√ab ≤1+2×√14=2, ∴√a +√b ≤√2,即选项C 正确; ∵1a +12b=(1a+12b)⋅(a +b)=1+12+b a+a 2b≥32+2√b a⋅a 2b=32+√2,当且仅当b a =a2b 时,等号成立,即选项D 错误. 故选:ABC .选项A ,由a +b ≥2√ab ,得解;选项B ,令t =ab ,则y =ab +1ab =t +1t ,再结合对勾函数的图象与性质,可得解; 选项C ,由(√a +√b)2=a +b +2√ab ,再根据选项A 的推导,得解; 选项D ,由“乘1法”,可得解.本题考查基本不等式的应用,熟练掌握“乘1法”和对勾函数的图象与性质是解题的关键,考查学生的逻辑推理能力和运算能力,属于中档题.23.【答案】BD【解析】解:作出函数y =2−x 2,y =x 的图象如图, 则f(x)的图象为图中实线部分,由图可知,当x =1时,f(x)取最大值为1,无最小值.故选:BD.由题意作出函数f(x)的图象,数形结合得答案.本题考查函数的最值及其求法,考查数形结合的解题思想,是基础题.24.【答案】BCD【解析】解:由题意做出f(x)=f(x)=ax2+bx+c(a>0)的图象如:该抛物线开口向上,与x轴在(−∞,2),(3,+∞)上各有一个交点.故:△=b2−4ac>0;f(2)<0;f(3)<0.又该二次函数的对称轴除了不能落在[2,3]之间外,可以取任意值,故A选项错误.故选:BCD.结合题意做出函数f(x)的图象,据图分析即可.本题考查二次函数的图象与性质,即函数的零点、函数图象与x轴的交点、函数对应方程的根之间的关系.属于中档题.25.【答案】AC【解析】【分析】本题考查了离散程度与集中趋势的相关知识,属于基础题.判断所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【解答】解:由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选AC.26.【答案】BC【解析】【分析】本题考查了空间中两直线的位置关系以及垂直的判定,考查了数形结合思想和直观想象能力.根据线面垂直的判定定理可得BC的正误,平移直线MN构造所考虑的线线角后可判断AD的正误.【解答】解:设正方体的棱长为2,对于A,如图(1)所示,连接AC,易知MN//AC,且MN、AC、OP在同一平面内,由图可知直线OP与AC相交且不垂直,故MN⊥OP不成立,故A错误.对于B,如图(2)所示,取NT的中点为Q,连接PQ,OQ,则OQ⊥NT,PQ⊥MN,由正方体SBCM−NADT可得SN⊥平面NADT,而OQ⊂平面NADT,故SN⊥OQ,而SN∩NT=N,故OQ⊥平面SNTM,又MN⊂平面SNTM,所以OQ⊥MN,而OQ⋂PQ=Q,所以MN⊥平面OPQ,而PO⊂平面OPQ,故MN⊥OP,故B正确.对于C,如图(3),连接BD,则BD//MN,由B的判断可得OP⊥BD,故OP⊥MN,故C正确.对于D,如图(4),取AM′的中点G,连接PG,OG,M′N′,则MN//M′N′,PG=√2,OG=√3,PO=√5,则PO2=PG2+OG2,PG⊥OG,根据三角形的性质可知PO与PG不垂直,故PO,MN不垂直,故D错误.故选BC.27.【答案】ABD【解析】【分析】本题考查了直线与圆的位置关系,属于中档题.转化点与圆、点与直线的位置关系为a2+b2,r2的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【解答】解:圆心C(0,0)到直线l的距离d=r 2√a2+b2,若点A(a,b)在圆C上,则a2+b2=r2,所以,则直线l与圆C相切,故A正确;若点A(a,b)在圆C内,则a2+b2<r2,所以d=2√a2+b2>|r|,则直线l与圆C相离,故B正确;若点A(a,b)在圆C外,则a2+b2>r2,所以d=2√a2+b2<|r|,则直线l与圆C相交,故C错误;若点A(a,b)在直线l上,则a2+b2−r2=0即a2+b2=r2,所以d=2√a2+b2=|r|,直线l与圆C相切,故D正确.故选ABD.28.【答案】ACD【解析】【分析】本题重在对新定义进行考查,合理分析所给条件是关键,属于拔高题.利用ω(n)的定义可判断ACD选项的正误,利用特殊值法可判断B选项的正误.【解答】解:对于A选项,n=a0⋅20+a1⋅2+⋯+a k−1⋅2k−1+a k⋅2k,ω(n)=a0+a1+⋯+ a k,则2n=a0⋅21+a1⋅22+⋯+a k−1⋅2k+a k⋅2k+1,ω(2n)=a0+a1+⋯+a k=ω(n),A选项正确;对于B选项,取n=2,2n+3=7=1⋅20+1⋅21+1⋅22,∴ω(7)=3,而2=0⋅20+1⋅21,则ω(2)=1,即ω(7)≠ω(2)+1,B选项错误;对于C选项,8n+5=a0⋅23+a1⋅24+⋯+a k⋅2k+3+5=1⋅20+1⋅22+a0⋅23+ a1⋅24+⋯+a k⋅2k+3,所以,ω(8n+5)=2+a0+a1+⋯+a k,4n+3=a0⋅22+a1⋅23+⋯+a k⋅2k+2+3=1⋅20+1⋅21+a0⋅22+a1⋅23+⋯+a k⋅2k+2,所以,ω(4n+3)=2+a0+a1+⋯+a k,因此,ω(8n+5)=ω(4n+3),C选项正确;对于D选项,2n−1=20+21+⋯+2n−1,故ω(2n−1)=n,D选项正确.故选ACD.29.【答案】y=x−2【解析】解:设幂函数的解析式为y=xα,α∈R,∵图象经过点(3,19),∴3α=19,∴α=−2,∴这个幂函数的解析式为y=x−2;故答案为:y=x−2.设出幂函数的解析式,由图象过点(3,19),求出这个幂函数的解析式.本题考查了用待定系数法求函数解析式的问题,是基础题.30.【答案】(−1,3)【解析】解:因为f(x)为偶函数,所以f(x−1)<f(2)可化为f(|x−1|)<f(2),又f(x)在区间[0,+∞)上单调递增,所以|x−1|<2,解得−1<x<3,所以x的取值范围是(−1,3).故答案为:(−1,3).利用偶函数的性质、单调性去掉不等式中的符号“f”,转化为具体不等式即可求解.本题考查函数的奇偶性、单调性及其应用,考查抽象不等式的求解,考查学生灵活运用知识解决问题的能力,属于基础题.31.【答案】(2,3)【解析】【分析】不等式ax2−bx−1≥0的解集为[−12,−13],可得−12,−13是一元二次方程ax2−bx−1=0的两个实数根,且a<0.利用根与系数的关系即可得出.本题考查了一元二次不等式的解法、一元二次方程的根与系数的关系,属于基础题.【解答】∵不等式ax2−bx−1≥0的解集为[−12,−13],∴−12,−13是一元二次方程ax2−bx −1=0的两个实数根,且a <0. ∴{−12−13=b a−12×(−13)=−1aa <0,解得a =−6,b =5. 则不等式x 2−bx −a <0化为x 2−5x +6<0,即(x −2)(x −3)<0,解得2<x <3. ∴不等式x 2−bx −a <0的解集为(2,3). 故答案为:(2,3).32.【答案】30【解析】解:由f(p +q)=f(p)f(q), 令p =q =n ,得f 2(n)=f(2n). 原式=2f 2(1)f(1)+2f(4)f(3)+2f(6)f(5)+2f(8)f(7)2f(10)f(9)++=2f(1)+2f(1)f(3)f(3)+2f(1)f(5)f(5)+2f(1)f(7)f(7)+2f(1)f(9)f(9)=10f(1)=30, 故答案为:30题中条件:f(p +q)=f(p)f(q),利用赋值法得到f(n+1)f(n)=2和f(2n)=f 2(n),后化简所求式子即得.本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于基础题.33.【答案】f(x)={x −x 2,x ≥0x +x 2,x <0【解析】解:根据题意,当x <0时,−x >0,则f(−x)=(−x)−(−x)2=−x −x 2, 又由f(x)为奇函数,则f(x)=−f(−x)=x +x 2, 故f(x)={x −x 2,x ≥0x +x 2,x <0,故答案为:f(x)={x −x 2,x ≥0x +x 2,x <0.根据题意,当x <0时,−x >0,求出f(−x)的解析式,结合函数的奇偶性分析可得答案.本题考查函数奇偶性的性质以及应用,涉及函数解析式的计算,属于基础题.34.【答案】(1,2]【解析】解:∵f(x)=−x2+2ax与g(x)=2x−3+ax−1=2+a−1x−1在区间[2,4]上都是减函数,∴{a≤2a−1>0,解得,1<a≤2.故答案为:(1,2].由已知结合二次函数与反比例函数的单调性的性质可求.本题主要考查了二次函数与反比例函数的单调性的应用,属于基础试题.35.【答案】(96,100)【解析】解:令f(x1)=f(x2)=f(x3)=f(x4)=t,(4<t<5),则方程x+4x=t的两根为x1,x2,由x+4x=t得x2−tx+4=0,故由韦达定理可知:x1x2=4,根据抛物线f(x)=−x2+10x−20的对称性可知x3+x4=10(4<x3<5),所以x1x2x3x4=4x3x4=4x3(10−x3)=−4(x3−5)2+100,由于4<x3<5,故96<−4(x3−5)2+100<100,故答案为:(96,100).令f(x)=t,再分段解方程,利用根与系数的关系即可求解.本题考查了函数的零点与方程根的关系,考查了根与系数的关系,属于基础题.36.【答案】y=±√3x【解析】【分析】本题考查了双曲线离心率的应用及渐近线的求解,考查了运算求解能力,属于基础题.由双曲线离心率公式可得b2a2=3,再由渐近线方程即可得解.【解答】解:因为双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,所以e=√c2a2=√a2+b2a2=2,所以b2a2=3,所以该双曲线的渐近线方程为y=±bax=±√3x.故答案为:y=±√3x.37.【答案】f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足)【解析】【分析】本题是开放性问题,合理分析所给条件找出合适的函数是关键,属于中档题.根据幂函数的性质可得所求的f(x).【解答】解:取f(x)=x4,则f(x1x2)=(x1x2)4=x14x24=f(x1)f(x2),满足①,f′(x)=4x3,x>0时有f′(x)>0,满足②,f′(x)=4x3的定义域为R,又f′(−x)=−4x3=−f′(x),故f′(x)是奇函数,满足③.故答案为:f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足)38.【答案】−92【解析】【分析】本题考查了向量数量积的运算,合理转化是关键,属于中档题.由已知可得(a⃗+b⃗ +c⃗ )2=0,展开化简后可得结果.【解答】解:由已知可得(a⃗+b⃗ +c⃗ )2=a⃗2+b⃗ 2+c⃗2+2(a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗ )=9+2(a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗ )=0,因此,a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗=−92.故答案为:−92.39.【答案】(0,1)【解析】【分析】本题考查学生利用导数研究函数的能力,考查了直线的方程和斜率以及两点距离问题,属于拔高题.结合导数的几何意义可得x1+x2=0,结合直线斜率及两点间距离公式可得|AM|=√1+e2x1⋅|x1|,|BN|=√1+e2x2⋅|x2|,化简即可得解.【解答】解:由题意,f(x)=|e x−1|={1−e x,x<0e x−1,x≥0,则f′(x)={−e x,x<0e x,x⩾0,所以点A(x1,1−e x1)和点B(x2,e x2−1),k AM=−e x1,k BN=e x2,所以−e x1⋅e x2=−1,x1+x2=0,所以AM:y−1+e x1=−e x1(x−x1),M(0,e x1x1−e x1+1),所以|AM|=√x12+(e x1x1)2=√1+e2x1⋅|x1|,同理|BN|=√1+e2x2⋅|x2|,所以|AM||BN|=√1+e2x1⋅|x1|√1+e2x2⋅|x|=√1+e2x11+e2x2=√1+e2x11+e−2x1=e x1∈(0,1)故答案为:(0,1).40.【答案】解:(1)当a =2时,A ={x|0≤x ≤4},B ={x|x ≤1或x ≥4}∴∁R B ={x|1<x <4}, ∴A ∪(∁R B)={x|0≤x ≤4};(2)A ={x|2−a ≤x ≤2+a}(a ≥0),B ={x|x ≤1或x ≥4} 若A ∩B =⌀则{2−a >12+a <4,解得a <1 ∴a 的取值范围为[0,1).【解析】(1)求出集合的等价条件,结合集合的基本运算进行计算即可. (2)根据A ∩B =⌀,建立不等式关系进行求解即可.本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键.41.【答案】解:(1)∵f(x)的图象过A(1,0),B(2,−32),∴{a +b =02a +b 2=−32,解得{a =−1b =1, ∴f(x)=−x +1(2)函数f(x)=−x +1x 在(0,+∞)上为减函数,证明如下: 设任意x 1,x 2∈(0,+∞),且x 1<x 2, 则f(x 1)−f(x 2)=(−x 1+1x 1)−(−x 2+1x 2)=(x 2−x 1)+x 2−x 1x 1x 2=(x 2−x 1)(x 1x 2+1)x 1x 2由x 1,x 2∈(0,+∞)得,x 1x 2>0,x 1x 2+1>0. 由x 1<x 2得,x 2−x 1>0,∴f(x 1)−f(x 2)>0,即f(x 1)>f(x 2), ∴函数f(x)=−x +1x 在(0,+∞)上为减函数.(3)由(2)知,函数f(x)=−x +1x 在[12,1]上为减函数, ∴f(x)min =f(1)=0,f(x)max =f(12)=32, ∴f(x)的值域是[0,32].【解析】(1)将A ,B 两点坐标代入解析式可得关于a ,b 的方程组,解之即可; (2)函数f(x)=−x +1x 在(0,+∞)上为减函数,利用单调性的定义证明即可; (3)由函数的单调性求得函数的最值,即可求得值域.本题主要考查函数解析式的求法,函数单调性的判断与证明,函数值域的求法,属于中档题.42.【答案】证明:(1)a >0,b >0,a +b =1,可得a +b ≥2√ab ,即有0<ab ≤14,当且仅当a =b =12时,取得等号, 所以a 2+b 2=(a +b)2−2ab =1−2ab ≥1−2×14=12. (2)由(1)可知1ab ≥4, 即有1a +1b +1ab =2ab ≥8, 当且仅当a =b =12时,取得等号.【解析】(1)a >0,b >0,a +b =1,由基本不等式可得0<ab ≤14,由a 2+b 2=(a +b)2−2ab 即可得证;(2)由(1)得1ab ≥4,即可得证.本题主要考查不等式的证明,考查基本不等式的应用,属于中档题.43.【答案】解:(1)∵函数f(x)=2x 2x 2+1. ∴f(2)+f(12)=2×44+1+2×1414+1=85+25=2,f(3)+f(13)=2×99+1+2×1919+1=2.(2)证明:∵f(x)=2x 2x 2+1,∴f(x)+f(1x )=f(x)=2x2x 2+1+2×1x 21x 2+1=2x 2x 2+1+21+x 2=2. ∴f(x)+f(1x )是定值2. (3)∵f(x)+f(1x )是定值2.∴f(1)+f(2)+f(12)+f(3)+f(13)+⋯+f(2020)+f(12020)=21+1+2019×2 =4039.【解析】(1)分别把f(x)=2x 2x 2+1中所有的x 都换成2,12,3,13,能求出f(2)+f(12)和f(3)+f(13)的值. (2)把f(x)=2x 2x 2+1中的x 分别换成x ,1x ,能证明f(x)+f(1x )是定值2.(3)由f(x)+f(1x )是定值2,能求出f(1)+f(2)+f(12)+f(3)+f(13)+⋯+f(2020)+f(12020)的值.本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.44.【答案】解:(1)由题意可知:10=1840×100 1002+2000+c ,解得c =6400,所以y =1840v v 2+20v+6400=1840v+6400v+20≤2√v⋅v+20=1840180=929,当且仅当v =6400v,即v =80时取等号,所以当汽车的平均速度为80时车流量最大; (2)由题意可知:1840v v 2+20v+6400≥10,即v 2−164v +6400≤0,解得64≤v ≤100,所以当64≤v ≤100时,在该时间段内车流量至少为10千辆/小时.【解析】(1)首先根据题意求出c 的值,再利用基本不等式即可求解;(2)根据题意建立不等式关系,解不等式即可求解.本题考查了函数的实际应用问题,涉及到基本不等式求最值以及一元二次不等式的应用,考查了学生的运算能力,属于中档题.45.【答案】解:(1)不等式ax 2−x +1−a ≤0可化为(x −1)(ax +a −1)≤0,当a =0时,不等式化为x −1≥0,解得x ≥1, 当a <0时,不等式化为(x −1)(x −1−a a)≥0,解得x ≤1−a a,或x ≥1;。
2021年浙江台州高三二模数学试卷-学生用卷
2021年浙江台州高三二模数学试卷-学生用卷一、选择题(本大题共10小题,每小题4分,共40分)1、【来源】 2021年浙江台州高三二模第1题4分设集合A={x|−2<x<2},B={−1,0,1,2},则A∩B=().A. {x|−2<x<2}B. {x|−1⩽x⩽1}C. {−1,0,1}D. {0,1}2、【来源】 2021年浙江台州高三二模第2题4分已知直线l1:x−2y−2=0,l2:x−2y−1=0,则直线l1,l2之间的距离为().A. √55B. 2√55C. √52D. √53、【来源】 2021年浙江台州高三二模第3题4分已知i为虚数单位,若复数z满足z⋅(1+2i)=2−i,则|z|=().A. √55B. 1C. 2D. √54、【来源】 2021年浙江台州高三二模第4题4分若x,y∈R,则“x<|y|”是“x2<y2”的().A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5、【来源】 2021年浙江台州高三二模数学试卷已知某几何体的三视图如图所示,则该几何体的体积为().A. √2B. 34√2C. √22D. √236、【来源】 2021年浙江台州高三二模第6题4分若函数f(x)=x+ax−1在(0,2)上有两个不同的零点,则a的取值范围是().A. [−2,14]B. (−2,14)C. [0,14]D. (0,14)7、【来源】 2021年浙江台州高三二模第7题4分已知m,n∈(0,1),离散型随机变量ξ的分布列如下表:若P(ξ⩽12)=13,则Eξ=().A. 34B. 512C. 1112D. 958、【来源】 2021年浙江台州高三二模第8题4分函数f(x)=cos(x−2)+e xx2−1(e是自然对数的底数,e≈2.71828⋯)的图象可能是().A.B.C.D.9、【来源】 2021年浙江台州高三二模第9题4分已知平面向量a →,b →,c →,若⟨a →,b →⟩=π3,|a →|=4,|2c →−3a →|=1,则c →在b →方向上投影的最小值为( ).A. 2√2B. √3−1C. 52D. 210、【来源】 2021年浙江台州高三二模第10题4分已知a ∈R ,实数x ,y 满足y =ax 2+lnx ,则( ).A. 当a >0时,存在实数b ,使得|x +y −b |既有最大值,又有最小值B. 当a >0时,对于任意的实数b ,|x +y −b |有最大值,无最小值C. 当a <0时,存在实数b ,使得|x +y −b |既有最大值,又有最小值D. 当a <0时,对于任意的实数b ,|x +y −b |无最大值,有最小值二、填空题(本大题共7小题,共36分)11、【来源】 2021年浙江台州高三二模第11题6分已知函数f(x)=3x −3−x +2,则f(1)= ;若f(m)=2,则实数m = .12、【来源】 2021年浙江台州高三二模第12题6分已知多项式(m +x 2)(m −x )2=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,若a 0=8,则实数m = ,a 3= .13、【来源】 2021年浙江台州高三二模第13题6分已知双曲线C :x 2a 2−y 2b 2=1(a >0,b >0)的一条湖近线与直线2x +y −1=0垂直,则双曲线C 的离心率为 ;若点P(2√2,1)在双曲线C 上,则b = .14、【来源】 2021年浙江台州高三二模第14题6分若排一张有三首歌曲和三支舞蹈的演出节目单,共有 种不同的排法(用数字作答),其中恰有两首歌曲相邻的概率为 .15、【来源】 2021年浙江台州高三二模第15题4分已知数列{a n }满足na n+1−(n +1)a n =1(n ∈N ∗),a 3=2,则a 2021= .16、【来源】 2021年浙江台州高三二模第16题4分已知x ,y ∈(0,+∞),α∈R ,若(x −y +sin 2α+1)(x +3y −2sin 2α)=2,则3x +y 的最小值为 .17、【来源】 2021年浙江台州高三二模第17题4分如图,平面内△AOB ,△COD 均为等腰直角三角,∠AOB =∠COD =90°,OA =2,OC =1,点C 在△AOB 的内部(不包括边界),△ACB ,△BOD 的面积分别记作S 1,S 2,则S 1S 2的取值范围为 .三、解答题(本大题共5小题,共74分)18、【来源】 2021年浙江台州高三二模第18题14分已知函数f (x )=√3sinx +cosx .(1) 求函数f (x )的单调递增区间.(2) 若f (α)=85,α∈[π65π6],求sinα的值.19、【来源】 2021年浙江台州高三二模第19题15分如图,四棱锥E −ABCD 中,AB//CD ,AB ⊥AD ,AD =CD =12AB =1,EC =2,△EAB 为正三角形.(1) 求证:AD ⊥EB .(2) 若在线段EA 上有点F ,使得点F 到平面ABCD 的距离为√33,求直线CE 与平面FBD 所成角的正弦值.20、【来源】 2021年浙江台州高三二模第20题15分已知数列{a n }前n 项和为S n ,2S n =3a n −2n ,n ∈N ∗.数列{b n }是等差数列,b 1=a 1,b 4=a 2.(1) 求数列{a n},{b n}的通项公式.(2) 设c n={12,n=1, 1a n−b n ,n⩾2,求证:c1+c2+⋯+c n<1112,n∈N∗.21、【来源】 2021年浙江台州高三二模第21题15分已知点F为椭圆C:x 22+y2=1的左焦点,记点P到直线l:x=−2的距离为d,且d=|PF|.(1) 求动点P的轨迹方程.(2) 过点P作椭圆C的两条切线PA,PB,设切点分别为A(x1,y1),B(x2,y2),连接AF,BF.①求证:直线PA的方程为x1x+2y1y−2=0.②求证:AF⊥FB.22、【来源】 2021年浙江台州高三二模第22题15分已知函数f(x)=a(lnx+1x)+2x−x2.(1) 若0<a<2,求函数f(x)的单调区间.(2) 若存在实数a∈[1,+∞),使得f(x)+f′(x)⩽2对于任意的x⩾m恒成立,求实数m的取值范围.1 、【答案】 C;2 、【答案】 A;3 、【答案】 B;4 、【答案】 B;5 、【答案】 D;6 、【答案】 D;7 、【答案】 C;8 、【答案】 A;9 、【答案】 C;10 、【答案】 D;11 、【答案】143;0;12 、【答案】2;−4;13 、【答案】√52;1;14 、【答案】720;35;15 、【答案】2020;16 、【答案】2;17 、【答案】S1S2∈[√3−1,+∞);18 、【答案】 (1) [−2π3+2kππ3+2kπ](k∈Z).;(2) 4+3√310.;19 、【答案】 (1) 证明见解析.;(2) 3√3040.;20 、【答案】 (1) a n=3n−1,b n=2n.;(2) 证明见解析.;21 、【答案】 (1) y2=2x+3.;(2)①证明见解析.②证明见解析.;22 、【答案】 (1) 增区间为(√a2,1),减区间为(0,√a2),(1,+∞).;(2) m⩾1.;。
2021届全国新高考仿真模拟试题(二)数学(文)(解析版)
∴CD⊥平面
ABD,∴CD
是三棱锥
C
ABD
的高,∴VC
ABD=13×12×2×2×sin
60°×2=2 3, 3
故选 A.
8.答案:C
解析:由射线测厚技术原理公式得I20=I0e-7.6×0.8μ,∴12=e-6.08μ,-ln 2=-6.08μ,μ≈0.114,
故选 C.
9.答案:C
解析:从题图(1)可以看出,该品牌汽车在 1 月份所对应的条形图最高,即销售量最多,
商品销售 25.0 30.0 34.0 37.0 39.0 41.0 42.0 44.0 48.0 y10
额 y/万元
且已知 错误!i=380.0
(1)求第 10 年的年收入 x10. (2)若该城市居民年收入 x 与该种商品的销售额 y 之间满足线性回归方程y^=363x+^a,
254 (ⅰ)求该种商品第 10 年的销售额 y10; (ⅱ)若该城市居民年收入为 40.0 亿元,估计这种商品的销售额是多少?(精确到 0.01) 附:①在线性回归方程y^=b^x+^a中,b^=错误!,^a=-y -b^-x ;
(1)求轨迹Γ的方程; (2)过点 F 作互相垂直的直线 AB 与 CD,其中直线 AB 与轨迹Γ交于点 A,B,直线 CD 与轨迹Γ交于点 C,D,设点 M,N 分别是 AB 和 CD 的中点,求△FMN 的面积的最小值.
-5-
21.(12 分)[2020·安徽省示范高中名校高三联考]函数 f(x)=aex+x2-ln x(e 为自然对数的底数,a 为常 数),曲线 f(x)在 x=1 处的切线方程为(e+1)x-y=0.
于 8 月份,所以该公司 7 月份汽车的总销售量比 8 月份少,所以选项 C 是错误的;从题图(1)
浙江省台州市2021届新高考数学二模考试卷含解析
浙江省台州市2021届新高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若x,y满足约束条件-0210x yx yx≤⎧⎪+≤⎨⎪+≥⎩,,,则z=32xy++的取值范围为()A.[2453,] B.[25,3] C.[43,2] D.[25,2]【答案】D【解析】【分析】由题意作出可行域,转化目标函数32xzy+=+为连接点()3,2D--和可行域内的点(),x y的直线斜率的倒数,数形结合即可得解.【详解】由题意作出可行域,如图,目标函数32xzy+=+可表示连接点()3,2D--和可行域内的点(),x y的直线斜率的倒数,由图可知,直线DA的斜率最小,直线DB的斜率最大,由10x yx-=⎧⎨+=⎩可得()1,1A--,由210x yx+=⎧⎨+=⎩可得()1,3B-,所以121132DAk-+==-+,325132DBk+==-+,所以225z≤≤.故选:D.【点睛】本题考查了非线性规划的应用,属于基础题.2.已知复数z满足i iz z⋅=+,则z在复平面上对应的点在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】【分析】设(,)z a bi a b R =+∈,由i i z z ⋅=+得:()(1)a bi i a b i +=++,由复数相等可得,a b 的值,进而求出z ,即可得解.【详解】设(,)z a bi a b R =+∈,由i i z z ⋅=+得:()(1)a bi i a b i +=++,即(1)ai b a b i -=++,由复数相等可得:1b a a b -=⎧⎨=+⎩,解之得:1212a b ⎧=⎪⎪⎨⎪=-⎪⎩,则1122z i =-,所以1212z i =+,在复平面对应的点的坐标为11(,)22,在第一象限.故选:A.【点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题. 3.已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为2c ,过左焦点1F 作斜率为1的直线交双曲线C 的右支于点P ,若线段1PF 的中点在圆222:O x y c +=上,则该双曲线的离心率为( )AB. C1 D.1【答案】C【解析】【分析】设线段1PF 的中点为A ,判断出A 点的位置,结合双曲线的定义,求得双曲线的离心率.【详解】设线段1PF 的中点为A ,由于直线1F P 的斜率是1,而圆222:O x y c +=,所以()0,A c .由于O 是线段12F F 的中点,所以222PF OA c ==,而1122PF AF ===,根据双曲线的定义可知122PF PF a -=,即22c a -=,即1c a==. 故选:C【点睛】本小题主要考查双曲线的定义和离心率的求法,考查直线和圆的位置关系,考查数形结合的数学思想方法,属于中档题.4.已知抛物线2:4C y x =和点()2,0D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断:①直线OB 与直线OE 的斜率乘积为2-;②//AE y 轴;③以BE 为直径的圆与抛物线准线相切.其中,所有正确判断的序号是( )A .①②③B .①②C .①③D .②③【答案】B【解析】【分析】由题意,可设直线DE 的方程为2x my =+,利用韦达定理判断第一个结论;将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-,进而判断第二个结论;设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE 的中点.设B ,E 到准线的距离分别为1d ,2d ,M e 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线,进而判断第三个结论.【详解】解:由题意,可设直线DE 的方程为2x my =+,代入抛物线C 的方程,有2480y my --=.设点B ,E 的坐标分别为()11,x y ,()22,x y ,则124y y m +=,128y y =-.所()()()21212121222244x x my my m y y m y y =++=+++=. 则直线OB 与直线OE 的斜率乘积为12122y y x x =-.所以①正确. 将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-,根据抛物线的对称性可知,A ,E 两点关于x 轴对称,所以直线//AE y 轴.所以②正确.如图,设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE 的中点.设B ,E 到准线的距离分别为1d ,2d ,M e 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线,则12||||||222d d BF EF BE d R ++==>=.所以③不正确.故选:B.【点睛】本题主要考查抛物线的定义与几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力和创新意识,考查数形结合思想、化归与转化思想,属于难题.5.设{1,0,1,2}U =-,集合2{|1,}A x x x U =<∈,则U C A =( )A .{0,1,2}B .{1,1,2}-C .{1,0,2}-D .{1,0,1}-【答案】B【解析】【分析】先化简集合A,再求U C A .【详解】 由21x < 得: 11x -<< ,所以{}0A = ,因此{}1,1,2U A =-ð ,故答案为B 【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.6.已知定义在R 上的奇函数()f x 和偶函数()g x 满足()()2x x f x g x a a -+=-+(0a >且1a ≠),若(2)g a =,则函数()22f x x +的单调递增区间为( )A .(1,1)-B .(,1)-∞C .(1,)+∞D .(1,)-+∞ 【答案】D【解析】【分析】根据函数的奇偶性用方程法求出(),()f x g x 的解析式,进而求出a ,再根据复合函数的单调性,即可求出结论.【详解】依题意有()()2x x f x g x a a -+=-+, ①()()2()()--+-=-+=-+x x f x g x a a f x g x , ②①-②得(),()2-=-=x x f x a a g x ,又因为(2)g a =,所以2,()22-==-x x a f x ,()f x 在R 上单调递增,所以函数()22f x x +的单调递增区间为(1,)-+∞.故选:D.【点睛】本题考查求函数的解析式、函数的性质,要熟记复合函数单调性判断方法,属于中档题.7.已知随机变量X 的分布列如下表:其中a ,b ,0c >.若X 的方差()13D X ≤对所有()0,1a b ∈-都成立,则( ) A .13b ≤ B .23b ≤ C .13b ≥ D .23b ≥ 【答案】D【解析】【分析】根据X 的分布列列式求出期望,方差,再利用1a b c ++=将方差变形为21()412b D X a b -⎛⎫=--+- ⎪⎝⎭,从而可以利用二次函数的性质求出其最大值为113b -≤,进而得出结论. 【详解】由X 的分布列可得X 的期望为()E X a c =-+,又1a b c ++=, 所以X 的方差()()()()22211D X a c a a c b a c c =-+-+-++- ()()()222a c a b c a c a c =-++--++()2a c a c =--++()2211a b b =--++-21412b a b -⎛⎫=--+- ⎪⎝⎭, 因为()0,1a b ∈-,所以当且仅当12b a -=时,()D X 取最大值1b -, 又()13D X ≤对所有()0,1a b ∈-成立, 所以113b -≤,解得23b ≥, 故选:D.【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.8.已知角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭,则cos2α等于( ) A .19 B .79- C .23- D .13【答案】B【解析】【分析】先由三角函数的定义求出sin α,再由二倍角公式可求cos2α.【详解】解:角α的终边与单位圆221x y +=交于点01,3P y ⎛⎫ ⎪⎝⎭1cos 3α=, 2217cos 22cos 12139αα⎛⎫=-=⨯-=- ⎪⎝⎭, 故选:B【点睛】考查三角函数的定义和二倍角公式,是基础题.9.复数1i i +=( )A .2i -B .12i C .0 D .2i【答案】C【解析】略10.已知()f x 为定义在R 上的奇函数,若当0x ≥时,()2x f x x m =++(m 为实数),则关于x 的不等式()212f x -<-<的解集是( )A .()0,2B .()2,2-C .()1,1-D .()1,3【答案】A【解析】【分析】先根据奇函数求出m 的值,然后结合单调性求解不等式.【详解】据题意,得()010f m =+=,得1m =-,所以当0x ≥时,()21x f x x =+-.分析知,函数()f x 在R 上为增函数.又()12f =,所以()12f -=-.又()212f x -<-<,所以111x -<-<,所以02x <<,故选A.【点睛】本题主要考查函数的性质应用,侧重考查数学抽象和数学运算的核心素养.11. “2a =”是“直线210ax y +-=与(1)20x a y +-+=互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A【解析】【分析】利用两条直线互相平行的条件进行判定【详解】当2a =时,直线方程为2210x y +-=与20x y ++=,可得两直线平行;若直线210ax y +-=与()120x a y +-+=互相平行,则()12a a -=,解得12a =,21a =-,则“2a =”是“直线210ax y +-=与()120x a y +-+=互相平行”的充分不必要条件,故选A【点睛】本题主要考查了两直线平行的条件和性质,充分条件,必要条件的定义和判断方法,属于基础题. 12.ABC V 的内角,,A B C 的对边分别为,,a b c ,若(2)cos cos a b C c B -=,则内角C =( )A .6πB .4πC .3πD .2π 【答案】C【解析】【分析】由正弦定理化边为角,由三角函数恒等变换可得.【详解】∵(2)cos cos a b C c B -=,由正弦定理可得(2sin sin )cos sin cos A B C C B -=,∴2sin cos sin cos sin cos sin()sin A C B C C B B C A =+=+=,三角形中sin 0A ≠,∴1cos 2C =,∴3C π=. 故选:C .【点睛】本题考查正弦定理,考查两角和的正弦公式和诱导公式,掌握正弦定理的边角互化是解题关键.二、填空题:本题共4小题,每小题5分,共20分。
浙江省台州市2021届新高考数学最后模拟卷含解析
浙江省台州市2021届新高考数学最后模拟卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.5(12)(1)x x ++的展开式中2x 的系数为( ) A .5 B .10 C .20 D .30【答案】C 【解析】 【分析】由5(12)(1)x x ++=5(1)x +52(1)x x ++知,展开式中2x 项有两项,一项是5(1)x +中的2x 项,另一项是2x与5(1)x +中含x 的项乘积构成. 【详解】由已知,5(12)(1)x x ++=5(1)x +52(1)x x ++,因为5(1)x +展开式的通项为5r rC x ,所以展开式中2x 的系数为2155220C C +=. 故选:C. 【点睛】本题考查求二项式定理展开式中的特定项,解决这类问题要注意通项公式应写准确,本题是一道基础题. 2.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述: 甲:我走红门盘道徒步线路,乙走桃花峪登山线路; 乙:甲走桃花峪登山线路,丙走红门盘道徒步线路; 丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( ) A .甲走桃花峪登山线路 B .乙走红门盘道徒步线路 C .丙走桃花峪登山线路 D .甲走天烛峰登山线路【答案】D 【解析】 【分析】甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可. 【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确. 综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路 故选:D 【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.3.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A .3B .2(51)-C .45D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案. 【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-, 当4x x=,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.4.已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( ) A .221255x y +=B .2213616x y +=C .2213010x y +=D .2214525x y +=【答案】B 【解析】由题意可得c=25,设右焦点为F′,由|OP|=|OF|=|OF′|知, ∠PFF′=∠FPO ,∠OF′P=∠OPF′, 所以∠PFF′+∠OF′P=∠FPO+∠OPF′, 由∠PFF′+∠OF′P+∠FPO+∠OPF′=180°知, ∠FPO+∠OPF′=90°,即PF ⊥PF′.在Rt △PFF′中,由勾股定理,得|PF′|=()2222PF 4548FF -=-=',由椭圆定义,得|PF|+|PF′|=2a=4+8=12,从而a=6,得a 2=36, 于是 b 2=a 2﹣c 2=36﹣=16,所以椭圆的方程为2213616x y +=.故选B .点睛:椭圆的定义:到两定点距离之和为常数的点的轨迹,当和大于两定点间的距离时,轨迹是椭圆,当和等于两定点间的距离时,轨迹是线段(两定点间的连线段),当和小于两定点间的距离时,轨迹不存在. 5.设()ln f x x =,若函数()()g x f x ax =-在区间()20,e 上有三个零点,则实数a 的取值范围是( )A .10,e ⎛⎫ ⎪⎝⎭B .211,e e ⎛⎫⎪⎝⎭ C .222,e e ⎛⎫⎪⎝⎭ D .221,e e ⎛⎫⎪⎝⎭ 【答案】D 【解析】令()()0g x f x ax =-=,可得()f x ax =.在坐标系内画出函数()ln f x x =的图象(如图所示).当1x >时,()ln f x x =.由ln y x =得1y x'=. 设过原点的直线y ax =与函数y x ln =的图象切于点00(,ln )A x x ,则有000ln 1x ax a x =⎧⎪⎨=⎪⎩,解得01x e a e =⎧⎪⎨=⎪⎩. 所以当直线y ax =与函数y x ln =的图象切时1a e=. 又当直线y ax =经过点()2B ,2e 时,有22a e =⋅,解得22a e =. 结合图象可得当直线y ax =与函数()ln f x x =的图象有3个交点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭. 即函数()()g x f x ax =-在区间()20,e上有三个零点时,实数a 的取值范围是221,e e ⎛⎫⎪⎝⎭.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法 (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.6.已知双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,则双曲线1C 的离心率为( ) A .54B .5C 5D 5 【答案】C 【解析】 【分析】由双曲线1C 与双曲线2C 有相同的渐近线,列出方程求出m 的值,即可求解双曲线的离心率,得到答案. 【详解】由双曲线221:110x y C m m +=-与双曲线222:14y C x -=有相同的渐近线,2=,解得2m =,此时双曲线221:128x y C -=,则曲线1C 的离心率为c e a ===C . 【点睛】本题主要考查了双曲线的标准方程及其简单的几何性质的应用,其中解答中熟记双曲线的几何性质,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.7.记n S 为等差数列{}n a 的前n 项和.若25a =-,416S =-,则6a =( ) A .5 B .3 C .-12 D .-13【答案】B 【解析】 【分析】由题得15a d +=-,1434162a d ⨯+=-,解得17a =-,2d =,计算可得6a . 【详解】25a =-Q ,416S =-,15a d ∴+=-,1434162a d ⨯+=-,解得17a =-,2d =, 6153a a d ∴=+=.故选:B 【点睛】本题主要考查了等差数列的通项公式,前n 项和公式,考查了学生运算求解能力. 8.若复数z 满足(23i)13i z +=,则z =( ) A .32i -+ B .32i +C .32i --D .32i -【答案】B 【解析】 【分析】 由题意得,13i23iz =+,求解即可. 【详解】因为(23i)13i z +=,所以13i 13i(23i)26i 3932i 23i (23i)(23i)49z -+====+++-+. 故选:B.【点睛】本题考查复数的四则运算,考查运算求解能力,属于基础题.9.已知向量(a =r ,b r是单位向量,若a b -=r r ,则,a b =r r ( )A .6π B .4π C .3π D .23π 【答案】C 【解析】 【分析】设(,)b x y =r,根据题意求出,x y 的值,代入向量夹角公式,即可得答案;【详解】设(,)b x y =r ,∴(1)a b x y -=-r r, Q b r是单位向量,∴221x y +=,Q a b -=r r,∴22(1))3x y -+=,联立方程解得:1,22x y ⎧=-⎪⎪⎨⎪=⎪⎩或1,0,x y =⎧⎨=⎩当1,22x y ⎧=-⎪⎪⎨⎪=⎪⎩时,13122cos ,212a b -+<>==⨯r r ;∴,3a b π<>=r r 当1,0,x y =⎧⎨=⎩时,11cos ,212a b <>==⨯r r ;∴,3a b π<>=r r 综上所述:,3a b π<>=r r .故选:C. 【点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意b r的两种情况.10.在声学中,声强级L (单位:dB )由公式1210110I L g -⎛⎫=⎪⎝⎭给出,其中I 为声强(单位:2W/m ).160dB L =,275dB L =,那么12I I =( )A .4510 B .4510-C .32-D .3210-【答案】D 【解析】 【分析】 由1210110I L g -⎛⎫= ⎪⎝⎭得lg 1210L I =-,分别算出1I 和2I 的值,从而得到12I I 的值. 【详解】 ∵1210110I L g -⎛⎫=⎪⎝⎭, ∴()()1210lg lg1010lg 12L I I -=-=+,∴lg 1210LI =-, 当160L =时,1160lg 121261010L I =-=-=-,∴6110I -=, 当275L =时,2275lg 1212 4.51010L I =-=-=-,∴ 4.5210I -=, ∴36 1.5124.5210101010I I ----===, 故选:D. 【点睛】本小题主要考查对数运算,属于基础题.11.已知等差数列{}n a 中,27a =,415a =,则数列{}n a 的前10项和10S =( ) A .100 B .210C .380D .400【答案】B 【解析】 【分析】设{}n a 公差为d ,由已知可得3a ,进而求出{}n a 的通项公式,即可求解. 【详解】设{}n a 公差为d ,27a =,415a =,2433211,42a a a d a a +∴===-=, 1010(339)41,2102n a n S ⨯+∴=-∴==.故选:B.【点睛】本题考查等差数列的基本量计算以及前n项和,属于基础题.12.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是( )发芽所需天数 1 2 3 4 5 6 7 8≥种子数 4 3 3 5 2 2 1 0A.2 B.3 C.3.5 D.4【答案】C【解析】【分析】根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为343.5 2+=,故选:C.【点睛】本题考查中位数的计算,属基础题.二、填空题:本题共4小题,每小题5分,共20分。
2023年浙江省台州市高考数学二模试卷+答案解析(附后)
2023年浙江省台州市高考数学二模试卷1. 已知复数z满足为虚数单位,则z的虚部为( )A. 1B.C. iD.2. 若,,则( )A. B. C. D.3. 如图所示的粮仓可以看成圆柱体与圆锥体的组合体,设圆锥部分的高为米,圆柱部分的高为2米,底面圆的半径为1米,则该组合体体积为( )A. 立方米B. 立方米C. 立方米D. 立方米4. 已知函数同时满足性质:①;②当,时,,则函数可能为( )A. B.C. D.5.已知公差不为零的等差数列满足:,且,,成等比数列,则( )A. 2023B.C. 0D.6. 袋子中有大小相同的5个白球和5个红球,从中任取3个球,已知3个球中有白球,则恰好拿到2个红球的概率为( )A. B. C. D.7. 已知菱形ABCD的边长为3,对角线BD长为5,将沿着对角线BD翻折至,使得线段长为3,则异面直线与CD所成角的余弦值为( )A. B. C. D.8. 设函数,,则( )A. 函数有且仅有一个零点B. 对,,函数有且仅有一个零点C. ,恒成立D. ,b,,恒成立9. 已知函数的最小正周期为,且图象经过点,则( )A.B. 点为函数图象的对称中心C. 直线为函数图象的对称轴D. 函数的单调增区间为10. 已知a,b,,随机变量的分布列为:123P a b c则( )A. B.C. D.11. 设抛物线C:焦点为F,点D为抛物线C准线上的点,经过点的动直线l与抛物线C交于不同的两点A,B,其中坐标原点为O,则( )A. 若,则B. 若,则C. 若,则D. 若,则12. 高一某班级共有n行m列个座位,记为每周进行一次轮换,轮换规则如下:①每一行轮换到下一行,最后一行轮换到第一行;②从左到右,每一列轮换到相邻右边一列,最后一列轮换到左侧第一列.例如,班级共有个座位,则本周第3行第4列的同学,在下周一将轮换到第4行第5列的座位.现某班的座位形式为,经过推演发现,如果一直按这种轮换法,在高中三年内每一个学生都可以轮换到全班所有座位,则可能为( )A. B. C. D.13. 已知平面向量,,若,则实数______ .14. 已知椭圆经过点和,则椭圆C的离心率为______ .15. 若定义在R上的函数满足:,,,且,则满足上述条件的函数可以为______ 写出一个即可16. 三棱锥中,平面ABC,,,点P在三棱锥外接球的球面上,且,则DP的最小值为______ .17. 在中,内角A,B,C所对的边分别为a,b,已知,求A的值;若点D为边BC上的一个点,且满足,求与的面积之比.18. 向日葵是常见的一种经济作物,种子常炒制为零食食用,也可榨葵花籽油.但种植向日葵时会频繁地遇到空壳问题,其中开花期大气湿度是导致向日葵空壳的一大主因.为找到向日葵空壳率与开花期大气湿度的关系,研究人员做了观察试验,结果如下:大气湿度x空壳率y试求向日葵空壳率与大气湿度之间的回归直线方程;回归直线方程的系数均保留两位有效数字某地大气湿度约为时,试根据中的回归直线方程推测空壳率大约为多少?附:经验回归方程系数:,,,,,19.已知三棱柱棱长均为1,且,求证:平面平面;求平面与平面ABC所成夹角的余弦值.20. 已知数列,满足:,,求证:数列是等比数列;若____从下列三个条件中任选一个,求数列的前n项和①;②;③21. 已知过点的直线与双曲线C:的左右两支分别交于A、B两点.求直线的斜率k的取值范围;设点,过点Q且与直线垂直的直线,与双曲线C交于M、N两点.当直线变化时,恒为一定值,求点Q的轨迹方程.22. 已知,,设函数,其中e为自然对数的底,….当,时,证明:函数在R上单调递增;若对任意正实数a,函数均有三个零点,,,其中求实数k的取值范围,并证明答案和解析1.【答案】B【解析】解:,则,其虚部为故选:根据已知条件,结合复数的四则运算,以及虚部的定义,即可求解.本题主要考查复数的四则运算,以及虚部的定义,属于基础题.2.【答案】C【解析】解:;故选:可求出集合A,然后进行交集的运算即可.考查描述法的定义,对数函数的定义域及单调性,以及交集的运算.3.【答案】C【解析】解:由题知底面圆的半径,圆柱高,圆锥高,圆柱体积,圆锥的体积,该组合体体积为立方米故选:由题知底面圆的半径为,圆柱高,圆锥高,代入圆柱、圆锥体积公式,能求出结果.本题考查圆柱、圆锥的体积公式等基础知识,考查运算求解能力,是基础题.4.【答案】D【解析】解:①说明为偶函数,②,说明函数在上单调递减.A不满足②,B不满足①,C不满足②,因为在单调递减,在单调递增.对于D,满足①,当,,单调递减,也满足②.故选:①说明为偶函数,②,说明函数在上单调递减,再逐项分析即可.本题主要考查了函数的奇偶性和单调性,属于基础题.5.【答案】A【解析】解:设等差数列的首项为,公差为d,则,,因为,,成等比数列,所以,即,因为,所以,所以故选:根据条件列出关于等差数列基本量的方程组,即可求解.本题主要考查等差数列与等比数列的综合,考查方程思想与运算求解能力,属于中档题.6.【答案】A【解析】解:因为取到的3个球中有白球,所以共有种方法,3个球中恰好有两个红球的取法共有种,设事件“取到的3个球中有白球,且恰好有2个红球”,则故选:先求总的取球方法,再求恰好取到两个红球的方法,利用古典概率可得答案.本题主要考查了古典概型的概率公式,属于基础题.7.【答案】D【解析】解:如图,因为,所以,因为,,所以,所以,即所以异面直线与CD所成角的余弦值为故选:由题知,,,先计算出,,再利用公式,算出两向量的夹角的余弦值,从而得出异面直线与CD所成角的余弦值.本题考查立体几何中翻折问题,向量法求解异面直线所成角问题,化归转化思想,属中档题.属中档题.8.【答案】D【解析】解:对于A,,令,得,设,,则,易知,当时,,当时,,所以在上递增,在递减,所以,所以,所以,,,所以在上有零点,即有无数个零点,故A错误;对于B,,,,因为,,所以,,所以存在,,使得有两个交点,故B错误;对于C,时,,所以,故C错误;对于D,取,,令,则,所以在上递增,所以,所以,所以,故可取,,恒成立,故D正确.故选:对于A,构造函数,研究其单调性结合零点存在性定理即可解决;对于B,举特殊点的函数值结合零点存在性定理即可解决;对于C,利用极限思想判断;对于D,构造函数结合绝对值三角不等式判断.本题主要考查了利用导数研究函数的零点、不等式恒成立问题,其中涉及到不等式的放缩,是一道难题.9.【答案】ACD【解析】解:因为函数的最小正周期为,所以,故A正确;,图象经过点,则,故,又因为,所以,所以因为,故B错误;因为,所以直线为函数图象的对称轴,故C正确;由,得故函数的单调增区间为,故D正确.故选:先求出的解析式,然后逐项分析验证即可.本题主要考查三角函数的图象与性质,考查转化能力,属于中档题.10.【答案】BC【解析】解:因为,所以A错,因为,所以B对,因为,所以,所以,所以C对,取,则,,,,所以D错.故选:根据期望方差的相关公式,,以及判断ABC,再举特例判断D即可.本题考查期望与方差的性质,化归转化思想,属中档题.11.【答案】BCD【解析】解:根据题意可设l:,、、,联立,得,则,,当时,,当且仅当时,,故A错误;当时,,即与夹角小于直角,故B正确;又,当时,,即与夹角大于直角,故C正确;而,显然当,,故D正确.故选:利用直线与抛物线的位置关系,根据韦达定理计算即可判定.本题考查抛物线的几何性质,直线与抛物线的位置关系,化归转化思想,属中档题.12.【答案】CD【解析】解:根据题意,依次分析选项:对于A,如图1,从第一行第一列开始轮换,不能轮换到全班所有的座位,不符合题意;对于B,如图2,从第一行第一列开始轮换,不能轮换到全班所有的座位,不符合题意;对于C,如图3,从第一行第一列开始轮换,可以轮换到全班所有的座位,符合题意;对于D,如图4,从第一行第一列开始轮换,可以轮换到全班所有的座位,符合题意.故选:根据题意,依据“轮换规则”,依次分析选项中的排法是否符合题意,综合可得答案.本题考查合情推理的应用,注意“轮换规则”,属于中档题.13.【答案】【解析】解:因为,所以,即故答案为:利用向量数量积的坐标表示计算即可.本题主要考查向量垂直的性质,属于基础题.14.【答案】【解析】解:将两个点代入椭圆方程得:,解得,故故答案为:通过已知两个点求出椭圆方程即可得到离心率.本题考查椭圆的方程的求解,椭圆的几何性质,方程思想,属基础题.15.【答案】答案不唯一【解析】解:令,则,所以,所以函数为偶函数,可取,则,所以,,,所以函数符合题意.故答案为:答案不唯一根据题意可得函数为偶函数,可取,在证明这个函数符合题意即可.本题属于开放型试题,考查了函数的奇偶性,得出函数为偶函数是关键,属于中档题.16.【答案】【解析】解:分别取AD、AC的中点O、M,连接OM、BM,则,由题意知平面ABC,所以,因为,所以,即OM、BM、AC两两垂直,以O为坐标原点建立如图空间直角坐标系,则,,,,,所以斜边,易知O为三棱锥外接球球心,且半径,设点,则,,,由题意,整理得,可设,所以,所以故答案为:以O为坐标原点建立如图空间直角坐标系,点,利用空间向量求出的余弦值,进而得到,可设,再利用空间中两点间距离公式求解.本题主要考查了三棱锥的外接球问题,考查了利用空间向量求两直线的夹角,属于中档题.17.【答案】解:因为,所以由正弦定理可得:,在三角形中,A、B、,显然,所以,所以,又因为,所以或显然不成立,所以;因为,所以,即在三角形中,B、,,所以,所以,因为,所以,所以;所以;所以由正弦定理得:与的面积之比为:【解析】由正弦定理边化角即可;由正弦定理边化角,及三角形面积公式将面积比转化为角正弦之比即可.本题考查解三角形问题,正弦定理的应用,三角形面积公式的应用,属中档题.18.【答案】解:由已知得所以所以回归直线方程为由知当大气湿度为时,空壳率约为【解析】代入相关已知数据计算即可,注意中间过程先保留3位有效数字,最后结果保留两位有效数字;把代入回归方程计算即可.本题考查线性回归直线方程的求解与应用,属中档题.19.【答案】解:证明:如图,取BC中点M,连接AM,,因为是等边三角形,所以,又因为,,则,所以,所以,又因为,平面ABC,平面ABC,所以平面ABC,因为平面,所以平面平面;如图,作,垂足为N,连接,由知平面ABC,又平面ABC,所以,因为,平面,平面,所以平面,又平面,所以,又是直角三角形,所以即为平面与平面ABC所成夹角,在中,,在中,因为,所以,所以,即平面与平面ABC所成夹角的余弦值为【解析】取BC中点M,通过证明平面ABC,再利用面面垂直的判定定理即可得到结论;作,垂足为N,连接,通过二面角的定义可知即为平面与平面ABC所成夹角,再求出的各边即可求出结果.本题考查线面垂直的判定定理,面面垂直的判定定理,面面角问题的求解,化归转化思想,属中档题.20.【答案】证明:,左右两端同时相加可得,,又,数列是首项为1公比为的等比数列;解:由知,又,数列为常数列.若选条件①或③,均可得,,若选②,,,又,,,,,【解析】将已知递推式转化为,从而得证;推导出数列为常数列,根据所选条件,可得数列的前n项和.本题主要考查等比数列的证明,数列的求和,考查运算求解能力,属于中档题.21.【答案】解:当时,显然符合题意,当时,设直线的方程为,其中,设、,与双曲线方程联立可得,因为直线与双曲线交于不同的两支,所以,又,所以,解得,即,所以且,解得或,综上所述,斜率k的取值范围为;由知,因为,所以,设,则直线的方程为:,设,,直线与双曲线方程联立可得,即,所以,所以,得,又因为,所以,当时,即时,为定值,所以或,又因为,所以点Q的轨迹方程为【解析】当时,显然符合题意,当时,设直线的方程为,其中,设、,联立直线与双曲线方程,消元、依题意可得,即可得到不等式求出k的取值范围,即可得解;由知,因为,设,则直线的方程为:,设,,联立直线与双曲线方程,消元,即可表示出,从而表示出,即可得到时,为定值,从而求出动点的轨迹方程.本题主要考查了直线与双曲线的位置关系,考查了求动点轨迹方程,属于中档题.22.【答案】解:证明:当,时,,,,令,则,时,,此时函数单调递减;时,,此时函数单调递增.,,即函数在R上单调递增.由题意可得:有三个解,,,令,则,时,则,此时函数单调递增;时,,此时函数单调递减;时,则,此时函数单调递增.时,时,方程有三个解,,,且令,,,时,函数取得极大值即最大值,,,即,由方程,可得,即方程有两个解,,且令,则,函数在上单调递减;在单调递增.要证明,只要证明,令,,,,,函数单调递减.,,,,函数在单调递增,,即【解析】当,时,,,,令,利用导数研究起单调性与最值,进而证明函数在R上单调递增.由题意可得:有三个解,,,令,可得,可得其单调性,可得时,方程有三个解,,,且进而得出k的范围.由方程,可得,即方程有两个解,,且令,可得利用导数研究其单调性,通过构造函数并且研究其单调性即可得出结论.本题考查了利用导数研究起单调性与极值及最值、等价转化方法、函数的零点转化为函数的交点、构造法,考查了推理能力与计算能力,属于难题.。
2021年新高考数学新课改Ⅱ卷真题+答案解析
2021年全国统一高考数学试卷(新高考Ⅱ)一、单项选择题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(5分)复数213ii--在复平面内对应点所在的象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.(5分)若全集{1,2,3,4,5,6}U =,集合{1,3,6}A =,{2,3,4}B =,则(UA B = )A .{3}B .{1,6}C .{5,6}D .{1,3}3.(5分)若抛物线22(0)y px p =>的焦点到直线1y x =+(p = )A .1B .2C .D .44.(5分)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积22(1cos )S r πα=-(单位:2)km ,则S 占地球表面积的百分比约为( ) A .26%B .34%C .42%D .50%5.(5分)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A .20+B .C .563D 6.(5分)某物理量的测量结果服从正态分布2(10,)N σ,则下列结论中不正确的是( ) A .σ越小,该物理量在一次测量中落在(9.9,10.1)内的概率越大 B .σ越小,该物理量在一次测量中大于10的概率为0.5C .σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D .σ越小,该物理量在一次测量中结果落在(9.9,10.2)与落在(10,10.3)的概率相等 7.(5分)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a <<B .b a c <<C .a c b <<D .a b c <<8.(5分)已知函数()f x 的定义域为R ,(2)f x +为偶函数,(21)f x +为奇函数,则( ) A .1()02f -=B .(1)0f -=C .(2)0f =D .(4)0f =二、多项选择题(本题共4小题,每小题5分,共20分。
浙江省台州市2021届新高考数学模拟试题(2)含解析
浙江省台州市2021届新高考数学模拟试题(2)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.用数学归纳法证明,则当时,左端应在的基础上加上( )A .B .C .D .【答案】C 【解析】 【分析】首先分析题目求用数学归纳法证明1+1+3+…+n 1=时,当n=k+1时左端应在n=k 的基础上加上的式子,可以分别使得n=k ,和n=k+1代入等式,然后把n=k+1时等式的左端减去n=k 时等式的左端,即可得到答案. 【详解】当n=k 时,等式左端=1+1+…+k 1,当n=k+1时,等式左端=1+1+…+k 1+k 1+1+k 1+1+…+(k+1)1,增加了项(k 1+1)+(k 1+1)+(k 1+3)+…+(k+1)1. 故选:C . 【点睛】本题主要考查数学归纳法,属于中档题./2.如图,在ABC ∆中,点M ,N 分别为CA ,CB 的中点,若5AB =,1CB =,且满足223AG MB CA CB⋅=+u u u v u u u v u u u v u u u v ,则AG AC ⋅u u u v u u u v 等于( )A .2B .5C .23D .83【答案】D 【解析】 【分析】选取,BA BC 为基底,其他向量都用基底表示后进行运算.【详解】由题意G 是ABC ∆的重心,2133()2()()32AG MB AN BM BN BA BC BA ⋅=⨯⋅-=--⋅+u u u r u u u r 1()()2BA BC BC BA =-⋅+22111152222BA BC BA BC BA BC =-+⋅=-+⋅22222()121BA BC BA BA BC BC CA CB =-+=-⋅+=++u u u r u u u r 5211BA BC =-⋅++ , ∴917222BA BC BA BC +⋅=-⋅,1BA BC ⋅=, ∴AG AC ⋅u u u r u u u r 22221213()()()332322AN AC BC BA BC BA BC BC BA BA =⋅=-⋅-=-⋅+2138(5)3223=-+=, 故选:D . 【点睛】本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作.3.记等差数列{}n a 的公差为d ,前n 项和为n S .若1040S =,65a =,则( ) A .3d = B .1012a =C .20280S =D .14a =-【答案】C 【解析】 【分析】 由()()1101056105402a a S a a +⋅==+=,和65a =,可求得53a =,从而求得d 和1a ,再验证选项.【详解】 因为()()1101056105402a a S a a +⋅==+=,65a =,所以解得53a =, 所以652d a a =-=,所以10645813a a d =+=+=,154385a a d =-=-=-,20120190100380280S a d =+=-+=, 故选:C. 【点睛】本题考查等差数列的通项公式、前n 项和公式,还考查运算求解能力,属于中档题.4.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是( ) A .324 B .522C .535D .578【答案】D 【解析】 【分析】因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号. 【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:436,535,577,348,522,535,578,324,577,L ,因为535重复出现,所以符合要求的数据依次为436,535,577,348,522,578,324,L ,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.5.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A 3B .51)-C .45D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案. 【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x yx x PM P P M x F x Q P x x-+-+====+≥-, 当4x x=,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.6.以下三个命题:①在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②若两个变量的线性相关性越强,则相关系数的绝对值越接近于1;③对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握越大;其中真命题的个数为( ) A .3 B .2C .1D .0【答案】C 【解析】 【分析】根据抽样方式的特征,可判断①;根据相关系数的性质,可判断②;根据独立性检验的方法和步骤,可判断③. 【详解】①根据抽样是间隔相同,且样本间无明显差异,故①应是系统抽样,即①为假命题;②两个随机变量相关性越强,则相关系数的绝对值越接近于1;两个随机变量相关性越弱,则相关系数的绝对值越接近于0;故②为真命题;③对分类变量X 与Y 的随机变量2K 的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越小,故③为假命题. 故选:C . 【点睛】本题以命题的真假判断为载体考查了抽样方法、相关系数、独立性检验等知识点,属于基础题.7.已知(1,2)a =r ,(,3)b m m =+r ,(2,1)c m =--r ,若//a b r r ,则b c ⋅=r r( )A .7-B .3-C .3D .7【答案】B 【解析】 【分析】由平行求出参数m ,再由数量积的坐标运算计算. 【详解】由//a b r r,得2(3)0m m -+=,则3m =,(3,6)b =r ,(1,1)c =-r ,所以363b c ⋅=-=-r r.故选:B . 【点睛】本题考查向量平行的坐标表示,考查数量积的坐标运算,掌握向量数量积的坐标运算是解题关键. 8.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述: 甲:我走红门盘道徒步线路,乙走桃花峪登山线路; 乙:甲走桃花峪登山线路,丙走红门盘道徒步线路; 丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是( ) A .甲走桃花峪登山线路 B .乙走红门盘道徒步线路 C .丙走桃花峪登山线路 D .甲走天烛峰登山线路【答案】D 【解析】 【分析】甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可. 【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确. 综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路 故选:D 【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型.9.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件C .甲4件,乙5件D .甲2件,乙6件【答案】D 【解析】 【分析】由题意列出约束条件和目标函数,数形结合即可解决. 【详解】设购买甲、乙两种商品的件数应分别x ,y 利润为z 元,由题意*4750,,,x y x y N +≤⎧⎨∈⎩ 1.8z x y =+, 画出可行域如图所示,显然当5599y x z =-+经过(2,6)A 时,z 最大. 故选:D. 【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断x ,y 是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.10.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =I ,则m =( ) A .0 B .1C .2D .4【答案】A 【解析】 【分析】根据2m =或22m +=,验证交集后求得m 的值. 【详解】因为{2}A B =I ,所以2m =或22m +=.当2m =时,{2,4}A B =I ,不符合题意,当22m +=时,0m =.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.11.阿波罗尼斯(约公元前262~190年)证明过这样的命题:平面内到两定点距离之比为常数()0,1k k k >≠的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离之比为22,当P ,A,B 不共线时,PAB ∆的面积的最大值是( ) A .22 B .2C .223D .2 【答案】A 【解析】 【分析】根据平面内两定点A ,B 间的距离为2,动点P 与A ,B 的距离之比为22,利用直接法求得轨迹,然后利用数形结合求解. 【详解】 如图所示:设()1,0A -,()10B ,,(),P x y ()()22221221x y x y ++=-+, 化简得()2238x y ++=,当点P 到AB (x 轴)距离最大时,PAB ∆的面积最大, ∴PAB ∆面积的最大值是1222222⨯⨯=故选:A. 【点睛】本题主要考查轨迹的求法和圆的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.12.已知函数2,()5,x x x af x x x a⎧-≤=⎨->⎩(0a >),若函数()()4g x f x x =-有三个零点,则a 的取值范围是( ) A .(0,1)[5,)+∞U B .6(0,)[5,)5+∞U C .(1,5] D .6(,5]5【答案】A 【解析】 【分析】分段求解函数零点,数形结合,分类讨论即可求得结果. 【详解】作出2y x x =-和5y x =-,4y x =的图像如下所示:函数()()4g x f x x =-有三个零点, 等价于()y f x =与4y x =有三个交点, 又因为0a >,且由图可知,当0x ≤时()y f x =与4y x =有两个交点,A O , 故只需当0x >时,()y f x =与4y x =有一个交点即可. 若当0x >时,()0,1a ∈时,显然y =y (y )与y =4|y |有一个交点y ,故满足题意; 1a =时,显然y =y (y )与y =4|y |没有交点,故不满足题意;()1,5a ∈时,显然y =y (y )与y =4|y |也没有交点,故不满足题意;[)5,a ∈+∞时,显然()y f x =与4y x =有一个交点C ,故满足题意.综上所述,要满足题意,只需a ∈(0,1)[5,)+∞U . 故选:A. 【点睛】本题考查由函数零点的个数求参数范围,属中档题. 二、填空题:本题共4小题,每小题5分,共20分。
(Word版)2021年浙江省新高考数学试卷真题(含答案和详细解析)
2021年浙江省高考数学试题卷一、选择题1. 设集合A = {x|x≥1},B = {x| - 1 < x < 2},则A∩B()A. {x|x >- 1}B. {x|x≥1}C. {x| - 1 < x < 1}D. {x|≤x < 2}2. 已知a∈R,(1 + ai)i = 3 + i,(i为虚数单位),则a = ()A. - 1B. 1C. - 3D. 33. 已知非零向量(,则()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分又不必要条件4. 某几何体的三视图如图所示,则该几何体的体积是()A. 32B. 3C.3√22D. 3√25. 若实数xy满足约束条件,则z = x- 12 y,的最小值是()A. - 2B. - 32C. -12D.1106. 如图已知正方体ABCD- ABCD,M,N分别是A1D,D1B的中点,则()A. 直线A1D与直线D1B垂直,直线MN//平面ABCDB. 直线. A1D与直线. D1B平行,直线MN⊥平面BD. D1B 1.C. 直线. A 1D与直线. D1B相交,直线MN//平面ABCDD. 直线. A1D与直线. D 1B异面,直线MN⊥平面BDD1B 1.7. 已知函数f (x ) = x 2 + 14 ,g (x ) = sinx ,则图象为如图的函数可能是( )A . y = f (x ) + g (x ) - 14 B . y = f (x ) - g (x ) - 14C . y = f (x )g (x )D . y =g (x )f (x )8. 已知α,β,γ是互不相同的锐角,则在sin αcos β,sin βcos γ,sin γcos α三个值中,大于 12 的个数的最大值是( )A . 0B . 1C . 2D . 39. 已知a ,b ∈R ,ab > 0,函数f (x ) = ax 2 + b (x ∈R ). 若f (s - t ),f (s ),f (s + t )成等比数列,则平面上点(s ,t )的轨迹是( ) A 直线和圆 B . 直线和椭圆C . 直线和双曲线D . 直线和抛物线10. 已知数列﹛a n ﹜、满足a 1=1,a n1 = a n1+√a n(n ∈N *). 记数列﹛a n ﹜的前n项和为S n ,则( )A . 1 2 < S 100 < 3B . 3 < S 100 < 4C . 4 < S 100 < 9 2D . 9 2 < S 100 < 5二、填空题11. 我国古代数学家赵爽用弦图给出了勾股定理的证明. 弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示). 若直角三角形直角边的长分别是3,4,记大正方形的面积为S 1,小正方形的面积为S 2, 则 s 2s 1= ( )12. 已知a ∈r ,函数f (x )={x 2−4,x>2,|x −3|+a,x<2若f [f √6]=3,则a=( )13. 已知多项式(x-1)3 + (x+1)4 = x 4 + a 1x 3 + a 2 x 2 + a 3x + a 4 ,则 a 1 =_________ ,a 2 + a 3+ a 4 = _________ .14. 在△ABC 中,∠B = 60°,AB = 2,M 是BC 中点,AM = 2√3,则AC = _________ ,cos ∠MAC = _________ .15. 袋中有4个红球m 个黄球,n 个绿球. 现从中任取两个球,记取出的红球数为 ,若取出的两个球都是红球的概率为 1 6 ,一红一黄的概率为 13 ,则m - n =_________ ,E ( ) = _________ 。
浙江省台州市2021届高三下学期4月二模数学试卷及答案
不妨设 , , ,由 ,可得 ,
又 ,故点C在以 为圆心, 为半径的圆上运动.
如图,由 ,不妨设 在直线 上,
过点C、M分别作直线OB的垂线,垂足为 、 ,
则 在 方向上投影的最小值即为 ,即 .
故选:C.
点评:
向量投影问题的处理通常有两个角度:一是利用数量积变形公式 求解;二是利用投影的几何意义,作垂直辅助线,数形结合求解.
绝密★启用前
浙江省台州市2021届高三下学期4月二模数学试题
注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上
一、单选题
1.设集合 ,则 ()
A. B.
C. D.
2.已知直线 ,则直线 之间的距离为()
A. B.
C. D.
3.已知 为虚数单位,若复数 满足 ,则 ()
20.已知数列 前 项和为 ,数列 是等差数列, .
(1)求数列 , 的通项公式;
(2)设 求证: .
21.已知点 为椭圆 的左焦点,记点 到直线 的距离为 ,且 .
(Ӏ)求动点 的轨迹方程;
(ӀӀ)过点 作椭圆 的两条切线PA,PB,设切点分别为 ,连接AF,BF.
(i)求证:直线PA方程为 ;
(ii)求证:AF⊥FB.
C.当 时,存在实数 ,使得 既有最大值,又有最小值
D.当 时,对于任意的实数 , 无最大值,有最小值
二、双空题
11.已知函数 ,则 ______;若 ,则实数 ______.
12.已知多项式 ,若 ,则实数 ______, ______.
13.己知双曲线 的一条渐近线与直线 垂直,则双曲线 的离心率为______;若点 在双曲线 上,则 ______.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省台州市2021届新高考数学二模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数z 的共轭复数记作z ,已知复数1z 对应复平面上的点()1,1--,复数2z :满足122z z ⋅=-.则2z 等于( )AB .2 CD .10 【答案】A【解析】【分析】根据复数1z 的几何意义得出复数1z ,进而得出1z ,由122z z ⋅=-得出212z z =-可计算出2z ,由此可计算出2z .【详解】由于复数1z 对应复平面上的点()1,1--,11z i ∴=--,则11z i =-+, 122z z ⋅=-Q ,()()()2121221111i z i i i i z +∴=-===+--+,因此,2z ==故选:A.【点睛】本题考查复数模的计算,考查了复数的坐标表示、共轭复数以及复数的除法,考查计算能力,属于基础题.2.已知函数()(2)3,(ln 2)()32,(ln 2)x x x e x f x x x ⎧--+≥⎪=⎨-<⎪⎩,当[,)x m ∈+∞时,()f x 的取值范围为(,2]e -∞+,则实数m 的取值范围是( )A .1,2e -⎛⎤-∞ ⎥⎝⎦ B .(,1]-∞ C .1,12e -⎡⎤⎢⎥⎣⎦ D .[ln 2,1]【答案】C【解析】【分析】求导分析函数在ln2x ≥时的单调性、极值,可得ln2x ≥时,()f x 满足题意,再在ln2x <时,求解()2f x e ≤+的x 的范围,综合可得结果.【详解】当ln2x ≥时,()()()'12x f x x e =---,令()'0f x >,则ln21x <<;()'0f x <,则1x >,∴函数()f x 在()ln2,1单调递增,在()1,+∞单调递减.∴函数()f x 在1x =处取得极大值为()12f e =+,∴ln2x ≥时,()f x 的取值范围为(],2e -∞+,∴ln2m 1≤≤又当ln2x <时,令()322f x x e =-≤+,则12e x -≥,即1x ln22e -≤<, ∴1e 22m ln -≤< 综上所述,m 的取值范围为1,12e -⎡⎤⎢⎥⎣⎦. 故选C.【点睛】本题考查了利用导数分析函数值域的方法,考查了分段函数的性质,属于难题.3.设m u r ,n r 为非零向量,则“存在正数λ,使得λ=u r r m n ”是“0m n ⋅>u r r”的( )A .既不充分也不必要条件B .必要不充分条件C .充分必要条件D .充分不必要条件 【答案】D【解析】【分析】 充分性中,由向量数乘的几何意义得,0m n o u r r =,再由数量积运算即可说明成立;必要性中,由数量积运算可得),0,90m n o o u r r ⎡∈⎣,不一定有正数λ,使得λ=u r r m n ,所以不成立,即可得答案. 【详解】充分性:若存在正数λ,使得λ=u r r m n ,则,0m n o u r r =,cos00m n m n m n o u r r u r r u r r ⋅==>,得证;必要性:若0m n ⋅>u r r ,则),0,90m n o o u r r ⎡∈⎣,不一定有正数λ,使得λ=u r r m n ,故不成立; 所以是充分不必要条件故选:D【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题. 4.已知命题p :若1a >,1b c >>,则log log b c a a <;命题q :()00,x ∃+∞,使得0302log x x <”,则以下命题为真命题的是( )A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝【答案】B【解析】【分析】 先判断命题,p q 的真假,进而根据复合命题真假的真值表,即可得答案.【详解】 1log log b a a b =,1log log c a a c =,因为1a >,1b c >>,所以0log log a a c b <<,所以11log log a a c b>,即命题p 为真命题;画出函数2x y =和3log y x =图象,知命题q 为假命题,所以()p q ∧⌝为真.故选:B.【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题,p q 的真假,难度较易.5.用一个平面去截正方体,则截面不可能是( )A .正三角形B .正方形C .正五边形D .正六边形【答案】C【解析】试题分析:画出截面图形如图显然A 正三角形,B 正方形:D 正六边形,可以画出五边形但不是正五边形;故选C .考点:平面的基本性质及推论.6. “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( )A .15B .13C .35D .23【答案】A【解析】【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为15P =. 故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.7.在正方体1AC 中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,如图所示,下列说法不.正确..的是( )A .点F 的轨迹是一条线段B .1A F 与BE 是异面直线C .1A F 与1DE 不可能平行D .三棱锥1F ABD -的体积为定值【答案】C【解析】【分析】 分别根据线面平行的性质定理以及异面直线的定义,体积公式分别进行判断.【详解】对于A ,设平面1AD E 与直线BC 交于点G ,连接AG 、EG ,则G 为BC 的中点分别取1B B 、11B C 的中点M 、N ,连接AM 、MN 、AN ,11//A M D E Q ,1A M ⊂/平面1D AE ,1D E ⊂平面1D AE ,1//A M ∴平面1D AE .同理可得//MN 平面1D AE ,1A M Q 、MN 是平面1A MN 内的相交直线∴平面1//A MN 平面1D AE ,由此结合1//A F 平面1D AE ,可得直线1A F ⊂平面1A MN ,即点F 是线段MN 上上的动点.A ∴正确.对于B ,Q 平面1//A MN 平面1D AE ,BE 和平面1D AE 相交,1A F ∴与BE 是异面直线,B ∴正确.对于C ,由A 知,平面1//A MN 平面1D AE ,1A F ∴与1D E 不可能平行,C ∴错误.对于D ,因为//MN EG ,则F 到平面1AD E 的距离是定值,三棱锥1F AD E -的体积为定值,所以D 正确;故选:C .【点睛】本题考查了正方形的性质、空间位置关系、空间角、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.8.如图是一个几何体的三视图,则该几何体的体积为( )A .23B .43C .233D .433【答案】A【解析】【分析】 根据三视图可得几何体为直三棱柱,根据三视图中的数据直接利用公式可求体积.【详解】由三视图可知几何体为直三棱柱,直观图如图所示:其中,底面为直角三角形,2AD =,3AE =,高为2AB =.∴该几何体的体积为1232232V =⨯⨯⨯=故选:A.【点睛】本题考查三视图及棱柱的体积,属于基础题.9.下列函数中,在定义域上单调递增,且值域为[)0,+∞的是() A .()lg 1y x =+ B .12y x = C .2x y =D .ln y x = 【答案】B【解析】【分析】分别作出各个选项中的函数的图象,根据图象观察可得结果.【详解】对于A ,()lg 1y x =+图象如下图所示:则函数()lg 1y x =+在定义域上不单调,A 错误;对于B ,12y x x ==的图象如下图所示:则y x =在定义域上单调递增,且值域为[)0,+∞,B 正确;对于C ,2x y =的图象如下图所示:则函数2xy =单调递增,但值域为()0,∞+,C 错误; 对于D ,ln y x =的图象如下图所示:则函数ln y x =在定义域上不单调,D 错误.故选:B .【点睛】本题考查函数单调性和值域的判断问题,属于基础题.10.已知函数()0,1ln ,1x f x x x <⎧=⎨≥⎩,若不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)0,1D .(]1,0- 【答案】A【解析】【分析】先求出函数()f x 在(1,0)处的切线方程,在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象,利用数形结合进行求解即可. 【详解】当1x ≥时,()''1ln ,()(1)1f x x f x f x=⇒=⇒=,所以函数()f x 在(1,0)处的切线方程为:1y x =-,令()g x x k =-,它与横轴的交点坐标为(,0)k .在同一直角坐标系内画出函数()0,1ln ,1x f x x x <⎧=⎨≥⎩和()g x x k =-的图象如下图的所示:利用数形结合思想可知:不等式()≤-f x x k 对任意的x ∈R 恒成立,则实数k 的取值范围是1k ≤. 故选:A【点睛】本题考查了利用数形结合思想解决不等式恒成立问题,考查了导数的应用,属于中档题.11.已知双曲线C :()222210,0x y a b a b -=>>的焦距为2c ,焦点到双曲线C 3,则双曲线的渐近线方程为()A .3y x =B .2y x =C .y x =±D .2y x =±【答案】A【解析】【分析】 利用双曲线C :()222210,0x y a b a b -=>>3,求出a ,b 的关系式,然后求解双曲线的渐近线方程.【详解】双曲线C :()222210,0x y a b a b -=>>的焦点(),0c 到渐近线0bx ay +=的距离为2c ,可得:=,可得b c =,b a =C 的渐近线方程为y =. 故选A .【点睛】本题考查双曲线的简单性质的应用,构建出,a b 的关系是解题的关键,考查计算能力,属于中档题. 12.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位 【答案】A【解析】 依题意有()f x 的周期为()22ππ,3,sin 334T f x A x πωω⎛⎫====+ ⎪⎝⎭.而()πππππsin 3sin 3sin 3244124g x A x A x A x ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故应左移π12. 二、填空题:本题共4小题,每小题5分,共20分。