第一章 概率论的基本概念
第一章 概率论的基本概念
§2 样本空间、随机事件 (一)样本空间 随机试验E的所有可能结果的集合称为样本 空间,记为S。组成样本空间的元素 ,即试验 的一个可能出现的结果,记为e,故样本空间 S可记作S={e},样本空间的元素,即E的每一 个结果,称为样本点. 例如上一节试验的样本空间为: S1 ={H,T} H-正面 T-反面; S2 ={0,1,2,3} , i=0,1,2,3 为正面出现的次数; S3 ={HHH ,HHT ,HTH ,THH ,HTT, THT, TTH ,TTT};
24
这个等式也可以由等式 A = B (C∪D)利 用De Morgan对偶律得到.事实上,我们 有
.
25
例7 设A,B,C,D是四个事件,用A,B,C, D的运算关系表示下列事件。 (1)A1:“A,B,C,D中仅有A发生” (2)A2:“A,B,C,D中恰有一个发生” (3)A3:“A,B,C,D中至少有一个发生” (4)A4:“A,B,C,D中至少有两个发生” (5)A5:“A,B,C,D中至多有一个发生” (6)A6:“A,B,C,D中至多有两个发生” (7)A7:“A,B,C,D都不发生” (8)A8:“A,B,C,D不都发生” (9)A9:“A,B,C,D中至多一个发生,但D 不发生” (10)A10:“A,B,C,D2)事件AB={x|xA或xB}称为事件A与 事件B的和事件. 当且仅当A, B中至少有一个 发生时, 事件AB发生.
A S
类似地,
n
B
称 Ak为n个事件A1 , A2 , , An的和事件;
k 1
称 Ak为可列个事件A1 , A2 ,的和事件.
k 1
17
(3)事件AB={x|xA且xB}称为事件A与 事件B的积事件. 当且仅当A, B同时发生时, 事 件AB发生. AB也记作AB
概率论基础知识
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
概率论与数理统计复习笔记
概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。
第一章 概率论的基本概念
引言一、为什么要学习概率论与数理统计?学习概率论与数理统计的意义!二、概率论研究的是什么?在日常生活中,有很多事,他们的发生与否是确定的,比如上抛硬币必然下落等。
然而,还有许多事的发生与否或发生的结果是不确定的,这类事件就是不确定事件。
这类事件在“大数试验”下是有规律的。
比如:生男生女,抛硬币等。
概率论的任务就在于揭露与研究随机事件的规律性。
第一章概率论的基本概念§1随机试验首先,看几个试验:E1:抛币观察正、反面。
{正、反}E2:掷一骰子,观察点数。
{1、2、3、4、5、6}E3:顶点投篮,投中为止,记录投篮次数。
{1,2,3,……}以上三试验具有以下特征:ⅰ)在相同条件下可重复进行。
ⅱ)试验的可能出现的结果不唯一,但知道所有可能出现的结果。
ⅲ)再试验前不能预知哪一种结果出现。
我们将具有这三个特征的试验称为随机试验 E 。
以后我们说的试验都是随机试验。
注:如果一个随机试验E由几个随机试验E1×E2×……×E n复合而成,则称E为复合试验。
E=E1×E2×……×E n如:抛三枚硬币E ,第一次E1,第二次E2,第三次E3。
§2 样本空间随机事件1、定义:定义1、随机试验E的每一个可能出现的结果称为样本点e 。
定义2、随机试验E中所有可能发生的试验结果组成的集合叫样本空间S。
定义3、随机试验E的样本空间S的子集称为E的随机事件。
一般用A,B,C,D,……表示注:A,B,C,D,……为基本空间的一个子集。
A随机事件AA⇔⇔。
试验结果属于中的样本点出现发生2、下面介绍几个特殊的随机事件。
1)基本事件:仅含有单个样本点的事件。
2)必然事件S:样本空间S是自身的子集,包含所有的样本点,每次试验中S总是发生,故称为必然事件。
3) 不可能事件φ:φ是S的子集。
φ中不含任何样本点。
每次试验中φ必不发生。
故称为不可能事件。
例1:掷一枚骰子,观察点数。
概率论的基本概念
⑵.两件都是次品: ;
⑶.一件是正品、另一件是次品: ;
⑷.第二件是次品: 。
6、高射炮向敌机发射三枚炮弹,设每发炮弹击中敌机的概率为 (每发击中与否相互独立),而敌机中一弹时坠落的概率为 ,中两弹时坠落的概率为 ,中三弹时坠落的概率为 。
⑴.求敌机被击落的概率;
⑵.若敌机被击落,求它只中一弹的概率。
解:用 分别表示电话是打给 的, 分别表示 因公外出,则
⑴. ;
⑵. ;
⑶. ;
⑷. ;
⑸. 。
解:用 表示敌机中 弹, ,用 表示敌机被击落,则
, ,故
,
。
7、已知男子中有 是色盲患者,女子中有 是色盲患者,现从男女人数相等的人群中随机地选一人,问此人是色盲患者的概率为多少若已知此人是色盲患者,求此人是男性的概率。
解:用 表示所选人为男性, 表示所选人为色盲患者,则
, , ,故
,
。
8、甲、乙、丙三人独立地去破译密码,已知甲、乙、丙各自能译出密码的概率分别为 ,问三人中至少有一人能将此密码译出的概率为多少
概率论的基本概念
第一章概率论的基本概念
【内容提要】
一、随机事件及其运算关系
1.随机现象在一定条件下,可能出现不同结果(不可预先确知的)的现象。
2.随机试验在一定条件下,对随机现象进行观测或观察的过程。随机试验具有如下特点:
⑴.可以在相同条件下重复进行;
⑵.每次试验的结果不止一个,并且能事先明确试验的所有可能结果;
⑴.非负性: ,有 ;
⑵.规范性: ;
⑶.可列可加性:对任意可列无穷多个两两互斥的事件 ,有 。
则称 为事件 的概率。事件的概率有如下性质:
第一章 概率论的基本概念(第3讲)
第1.7节 事件的独立性
三、n个事件相互独立定义
n个事件 A1 , A2 , A3 ,..., An 相互独立的定义为:
P( Ai Aj ) = P( Ai )P( Aj ), i < j, i, j = 1,2,..., n P( Ai Aj Ak ) = P( Ai )P( Aj )P( Ak ), i < j < k, i, j, k = 1,2,..., n ... P( A1 A2 ...An ) = P( A1 )P( A2 )...P( An )
解: (1)设A=甲中, B=乙中, C=目标被击中, 所求
P(A|C)=P(AC)/P(C) =P(A)/[P(A)+P(B)-P(A)P(B)]
(C=A∪B)
=0.6/0.8=3/4
第1.7节 事件的独立性
二、三个事件相互独立定义
对于三个事件 A, B, C 的相互独立定义为: P ( AB ) = P ( A ) P ( B ) P ( AC ) = P ( A ) P (C ) P ( BC ) = P ( B ) P (C ) P ( ABC ) = P ( A ) P ( B ) P (C )
C
k n
pk q n−k
(k
=
0,1,L, n)
P( A1 A2 ...Ak Ak+1 Ak+2 ...An ) = pkqn−k (前k次成功)
第1.8节 独立试验序列
二、考察概率
(2) 第 k 次试验首次“成功”的概率为
qk−1 p(k = 0,1,2,L)
第1.8节 独立试验序列
三、例题:Leabharlann 第1.9节 几何概率和概率的数学定义
第1章 概率论的基本概念
试验者
德•摩根 蒲 丰 K•皮尔逊 K•皮尔逊 维 尼
n
2048 4040 12000 24000 30000
nH
1061 2048 60199 12012 14994
fn(H)
0.5181 0.5069 0.5016 0.5005 0.4998
nA 频率 f n ( A) 具有如下基本性质: n
统计概率的性质
1. 非负性:对每个事件A有 1 P ( A) 0; 2. 规范性:对必然事件S有 P ( S ) 1;
3. 有限可加性:设A1,A2,…An是两两互不相容事件 则 P( A1 A2 ... An ) P( A1 ) P( A2 ) ... P( An )
交换律 A B B A
A B B A
结合律 ( A B) C A ( B C )
( A B) C A ( B C )
分配律 ( A B) C ( A C ) ( B C )
A ( B C ) ( A B) ( A C )
其结果可能为:
正品、次品。
其结果可能为: 红、黄、绿。
实例6 “出生的婴儿可能是男,也可能是 女”。
实例7 “明天的天气可能是晴 , 也可能是多云 或雨 ”。
在我们所生活的世界上, 充满了不确定性
如何来研究随机现象?
随机现象是通过随机试验来研究的。
问题 什么是随机试验?
1. 试验(Experiment):包括各种各样的科学实 验,也包括对客观事物的“观察”、“测量”等。 2. 随机试验(E,Random experiment):具有以 下三个特征的试验: (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果 会出现。
第1章 概率论的基本概念.
注意事项
可能结果——样本点——基本事件
(1) (2)在概率论中常用一个长方形来 (3) 由中的单个元素组成的子集称为基本事件,常用表示. 判定一个事件是否发生的标准是看它所包含的样本点是否 表示概率空间,用椭圆或者其它的 A 出现 ① .事件发生当且仅当该事件包含的某个样本点出现 样本空间的最大子集称为必然事件,常用 表示; . ● 1 几何图形来表示事件.这类图形被称 ● ② 样本空间的最小子集称为不可能事件,常用 表示 .2 为维恩(Venn)图,又叫文氏图.
例1.1.2 一天内进入某商场的人数的样本空间为 ={0,1, 2, …}. 例1.1.3 电视机寿命的样本空间为 ={t|t0} . 在以后的数学处理上,我们往往把有限个或可列个 样本点的情况归为一类,称为离散样本空间;而将不可 列无限个样本点的情况归为另一类,称为连续样本空间.
随机事件 (random event) 随机试验的某些子集称为随机事件, 简称事件.它在随机试验中可能出现也可能不出现,而在大量重复试 验中具有某种规律性. 常用符号 (1)大写的英文字母:A,B,C. (2)大写的英文字母加下标:A1, A2, A3, … .
例1.1.7 设A, B, C是某个随机现象的三个事件,则 (1)事件“A与B发生,C不发生”:ABC (2)事件“A, B, C中至少有一个发生”:A B C (3)事件“A, B, C中至少有两个发生”:AB AC BC
第一章概率论的基本概念
例1.6.1 在10个产品中有7个正品,3个次品, 按不放回抽样,每次一个,抽取两次,求 ①两次都取到次品的概率; ②第二次才取到次 品的概率; ③已知第一次取到次品,第二次又 取到次品的概率。
解:设A={第一次取到次品},B={第二次取到次品},
(1)P(AB)=(3×2)/(10×9) =1/15 (2)P( A B )=(7×3)/(10 × 9)=7/30 (3)P(B|A)=2/9=P(AB)/P(A)= (1/15)/(3/10)
第1.6节 条件概率、全概率公式及贝叶斯公式
一、条件概率 1、定义 对于两个事件A、B,若P(A)>0, 则称P(B|A)=P(AB)/P(A)为事件A出现 的条件下,事件B出现的条件概率。 注意:区别P(B|A)与P(AB). 例 有10个人,其中色盲者3人,从这10人中每次任取 一人,共取两次。 设A={第一次取出色盲} B= {第二次取出色盲} 则 P(B|A)=2/9 P(AB)=1/15 P(A)=3/10
1.5.2. 设事件A发生的概率是0.6,A与B都发生的概率是0.1,A
与B 都 不发生 的概率为 0.15 ,求 A发生B不发生的概率;B 发生 A不发生的概率及P(A+B). 解:由已知得,P(A)=0.6,P(AB)=0.1,P( B )=0.15, A
则 P(A-B)=P(A-AB)=P(A)-P(AB)=0.5 P(B-A)=P(B)-P(AB)
解:设A = { 取 到 的 两 个 都 是 次 品},B={取到的两个中正、 次品各一个}, C={取到的两个中至少有一个正品}. (1)基本事件总数为62,有利于事件A的基本事件数为22, 所以P(A)=4/36=1/9 (2)有利于事件B的基本事件数为4×2+2×4=16, 所以P(B)=16/36=4/9 (3)有利于事件C的基本事件数为62-2×2=32, P(C)=32/36=8/9 注意①若改为无放回地抽取两次呢? ②若改为一次抽取两个呢?
第1章 概率论的基本概念
确定概率的常用方法有: (1)频率方法(统计方法) (2)古典方法 (3)几何方法 (4)公理化方法 (5)主观方法
古典概率
(1) 古典概率的假想世界是不存在的 .对于那些极其罕见的, 定义 1.2.5 如果试验满足下面两个特征,则称其 但并非不可能发生的事情,古典概率不予考虑.如硬币落地后 为古典概型(或有限等可能概型): 恰好站立,一次课堂讨论时突然着火等. (1 )有限性:样本点的个数有限; (2) 古典概率还假定周围世界对事件的干扰是均等的 .而在 (2)等可能性:每个样本点发生的可能性相同 . 实际生活中无次序的、靠不住的因素是经常存在的 .
(3) 如果AiAj= (1 i < j k),则
fn(A1∪A2∪ … ∪Ak ) = fn(A1 ) +fn(A2 ) + … +fn(Ak 着事件在一次试验中发生的可能性就 大,反之亦然. 人们长期的实践表明:随着试验重复次数n的增加, 频率fn(A)会稳定在某一常数a附近,我们称这个常数为频 率的稳定值.这个稳定值就是我们所说的(统计)概率.
互不相容与对立区别 随机事件间的关系与运算
(1)事件A与事件B对立 AB= , A∪B= . (2)事件 A与事件B互不相容 AB= . 关系 运算 包含 相等 互不相容 并 交 差 补
如果属于A的样本点一定 由在 中而不在事件 A 中的样本点 , B没有相同的样本点, 如果事件 A 由事件 如果 A A 与事件 B ,且 A B 中所共有的样本 B,那么 A=B. A中而不在事件B中的样 中所有的样本点 由在事件 属于B,则称 A 包含于 B , BB.B 组成的新事件,也叫 A的对立 B A A A 则称互不相容 . 记作 A ∩ B= . 点组成的新事件 即B包含 A=B A B, A B A. . 组成的新事件 .记作 A记作 ∪ B.BA 本点组成的新事件 .记作 A-B. 或 A. 记作 B. .
1概率论的基本概念
[注样本空间是相对于某个随机试验而言,而其元 ]
素取决于试验的内容和目的.
二、随机事件
1.随机事件: 试验E的样本空间S的子集. 简称事件. 通常用字母A,B,C表示.
A的对立事件记作 A .
ASA
B A
A
[注]
(1) 事件之间的关系可用文氏图表示; (2) 对于任意事件A,显然
AA , A
A S,
A S A, A A
(3) 基本事件都是互不相容的; A与B-A也是互不相容的. (4) B A B A B AB
B
A
A U B A U ( B A )
S1={H, T}(H表示出现正面, T表示出现反面)
试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.
S2= {HHH,HHT,HTH,THH, HTT,THT,TTH,TTT}
试验E3:将一枚硬币抛掷三次,观察反面出现的次数. S3={0,1,2,3} 试验E4:抛掷一枚骰子, 观察出现的点数. S4={1,2,3,4,5,6}
第一章 概率论的基本概念
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 随机试验 样本空间、随机事件 频率与概率 等可能概型(古典概型) 条件概率 独立性
第一章 概率论的基本概念
引言:概率论是研究什么的?
研究和揭示随机现象的统计 在一定条件下必然发生的现象 确定现象 规律性的数学学科 例:向空中抛一物体必然落向地面; 水加热到100℃必然沸腾; 异性电荷相吸引; 放射性元素发生蜕变; … … 例:抛一枚硬币,结果可能正(反)面朝上; 向同一目标射击,各次弹着点都不相同; 某地区的日平均气温; 掷一颗骰子,可能出现的点数;… …
一概率论的基本概念
必然事件包含一切样本点,它就是样本空间。
不可能事件不含任何样本点,它就是空集 。
上一页 下一页 返 回
例1 : 从一批产品中任取8件,观察其中的正品件数, 则这一试验的样本空间为:
={0,1,2,3,4,5,6,7,8}
引入下列随机事件: A={正品件数不超过3} ={0,1,2,3} B={取到2件至3件正品} ={2,3} C={取到2件至5件正品} ={2,3,4,5} D={取到的正品数不少于2且不多于5} ={2,3,4,5}
A B
对任一事件A,有A A ;A A;A .
5、互不相容事件(互斥事件)
如果事件A与B不可能同时发生,则称 事件A与B是互不相容事件(互斥), 记作A B .
基本事件是两两互不相容的。
A
B
6、逆事件(对立事件)
若A B 且A B ,则称事件A与B互为逆事件 (对立事件). A的对立事件 记 作A .
即事件C发生意味着事件A或事件B至少有一个发生。
3、事件的交(积)
“事件A与事件B同时发生”这一事件称为事件A 与事件B的交(积)事件。记作A B或AB.
对任一事件A,有A A;A .
类似的,
A B
“ 事 件A1, A2 ,, An同 时 发 生 ” 这 一 事 件 称为A1, A2 ,, An
1 : {H ,T }
E2 : 掷两颗骰子,观察出现的点数;
2 : {(i, j) | i, j 1,2,3,4,5,6}
E3 : 在一批电视机中任意抽取一台,测试它的寿命;
3 : {t | t 0}
概率论
S 7 : { ( x , y ) | T 0≤ x ≤ y ≤ T 1 }
返回主目录
第一章 概率论的基本概念
2、 随 机 事 件
定义: 定义: •随机事件 : 称试验 E 的样本空间 S 的子集为 E 的 随机事件 随机事件; 可能发生,也可能不发生) 随机事件; 可能发生,也可能不发生) ( •基本事件 : 有一个样本点组成的单点集; 基本事件 有一个样本点组成的单点集; ( •必然事件 : 样本空间 S 本身; 必然发生) 必然事件 本身; 必然发生) •不可能事件 : 空集∅。 不可能事件 空集∅ (必然不发生) 必然不发生)
返回主目录
第一章 概率论的基本概念 2 ) 频率的稳定性 n=500时 时 nA 251 249 256 253 251 246 fn(A) 0.502 0.498 0.512 0.506 0.502 0.492
244 0.488
0.002 -0.002 0.012 0.006 0.002 -0.008 -0.012 实验者 德•摩根 摩根 蒲 丰 n 2048 4040 nH 1061 2048 6019 fn(H) 0.5181 0.5096 0.5016 0.5005
A U A = A, A I A = A
A U B = B U A, A I B = B I A
( A U B ) U C = A U (B U C ) ( A I B ) I C = A I (B I C )
A U (B I C ) = ( A U B ) I ( A U C ) Morgan定律 定律: De Morgan定律: U A α = I Aα , I A α = U A α
不能同时发生 与 不能同时发生” 50 互不相容 A I B = ∅ “A与B不能同时发生” 60 对立(互逆)事件 A I B = ∅ 且 A U B = S 对立(互逆)
概率论第一章 概率论的基本概念 PPT
试验者
n
nA
fn (A)
德.摩根
2048
1061
0.5181
蒲丰
4040
2048
0.5069
费勒
10000
4979
0.4979
K.皮尔逊
12000
6019
0.5016
K.皮尔逊
24000
12012
0.5005
一口袋中有6个乒乓球,其中4个白的,2个红的.有
放回地进行重复抽球,观察抽出红色球的次数。
基本事件:随机事件仅包含一个样本点ω,单点子集{ω}。 复合事件:包含两个或两个以上样本点的事件。
事件发生:例如,在试验E2中,无论掷得1点、3点还是5点, 都称这一次试验中事件A发生了。
如,在试验E1中{H}表示“正面朝上”,就是个基本事件。
两个特殊的事件
必然事件:Ω; 不可能事件:φ.
既然事件是一个集合,因此有关事件间的关系、 运算及运算规则也就按集合间的关系、运算及运算规 则来处理。
如何研究随机现象呢?
1.1.2 随机试验
例1-1: E1: 抛一枚硬币,观察正面H、反面T出现的情况; E2: 掷一颗骰子,观察出现的点数; E3: 记录110报警台一天接到的报警次数; E4: 在一批灯泡中任意抽取一个,测试它的寿命; E5: 记录某物理量的测量误差;
E6: 在区间0,1上任取一点,记录它的坐标。
1.1.3 随机事件与样本空间
v样本空间: 试验的所有可能结果所组成的集合称为 试验E的样本空间, 记为Ω. v样本点: 试验的每一个可能出现的结果(样本空 间中的元素)称为试验E的一个样本点, 记为ω.
例1-2:
分别写出例1-1各试验 Ek 所对应的样本空间
chap1 概率论的基本概念
又由于基本事件是两两互不相容的。于是
1 = P(S) = P({e1}∪{e2}∪L∪{en}) = P({e1})+ P({e2})+L+ P({en}) = nP({ei })
1 P({ei }) = ,ห้องสมุดไป่ตู้i = 1,2,L , n n
E4:抛一颗骰子,观察出现的点数 E5:记录某城市120急救电话一昼夜 接到的呼唤次数 E6:在一批灯泡中任意抽取一只,测试 它的寿命 E7:记录某地一昼夜的最高温度和最低 温度
随机试验的特点: 1.可以在相同的条件下重复地进行 2.每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果 3.进行一次试验之前不能确定哪一个结果 会出现
P( A) = 1 − P( A)
性质6:(加法公式)对于任意两事件A,B有
P( A ∪ B ) = P ( A) + P( B ) − P ( AB)
设
A1 , A2 , A3 为任意三个事件,则有
P( A1 ∪ A2 ∪ A3 ) = P( A1 ) + P( A2 ) + P( A3 ) − P( A1 A2 ) − P( A1 A3 ) − P( A2 A3 ) + P( A1 A2 A3 )
1, 2
∞
k =1
1,
2
n
5.若 A ∩ B = Φ 则称事件A与B是互不相容的,或互斥的. 这指的是事件A与事件B不能同时发生. 基本事件是两两互不相容的. 6.若 A ∪ B = S and A ∩ B = Φ 则称事件A与B是互为逆事件.又称事件A 与事件B互为对立事件.记 B = A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 概率论的基本概念一、随机事件其运算1.随机试验、样本点和样本空间(1)随机试验随机试验具有如下特点的试验.1、在相同的条件下,试验可以重复进行.2、试验的所有可能结果是预先知道的,并且不止一个.3、每一次试验出现那一个结果事先不能确定. (2)样本点和样本空间随机试验的每一个可能的(不可分解的)结果,称为这个随机试验的一个样本点,记为ω.随机试验的所有样本点组成的集合,称为这个随机试验的样本空间,记为. Ω2.随机事件、基本事件、必然事件和不可能事件在随机试验中,可能发生也可能不发生的事情称为该试验的随机事件,记为A ,B 等. 随机试验的随机事件可以表示为它的一些样本点组成的集合.在一次试验中,若试验结果是随机事件A 中的一个样本点,则称在一次试验中事件A 发生. 只包含一个样本点的事件称为基本事件. 在任何一次试验中都发生的事件,称为必然事件,它就是Ω所表示的事件,因而用Ω表示必然事件.在任何一次试验中都不发生的事件,称为不可能事件,它就是由φ所表示的事件,因而用φ表示不可能事件.3.事件之间的关系和运算 (1)包含关系设A ,B 为二事件,若A 发生必导致B 发生,则称事件A 包含于事件B ,或事件B 包含事件A ,记为B A ⊂.B A ⊂⇔A ∈∀ω必有B ∈ω,见图1—1. (2)相等关系设A ,B 为二事件,若B A ⊂并且A B ⊂,则称A 与B 相等,记为B A =,见图1—2.(3)事件的并设A ,B 为二事件,称事件“A ,B 至少一个发生(A 发生或B 发生)”为A ,B 的并(或和),记为.B A ∪B A ∪}|{B A ∈∈=ωωω或.见图1—3.(4)事件的交设A ,B 为二事件,称事件“A ,B 同时发生(A 发生且B 发生)”为A ,B 的交(或积).记为或B A ∩AB .AB }|{B A ∈∈=ωωω且.见图1—4. (5)事件的差设A ,B 为二事件,称事件“A 发生且B 不发生”为A 减去B 的差,记为B A −.B A − }|{B A ∉∈=ωωω且.见图1—5.(6)互不相容关系设A ,B 为二事件,若A ,B 不能同时发生,称A ,B 互不相容或互斥,记为AB φ=. A ,B 互不相容⇔AB φ=,见图1—6. (7)对立事件设A 为一事件,称事件“A 不发生”为A 的余事件或A 的对立事件,记为A .A =A −Ω,即φ=Ω=+A A A A ,,见图1—7.(8)完备事件组 构成完备事件组,若,,,,21n H H H )( 21j i H H H H H j i n ≠=Ω=++++φ, .换句话说,如果有限个或可数个事件两两不相容,并且“所有事件的和”是必然事件,则称它们构成完备事件组. ,,,,21n H H H 4.事件的运算法则对于任意事件,,有C B A ,, ,,,,21n A A A (1) 交换律 A B B A A B B A ∩∩∪∪==,.(2) 结合律 C B A C B A ∪∪∪∪)()(=;C B A C B A ∩∩∩∩)()(=.(3) 分配律 ;)()()(C A B A C B A ∩∪∩∪∩=)()()(C A B A C B A ∪∩∪∩∪=.() ∪∩∪ ∪∩ ∪∪ ∪∩)()(11n n A A A A A A A =. (4) 对偶律 ,;B A B A B A B A ∪∩∩∪==∩∩ ∩ ∪∪ ∪n n A A 11=; ∪∪ ∪ ∩∩ ∩n n A A 11=.下列关系和运算要熟记:Ω⊂⊂A φ;;B A B A B A ∪∩⊂⊂)(或B B A A B A B A ==⇒⊂∪∩且;A B A ⊂−;φ=−⇒⊂B A B A ;φφ=A ∩;A A =∪φ;φ=Ω;Ω=φ;A B B A ⊂⇒⊂;AB A B A B A −==−∩;)(A B A B A ∪∪=.【例1】写出下列随机试验的样本空间: (1)从袋中任取3个球,记录取球的结果.(2)从袋中不放回地接连取出3个球,记录取球的结果. (3)从袋中有放回地接连取出3个球,记录取球的结果.(4)从袋中不放回地一个一个地取球,直到取得白球为止录取球的结果.【例2】今有3个球、4个盒子.写出下列随机试验的样本空间:(1)将3个球任意地放入4个盒子中去、每个盒子放入的球数不限,记录放球的结果. (2)将3个球放入4个盒子中去,每个盒子至多放入1个球,记录放球的结果.【例3】写出下列随机试验的样本空间: (1)在上任取一点,记录其坐标. )1,0((2)将一尺之捶折成三段,记录三段的长度 (3)在上任取三点,记录三点的坐标.)1,0(【例4】写出下列随机试验的样本空间,用样本点的集合表示所述事件,并讨论它们之间的相互关系.(1)袋中有3个白球和2个黑球,从其中任取2个球,令A 表示 “取出的全是白球”,B 表示“取出的全是黑球”,表示“取出的球颜色相同”, (C i A 2,1=i )表示“取出的2个球中恰有i 个白球”,表示“取出的2个球中至少有1个白球”. D (2)袋中有2个正品和2个次品,从袋中有放回地接连抽取产品3次,每次任取1件,令 ()表示“第次取出的是正品”,i A 3,2,1=i i B 表示“3次都取得正品”. (3)从l,2,3,4这4个数字中,任取—数,取后放回,然后再任取一数.先后取了3次,令A 表示“3次取出的数不超过3”,B 表示“3次取出的数不超过2”,表示“3次取出的数的最大者为3”.C (4)将3个球任意地放入4个盒子中去,令A 表示“恰有3个盒子中各有1球”,B 表示“至少有2个球放入同1个盒子中”.【例5】设为3事件,试用表示下列事件: C B A ,,C B A ,,(1)至少有1个发生. C B A ,, (2)都不发生.C B A ,,(3)不都发生.C B A ,,(4)不多于1个发生. C B A ,,【例6】什么样的事件X 满足下列等式: (1)B A X A X =)()(∪∪∪. (2).B A X A ∪∪=(3). )()(C B C A X AB ∪∩∪∪=二、事件的概率及其性质1.事件概率的定义(1)古典概型满足下列条件的随机试验,称为古典概型.10 有限性:样本点的总数是有限的;20等可能性:所有基本事件是等可能的;①概率的定义:设随机试验为古典概型,样本空间为},,{1n ωω =Ω,A 是一个事件.},,{1r i i A ωω =,则事件的概率为含样本点的个数含样本点的个数Ω==A n r A P )(. ②概率的性质:对于古典概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30有限可加性:若两两互不相容,则n A A A ,,,21 ∑===ni i n i i A P A P 11)()(∪.(2)几何概型满足下列条件的随机试验,称为几何概型.10有限性:样本空间是直线、二维或三维空间中度量(长度、面积或体积)有限的区间或区域.20均匀性:样本点在样本空间上是均匀分布的(可通俗地称为是等可能的) .①概率的定义:在几何概型中,Ω为样本空间,A 是一个事件,定义事件A 的概率)()()(Ω=L A L A P . 其中,分别是)(A L )(ΩL A ,的度量.Ω②概率的性质:对于几何概型,事件的概率具有下列性质. 10. 1)(0≤≤A P 20.1)(=ΩP 30若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(3)事件的频率和性质以及概率的统计定义①事件的频率:将试验重复独立地进行次,若其中事件n A 发生了次,则称为A n A n A 在这n 次试验中出现的频数,称比值为n n A /A 在这次试验中出现的频率,记为,即.n )(A f n =)(A n f n n A /②频率的性质:事件的频率有如下性质: 101)(0≤≤A f n . 20.1)(=ΩP 30 若两两互不相容,则m A A A ,,,21 ∑===mi i n m i i n A f A f 11)()(∪.2.概率的公理化定义及性质(1)概率的公理化定义设随机试验E 的样本空间为,以ΩE 的所有随机事件组成的集合(即的一些子集组成的集合)为定义域,定义一个函数(Ω)(A P A 为任意随机事件),即任意一个随机事件A 与一个实数,且满足:)(A P 10.0)(≥A P 20.1)(=ΩP 30 可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)()(i i i i A P A P ∪.(2)概率的性质 100)(=φP .20 有限可加性:若两两互不相容,则.n A A A ,,,21 ∑===ni in i iA P A P 11)()(∪30可减性:如果B A ⊂,则)()()(A P B P A B P −=−,)()(B P A P ≤⇒. (无条件等式)()()(AB P B P A B P −=−) 40对于任意事件A ,有1)(≤A P . 50一般加法公式:==)(1∪n i i A P ∑=ni i A P 1)(∑≤<≤−nj i j i A A P 1)( ++∑≤<<≤nk j i k j i A A A P 1)()()1(211n n A A A P −−+【例7】袋中有3个白球及5个黑球,(1)从袋中任取4个球,求取得2个白球及2个黑球的概率.(2)从袋中不放回地接连取出4个球,求取得2个白球及2个黑球的概率. (3)从袋中有放回地接连取出 4个球,求取得2个白球及2个黑球的概率.【例8】设有个人,每个人都等可能地被分配到个房间中的任一间(),求下列事件的概率:n N N n < 事件:某指定的间房中各有1个人. 1A n 事件:恰有间房各有1个人. 2A n 韦件:某指定的房间中有个人.3A k 事件:当4A N n =时,恰有一间房空着.【例9】编号为1,2,3,4,5,6,7,8,9的车皮随机地发往三个地区,和的各2,3和4节,求发往同一地区的车皮编号相邻的概率. 1E 2E 3E【例10】从0,1,2,…,9这10个数字中任取1个,取后放回,先后取了6个数字,求下列事件的概率:事件:6个数字全不相同. 1A 事件:不含0与9. 2A 事件:0恰好出现2次. 3A 事件:至少出现2个0.4A 事件:6个数字中最大的是6. 5A 事件:6个数字的总和是20.6A【例11】有5名插班生,其中有3名男生、2名女生.现将他们按每班1人任意地分配到编号为1—5的5个班中去,求下列事件的概率:事件:3名男生被分到班号相连的3个班中.1A 事件:至少有2个男生被分到的班号或2个女生被分到的班号相连. 2A【例12】从n 双尺码不同的鞋子中任取r 2 (n r ≤2)只,求下列事件的概率: 事件:所取1A r 2只鞋子中只有2只成双 事件:所取2A r 2只鞋子中至少有2只成双.事件:所取3A r 2只鞍子恰成r 双.【例13】在线段AB 上任取一点,该点将AB 分成两段,求下列事件的概率: 事件:其中一段大于另一段的倍. 1A m 事件:其中每一段都小于另一段的倍.2A m【例14】设只1个泊位的码头有甲、乙两艘船停靠,2船各自可能在1昼夜的任何时刻到达.设两艘船停靠的时间分别为1小时和2小时,求下列事件的概率: 事件:码头空闲超过2小时.1A 事件:一艘船要停靠必须等待一段时间. 2A【例15】在线段上任取3个点,求下列事件的概率: AC 321,,A A A 事件:位于与之间.1B 2A 1A 1A 事件:能构成1个三角形. 2B 321,,AA AA AA【例16】若,5.0)(=A P 4.0)(=B P ,3.0)(=−B A P ,求和)(B A P ∪)(B A P ∪.【例17】对于任意两个互不相容的事件A 与B ,以下等式中只有一个不正确,它是: (A) ;)()(A P B A P =−(B) )()(A P B A P =−1)(−+B A P ∪; (C) )()()(B P A P B A P −=−; (D) ; (E) )())()((A P B A B A P =−∩∪)()()(B A P A P B A P ∪−=−.三、条件概率和乘法公式1.条件概率的定义及性质(1)条件概率的定义设为两个事件,,则称B A ,0)(>B P )()()|(B P AB P B A P =为B 发生的条件下A 的条件概率.(2)条件概率的性质 条件概率满足: 10. 0)|(≥B A P 20.1)|(=ΩB P 30可列可加性:若两两互不相容,则,,,,21n A A A ∑∞=∞==11)|()|(i i i i B A P B A P ∪.2.关于条件概率的三个定理(1)乘法公式若,则0)(>A P )()()(A B P A P AB P =. 推广 若,则0)(21>n A A A P )()()()(12112121−=n n n A A A A P A A P A P A A A P .(2)全概率公式设是样本空间的一个划分(或称为完备事件组),即两两不交:n B B B ,,,21 Ωn B B B ,,,21 j i B B j i ≠=,φ,且Ω=n B B B ∪ ∪∪21.则∑==ni i i B P B A P A P 1)()|()(.(3)贝叶斯公式设是样本空间Ω的一个划分,若事件n B B B ,,,21 A 满足:,则有0)(>A P n i B P BA PB P B A P A B P nj j ji i i ,,2,1,)()|()()|()|(1==∑=.)(i B P (),通常叫先验概率.,(n i ,,2,1 =)|(A B P i n i ,,2,1 =),通常称为后验概率.如果我们把A 当作观察的“结果”,而理解为“原因”,则贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断.n B B B ,,,21【例18】在3重努利试验中,设5.0)(=A P ,若已知A 至少出现1次,求A 至少出现1次的概率.【例19】口袋个装有个白球、个黑球,一次取出球,发现都是同一颜色的球,求它们都是黑球的概率. 12−n n 2n【例20】假设一个人在一年内患感冒的次数X 服从参数为5的泊松分布;正在销售的一种药品A 对于75%的人可以将患感冒的次数平均降低到3次,而对于25%的人无效.现在有某人试用此药一年,结果在试用期患感冒两次,试求此药有效的概率α.【例21】对产品作抽样检验时,每100件为一批,逐批进行.对每批检验时,从其中任取1件作检查,如果是次品,就认为这批产品不合格;如果是合格品,则再检查下件.检验过的产品不放回.如此连续检查5件.如果检查5件产品都是合格品,则认为这批产品合格而被接受.假定一批产中有5%是次品,求这批产品被接受的概率.【例22】加工零件需要经过两道工序,第—道工序出现合格品的概率为0.9,出现次品的概今为0.1第一道工序加工出来的合格的,在第二道工序中出现合格品的概率为0.8,出现次品的概率为0.2;第一道工序加工出来的次品,在第二道工序出现次品或出现废品的概率都是0.5.分别求经过两道工序加工出来的零件是合格品、次品、废品的概率.【例23】在某工厂中有甲、乙、丙3台机器生产同样的产品,它们的产量各占25%,35%,40%,并且在各自的产品中.废品各占5%,4%,2%,从产品中任取1件,求它是废品的概率.若取出的是废品,分别求它是甲、乙、丙机器生产的概率.【例24】乒乓球盒内有12个球,其中9个是新球.第一次比赛时任取3个使用,用后放回.第二次比赛时再任取3个球,求此3个球全是新球的概率.若第二次取出的3个球全是新球,求第一次取出使用的3个球也是新球的概率.【例25】袋中装有5个白球和2个黑球,从中任取5个放入一个空袋中.再从这个袋的5个球做任取3个球放入另一个空袋个.最后从第三个袋中任取1球,求从第三个袋中取出白球的概率.若从第三个袋取出的是白球,分别求从第一个袋中取出放入第二个袋的5个球全是白球的概率、从第二个袋中取出放入第三个袋的3个球全是白球的概率.四、事件的独立性1.二事件的独立性定义 设为二事件,若B A ,)()()(B P A P AB P =,则称相互独立. B A , 性质 若,则相互独立的充要条件是)0(>A P B A ,)()|(B P A B P =. 定理 若相互独立,则B A ,A 与B ,A 与B ,A 与B 均独立. 2.三个或三个以上事件的独立性(1)三个事件相互独立 设为三个事件,若满足: C B A ,,)()()(B P A P AB P =; )()()(C P A P AC P =;)()()(C P B P BC P =;)()()()(C P B P A P ABC P =,则称相互独立,简称独立.C B A ,,C B A ,,若只满足上面的前三个式子,称两两独立.两两独立,未必相互独立. C B A ,,C B A ,,(2)个事件相互独立 如果n 个事件满足:n n A A A ,,,21 )()()(j i j i A P A P A A P =, n j i ≤<≤1, 共个等式; 2nC )()()()(k j i k j i A P A P A P A A A P =, n k j i ≤<<≤1 共个等式; 3nC … … … … … … … … … … … … … … … … … …)()()()(2121n n A P A P A P A A A P = 共个等式 nn C 这等式成立,则称相互独立,简称独立.1232−−=+++n C C C n nn n n n A A A ,,,21 n A A A ,,,21 若相互独立,是中的个事件,则相互独立.n A A A ,,,21 k i i i A A A ,,,21 n A A A ,,,21 k k i i i A A A ,,,21若相互独立,将任意n A A A ,,,21 m )1(n m ≤≤个事件换成它的对立事件后,所得个事件仍独立.n 若相互独立,则.n A A A ,,,21 ∏==−−=ni in i iA P A P 11))(1(1)(∪3.独立试验序列概型贝努利试验 对一个试验E ,如果只考虑两个结果A 和A ,且,p A P =)(q p A P =−=1)(,则称E 为贝努利试验.n 重贝努利试验 将贝努利试验E 重复独立地做次,称为n 重贝努利试验.n 二项概率公式 在n 重贝努利试验中,若用表示在n 次试验中k n A ,A 出现次,则k kn k k n k n q p C A P −=)(,,,n k ,,1,0 =p q −=1.【例26】设有两门高射炮,每—门击中飞机的概率都是0.6,求同时射击一发炮弹能击中飞机的概率.若欲以99%的概率击中飞机,求至少需要多少门高射炮同时射击.【例27】今有甲、乙两名射手轮流对同一目标进行射击,甲命中的概率为,乙命中的概率为,甲先射,谁先命中谁得胜,分别求甲、乙获胜的概率. 1p 2p【例28】甲、乙二人进行下棋比赛,假设每局甲胜的概率为α,乙胜的概率为β,且1=+βα,在每局比赛中谁获胜谁得1分.如果谁的积分多于对方2分,谁就获得全场的胜利,分别求甲、乙二人获得全场胜利的概率.【例29】检查产品质量时,从其中连续抽查若干件,如果废品不超过2件,则认为这批产品合格而被接收.现有一大批产品,其废品率为0.1. (1)若连续抽查10件.求这批产品被接收的概率.(2)为使这批产品被接收的概率不超过0.9.应至少抽查多少件产品.【例30】保险公司为某年龄段的人设计一项人寿保险,投保人在1月1日向保险公司交纳保险费10元,1年内若投保人死亡,家属可向保险公司领取5000元,已知在1年内该年龄段的人的死亡率为0.0005,(1)若有10000人投保,水保险公司获利不少于50000元的概率. (2)若有7000人投保,求保险公司亏损的概率.。