一元一次方程——等式基本性质

合集下载

等式的知识点总结

等式的知识点总结

等式的知识点总结一、等式的定义等式是数学中一个非常基本的概念,它是指两个代数式或算式通过等号相连,并且左右两边的值相等。

等式一般可以写为x=y,其中x和y可以是数字、代数式或变量。

在等式中,= 是等号,左右两侧的数或代数式分别称为等式的左边和右边。

二、等式的性质1. 等式的基本性质(1) 左右两边同时加(减)上(或去掉)相同的数(或代数式),等式仍然成立。

(2) 左右两边同时乘(或除)以(或去掉)相同的非零数(或代数式),等式仍然成立。

(3) 对等式两边同时作相同的运算,等式仍然成立。

(4) 若等式两边同时开方,等式仍然成立。

2. 等式的对称性等式具有对称性,即等式两边的位置可以互换而不改变等式的成立。

3. 等式的传递性如果a=b,b=c,则a=c。

这表明等式的传递性,即相等关系具有传递性。

4. 等式的等价性如果两个等式表示的是同一个实际问题,它们的解集合完全相同,那么这两个等式是等价的。

5. 等式的反面如果a=b,那么b=a。

这表明等式的反面性质。

三、解等式的方法解等式的方法主要包括整理化简和移项两种基本方法。

1. 整理化简(1) 合并同类项(2) 化简复杂的代数式(3) 去掉分母(4) 化简无法合并的代数式2. 移项(1) 移项是解一元一次方程的基本方法,它是指通过加(减)一个数或代数式,使等式两边的未知数移到一边,常数移到另一边,从而实现求解的目的。

四、常见的等式类型1. 一元一次方程一元一次方程是形如ax+b=0(a≠0)的代数方程,其中未知数只有一个,并且未知数的最高次数为一。

解一元一次方程的基本方法是整理化简和移项。

2. 一元二次方程一元二次方程是形如ax²+bx+c=0(a≠0)的代数方程,其中未知数只有一个,并且未知数的最高次数为二。

解一元二次方程的基本方法是配方法、公式法、完全平方公式法等。

3. 分式方程分式方程是含有未知数的分式表达式,并且在方程中含有分式部分的代数方程。

4.2解一元一次方程(2)(等式德 基本性质)

4.2解一元一次方程(2)(等式德 基本性质)
求作一个方程,使它的解为-1;
简单应用题如课本P120练一练
学习了什么知识?
一元一次方程有关的概念,等式的基本性质,运用等式的基本性质解简单的一元一次方程.
引导
联想到等式的几种变形.探索得出
教师讲授方程的解和解方程的概念.
等式的性质比较抽象,教学时不必在理论上作过多的展开,重在问题情景②探索。处理完问题情景(1)(2),学生阅读课本P118—119,进一步熟悉学习内容,可多举例讨论.
鼓励学生
逐步引导启发学生归纳
先由同学讨论,再由教师归纳
认真听讲,注意格式
领会方程的解和解方程的意义.知道求方程的解就是将方程变形为x=a的形式
认识实质
板书设计
情境创设
1、
2、
例1:……
……
……
例2:……
……
……
习题……
……
……
作业布置
P1201
课后随笔
1、小学阶段利用加减法、乘除法互为逆运算的方法解方程,学生印象深刻,教学时鼓励学生运用等式的性质来求,但不强求.
2、解方程后,虽不要书面检验,但要求学生培养检验反思的好习惯.
3、注意等式的性质中的“都”和“同”:“都”表示两边均要变形,“同”表示两边要作一样的变形.
4、简单介绍等式的另两条性质:对称性与传递性
引入问题情景(2)
等式的性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;
等式的性质2:等式两边都乘以(或除以)同一个数(除数不为零),所得结果仍是等式.
例1
解下列方程:(1)x+5=2;(2)-2x=4.
引导学生自己尝试运用等式的基本性质解方程,说清楚每一步的依据
解方程,如课本P120练一练1

5.2一元一次方程的解法+等式的基本性质2024-2025学年+北师大版(2024)数学七年级上册

5.2一元一次方程的解法+等式的基本性质2024-2025学年+北师大版(2024)数学七年级上册
等式的两边都乘同一个数,等式仍然成立.
分层设计 数学 BS 七年级 上
思考
a
b
a
b
a a
b b
3a = _____
3b
_____
a = _____
b
_____
从右到左,等式发生了怎样的变化?
等式的两边都乘同一个
等式的两边都除以同一个数,等式仍然成立.
数(或除以同一个不为0
的数),所得结果仍是
等式.
3
解:(2)方程的两边都加 2,得

- -2+2=10+2。
3

化简,得
- =12。
3
方程的两边都乘-3,得
n=-36。
检验:将n=-36代人方程的左边,得方程
−36
左边=- -2=10,右边=10,左边=右边,
3

所以n=-36是-
3
−2=10的解。
随堂检测
1. 根据等式的性质,由x=y可得( B
分层设计 数学 BS 七年级 上
新知小结
1. 等式基本性质.
(1)等式基本性质1:等式两边都加(或减)
同一个代数式
所得结果仍是等式,即如果 a = b ,那么 a ± c =
(2)等式基本性质2:等式的两边都乘

同一个不为0的数
那么 ac =
bc
同一个数
b ±⁠
c


.
(或除
),所得结果仍是等式,即如果 a = b ,
解:方程两边同时减 x ,得
方程两边同时加3,得
3 x -3=9。
3 x =12。
方程两边同时除以3,得
x =4。
检验:将x=4代人方程的左边,得方程

一元一次方程知识点归纳

一元一次方程知识点归纳

一元一次方程方程的有关概念夯实基础一.等式用等号(“=”)来表示相等关系的式子叫做等式。

温馨提示①等式可以是数字算式,可以是公式、方程,也可以是运算律、运算法则等,所以等式可以表示不同的意义。

②不能将等式与代数式混淆,等式含有等号,是表示两个式子的“相等关系”,而代数式不含等号,它只能作为等式的一边。

如x x 2735-=+才是等式。

二.等式的性质性质1:等式两边同时加(或减)同一个数(或式子),结果仍相等。

即如果b a =,那么c b c a ±=±。

性质2:等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

即如果b a =,那么bc ac =;如果b a =()0≠c ,那么cb c a =。

温馨提示①等式类似天平,当天平两端放有相同质量的物体时,天平处于平衡状态。

若在天平的两端各加(或减)相同质量的物体,则天平仍处于平衡状态。

所以运用等式性质1时,当等式两边都加上(或减去)同一个数或同一个整式时,才能保证所得的结果仍是等式,应特别注意“都”和“同一个”。

如31=+x ,左边加2,右边也加2,则有2321+=++x 。

②运用等式的性质2时,等式两边不能同除以0,因为0不能作除数或分母。

③等式性质的延伸:a.对称性:等式左、右两边互换,所得结果仍是等式,即如果b a =,那么a b =。

b.传递性:如果c b b a ==,,那么c a =(也叫等量代换)。

例1:用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式哪一条性质,以及怎样变形得到的。

(1)如果51134=-x ,那么+=534x ; (2)如果c by ax -=+,那么+-=c ax ;(3)如果4334=-t ,那么=t 。

三.方程含有未知数的等式叫做方程。

温馨提示 方程有两层含义:①方程必须是一个等式,即是用等号连接而成的式子。

②方程中必有一个待确定的数,即未知的字母,这个字母就是未知数。

一元一次方程基本概念及性质

一元一次方程基本概念及性质

第三章一元一次方程第一节一元一次方程的根本性质1、方程的相关概念(1〕方程:含有未知数的等式叫做方程。

(2〕方程的数和未知数,例 1(3〕方程的解:使方程左、右两边的式子相等的未知数的值叫做方程的解。

(4〕解方程:求方程的解的过程叫做解方程。

(5〕方程解的检验2、一元一次方程的定义〔1〕一元一次方程的概念只含有一个未知数,未知数的最高次数是1,这样的方程叫做一元一次方程。

〔2〕一元一次方程的形式标准形式: ax+b=0〔其中 a 不等于 0, a, b 是数〕。

最简形式: ax=b〔其中 a 不等于 0,a,b 是数〕。

注:一元一次方程的判断标准〔首先化简为标准形式或最简形式〕A 、只含有一个未知数〔系数不为0〕.B 、未知数的最高次数为 1.C 、方程是整式方程 .3、等式的概念和性质〔1〕等式的概念:用“ =〞来表示相等关系的式子,叫做等式。

〔2〕等式的性质等式性质1:等式两边同时加上或者减去同一个数或同一个式子,所得结果仍是等式等式性质2:等式两边同时乘以或者除以同一个数或者同一个式子〔除数不能是 0〕,所得结果仍是等式。

〔3〕等式的其他性质A 、对称性:假设 a=b,那么 b=aB 、传递性:假设 a=b, b=c 那么 a=c例 1、判断以下各式是不是方程,如果是,指出数和未知数〔 1〕 5x 9x〔2〕 2 y 2 3x〔 3〕15x21〔 4〕 1 12〔 5〕 4x 2x〔6〕xx1 52练习题:判断以下各式是不是方程,如果是,指出数和未知数1、 x 3 2 、 2 3 4 1 3 、 x 4 4x 4 、12 5、 x2x 13 x6、 2 x 3 7 、 x 4 4 x 8 、x2x x( x 2) 3例 2、根据题意列出方程:(1)x的20%与15的差的一半等于—2。

(2〕 x 的 3 倍比 x 的一半多 15,求这个数。

(3〕某数的 3 倍与 2 的差等于 16,求这个数。

3,1一元一次方程和等式的基本性质教案

3,1一元一次方程和等式的基本性质教案

一元一次方程和等式的基本性质教学目标:1、经历对实际问题中数量关系的分析,建立一元一次方程的过程,体会学习方程的意义在于解决实际问题。

2、通过观察,归纳一元一次方程的概念。

3、理解等式的基本性质,并利用等式的基本性质解一元一次方程。

教学重点、难点教学重点:对一元一次方程概念的理解,会运用等式的基本性质解简单的一元一次方程。

教学难点:对等式基本性质的理解与运用。

教学过程:一、情境导入问题:一辆客车和一辆卡车同时从A 地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地,A ,B 两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A ,B 两地相距x km ,那么客车从A 地到B 地的行驶时间为________,货车从A 地到B 地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:一元一次方程的有关概念【类型一】 一元一次方程的辨别例1 下列方程中是一元一次方程的是( )A .x +3=y +2B .1-3(1-2x )=-2(5-3x )C .x -1=1x D.y3-2=2y -7 解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数的项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】 利用一元一次方程的概念求字母次数的值例2 方程(m +1)x +1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎪⎨⎪⎧|m |=1,m +1≠0,解得m =1.故选B. 方法总结:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.【类型三】 一元一次方程的解例3 检验下列各数是不是方程5x -2=7+2x 的解,并写出检验过程.(1)x =2; (2)x =3.解析:将未知数的值代入方程,看左边是否等于右边,即可判断是不是方程5x -2=7+2x 的解.解:(1)将x =2代入方程,左边=8,右边=11,左边≠右边,故x =2不是方程5x -2=7+2x 的解;(2)将x =3代入方程,左边=13,右边=13,左边=右边,故x =3是方程5x -2=7+2x 的解.方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等. 探究点二:等式的基本性质例4 已知mx =my ,下列结论错误的是( )A .x =yB .a +mx =a +myC .mx -y =my -yD .amx =amy解析:A.等式的两边都除以m ,依据是等式的基本性质2,而A 选项没有说明m ≠0,故A 错误;B.符合等式的基本性质1,正确;C.符合等式的基本性质1,正确;D.符合等式的基本性质2,正确.故选A.方法总结:在等式的两边同时加上或减去同一个数或字母,等式仍成立,这里的数或字母没有条件限制,但是在等式的两边同时除以同一个数或字母时,这里的数或字母必须不为0.探究点三:利用等式的基本性质解方程例5 用等式的性质解下列方程:(1)4x +7=3;(2)12x -13x =4. 解析:(1)在等式的两边都减7,再在等式的两边都除以4,可得答案;(2)在等式的两边都乘以6,再合并同类项,可得答案.解:(1)方程两边都减7,得4x =-4.方程两边都除以4,得x =-1;(2)方程两边都乘以6,得3x -2x =24,x =24.方法总结:解方程时,一般先将方程变形为ax =b 的形式,然后再变形为x =c 的形式.三、板书设计1.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.2.等式的基本性质:性质1:a=b,则a+c=b+c,a-c=b-c;性质2:a=b,则ac=bc,ad=bd(d≠0).3.利用等式的基本性质解方程.一:情境导入今有雉兔同笼,上有三十五头下有九十四足,问雉兔各几何二:导入课题一元一次方程和等式的基本性质.三:问题情境导入问题1:在参加2004年雅典奥运会的中国代表队中,羽毛球运动员有18人,比跳水运动员的2倍少4人,参加奥运会的跳水运动员有多少人?如果设参加奥运会的跳水运动员有x人,则根据题意可列出方程2x-4=18问题2王玲今年12岁,她爸爸36岁,问再过几年,她爸爸的年龄是她年龄的2倍?如果设再过 x年,则x年后王玲的年龄是岁则x年后爸爸的年龄是岁由题意可得:(让让学生做,然后交流。

7、3一元一次方程的解法

7、3一元一次方程的解法

移项的依据是什么?移项时,应注意什么?
移项的依据是等式的基本性质1 移项应注意:移项要变号
下列方程的变形正确吗?如果不正确,怎样改正? (1)由方程z+3=1,移项得z=1+3
不正确 正确
(2)由方程3x=4x-9,移项得3x-4x=-9
(3) 由方程3x+4=-5x+6,移项得3x+5x=6-4 正确
课堂小结
1. :一般地,把方程中的某些项 改变符号后,从方程的一边移到另一边 ,这种变形叫做移项。 2.解一元一次方程需要移项时我们把含 未知数的项移到方程的一边(通常移到 左边),常数项移到方程的另一边(通 常移到右边).
2、 什么叫一元一次方程?
方程两边都是整式,只含有一个未 知数,并且未知数的次数都是1, 这样的方程叫做一元一次方程。
3 方程x-2=5是一元一次方程吗? 怎样求它的解?
课本p159
将方程中的一项由 等式的一边移到另 一边时,它的符号 发生了改变。
把方程中的某一项改变符号后,从方程的 一边移到另一边,这种变形叫做移项。
7.3一元一次方 程的解法
1、 等式的基本性质是什么?
性质1:等式两边都加上(或减去)同一 个数或同一个整式,等式的两边仍然相等。
若a=b那么a+c=b+c,a-c=b-c
性质2:等式两边都乘(或除以)同一个 数(除数不能为零),等式的两边仍然相 等。
若a=b那么ac=bc 若a=b那么a/c=b/c(c≠0)
例2 解方程ห้องสมุดไป่ตู้ x 6
5 3 解:方程两边都乘以 3(或都除以 )得, 5
3 5 5 x ( ) 6 ( ), 5 3 3

5.1.2 第2课时 等式的基本性质

5.1.2 第2课时  等式的基本性质
5.1.2认识一元一次方程 第2课时 等式的基本性质
学习目标
1.理解等式的基本性质.(重点) 2.能利用等式性质解简单的一元一次方程.(难点)
1、什么是方程? 含有未知数的等式
2、什么是一元一次方程? 只含有一个未知数,且未知数的指数是 一次的整式方程
3、什么是方程的解 使方程左右两边相等的未知数的值
3x=3y; 6x=5×6;
下列用等式变形中,那些是正确的,并说明理由
(1)若x=y,则5+x=5+y √ 两边同时加上5
(2)若x=y,则5-x=5-y √ 先两边乘-1然后两边加上5
(3)若x=y,则5x=5y √ 两边同时乘以5
(4)若x=y,则 x y √ 两边同时除以5
(5)若
x

y
(1)x - 9 = 8; (2)5 - y = - 16;
解:x - 9 +9= 8+9;
5–y-5 = - 16-5பைடு நூலகம்
x = 17;
-y= - 21 y= 21
(3)3 x + 4 = - 13; 3 x + 4-4 = - 13-4
3 x = - 17
x = - 17/3
(4) 2 x 1 5 3
小结 本节课你学到什么知识?
1、等式的基本性质。
2、运用等式的基本性质解方程。
注意:当我们获得了方程解的后还应
检验,要养成检验的习惯。
课堂小结
等式的基本性质
{ 等式的基本性质 利用等式的基本性 质解一元一次方程
(1) x- 5= 6;
(2) 0.3x =45;
(3) 5x+4=0;
(4) 2 1 x 3. 4

一元一次方程知识点总结

一元一次方程知识点总结

一元一次方程知识点总结一、等式与方程1.等式:(1)定义:含有等号的式子叫做等式.(2)性质:①等式两边同时加上(或减去)同一个整式,等式的值不变.若a b=那么a c b c+=+②等式两边同时乘以一个数或除以同一个不为0的整式,等式的值不变.若a b=那么有ac bcc≠)÷=÷(0=或a c b c③对称性:若a b=,则b a=.④传递性:若a b=,b c=则a c=.(3)拓展:①等式两边取相反数,结果仍相等.如果a b=,那么a b-=-②等式两边不等于0时,两边取倒数,结果仍相等.如果0=≠,那么11a b=a b③等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质.如移项,运用了等式的性质①;去分母,运用了等式的性质②.④运用等式的性质,涉及除法运算时,要注意转换后除数不能为0,否则无意义.2.方程:(1)定义:含有未知数的等式叫做方程.(2)说明:①方程中一定有含一个或一个以上未知数,且方程是等式,两者缺一不可.②未知数:通常设x、y、z为未知数,也可以设别的字母,全部小写字母都可以.未知数称为元,有几个未知数就叫几元方程.一道题中设两个方程时,它们的未知数不能一样!③“次”:方程中次的概念和整式的“次”的概念相似.指的是含有未知数的项中,未知数次数最高的项对应的次数,也就是方程的次数.未知数次数最高是几就叫几次方程.④方程有整式方程和分式方程.整式方程:方程的两边都是关于未知数的整式的方程叫做整式方程.分式方程:分母中含有未知数的方程叫做分式方程.二、一元一次方程1.一元一次方程的概念:(1)定义:只含有一个未知数(元)且未知数的指数是1(次)的整式方程叫做一元一次方程.(2)一般形式:0+=(a,b为常数,x为未知数,且0a≠).ax b(3)注意:①该方程为整式方程.②该方程有且只含有一个未知数.③该方程中未知数的最高次数是1.④化简后未知数的系数不为0.如:212x x-=,它不是一元一次方程.⑤未知数在分母中时,它的次数不能看成是1次.如13x+=,它不是一x元一次方程.2.一元一次方程的解法:(1)方程的解:能使方程左右两边相等的未知数的值叫做方程的解,一般写作:“?x=”的形式.(2)解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,叫解方程.(3)移项:①定义:从方程等号的一边移到等号另一边,这样的变形叫做移项.②说明:Ⅰ移项的标准:看是否跨过等号,跨过“=”号才称为移项;移项一定改变符号,不移项的不变.Ⅱ移项的依据:移项实际上就是对方程两边进行同时加减,根据是等式的性质①.Ⅲ移项的原则:移项时一般把含未知数的项向左移,常数项往右移,使左边对含未知数的项合并,右边对常数项合并,方便求解.(4)解一元一次方程的一般步骤及根据:①去分母——等式的性质②②去括号——分配律③移项——等式的性质①④合并——合并同类项法则⑤系数化为1——等式的性质②⑥检验——把方程的解分别代入方程的左右边看求得的值是否相等(在草纸上)(5)一般方法:①去分母,程两边同时乘各分母的最小公倍数.②去括号,一般先去小括号,再去中括号,最后去大括号.但顺序有时可依据情况而定使计算简便,本质就是根据乘法分配律.③移项,方程中含有未知数的项移到方程的另一边,其余各项移到方程的另一边移项时别忘记了要变号.(一般都是把未知数移到一起)④合并同类项,合并的是系数,将原方程化为ax b=(0a≠)的形式.⑤系数化1,两边都乘以未知数的系数的倒数.⑥检验,用代入法,在草稿纸上算.(6)注意:(对于一元一次方程的一般步骤要熟练掌握,更要观察所求方程的形式、特点,灵活变化解题步骤)①分母是小数时,根据分数的基本性质,把分母转化为整数,局部变形;②去分母时,方程两边各项都乘各分母的最小公倍数,Ⅰ此时不含分母的项切勿漏乘,即每一项都要乘Ⅱ分数线相当于括号,去分母后分子各项应加括号(整体思想);③去括号时,不要漏乘括号内的项,不要弄错符号;④移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;⑤系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号(打草稿认真计算);⑥不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法;⑦分数、小数运算时不能嫌麻烦,不要跳步,一步步仔细算.(7)补充:分数的基本性质:与等式基本性质②不同.分数的分子分母两个整体同时乘以同一个不为0的数或除以同一个不为0的数,分数的值不变.3.一元一次方程的应用:(1)解决实际应用题的策略:①审题:就是多读题,读懂题,读的时候一定沉下心去,不能慌不要急躁,要细,一个字一个字的精读,要慢,边读边思考.找到已知条件,未知条件,找到数量关系和等量关系,可以用笔在题目中标注下来重要信息和数量关系,审题往往伴随下个步骤.②设出适当未知数,往往问什么设什么,有时也间接设未知数,然后用未知数通过关系表示出其他相关的量.③找出等量关系,用符号语言表示就是列出方程.(2)分析问题方法:①文字关系分析法,找关键字词句分析实际问题中的数量关系②表格分析法,借助表格分析分析实际问题中的数量关系③示意图分析法,通过画图帮助分析实际问题中的数量关系(3)设未知量方法:一个应用题,往往涉及到几个未知量,为了利用一元一次方程来解应用题,我们总是设其中一个未知量为x,并用这个未知数的代数式去表示其他的未知量,然后列出方程.①设未知量的原则就是设出的量要便于分析问题,与其它量关系多,好表示其它量,好表示等量关系;②有直接设未知量和间接设未知量,还有不常见的辅助设未知量.(4)找等量关系的方法:“等量关系”特指数量间的相等关系,是数量关系中的一种.数学题目中常含有多种等量关系,如果要求用方程解答时,就需找出题中的等量关系.①标关键词语,抓住关键句子确定等量关系.(比如多,少,倍,分,共)解题时只要找出这种关键语句,正确理解关键语句的含义,就能确定等量关系.②紧扣基本公式,利用基本关系确定等量关系就是根据常见的数量关系确定等量关系.(比如体积公式,单价×数量=总价,单产量×数量=总产量,速度×时间=路程,工效×时间=工作总量等.这些常见的基本数量关系,就是等量关系)③通过问题中不变的量,相等的量确定等量关系.就是用不同的方法表示同一个量,从而建立等量关系.④借助线段图确定等量关系。

七年级数学第三章《一元一次方程》知识要点解析

七年级数学第三章《一元一次方程》知识要点解析

一元一次方程知识要点解析一、一元一次方程构成要素:1、是等式;2、含有未知数,且只能是一个;3、未知数的次数有且为“1”(一次整式),且次数不为“0”;二、一元一次方程的基本形式: ax = b三、一元方程的解:使方程中等号左右两边相等的未知数的值四、解方程的理论依据:等式的基本性质:性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等.用式子形式表示为:如果a=b,那么a±c=b±c;性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.用式子形式表示为:如果a=b那么a×c=b×c,a÷c=b÷c(c≠0);五、解一元一次方程的基本步骤:变形步骤具体方法变形根据注意事项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号乘法分配律、去括号法则1.分配律应满足分配到每一项2.注意符号,特别是去掉括号移项把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同类项把方程中的同类项分别合并,化成“bax=”的形式(0≠a)合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a,得abx=等式性质2 分子、分母不能颠倒注意:我们在解一元一次方程时,既要学会按部就班(严格按步骤) 地解方程,又要善于认真观察方程的结构特征,灵活采用解方程的一些技巧,随机应变(灵活打乱步骤)解方程,能达到事半功倍的效果。

对于一般解题步骤与解题技巧来说,前者是基础,后者是机智,只有真正掌握了一般步骤,才能熟能生巧。

1)有多重括号,去括号与合并同类项可交替进行2)当括号内含有分数时,常由外向内先去括号,再去分母3)当分母中含有小数时,可用分数的基本性质化成整数4)运用整体思想,即把含有未知数的代数式看作整体进行变形六、实际问题与一元一次方程1、用一元一次方程解决实际问题的一般步骤是:1)审题,搞清已知量和待求量,分析数量关系. ( 审题,寻找等量关系)2)根据数量关系与解题需要设出未知数,建立方程;3)解方程;4) 检查和反思解题过程,检验答案的正确性以及是否符合题意.并作答2、用一元一次方程解决实际问题的典型类型1)数字问题:①:数的表示方法:一个三位数的百位数字为a ,十位数字是b ,个位数字为c 则这个三位数表示为:abc , 10010abc a b c =++(其中a 、b 、c 均为整数,且1≤a ≤9,0≤b ≤9,0≤c ≤9)②:用一个字母表示连续的自然数、奇数、偶数等规律数2)和、差、倍、分问题:关键词是“是几倍,增加几倍,增加到几倍,增加百分之几,增长率,哪个量比哪个量……”3)工程问题:工作总量=工作效率×工作时间,注意产品配套问题;4)行程问题:路程=速度×时间5)利润问题:商品利润=商品售价-商品成本价=商品利润率×商品成本价商品售价=商品成本价×(1+利润率)6)利息问题:①顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的单位时间数叫做期数,利息与本金的比叫做利率.利息的20%付利息税.②利息=本金×利率×期数,本息和=本金+利息,利息税=利息×税率(20%).7)几何问题:必须掌握几何图形的性质、周长、面积等计算公式,注意等积变形;8)优化方案问题9)浓度问题:溶液×浓度=溶质10)盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量11)年龄问题:抓住人与人的岁数是同时增长的12)增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量七、、思想方法(本单元常用到的数学思想方法小结)1)建模思想:通过对实际问题中的数量关系的分析,抽象成数学模型,建立方程的思想2)方程思想:用方程解决实际问题的思想就是方程思想.3)化归思想:解一元一次方程的过程,实质上就是利用去分母、去括号、移项、合并同类项、未知数的系数化为1等各种同解变形,不断地用新的更简单的方程来代替原来的方程,最后逐步把方程转化为x=a 的形式. 体现了化“未知”为“已知”的化归思想.4)数形结合思想:在列方程解决问题时,借助于线段示意图和图表等来分析数量关系,使问题中的数量关系很直观地展示出来,体现了数形结合的优越性.5)分类思想:在解含字母系数的方程和含绝对值符号的方程过程中往往需要分类讨论,在解有关方案设计的实际问题的过程中往往也要注意分类思想在过程中的运用.典型题列1、x 取何值时,代数式 63x +与 832x - 的值相等.2、已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.3、解下列方程|x -2|+|2x+1|=8 5|x|-16=3|x|-4200920102009433221=⨯++⨯+⨯+⨯x x x x ()20102009111216121=+++++n n4、已知:(a -3)(2a +5)x +(a -3)y +6=0是一元一次方程,求a 的值。

基础数学教案:一元一次方程的等式性质解法

基础数学教案:一元一次方程的等式性质解法

基础数学教案:一元一次方程的等式性质解法一元一次方程的等式性质解法一元一次方程是数学中的基础概念,也是初中数学教学中的重要内容。

在学习一元一次方程的解法时,等式性质是一个非常重要的概念。

本文将详细讲解一元一次方程的等式性质解法,帮助初中生更好地学习和理解数学。

一、等式性质定义等式性质是一元一次方程的重要概念,指的是一个等式两边加上或减去相等的数(或式子)仍然是等式的性质。

例如,若a=b,则a+c=b+c,a-c=b-c。

这些式子中,等式两边分别加上或减去相同的数或式子时,等式仍然成立。

二、等式性质的基本操作在实际应用中,等式性质有下面的基本操作:1、等式两边同时加或减同一数对一元一次方程两边同时加或减同一数,方程依然成立。

这个基本操作是解一元一次方程必须掌握的。

例如,对于方程a+b=c,可以将二边同时减去b,化为a=c-b。

这个操作可以让我们从未知数出发,快速推算求得方程的解。

2、等式两边同时乘同一数对于一元一次方程,若等式两边同时乘以同一数,方程依然成立。

例如,当方程x+3=7时,可以同时乘以2,得到2x+6=14,然后再解得x=4。

需要注意的是,若同乘数为0,则式子无解。

3、等式两边同时除以同一数对于一元一次方程,若等式两边同时除以同一数,方程依然成立。

例如,当方程2x+6=14时,可以两边同时除以2,得到x+3=7,然后再解得x=4。

三、等式性质解一元一次方程使用等式性质解一元一次方程,首先需要将方程中的未知数移至等式的一侧,同时将已知数移至另一侧。

因为等式性质是两侧相等的性质,所以当将未知数移至一侧时,需要加上一个系数相反数的已知数;将已知数移至另一侧时,需要加上一个系数相反数的未知数。

例如,对于方程x+2=5,可以将2移至等式的另一侧,得到x=5-2=3。

接下来,我们通过几组例题来讲解等式性质解一元一次方程的具体操作:例1:2x+3=7答:将常数项3移至等式的另一侧,得到2x=7-3=4。

等式的基本性质、一元一次方程导学案

等式的基本性质、一元一次方程导学案

7.1等式的基本性质学习目标:1、通过实例,理解掌握等式的基本性质.2、会用等式的基本性质将等式变形;能对变形说明理由.一、考你一下:1、小明和小营今年是同岁,那5年之后两个人还是同岁吗?2、小明比小营今年大3岁,10年之后小明比小营还大3岁吗?二、自主学习:自学课本152至153页内容,完成以下问题:(一)、等式的基本性质11、用语言叙述等式的基本性质1:2、用字母表示等式的基本性质1:3、尝试练习:(1)如果a=b,那么a+5=b+( )(2)如果x-3=5,那么x=5+( )(3)如果2x=x-2,那么x= ( )(4)如果x+3=10,那么x=10-( )(5)由等式a=b,得到a+10=b+10,其理由是______________________________.(二)、等式的基本性质21、用语言叙述等式的基本性质2:2、用字母表示等式的基本性质2:3、尝试练习:(1)如果-3x=18,那么x=____;(2)如果a4=2,那么a=____(3)从x=y 能不能得到yx=99呢?为什么?(4)从-3a=-3b 能不能得到a=b 呢?为什么?(5)如果12x=3,那么x= ( ) (6)如果3x=-15,那么x= ( )三、巩固练习:1、若a=b ,请同学根据等式性质编出三个等式并说出你的编写根据。

2、填空:(1)在等式7m-6=3m 的两边同时 _____________,得到4m-6=0,这是根据 __________________________.(2)在等式5a-7=8-9a 的两边同时 ____________,得到14a=15, 这是根据 ______________________.(3)在等式43x=-5的两边都______ 或 _________,得到x=-320.(4)a+b=0,可得a=_________;由a-b=0,可得a= _________;由ab=1,可得a=______________.(5)比x 的一半少3的数是y 的32,用等式可以表示为______________ .四、反馈练习:1.选择题:(1)下列结论正确的是( )A .若x+3=y-7,则x+7=y-11;B .若7y-6=5-2y,则7y+6=17-2y;C .若0.25x=-4,则x=-1;D .若7x=-7x,则7=-7.(2)下列说法错误的是( ).A .若a y a x ,则x=y; B .若x 2=y 2,则-4x 2=-4y 2; C .若-41x=6,则x=-23; D .若6=-x,则x=-6.(3)下列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式;B .等式两边都乘以一个数,所得结果仍是等式;C .等式两边都除以同一个数,所以结果仍是等式;D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式;2.(1)将等式3a-2b=2a-2b 变形;两边都加上2b,得3a=2a,两边同除以a,得3=2,错在什么地方?(2)由ac=bc,则a=b 一定是正确的吗?为什么?(3)如果在等式5(x+2)=2(x+2)的两边同除以(x+2)就会得到5=2,而我们知道5≠2,由此可以猜测x+2的值等于多少?为什么?五、课堂小结:1、请同学们叙述等式的两个基本性质。

一元一次方程的概念与解法

一元一次方程的概念与解法

一元一次方程的概念与解法【知识要点】1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程.(2)一元一次方程的标准形式是:2.等式的基本性质(1)等式的两边都加上或减去或,所得的结果仍是等式.(2)等式的两边都乘以或都除以,所得的结果仍是等式. 3.解一元一次方程的基本步骤:【典型例题】例1.下列方程是一元一次方程的有哪些?x+2y=9 x 2-3x=1 11=xx x 3121=-2x=1 3x –5 3+7=10 x 2+x=1例2. 用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.(1)如果________;-8x 3,853==+那么x(2)如果-1_x_________3,123=--=那么x x ;(3)如果;__________x ,521==那么x(4)如果________.3x ,32==那么yx例3.解下列简易方程1.5223-=+x x 2.4.7-3x=113.x x +-=-32.0 4.)3(4)12(3-=+x x例4.解方程 1.32243332=+--x x 2.1423(1)(64)5(3)25x x x --++=+3.21101211364x x x -++-=- 4.22314615+=+---x x x x 5.003.002.003.0255.09.03.0=+---+x x x 6.83161.20.20.55x x x +-+-=-例6.x 取何值时,代数式 63x + 与 832x- 的值相等.例7.已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例8. 已知1x =-是关于x 的方程 327350x x kx -++= 的解,求221195k k --的值.例9.当.38322倍的的值是为何值时,代数式x x x x ++-例10. 若对于任意的两个有理数m, n 都有m ※n=43nm +,解方程3x ※4=2.系统讲解一元一次方程的应用【知识梳理】一、知识结构二、知识要点归纳1.列方程解决实际问题的一般步骤(1)找——找准等量关系,找出能够表示题意的等量关系.(2)设——设未知数,弄清题意和找准等量系后,用字母表示题目中的一个未知数.(3)列——列出方程,用含未知数的代数式表示出题目中的各种数量,依据找准的等量关系,列出方程.(4) 解——解方程.解出所列的方程,求出未知数的值.(5) 答_作出应答,检验方程的解是否符合实际,作出回答且注明单位.水速度=船速-水速2.分析应用题中等量关系的一般方法(1)译式法:将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数式之间的内在联系找出等量关系.(2)线示法:用同一直线的线段表示应用题中的数量关系,然后根据线段的长度的内在联系,找出等量关系.(3)列表法:将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系.(4)图示法:利用图表示题中的数量关系,它可以使量之间的关系更为直观,更方便找出其中的等量关系.三、考查解析一元一次方程应用问题,关键是考查同学们用一元一次方程的模型解决实际问题的能力,大多数属于当基本题或中档题,学习中应抓住其核心问题——建模,从等量关系入手,而不是只让学生套题型,套步骤去解应用题.【典型例题】劳动力分配问题例1.某车间有100个工人,每人平均每天可以加工螺栓18个或螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓要配两个螺母)应如何分配加工螺栓、螺母的工人?分析:等量关系为螺栓数:螺母数=1︰2.设加工螺栓人数为x,则加工螺栓的总数为18x个,加工螺母总数为24(100-x)个.解:设加工螺栓的人数为x人,依题意有24xx⨯(=-2,18)100解得 40=x (人).∴加工螺母的人数为 100-x =100-40=60(人) 答:应分配40人去加工螺栓.点评:此题重点是培养学生寻找等量关系的意识和能力. 等体积问例2.一个圆柱形水桶,底面半径为11cm ,高25cm ,将满桶的水倒入底面长30cm ,宽20cm 的长方体容器,问此长方体容器的高度至少要多少才不溢出水(π取3.14,结果精确到0.1cm )? 分析:从相等关系入手,即圆柱形容器积=长方体器容积. 解:设长方体容器的高为x cm ,依题意,有 30×20x =25π×112,解方程,得 ≈=24121πx 15.9cm , 答:长方体容器的高至少需要15.9cm.点评:“等积变换”是中学数学的常用方法,要让学生理解和把握这方法,并能在实际问题中灵活应用. 盈亏问题例3.某服装个体户同时卖出两套服装,每件都以135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.(1)在这次买卖中,这位个体户是赔是赚还是正好保本? (2)若将题中的135元改成为任何正数a 元,情况如何? 分析:关键把握等量关系: 进价(1+盈利率)=售价,进价(1-亏本率)=售价.解:(1)设第一件进价为x 元,则135%)251(=+x , 解得 108=x ,设第一件进价为y 元,则135%)251(=-y , 解得 180=y ,而 181352)180108(1352)(=⨯-+=⨯-+y x .所以赔18元.(2)仿前一小题方法可得: a x =+%)251(及a y =-%)251(, 解得 a x 54=, a y 34=,而 0152234542)(>=-⎪⎭⎫ ⎝⎛+=-+aa a a a y x , 所以此时仍然是亏本.点评:解决该题的关键是把握住此类问题中的几个等量关系,同时理解好一些常用“词”:如:打八折,进价,售价,盈利10%,亏本20%等.拓广:在例3中,将题中的135元改为任何正数a 元,同时又将题中的25%改为m%(0<m <100)情况如何?工程量问题例4.甲、乙两水管往水池中注水,甲管单独打开用20小时可注满一池水,乙管单独打开用40小时可注满一池水.现在甲管单独打开8小时后,乙管才开始工作,问两管一起打开后需多少小时可注满水池?分析:利用等量关系,甲管工作量+乙管工作量=1,来解题,为了理清工作量的关系,可列表如下:(设两管一起开后x 小时可注满全池)解:设两管一起打开后x 小时可注满全池,依题意,得140208=++xx . 解得 8=x (小时),答:两管一起打开后8小时可注满水池.点评:“列表法”在分析等量关系中,有其特点,但重点还应是在培养学生寻找等量关系的意识和能力上,提高“建模”能力.行程问题例5.由甲地到乙地前32的路是高速公路,后31的路是普通公路,高速公路和普通公路交界处是丙地.A 车在高速公路上的行驶速度是100千米/时,在普通公路的行驶速度是60千米/时.B 车在高速公路上的行驶速度是110千米/时,在普通公路上的行驶速度是70千米/时.A 、B 两车分别从甲、乙两地同时出发相向行驶,在距离丙地44千米处相遇,求甲、乙两地之间的距离是多少?分析:本题在相遇过程中A 、B 两车同时出发相向而行至相遇如图3-5-1所示,相等关系是A 车行驶时间=B 车行驶时间.距丙地44千米处,有两种可能,(1)相遇处在高速公路上距丙地44千米,(2)相遇处在普通公路上,解题时要考虑到这两种情况,再根据实际取舍.解:设甲、乙两地相距x 千米,A 车从甲地到丙地,需要15010032xx=(小时),B 车从乙地到丙地,需要2107031x x=(小时), ∵210150x x > ∴A 、B 两车只能在高速公路上距丙地44千米处相遇.列方程得,1104470311004432+=-xx 解得441=x .答:甲、乙两地之间的距离是441千米.点评:“线示法”分析等量关系比较方便.但要注意分类讨论各种情况,以免挂一漏万.利息问题例6.大宝、小宝共利用假期打工1000元,大宝把他的工钱按一年期教育储蓄存入银行,年利率为1.98%,免收利息税,小宝把他的工钱买了月利率为2.15%的债券,但要交纳20%的利息税,一年后两人得到的收益恰好相等,问两人的压岁钱各是多少?分析:抓住这一问题的等量关系.1.利息(免税的)=存入钱数×年利率,2.利息(不免税的)=存入钱数×年利率×(1-税率),3..大宝的收益=小宝的收益.解:设大宝的工钱为x元,则小宝的工钱为(1000-x)元,由题意,得.1⨯98%⨯⨯x.=x-(80%100012%).215解得510x(元),1000-x=490(元).=答:大宝的工钱是510元,小宝的工钱是490元.【自我测试】一、基础测试1.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追及超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒2.有一旅客携带30公斤行李从某机场乘飞机返回绵阳,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购行李票,已知该旅客现已购行李票60元,则它的飞机票价为()A.300元B.400元C.600元D.800元3.一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,已知某储户有一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?4.某商品的进货单价为280元,按25%的利润率确定售价.后因市场发生变化,决定按原定价格的八五折出售,问这时每售出一件这种商品,商店获利多少?5.用内径18毫米的圆柱形试管盛满水后,向一个底面是边长为22毫米的正方形,高是15毫米的空长方体容器内倒水,倒满容器后试管内水面下降约多少毫米?6.一艘船在甲、乙两地之间航行,顺水要3小时,逆水要3.5小时,已知船在静水中航行速度是每小时26千米,求水流速度.7.两人在环形跑道上同向急走,一圈为400米,甲的速度为平均每分钟80米,乙的速度是甲的1.25倍,如果乙在甲的前面100米,多少分钟后两人相遇?8.某人原计划骑车以12km/h的速度由A地去B地.这样可在规定时间内到达B地.但他因事将原计划出发的时间推迟了20min,只好以15km/h的速度前进,结果比规定时间早4min到达B地,求A、B 两地的距离?二、综合能力测试题1.某商店先在广州以每件15元的价格购进一种商品10件,后来又到深圳以每件12.5元的价购进同样商品40件,如果商店销售这些商品时,要获利12%的利润,那么这种商品的销售价应该是_______.2.有一卷铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩下10m,这卷铁丝原长多少?3.有大中小三个正方形水池,它们的内池分别为6m、3m、2m,把两堆碎石分别沉浸在中、小水池的水里,两个水池的水面分别升高了6cm和4cm,如果将这两堆碎石都沉浸在大水池的水里,大水池的水面升高了多少厘米?4.有一火车以每分钟600m的速度要过完第一、第二座铁桥,过第二座铁桥比过第一座铁桥多用5分钟,又知第二座铁桥的长度比第一座铁桥长度的2倍短50m,试求各铁桥的长?5.某公司向银行贷款40万元用来生产某种新产品,已知该贷的年利率为1.5%(不计复利),每人新产品的成本是2.3元,售价4元,应纳税是销售额的10%,如果每年生产该种产品20万个,并把所得利润用来归还贷款,问需要几年才能一次性还清?(利润=销售额-成本-应纳税款)6.某班共40名学生,其中33人数学成绩不低于80分,32人英语成绩不低于80分,且班上每人在这两科中至少有一科不低于80分.求两科成绩都不低地80分的人数.。

等式的基本性质教学设计

等式的基本性质教学设计

《一元一次方程》——等式基本性质教学设计一、教材分析本节课是冀教版七年级数学上册第五章一元一次方程第二节,等式的基本性质是学生在刚刚认识了一元一次方程的基础上进行教学的,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型,它是解方程的必备知识,并且对解一元一次方程中的移项、合并同类项起着至关重要的作用。

本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。

同时培养学生数学思维能力。

从知识点在教材中的位置来看,它位于一元一次方程的概念与一元一次方程的解法之间,可以说,学好本节知识是顺利学习一元一次方程关键点所在。

同时,从本节知识在整个初中数学的地位来看,等式的基本性质是中学生从小学阶段的数学认识到初中数学学习过度的关键所在。

它为后面一元一次方程的解法提供了理论依据,甚至为二元一次方程组的解法、一次函数的讲解提供了间接的帮助,同时也为一元一次不等式的解法提供了借鉴和对比。

二、学情分析从学生的认知情况来看,学生在此之前已经对方程和等式有了初步的认识,并具备一定的探索能力,乐于动手实验,喜欢探索发现,因此教学中我引导学生动手操作—独立思考—自主探究—合作交流,遵循由浅入深,由具体到抽象的规律。

学生在小学阶段以“数”的形式,使用过等式的基本性质,初中阶段的数学学习重点培养学生的抽象思维能力,因此如何从数过渡到字母,再由字母过渡到代数式,等式基本性质将是本节课重点需要解决的问题,也是本节知识的难点。

三、教学目标:1、理解等式的基本性质;2、能用等式的基本性质求解简单的一元一次方程。

四、教学重难点教学重点:引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。

教学难点:抽象归纳出等式的基本性质。

以引课时的前两个问题(1通过摆放砝码,你怎样使天平平衡?2在问题1的基础上你还可以怎样操作使天平再次平衡?)为背景用模拟天平还原学生的操作过程,并在此过程中探究增加或减少砝码时等式是否成立。

等式的基本性质 优秀教案

等式的基本性质 优秀教案

《等式的基本性质》教学设计一、教材分析《等式的性质》选自北师大版七年级上册第五章《一元一次方程》第一节认识一元一次方程。

等式的基本性质是学生在刚刚认识了等式与方程的基础上进行教学的,它是系统学习方程的开始,其核心思想是构建等量关系的数学模型,它是解方程的必备知识,并且对解一元一次方程中的移项、合并同类项起着至关重要的作用。

本节课的学习是学生在实验的基础上,掌握等式的两个基本性质,引导学生通过比较,发现规律,并为今后运用等式的基本性质解方程打基础。

同时培养学生数学思维能力。

三、教学重难点教学重点:引导学生探索发现等式的基本性质,利用等式的基本性质解决简单问题。

教学难点:抽象归纳出等式的基本性质。

四、学情分析在此之前,学生已经学习了算式中的图形或字母所表示数的求解方法,大部分学生已经较好的掌握了用乘法分配律对代数式进行化解方法,并在学习中初步建立起了利用等式的性质求解图形和字母所表示的数的思维,认识了方程并会求解一些简单的方程。

但是,也有一少部分的学生对对方程的认识还不完善,误用等式的性质等,因此在教学中,关注全体学生的同时,要特别关注这些学生,课堂上给予提供及时的帮助。

五、教学过程一.引入师:天平右盘放一个质量为10kg的圆柱体a,左盘什么也不放,天平会出现什么状态呢?要使天平平衡,那么天平左边应该放一个质量为多少的小方块b呢?此时你们能用数学式子来表示天平平衡吗?a=b,这是一个等式,那么等式有什么性质?它的性质又有什么用途呢?这节课我们一起来研究等式的性质。

(板书:等式的性质)(引用学生熟悉的生活背景——天平秤,通过天平处于的平衡状态引出等式 a=b,从而引出课题。

从学生熟悉的生活场景引入,既让学生感到亲切,又能激起学生学习和探究新知的欲望,同时又很自然的引出了课题。

让学生从中体验学生与生活的紧密联系。

)二.探索新知1.探究等式性质1师:如果在天平左边加上一个质量为10kg的小方块c,要使天平保持平衡,右边需要进行什么操作?(根据学生回答,教师进行添加演示。

3.1.2一元一次方程(等式的基本性质)修改版

3.1.2一元一次方程(等式的基本性质)修改版
y ,那么x 5 a y 5 a y ,那么 x y
2 2
x y y ,那么 a b
(x )
√ ) (
(√ )
等式性质1 等式性质2
(5)如果 x
(6)如果 x
(x )
x y
y ,a 1
,那么a 1 a 1

√ ) (
等式性质2
因为 a 1,所以 a 1 0
学习难点:运用等式性质把简单的一元一次方程化成 x=a的形式.
等式的左边 等号
等式的右边
把一个等式看作一个天平, 等号两边的式子看作天平两边的物体,
等式成立可以看作是天平两边保持平衡。
a

b

a

b a =b

a

c
b

a =b
a

c
b
c
a =b a+c = b+c

a
c
b
c

a =b

一、创设情境
用估算的方法可以求出简单的一元一次方程的解.
你能用估算的方法求出下列方程的解吗?
(1)3x-5=22;
x9
x2
( 2) 4 x 3 5
用估算的方法解比较复杂的方程是困难的. 因此,我们还要讨论怎样解方程.
一、创设情境
思考:以下方程有什么特点?
m+n=n+m,x+2x=3x,3×3+1=5×2, 3x+1=5y.
利用等式的性质解方程 1 (3) x 5 4 2 5x 20 3
解:两边加5,得
解:两边同时除以-5得
5x 20 5 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
观察下面这些式子有什么相同点?
1+2=3, a+b=b+a, S=ab, 4+x=7.
用等号表示相等关系的式子,叫等式。
通常用a b表示一般的等式 .
在等式中,等号的左、右两边的 式子,分别叫做这个等式的左边、 右边。
等式 4 + x = 左边
7
右边
等式的基本性质
天 平 与 等 式 把一个等式看作一个天平,把等号 两边的式子看作天平两边的砝码, 则等式成立就可看作是天平保持两 边平衡
a b 如果 a b, c 0 ,那么 c ___ ___ c
等式性质2:
等 式 的 性 质
【等式性质1】 如果a b,那么a c b c
【等式性质2
如果a b,那么ac bc
a b 如果 a bc 0 , 那么 c c

注意
1、等式两边都要参加运算,并且是作同一 种运算。 2、等式两边加或减,乘或除以的数一定是 同一个数或同一个式子。 3、等式两边不能都除以0,即0不能作除数 或分母.
a b 1由a b, 得 x x


3 3( 2 由x y, y , 得x 5 5


a b 5如果a b, 且 ,那么c应满足的条件是 c c
3、由 2 x, 得x 2

co
.
6、在学习了等式的性质后,小 红发现运用等式的性质可以使 复杂的等式变得简洁,这使她 异常兴奋,于是她随手写了一 个等式:3a+b-2=7a+b-2 ,并开始运用等式性质对这个 等式进行变形,其过程如下:
b
等式的左边
学一学
a
等式的右边
等号
你能发现什么规律?
a


你能发现什么规律?
a


你能发现什么规律?
a


你能发现什么规律?
b
a


你能发现什么规律?
b a


你能发现什么规律?
b a


a
=
b
你能发现什么规律?
b c a


a
=
b
你能发现什么规律?
a
b c


a
=
b
你能发现什么规律?
3、依据等式性质进行变形,用 得丌正确的是( D)
A如果x y 5, 那么x 5 y
B如果x y 5, 那么x y 5 0
1 5 C如果x y 5, 那么 x y 2 2
x y 5 D如果x y 5, 那么 a a
4、判断下列说法是否成立,并说 明理由
1 (3) x 5 4 检验: 3
将 x 27 代入方程 1 x 5 4 ,得: 3 1 左边 27 5 3 9 5 4 右边 所以x 27 是方程 的解。
经过对原方程的一系列变形 (两边同加减、乘除),最终把方 程化为最简形式:
用等式的性质解一元一次方程
例1
解下列方程:
(1) x + 5 = 2 (2) –2 x = 4
把求出的解代 入原方程,可 怎样检验 以检验解方程 解方程是 是否正确
否正确?
例2:利用等式的性质解下列方程
解:两边加5,得 1 x 55 45 3 化简,得 1 x 9 3 两边同乘-3,得 x 27
x = a(常数)
即方程左边只一个未知数项、 且未知数项的系数是 1,右边只 一个常数项.
1 1 ( )如果 x 0.5,那么2 x 1 2x0.5 2 2 . 根据 等式性质2,在等式两边同时乘2

(2)、如果x-3=2,那么x-3+3= 2+3 根据 等式性质1,在等式两边同加3 , (3)、如果4x=-12y,那么x= -3y ,
根据 等式性质2,在等式两边同时除以4
。 。
(4) 如果-0.2x=6,那么x= -30

根据等式性质2,在等式两边同除-0.2或乘-5 。
2、下列变形符合等式性质的是( D )
A、如果2x-3=7,那么2x=7-3
B、如果3x-2=1,那么3x=1-2
C、如果-2x=5,那么x=5+2
1 D,如果 x 1, 那么 x 3 3
3a+b=7a+b(等式两边同时加上2) 3a=7a(等式两边同时减去b) 3=7(等式两边同时除以a) 变形到此,小红顿时就傻了:居然得 出如此等式!于是小红开始检查自己的 变形过程,但怎么也找丌出错误来。 聪明的同学,你能让小红的愁眉在恍 然大悟中舒展开来吗?
小结:
学习完本课之后你有什么收获?
1、等式的性质有几条? 用字母怎样表示?
2、解方程最终必须将方程 化作什么形式?
◣巩固◢
作业
P85习 题 3.1的第4题.

等式性质1: 等式两边加(或减)同一个数 (或式子),结果仍相等。
c c 如果 a b,那么 a ___ b ____
你能发现什么规律?
b a


a
=
b
你能发现什么规律?
b b a a

a=b 2a = 2b

你能发现什么规律?
b b b a a a

a=b 3a = 3b

你能发现什么规律?
C个
b bbbbb b
aaaa a aa
C个

a=b ac = bc

你能发现什么规律?
b a

a
=
b
a b c c

a b a b 2 2 3 3
(c 0)
等式两边乘同一个数,或除以同 一个丌为0的数,结果仍相等。
c c 如果 a b,那么 a___ b____
a
b c


a
=
b
你能发现什么规律?
a c
b c


a
=
b
你能发现什么规律?
b c a c

a a+c
= =
b b+c

你能发现什么规律?
b

c
c
a

a
=
b
你能发现什么规律?
b

c
a a
=
b

你能发现什么规律?
b

c
a a
=
b

你能发现什么规律?
b

a a
=
b

你能发现什么规律?
b

a a=bቤተ መጻሕፍቲ ባይዱa-c = b-c
相关文档
最新文档