高中解析几何秒杀公式及解题套路

合集下载

(完整版)解析几何考点和答题技巧归纳

(完整版)解析几何考点和答题技巧归纳

解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。

这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。

② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。

高中数学48个考试秒杀公式

高中数学48个考试秒杀公式

高中数学48个考试秒杀公式work Information Technology Company.2020YEAR高中数学48条秒杀型公式与方法,看过的都说好除了课本上的常规公式之外,掌握一些必备的秒杀型公式能够帮你在考试的时候节省大量的时间,通哥这次的分享就是48条爆强的秒杀公式,直接往下看!1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。

高中解析几何秒杀公式数学秒杀秘诀大全

高中解析几何秒杀公式数学秒杀秘诀大全

高中解析几何秒杀公式数学秒杀秘诀大全
关于高中的解析几何有哪些秒杀公式帮助大家解题呢?又有哪些秘诀可供同学们学习呢?赶快跟小编来看一下吧!
1一化二代解析高中数学几何步骤一:(一化)
口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;
2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化;
3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化。

步骤二:点与直线、曲线从属关系的代数化(二代)
口诀:点代入直线、点代入曲线。

1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;
2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;
1高中解题的秒杀秘诀1、点代入这两个点共同所在的直线把这两个点共同所在直线用点斜式方程(如y=kx+d)表示出来,将这两个点的坐标分别代入这条直线的方程;
2、将这条直线的方程代入这条曲线的方程,获得一个一元二次方程;
3、把这个一元二次方程的根用韦达定理来表示(这里表示出来的实际上就。

高中数学解析几何解题技巧

高中数学解析几何解题技巧

高中数学解析几何解题技巧解析几何是高中数学中的一大难点,也是考试中的重点内容之一。

掌握解析几何的解题技巧,不仅可以提高解题效率,还能够在考试中获得更好的成绩。

本文将从直线、圆和曲线三个方面介绍解析几何的解题技巧,并通过具体题目的分析来说明每个考点。

一、直线的解析几何解题技巧直线是解析几何中最基础的图形,其解题技巧主要包括确定直线的方程和求直线的性质。

在确定直线的方程时,常用的方法有点斜式和两点式。

例如,已知直线过点A(1,2)且斜率为3,求直线的方程。

根据点斜式的公式y-y₁ = k(x-x₁),代入已知条件,可以得到直线的方程为y-2=3(x-1)。

在求直线的性质时,常用的方法有平行和垂直关系的判断。

例如,已知直线l₁的方程为y=2x+1,直线l₂与l₁平行且过点(2,3),求l₂的方程。

根据平行关系的性质可知,l₂的斜率与l₁的斜率相等,因此l₂的方程为y=2x+b。

代入过点(2,3)的条件,可以解得b=-1,所以l₂的方程为y=2x-1。

二、圆的解析几何解题技巧圆是解析几何中的另一个重要图形,其解题技巧主要包括确定圆的方程和求圆的性质。

在确定圆的方程时,常用的方法有标准式和一般式。

例如,已知圆心为(2,-3)且经过点(1,2),求圆的方程。

根据标准式的公式(x-a)²+(y-b)²=r²,代入已知条件,可以得到圆的方程为(x-2)²+(y+3)²=18。

在求圆的性质时,常用的方法有判断点与圆的位置关系和求切线的斜率。

例如,已知圆的方程为(x-2)²+(y+3)²=18,点P(4,-1)在圆上,求点P处切线的斜率。

根据点与圆的位置关系的性质可知,点P处切线的斜率等于圆的斜率,即-(x-2)/(y+3)。

代入点P的坐标,可以求得点P处切线的斜率为-2/4=-1/2。

三、曲线的解析几何解题技巧曲线是解析几何中的较为复杂的图形,其解题技巧主要包括确定曲线的方程和求曲线的性质。

高中数学干货:必背的48条秒杀型公式和学习方法

高中数学干货:必背的48条秒杀型公式和学习方法

高中数学干货:必背的48条秒杀型公式和学习方法除了课本上的常规公式之外,掌握一些必备的秒杀型公式能够帮你在考试的时候节省大量的时间,这次的分享就是48条爆强的秒杀公式,直接往下看!1、适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2、函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3、关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4、函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5、数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q2mS (n)可以迅速求q6、数列的终极利器,特征根方程。

高考数学解析几何解题技巧

高考数学解析几何解题技巧

配多少呢,我先配一次给大家看看
新手版:原式 ak 2 (3bk 2 4b)
1

1
( ak 2 3bk 2 4b )2

2
(4k 2 1)2 ab ab
(4k 2 1)2

1 4ab

[(a
3b)k 2 4b]2 (4k 2 1)2
只需系数对应成比例,a 3b 4b ,a 13b 41
• 方法:
• ①设参 ②联立+韦达(秒杀)
• 分类型:
• (i)单参问题:③△>0(秒杀)//解范围1

④由题干翻译出另一不等式(运用韦达定理)

//考察转换关系(秒杀),解范围2,取交集即可
• (ii)双参问题:
• ③△>0(秒杀)//一道含两个参数的不等式
• ④由题干翻译出一道等式,用于消参
• ⑤代回③得解
• 方法: • ①设参 ②联立+韦达(秒杀) • ③△>0得到一个不等式(秒杀) • //这一步通常没什么用,仅仅用于对消参后得到的式子进行
初步判断....但几乎每道题都会满足△>0,不过既然可以秒杀,浪 费不了多少时间 • ④消参(必定可以因式分解) • ⑤一般得到两个解.....一般利用题干(例如不过顶点等条件)舍去 一解,计算定点即可
套路三:证明直线过定点问题
祭出今年的解析几何大题
20.已知椭圆C:x a
2 2

y2 b2
1(a b 0),四点P1(1,1), P2 (0,1), P3(1,
3 2
),
P4
(1,
3) 2
中恰好有三点在椭圆C上
(1)求C的方程

高考数学爆强秒杀公式与方法

高考数学爆强秒杀公式与方法

高考数学爆强秒杀公式与方法高考数学是考生们备战高考的重要一环,也是升学过程中最为重要的一门科目之一、因此,掌握一些高考数学爆强秒杀公式与方法,可以有效提高数学成绩。

在下面的文章中,我将为大家总结一些高考数学的爆强秒杀公式与方法,帮助大家更好地备考高考。

【一、几何题】1.面积定理面积定理是几何题中经常会用到的定理之一、对于平行四边形、直角三角形、等腰三角形等,可以利用面积定理来推导出相应的面积公式。

例如,平行四边形的面积公式为S=底边×高度,直角三角形的面积公式为S=底边×高度/2,等腰三角形的面积公式为S=边长×边长×根号2/42.直角三角函数直角三角函数是几何题中常用的重要工具。

对于给定直角三角形的两个边长,可以利用正弦、余弦、正切等函数来计算其他边长或角度。

需要特别注意的是,在计算时,一定要注意角度的弧度制与角度制之间的转换。

【二、函数与方程】1.二次函数性质二次函数是高考数学中非常常见的一种函数类型。

掌握二次函数性质可以帮助我们更好地解决与二次函数相关的问题。

例如,二次函数的图像为抛物线,对称轴为x=-b/2a,顶点坐标为(-b/2a,f(-b/2a))。

此外,还可以利用二次函数的对称性质来求解最值等问题。

2.解方程的方法解方程是高考数学中的重要内容。

常见的解方程方法有因式分解法、配方法、求根公式等。

在解方程的过程中,可以根据具体情况选择合适的方法,简化运算,并快速求解方程。

【三、概率统计】1.排列组合排列组合是概率统计中的重要概念之一、掌握排列组合的公式和方法可以帮助我们解决关于选择问题的计数。

例如,全排列的计算公式为n!,组合的计算公式为C(n,r)=n!/[(n-r)!*r!]等。

2.快速计算在概率统计中,有一些常见的快速计算方法可以帮助我们迅速计算出结果。

例如,在计算二项式展开的过程中,可以利用二项式定理来直接计算结果,省去繁琐的展开过程。

另外,掌握计算平均数、方差等统计量的方法,可以在解答统计题中节省大量时间。

高中数学48个考试秒杀公式

高中数学48个考试秒杀公式

高中数学48条秒杀型公式与方法,看过的都说好除了课本上的常规公式之外,掌握一些必备的秒杀型公式能够帮你在考试的时候节省大量的时间,通哥这次的分享就是48条爆强的秒杀公式,直接往下看!1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。

高中解析几何秒杀公式大全 高中解析几何解题套路

高中解析几何秒杀公式大全 高中解析几何解题套路

高中解析几何秒杀公式大全高中解析几何解题套路高中解析几何秒杀公式大全高中解析几何解题套路高中解析几何秒杀公式是什么,解析几何解题套路有哪些,怎么能用一套完整的思路做所有类似的题目?下面跟大家分享一下高中解析几何秒杀公式大全,高中解析几何解题套路,希望对你有帮助。

公式总结解题套路各步骤操作规则口诀:见点化点、见直线化直线、见曲线化曲线。

1、见点化点:点用平面坐标系上的坐标表示,只要是高中解析几何题目中提到的点都要加以坐标化;2、见直线化直线:直线用二元一次方程表示,只要是高中解析几何题目中提到的直线都要加以方程化;3、见曲线化曲线:曲线(圆、椭圆、抛物线、双曲线)用二元二次方程表示,只要是高中解析几何题目中提到的曲线都要加以方程化; 备注:大家在学习本教材的例题时,可翻阅教科书回顾这些内容,以加深印象,如直线有五种表示方法哪种情形对应哪种方法表示;圆、椭圆、抛物线、双曲线的方程怎么列。

口诀:点代入直线、点代入曲线。

1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;备注1:这样,每代入一次就会得到一个新的方程,这些方程都是获得高中解析几何最后答案的基础。

备注2:方程逐一列出后,最后就是解方程组的问题了。

在方程组的求解中,我们发现一个特殊情况,即如果题目中有两个点在同一条曲线上,将它们的坐标代入曲线方程后不能直接算出常数结果,则采用下面这套等效规则来处理可以达到同样的处理效果,并让方程组的求解更简单。

高中解析几何等效规则的口诀,点代入这两个点共同所在的直线、直线代入曲线。

1、点代入这两个点共同所在的直线把这两个点共同所在直线用点斜式方程(如y=kx+d)表示出来,将这两个点的坐标分别代入这条直线的方程;2、将这条直线的方程代入这条曲线的方程,获得一个一元二次方程;3、把这个一元二次方程的根用韦达定理来表示(这里表示出来的实际上就是这两个点的坐标之间的相互关系式);4、把这个一元二次方程的二次项系数不等于零的条件列出来;5、把这个一元二次方程的判别式?>0列出来。

高中解析几何公式大全

高中解析几何公式大全

高中解析几何公式大全1. 平面解析几何公式1.1 直线方程- 一般式直线方程:$Ax + By + C = 0$- 点斜式直线方程:$y - y_1 = k(x - x_1)$- 两点式直线方程:$\frac{x - x_1}{x_2 - x_1} = \frac{y -y_1}{y_2 - y_1}$1.2 距离公式- 两点间距离公式:$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$1.3 中点公式- 两点中点公式:$M\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$1.4 斜率公式- 直线斜率公式:$k = \frac{y_2 - y_1}{x_2 - x_1}$1.5 垂直/平行线判定公式- 斜率相乘为-1时,两直线垂直;斜率相等时,两直线平行2. 空间解析几何公式2.1 点和向量坐标表示- 一点坐标:$P(x, y, z)$- 向量坐标:$\vec{AB}=(x_2 - x_1, y_2 - y_1, z_2 - z_1)$2.2 向量公式- 两点连线向量:$\vec{AB}=(x_2 - x_1, y_2 - y_1, z_2 - z_1)$ - 向量加法:$\vec{AB} + \vec{BC} = \vec{AC}$- 向量数量积:$\vec{a} \cdot \vec{b} = ab\cos\theta$2.3 平面方程- 法线向量公式:$ax + by + cz + d = 0$2.4 空间距离公式- 两点间距离公式:$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$3. 圆的解析几何公式3.1 圆的标准方程- 圆的标准方程:$(x - a)^2 + (y - b)^2 = r^2$3.2 圆的一般方程- 圆的一般方程:$x^2 + y^2 + Dx + Ey + F = 0$3.3 切线公式- 点与圆的切线公式:$y - y_1 = k(x - x_1) \pm \sqrt{r^2 - (x - x_1)^2}$以上是一些高中解析几何中常用的公式,希望对你有帮助!。

高中解析几何秒杀公式

高中解析几何秒杀公式

高中解析几何秒杀公式解析几何是数学必考的内容,高考数学中的解析几何的公式又非常多,那么考生如何秒杀高考数学解析几何的公式呢?高考数学解析几何有哪些解题技巧呢?如何秒杀高考数学圆锥曲线1.根据题设的已知条件,利用待定系数法列出二元二次方程,求出椭圆的方程,并化为标准方程。

2.直线设为斜截式y=kx+m,将直线与椭圆联立得到如图一元二次方程。

注意该式子具有普适性。

3.通常要验证判别式大于零(因为无论是该经验所给的弦长公式还是韦达定理都是在判别式大于零的情况下才有意义,若题目给出直线与椭圆相交则略去该步,多写不扣分)。

4.直接写出需要的弦长公式或韦达定理。

可以省去至少5分钟,而且不会算错。

5恒成立问题的证明可能会与导数,不等式交汇。

恒成立问题的证伪只要找到反例即可。

存在性问题通常是存在的,方法是提出无关的未知数。

6.最后别忘了写综上所述。

如何秒杀高考数学直线和圆的方程 1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。

2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。

3.了解二元一次不等式表示平面区域。

4.了解线性规划的意义,并会简单的应用。

5.了解解析几何的基本思想,了解坐标法。

6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。

如何秒杀高考数学立体几何平行、垂直位置关系:1.由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

2.利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。

3.三垂线定理及其逆定理在题中使用的频率最高,在证明线线垂直时应优先考虑。

空间角的计算方法:主要步骤:一作、二证、三算;若用向量,那就是一证、二算。

1.两条异面直线所成的角:平移法,补形法,向量法。

2.直线和平面所成的角分为作出直线和平面所成的角,关键是作垂线,找射影转化到同一三角形中计算,或用向量计算,和用公式计算。

高中数学 高考数学50条秒杀型公式与方法

高中数学  高考数学50条秒杀型公式与方法

高中数学| 高考数学50条秒杀型公式与方法1,适用条件:[直线过焦点],必有e c o sA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2,函数的周期性问题(记忆三个):①、若f(x)=-f(x+k),则T=2k;②、若f(x)=m/(x+k)(m不为0),则T=2k;③、若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=s i n x y=si n派x相加不是周期函数。

3,关于对称问题(无数人搞不懂的问题)总结如下:①,若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;②、函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;③、若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称。

4,函数奇偶性:①、对于属于R上的奇函数有f(0)=0;②、对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项③,奇偶性作用不大,一般用于选择填空。

5,数列爆强定律:①,等差数列中:S奇=n a中,例如S13=13a7(13和7为下角标);②,等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差;③,等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立;④,等比数列爆强公式:S(n+m)=S(m)+q²m S(n)可以迅速求q。

6,数列的终极利器,特征根方程。

首先介绍公式:对于a n+1=p an+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

解析几何知识点+经典结论+解题方法

解析几何知识点+经典结论+解题方法



范围


对称性
顶点


焦距
质 离心率
a,b,c 的关系
-a≤x≤a -b≤y≤b
-b≤x≤b -a≤y≤a
对称轴:x 轴,y 轴 对称中心:坐标原点
A1(-a,0),A2(a,0) B1(0,-b),B2(0,b)
A1(0,-a),A2(0,a) B1(-b,0),B2(b,0)
长轴 A1A2 的长为 2a 短轴 B1B2 的长为 2b
y2 b2
1.
2.
x2
过椭圆
a2
y2 b2
1
(a>0, b>0)上任一点 A(x0 , y0 ) 任意作两条倾斜角互补的直线交椭圆于 B,C 两点,
则直线
BC 有定向且 kBC
b2 x0 a2 y0
(常数).
3.

P
为椭圆
x2 a2
y2 b2
1 ( a > b > 0 ) 上 异 于 长 轴 端 点 的 任 一 点 ,F1,
2
2
(2)抛物线的性质
一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几
种形式: y 2 2 px , x 2 2 py , x 2 2 py .这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下
表: [一次项的字母定轴(对称轴),一次项的符号定方向(开口方向)]
4. 以焦点半径 PF1 为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)
5.

P0
( x0
,
y0
)
在双曲线
x2 a2

高考数学48条秒杀型公式与方法

高考数学48条秒杀型公式与方法

1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。

x为分离比,必须大于1。

注上述公式适合一切圆锥曲线。

如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。

2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。

注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。

c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。

3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2;(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称;(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0;(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:(1)等差数列中:S奇=na中,例如S13=13a7(13和7为下角标);(2)等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差(3)等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4,等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。

(如果看不懂就算了)。

首先介绍公式:对于an+1=pan+q(n+1为下角标,n为下角标),a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。

解析几何中计算方法与技巧

解析几何中计算方法与技巧

解析几何中计算方法与技巧高考中解析几何综合题要求具有较强的计算能力,常规的解题方法必须熟练掌握,在此基础上积累计算经验,掌握计算技巧,则解析几何定可得到高分。

一、巧用韦达定理简化运算1、过二次曲线C 上一点P (x 0,y 0)作直线l ,求l 与C 另一交点。

例1:求直线y=kx+22-k 与椭圆22x +y 2=1的交点坐标。

2、合二为一的整体运算例2:过点P (-1,2)作圆C :(x-1)2+y 2=1的两条切线,求两条切线的斜率和。

例3:过点P (x 0,-41)作抛物线y=x 2的两条切线,求证:切点弦过定点。

例4:抛物线y 2=2x 上动点P ,过点P 作⊙C :(x-1)2+y 2=1的切线PM ,PN 分别交y轴于M ,N 两点,求△PMN 面积的最小值。

例5:过抛物线x 2=2y 的焦点作斜率分别为k 1、k 2的两条直线l 1和l 2,若l 1交抛物线于A 、B 两点,l 2交抛物线于C 、D 两点。

以线段AB 为直径作圆C 1,以CD 为直 径作圆C 2。

若k 1+k 2=2,求两圆C 1与C 2的公共弦所在直线方程。

二、利用计算的对称性避免重复运算引例:过原点O 作抛物线y 2=2px 的两条互相垂直的弦OA 与OB ,求证:AB 直线过定点。

例1:设椭圆E :22x +y 2=1上一点A (1,22),过A 作两条关于平行y 轴的直线对称的两条直线AC ,AD 交椭圆E 于另两点C 和D 。

求证:CD 直线的方向确定。

例2:设曲线C 1:42x +y 2=1与曲线C 2:y=x 2-1。

C 2的顶点为M ,过原点O 的直线l 与C 2相交于A 、B 两点,直线MA 、MB 分别与C 1相交于D 、E 。

(1)证明:MD ⊥ME ;(2)若△MAB ,△MDE 的面积分别为S 1、S 2,问是否存在直线l 使得21S S =3217?例3:设椭圆42x +42y =1的左焦点F ,点A 、B 是椭圆上的两点,满足2 ,求A 、B 两点距离。

秒杀解析几何综合题解题思路分析(高考专题)

秒杀解析几何综合题解题思路分析(高考专题)

秒杀解析几何综合题解题思路分析(高考专题)解析几何综合题是高考命题的热点内容之一. 这类试题往往以解析几何知识为载体,综合函数、不等式、三角、数列等知识,所涉及到的知识点较多,对解题能力考查的层次要求较高,考生在解答时,常常表现为无从下手,或者半途而废。

据此笔者认为:解决这一类问题的关键在于:通观全局,局部入手,整体思维. 即在掌握通性通法的同时,不应只形成一个一个的解题套路,解题时不加分析,跟着感觉走,做到那儿算那儿. 而应当从宏观上去把握,从微观上去突破,在审题和解题思路的整体设计上下功夫,不断克服解题征途中的道道运算难关.1 判别式----解题时时显神功案例1 已知双曲线122:22=-x y C ,直线l 过点()0,2A ,斜率为k ,当10<<k 时,双曲线的上支上有且仅有一点B 到直线l 的距离为2,试求k 的值及此时点B 的坐标。

分析1:解析几何是用代数方法来研究几何图形的一门学科,因此,数形结合必然是研究解析几何问题的重要手段. 从“有且仅有”这个微观入手,对照草图,不难想到:过点B 作与l 平行的直线,必与双曲线C 相切. 而相切的代数表现形式是所构造方程的判别式0=∆. 由此出发,可设计如下解题思路:()10)2(:<<-=k x k y lk k kx y l 2222:'-++=的值解得k解题过程略.分析2:如果从代数推理的角度去思考,就应当把距离用代数式表达,即所谓“有且仅有一点B 到直线l 的距离为2”,相当于化归的方程有唯一解. 据此设计出如下解题思路:把直线l ’的方程代入双曲线方程,消去y ,令判别式0=∆直线l ’在l 的上方且到直线l 的距离为2212222=+-+-k kx kx ()10<<k ()*于是,问题即可转化为如上关于x 的方程. 由于10<<k ,所以kx x x >>+22,从而有.222222k x kx k x kx +++-=-+-于是关于x 的方程()*⇔)1(22222+=+++-k k x kx⇔()⎪⎩⎪⎨⎧>+-++-+=+02)1(2,)2)1(2(222222kx k k kx k k x⇔()()()⎪⎩⎪⎨⎧>+-+=--++-++-.02)1(2,022)1(22)1(221222222kx k k kkx k k k x k由10<<k 可知: 方程()()()022)1(22)1(22122222=--++-++-k kx k k kx k 的二根同正,故02)1(22>+-+kx k k 恒成立,于是()*等价于()()()022)1(22)1(22122222=--++-++-k kx k k k x k.由如上关于x 的方程有唯一解,得其判别式0=∆,就可解得 552=k . 点评:上述解法紧扣解题目标,不断进行问题转换,充分体现了全局观念与整体思维的优越性.2 判别式与韦达定理-----二者联用显奇效案例2 已知椭圆C:和点P (4,1),过P 作直线交椭圆于A 、B 两点,在线段AB 上取点Q ,使,求动点Q 的轨迹所在曲线的方程.分析:这是一个轨迹问题,解题困难在于多动点的困扰,学生往往不知从何入手。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中解析几何秒杀公式及解题套路
高中解析几何秒杀公式是什幺,解析几何解题套路有哪些,怎幺能
用一套完整的思路做所有类似的题目?把所有类型题都搞定?下面是高中解
析几何秒杀公式及解题套路,希望你看完能上岸。

1高考解析几何的统一解题套路以高考解析几何为例1、问题都是以平
面上的点、直线、曲线如圆、椭圆、抛物线、双曲线这三大类几何元素为基础构成的图形的问题2、演绎规则就是代数的演绎规则,或者说就是列方
程、解方程的规则。

当然,能用代数规则处理的问题必须是代数形式的,比如,平面上的点、直线、曲线构成的图形能用代数方法来处理,前提是构成
这些图形的点、直线、曲线必须是代数形式的。

有了以上两点认识,我们可
以毫不犹豫地下这幺一个结论,那就是解决高考解析几何问题无外乎做两项
工作1、几何问题代数化。

2、用代数规则对代数化后的问题进行处理。

至此,我们可以发掘出一套规整的高考解析几何的统一解题套路步骤1:把题目中
的点、直线、曲线这三大类基础几何元素用代数形式表示出来(一化)步骤2:把题目中的点与直线、曲线的从属关系用代数形式表示出来(二代)说明:这里的“从属关系”指的是什幺?实际上,在解析几何中,“点”是比直线、曲线
更基础的几何元素——任何几何图形,包括直线和曲线,都被视为是由一个
个的“点”构成的(用数学语言来表达:任何几何图形,包括直线和曲线,都
是由点构成的集合)。

但为了使我们的解题套路各步骤之间条例更分明。

我们把点、直线、曲线视为构成任何其它几何图形的基础。

所以,这里的“从属关系”是点与直线、曲线的属于关系问题——如果某个点在某条直线或
曲线上,那幺这个点的坐标就可代入这条直线或曲线的方程。

步骤3:图形。

相关文档
最新文档