第3章3-1时域分析法

合集下载

第3章 时域分析法

第3章 时域分析法

第3章 线性系统的时域分析法所谓时域分析法,就是对系统外施一个给定输入信号,通过研究控制系统的时间响应来评价系统的性能。

由于系统的输出量取的是时间t 的函数,故称这种响应为时域响应,它是一种直接在时间域中对系统进行分析的方法,具有直观、准确、物理概念清楚的特点,尤其适用于二阶系统。

3.1 时域响应及典型输入信号首先我们给出瞬态响应和稳态响应的定义。

瞬态响应——系统在某一输入信号的作用下其输出量从初始状态到稳定状态的响应过程称为瞬态响应,瞬态响应过程也称为过渡过程。

稳态响应——当某一信号输入时,系统在时间趋于无穷大时的输出状态称为稳态响应,稳态也称为静态。

在分析瞬态响应时,我们往往选择典型输入信号。

所谓典型输入信号,是指很接近实际控制系统,经常遇到的输入信号,并在数学描述上经过理想化处理后,用简单的函数形式表达出来的信号。

选择某些典型函数作为系统输入信号,不仅使问题的数学处理系统化,而且典型输入信号的响应往往可以作为分析复杂输入时系统性能的基础。

常见的典型输入信号如下。

1、 阶跃信号这是指输入变量有一个突然的定量变化,例如输入量的突然加入或突然停止等等,如图3-1所示,其数学表达式为⎪⎩⎪⎨⎧<≥=0,00,)(t t a t r (3-1)其中,a 为常数,当a =1时,该信号称为单位阶跃信号。

2、 斜坡信号这是指输入变量是等速度变化的,如图3-2所示,其数学表达式为⎪⎩⎪⎨⎧<≥=0,00,)(t t at t r (3-2)其中,a 为常数,当a =1时,该信号称为单位斜坡信号。

图3-1 阶跃信号 图3-2 斜坡信号3、 脉冲信号脉冲信号的数学表达式可表示为⎪⎩⎪⎨⎧><<<=→000/0,00,lim )(0t t t t t t a t r t (3-3)其中,a 为常数,因此当00t t <<时,该信号值为无穷大。

脉冲信号可以表示为如图3-3所示,其脉冲高度为无穷大;持续时间为无穷小;脉冲面积为a ,因此,通常脉冲强度是以其面积a 衡量的。

自动控制原理(3-1)

自动控制原理(3-1)

动态性能指标定义1
hh((tt))
AA
超超调调量量σσ%% ==
AA BB
110000%%
峰峰值值时时间间ttpp BB
上上 升升 时时间间ttrr
调调节节时时间间ttss
tt
动态性能指标定义2 h(t)
调节时间 ts
上升时间tr
t
动态性能指标定义3
h(t)
A
σ%=
A B
100%
B tr tp
一阶系统对典型输入的输出响应
输入信号
输出响应
1(t) 1-e-t/T t≥0
δ(t)
1 et T t 0
T
t
t-T(1-e-t/T) t≥0
1 t2
1 t 2 Tt T 2 (1 et T ) t 0
2
2
由表可见,单位脉冲 响应与单位阶跃响应 的一阶导数、单位斜 坡响应的二阶导数、 单位加速度响应的三 阶导数相等。
自动控制原理
朱亚萍 zhuyp@ 杭州电子科技大学自动化学院
第三章 线性系统的时域分析法
3.1 系统时间响应的性能指标 3.2 一阶系统的暂态响应 3.3 二阶系统的暂态响应 3.4 高阶系统的暂态响应 3.5 线性系统的稳定性分析 3.6 控制系统的稳态误差 3.7 利用MATLAB对控制系统进行时域分析
超调量σ%:指响应的最大偏离量h(tp)与终值 h(∞)的差与终值h(∞)比的百分数,即
% h(tp ) h() 100%
h()
在实际应用中,常用的动态性能指标多为上升 时间tr、调整时间ts和超调量σ%。 用上升时间tr或峰值时间tp评价系统的响应速度; 用超调量σ%评价系统的阻尼程度;

第三章_时域分析方法

第三章_时域分析方法

第3章时域分析法基本要求3-1 时域分析基础3-2 一、二阶系统分析与计算3-3 系统稳定性分析3-4 稳态误差分析计算返回主目录基本要求1熟练掌握一、二阶系统的数学模型和阶跃响应的特点。

熟练计算性能指标和结构参数,特别是一阶系统和典型欠阻尼二阶系统动态性能的计算方法。

2了解一阶系统的脉冲响应和斜坡响应的特点。

3正确理解系统稳定性的概念,能熟练运用稳定性判据判定系统的稳定性并进行有关的参数计算、分析。

4正确理解稳态误差的概念,明确终值定理的应用条件。

5熟练掌握计算稳态误差的方法。

6掌握系统的型次和静态误差系数的概念。

控制系统的数学模型是分析、研究和设计控制系统的基础,经典控制论中三种分析(时域,根轨迹,频域)、研究和设计控制系统的方法,都是建立在这个基础上的。

3-1 时域分析基础一、时域分析法的特点它根据系统微分方程,通过拉氏变换,直接求出系统的时间响应。

依据响应的表达式及时间响应曲线来分析系统控制性能,并找出系统结构、参数与这些性能之间的关系。

这是一种直接方法,而且比较准确,可以提供系统时间响应的全部信息。

二、典型初始状态,典型外作用1. 典型初始状态通常规定控制系统的初始状态为零状态。

即在外作用加于系统之前,被控量及其各阶导数相对于平衡工作点的增量为零,系统处于相对平衡状态。

2. 典型外作用①单位阶跃函数1(t)tf(t)⎩⎨⎧<≥==0t 00t 1)t (1)t (f 其拉氏变换为:s 1dt e 1)s (F )]t (f [L 0st===⎰∞-其数学表达式为:t②单位斜坡函数0t 0t 0t)t (1t )t (f <≥⎩⎨⎧=.=其拉氏变换为:2sts 1dt e t )s (F )]t (f [L ===⎰∞-f(t)其数学表达式为:③单位脉冲函数000)()(=≠⎩⎨⎧∞==t t t t f d 其数学表达式为:其拉氏变换为:1)()]([==s F t f L ⎰+∞∞-=1)(dt t d 定义:图中1代表了脉冲强度。

第3章 线性系统的时域分析与校正

第3章 线性系统的时域分析与校正

第3章线性系统的时域分析与校正3.1 概述系统的数学模型建立后,便可对系统进行分析和校正。

分析和校正是自动控制原理课程的两大任务。

系统分析是由已知的系统模型确定系统的性能指标;校正是根据需要在系统中加入一些机构和装置并确定相应的参数,用以改善系统性能,使其满足所要求的性能指标。

系统分析的目的在于“认识”系统,系统校正的目的在于“改造”系统。

系统的分析校正方法一般有时域法、根轨迹法和频域法,本章介绍时域法。

3.1.1 时域法的作用和特点时域法是一种直接在时间域中对系统进行分析校正的方法,具有直观,准确的优点,它可以提供系统时间响应的全部信息,但在研究系统参数改变引起系统性能指标变化的趋势这一类问题,以及对系统进行校正设计时,时域法不是非常方便。

时域法是最基本的分析方法,该方法引出的概念、方法和结论是以后学习复域法、频域法等其他方法的基础。

3.1.2 时域法常用的典型输入信号要确定系统性能的优劣,就要在同样的输入条件激励下比较系统的行为。

为了在符合实际情况的基础上便于实现和分析计算,时域分析法中一般采用如表3-1中的典型输入信号。

3.1.3 系统的时域性能指标如第一章所述,对控制系统的一般要求归纳为稳、准、快。

工程上为了定量评价系统性能好坏,必须给出控制系统的性能指标的准确定义和定量计算方法。

稳定是控制系统正常运行的基本条件。

系统稳定,其响应过程才能收敛,研究系统的性能(包括动态性能和稳态性能)才有意义。

实际物理系统都存在惯性,输出量的改变是与系统所储有的能量有关的。

系统所储有的能量的改变需要有一个过程。

在外作用激励下系统从一种稳定状态转换到另一种稳定状态需要一定的时间。

一个稳定系统的典型阶跃响应如图3-1所示。

响应过程分为动态过程(也称为过渡过程)和稳态过程,系统的动态性能指标和稳态性能指标就是分别针对这两个阶段定义的。

表3-1 时域分析法中的典型输入信号名称)(tr时域关系时域图形)(sR复域关系例单位脉冲函数⎩⎨⎧≠=∞=)(tttδ⎰=1)(dttδdtd1s⨯撞击作用后坐力电脉冲单位阶跃函数⎩⎨⎧<≥=1)(1ttts1开关输入单位斜坡函数⎩⎨⎧<≤=)(ttttf21s等速跟踪信号单位加速度函数⎪⎩⎪⎨⎧<≥=21)(2ttttf31s1 动态性能系统动态性能是以系统阶跃响应为基础来衡量的。

自动控制原理-第3章-时域分析法

自动控制原理-第3章-时域分析法
系统响应达到峰值所需要的时间。
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点

自动控制原理-第3章

自动控制原理-第3章

响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法

第3章 时域分析法

第3章 时域分析法

第 3章 时域分析
3.2.2 零输入响应与零状态响应
1. 系统的 0 初始状态与 0 初始条件
对于n阶系统,一般称 y ( j ) (0 ) ( j 0, 1, , n 1) 为系统的 0 初始
状态,称 y ( j ) (0 ) ( j 0, 1, , n 1) 为系统的初始条件。 在系统微分方程的时域经典解法中,需要采用初始条件来确定 齐次通解的待定系数。也就是说:系统的初始条件可以通过奇异 函数匹配法以及初始状态和外激励产生的零状态响应及其各阶导 数的初始值 y ( j ) (0 ) ( j 0, 1, , n 1) 共同确定。 显然,在时域经典解法中初始条件的确定需要大量计算工作, 使微分方程的求解过程过于繁琐。而在 s 域内的Laplace变换方 法,可直接利用LTI系统已知的初始状态求解微分方程,避免了 确定初始条件的繁琐计算(详见第5章)。
第 3章 时域分析
齐次通解 yh (t ) 由微分方程的特征根决定。
表3-1 几种可能的特征根及其对应的齐次通解
几种可能的特征根 单实根
i
r 1
对应的齐次通解 yh (t )
Ci e t
Cr 1i e t Cr 2i r 2 e t C1i e t C0 e t
f (t ) Ae
st
根据式中 A 和 s 的不同取值,具体有下面三种情况: (1) 若 A = a1和 s =ζ 均为实常数,则 f (t) 为实指数信号
f (t ) Ae a1e
st
t
第 3章 形如图3.3-1所示。 由图5.3-1可知:当 0 时, f (t ) 随 t 的增大而按指数增长; 当 0 时, f (t ) 则等于常数 a ; 当 0 时, f (t ) 随 t 的增大而按指数衰减。

第3章 时域分析法

第3章 时域分析法

6.稳态误差 在图3-6所示单位阶跃响应曲线中,对单位阶跃响应的稳态误差可以用ess来表 示,通常用ess反映系统跟踪输入时的稳态精度。
稳态误差ess:对单位负反馈系统,当t→∞时,系统单位阶跃响应的实际稳态 值与给定值之差,即
ess1= 1 − c(∞) 如果c(∞)为1, 则系统的稳态误差为零。
函数的图形如图3-5所示。
t 0
图3-5 正弦函数图形
3.2 阶跃响应的性能指标
(1)动态过程。动态过程也称过渡过程或瞬态过程,指系统在典型输入信 号作用下,其输出量从初始状态到最终状态的过程。根据系统结构和参数 选择的情况,动态过程表现为衰减、发散和等幅振荡几种形式。显然,一 个可以正常运行的控制系统,其动态过程必须是衰减的,即系统必须是稳 定的,动态过程除提供系统稳定的信息外,还可以提供其响应速度和阻尼 情况等信息,这些信息是用系统动态性能描述的 。
(2)稳态过程。稳态过程也称系统的稳态响应,指系统在典型输入信号 作用下,当t→∞时,其输出量的表现形式。稳态过程表征系统输出量最终复 现输入量的程度,提供系统稳态误差的信息,用系统的稳态性能描述。在分 析系统性能时,认为当系统的输出对其输入的复现进入允许的误差范围以后, 系统进入稳态。
由此可见,控制系统在典型输入信号作用下的性能指标由动态性能指标和稳 态性能指标两部分组成,一般认为阶跃输入对系统来说是最为严峻的工作状 态,如果系统在阶跃函数作用下的动态性能满足要求,那么在其他输入形式 作用下的动态性能也能满足要求。
时间ts。稳态值称为误差带,可以是5%或2%,前者称为5%误差带, 后者称为2%误差带。
5.峰值时间
在图3-6所示单位阶跃响应曲线中,对单位阶跃响应的峰值时间可以用tp来 表示,通常用tp评价系统的响应速度,也反映系统的局部快速性。

自动控制原理-胡寿松-第三章-线性系统时域分析法

自动控制原理-胡寿松-第三章-线性系统时域分析法
impulse(G) 简单介绍一下m文件的用法 Simulink 用法
课前提问
3-3 二阶系统的时域分析(非常重点、难点)
二阶系统定义:能够用二阶微分方程描述的系统称为二阶系统。 本节内容
0. 预备知识 1. 二阶系统的数学模型 2. 二阶系统的单位阶跃响应 3. 欠阻尼二阶系统的动态过程分析 4. 过阻尼二阶系统的动态过程分析 5. 二阶系统的单位斜坡响应 6. 二阶系统性能的改善 7. 非零初始条件下二阶系统的响应过程
超调量 % :
显然 h(tp) hmax
若 h(tp) h() 则响应无超调
实际中,常用的动态性能指标
tr
tp
评价系统起始段的响应速度;
ts
评价系统整个过渡过程的响应速度,是响应速度和阻尼程度的综合指标。
%
评价系统的阻尼程度;
思考:稳态误差从图中怎么看?
3-2 一阶系统的时域分析
一阶系统定义:能够用一阶微分方程描述的系统称为一阶系统。
第三章 线性系统的时域分析法
系统的数序模型确定后,便可以用多种不同的方 法去分析控制系统的动态性能和稳态性能。
在经典控制理论中
时域分析的一般思路:
时域分析法 根轨迹法 频域分析法
数数数数
数数数数数数数 求解微分方程
数数数数
数数数数
优点:直接在时间域对系统进行分析,具有直观、准确的 优点,并可以提供系统时间响应的全部信息。
本章内容
▪ 3-1 系统时间响应的性能指标 ▪ 3-2 一阶系统的时域分析 ▪ 3-3 二阶系统的时域分析 ▪ 3-4 高阶系统的时域分析 ▪ 3-5 线性系统的稳定性分析 ▪ 3-6 线性系统的稳态误差计算 ▪ 3-7 控制系统时域设计

自动控制原理第3章

自动控制原理第3章

例1. 系统特征方程式为
s 6 s 12 s 11 s 6 0
4 3 2
例2. 系统特征方程式为
s 3 s 2 s s 5s 6 0
5 4 3 2
特殊情况:
1) 劳斯行列表中某一行左边第一个数为零,其余 不为零或没有. 例: 例:
s 4 3s 3 s 2 3S 1 0
-
1/s
k/(s+5)(s+1)
例:系统特征方程式:
2 s 3 T s 2 10 s 100 0 s
4
按稳定要求确定T的临界值.
六.系统的相对稳定性
§3-3 控制系统的稳态误差
一.误差及稳态误差的定义 系统的误差为 e(t)=被控量的希望值-被控量的实际值 常用的误差定义有两种
二.线性定常系统稳定的充分必要条件
线性定常系统微分方程为:
a0
d dt
n 1
n
n
c (t )
d a dt
1
n 1
c (t ) n 1
d a dt
2
n2 n2
c (t )
d a dt
3
n3 n3
c ( t ) ........
a

d dt
m m
c (t )
a
n
c (t )
第三章 控制系统的时域分析法
§3-1 引言
一. 典型输入信号 1、阶跃函数
r(t)
r (t ) {
0 A
t0 t0
A
t
2、斜坡函数
r(t) {
r(t)
0 At
t0 t0
斜率=A

朱玉华自动控制原理第3章 时域分析3-1,2,3

朱玉华自动控制原理第3章 时域分析3-1,2,3

1
1
ቤተ መጻሕፍቲ ባይዱ
s4 3s3 s2 3s 1 0 s3 3 3
试判别该系统的稳定性。 s2 0 1
当 0时,3 3 0,
s1 3 3 0
s0
1
有2个特征根在s平面第右3章边控. 制系系统统的是时域不分析稳定的
10 0 0
(2) 劳斯表中某一行的元素全为零。
——这时系统在s平面上存在一些大小相等符号相反的
61
s0 6
劳斯表中第一列元素大于零,所以该系统是稳定的。 这时,系统所有的特征根均处于s平面的左半平面。
第3章 控制系统的时域分析
课程回顾(1)
1、 稳态性能指标 2、 动态性能指标
ess
lim[r(t)
t
cr (t)]
(1)延迟时间td (2)上升时间tr
(3)峰值时间tp
(4)调整时间ts
负可化为全为正) (2)劳斯表中第一列所有元素均大于零。
第3章 控制系统的时域分析
例3-1 已知三阶系统特征方程为 a0s3 a1s2 a2s a3 0
试写出系统稳定的充要条件
解:列写劳斯表 s3
a0
a2
0
s2
a1
a3
0
s1 a1a2 a0a3 0
a1
s0
a3
0
故得出三阶系统稳定的充要条件为:
0
9
s0 5
s1 32
0
s0 5
所得结论不变
第3章 控制系统的时域分析
2、劳斯稳定判据的特殊情况
(1) 劳斯表中某一行的第一个元素(系数)为零,而该 行其它元不为零。
——计算下一行第一个元素时将出现无穷大,以至劳斯 表的计算无法进行。

自动控制原理 第三章时域分析方法

自动控制原理 第三章时域分析方法
位脉冲响应,由此可以求得系统的传递函数。
总结与分析:
一阶系统对典型试验信号的响应 输入信号x(t) 输出响应y(t)
1 2 3
t
1() δ(t)
t T Te t / T
1 et /T
1 T
et /T
l 线性定常系统对输入信号导数的响应,可以通过 把系统对输入信号的响应进行微分求得; l 系统对输入信号积分的响应,可以通过把系统对原 输入信号的响应进行积分求得,而积分常数则由初 始条件决定。
3.1.1 控制系统的输入信号
● 在分析和设计控制系统时,需要有一个对各种
系统性能进行比较的基础。
● 从实际应用中抽象出一些典型的输入信号,它
们具有广泛的代表性和实际意义。
● 通过比较各类系统对这些典型试验信号的响
应来分析它们的性能。
常用的典型试验信号:
r(t) A t (a) 阶跃信号
r(t)
1 E
实验方法求取一阶系统的传递函数:
63.2% T
1 Ts 1
对一阶系统的单位阶跃响应曲线, 1、直接从达到稳态值的63.2%对应的时间求出一阶 系统的时间常数;
2、从t=0处的切线斜率求得系统的时间常数。 思考题:
若系统增益K不等于1,系统的稳态值应是多少?如何用实
验方法从响应曲线中求取K值?
3.2.2单位斜坡响应
2、系统的稳态响应为y(∞)=t-T,是一个与输入斜 坡函数斜率相同但时间迟后T的斜坡函数。
3、输出总是小于输入,误差逐步从零增大到时间 常数T并保持不变,因此T也是稳态误差。系统 的时间常数T越愈小,系统跟踪输入信号的稳态 误差也越小。
3.2.3 单位脉冲响应
1 R( s) L[ ( t )] 1 Y ( s) G ( s) R( s) G (s ) Ts 1 系统输出量的拉氏变换式就是系统的传递函数

自动控制原理第3章总结

自动控制原理第3章总结

一阶系统特点:
1. 响应曲线在[0,) 的时间区间中始终不会超过其稳态值,把这样的响
应称为非周期响应。无振荡 2.一阶系统的单位阶跃响应是一条初始值为0,以指数规律上升到终值1的
曲线。 3. ※实验中求取时间常数的方法--输出响应为0.632时对应的时间。 4.一阶系统可以跟踪单位阶跃信号,因为无稳态误差。
Td
n
2 1 2
ln( 1 )
p
2 (ln 1 )2
p
ts
3.5
n
ts
4.4
n
2.2 1 2
N
, 0.02
1.75 1 2
N
, 0.05
3-3 二阶系统的时域分析
3.3.4 二阶系统的动态性能指标 总结:
c(t) 1
1
1 2
ent
sin(dt ), t
0
c(t)
% e 1 2 100%
n s1j
j
j n 1 2
s1
0
s2
s1,2 j n (d) 0
0
j n 1 2
n
s2
s1,2 n j n 1 2
(e) 1 0
j
s1
s2
0
s1,2 n n 2 1 (c) 1
j
s1
s2
0
s1,2 n n 2 1
(f ) 1
3-3 二阶系统的时域分析来自s2 2n s n2 R C
2L
3-3 二阶系统的时域分析
3.3.1 二阶系统的数学模型
标准化二阶系统的结构图为:
R(s)
+﹣
n2
C(s)
s(s+2ξn)
n2

自动控制原理与系统第3章 自动控制系统的时域分析法

自动控制原理与系统第3章 自动控制系统的时域分析法

【例3-2】 求典型一阶系统的单位斜坡响应。 典型一阶系统惯性环节的微分方程为
T dc(T) c(t) r(t) dt
上式的拉氏式为 TsC(s) C(s) R(s)
由于为单位斜坡输入,即r(t)=t,因此,R(s) 1 , s2
代入上式有
TsC(s)

C(s)

1 s2
由上式有
【例3-1】 设典型一阶系统的微分方程为:
T dc(t(t) 为输入信号;c(t) 为输出信号;T称为间
常数,其初始条件为零。 解 1) 对微分方程两边进行拉氏变换有:
TsC(s)+C(s)=R(s)
由题意可知,系统的输入信号为单位阶跃信号,
即r(t)=1(t),则 R(s) 1 ,代入上式有:
(3 9)
由式(3-9)可画出如图3-3中ξ =1所示的曲线。此曲
4) 当ξ >1(过阻尼)时:
特征方程的根 s1,2 n n 2 1
是两个不相等的负实根。 过阻尼时的阶跃响应也为单调上升曲线。不过其上 升的斜率较临界阻尼更慢。 由以上的分析可见,典型二阶系统在不同的阻尼比 的情况下,它们的阶跃响应输出特性的差异是很大 的。若阻尼比过小,则系统的振荡加剧,超调量大 幅度增加;若阻尼比过大,则系统的响应过慢,又 大大增加了调整时间。因此,怎样选择适中的阻尼 比,以兼顾系统的稳定性和快速性,便成了研究自 动控制系统的一个重要的课题。
由上式可知,响应曲线在起点的斜率m为时间常数T
的倒数,T愈大,m愈小,上升过程愈慢。
② 过渡过程时间。由图2-3可见,在t经历T、2T、3T、 4T和5T的时间后,其响应的输出分别为稳态值的 63.2%、86.5%、95%、98.2%和99.3%。由此可见,对 典型一阶系统,它的过渡过程时间大约为(3~5)T, 到达稳态值的95%~99.3%。

chap3控制系统的时域分析法2013

chap3控制系统的时域分析法2013
ai 0
劳斯判据
1、列出系统闭环特征方程:
F (s) ansn an1sn1a1s a0 0 上式中所有系数均为实数,并设 an 0
2、按系统闭环特征方程列写劳斯行列表:
sn
an an2 an4
sn1 an1 an3 an5
sn2 b1
b2
b3
sn3 c1
c2
c3
sn4 d1
d2
d3
一、单位阶跃响应:
R(s) 1 s
Y(s) 1 1 T s(Ts 1) s Ts 1
t
y(t) 1 e T
在单位阶跃作用下,一阶系统的输出量随 时间变化曲线为一条指数曲线。
yt
1
0.632
斜率 1 T
y
t
e
t T
0.865 0.950 0.982
0
T 2T 3T 4T
t
响应曲线具有非振荡特征:
t=T, y(t)=0.632;
t=2T, y(t)=0.865;
t=3T, y(t)=0.95;
t=4T, y(t)=0.982;
dy (t )
1 t eT
1
dt
T
t0
T
一阶系统的单位阶跃响应如果以初始 速度等速上升至稳态值1所需的时间应恰 好为T。
一阶系统的阶跃响应没有超调量,故其 时域性能指标主要以Ts来衡量,Ts的长短 反映了系统过程的快慢。
s
例:系统特征方程为 2s3 10s2 13s 4 0
判断系统是否有闭环极点在S的右半平面,并验有几个根在
s=-1的右边。 ROUTH’S TABLE:
s3 2 13 s2 10 4ຫໍສະໝຸດ 将s=z-1代入原方程得:

自动控制原理-03-01

自动控制原理-03-01

td
稳态误差(t→∞)
tr tp
t ts
6
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标 延迟时间td:响应曲线第一次达到其 终值一半所需时间。 上升时间tr:响应从终值10%上升到 终值90%所需时间; 对有振荡系统亦可定义为响应从零 第一次上升到终值所需时间。上升时间 是响应速度的度量。
3-2 一阶系统的时域分析
小结
一阶系统的典型响应与时间常数T密 切相关。只要时间常数T小,单位阶跃响 应调节时间小,单位斜坡响应稳态值滞后 时间也小。但一阶系统不能跟踪加速度函 数。 线性系统对输入信号导数的响应,等 于系统对输入信号响应的导数。
17
例: 某一阶系统如图,(1) Kh=0.1, 求调节时间ts, (2)若要求ts=0.1s,求反馈系数 Kh . R(s) E(s) (- )
ur (t )
C
uc (t )
结构图 :
R(s)
E(s) (- )
1/Ts
C(s)
10
3-2 一阶系统的时域分析
2. 一阶系统的单位阶跃响应
设一阶系统的输入信号为单位阶跃函数 r(t)=1(t) ,可得一阶系统的单位阶跃响应为
h(t ) 1 e
S平面 j
1 t T
(t 0)
P=-1/T
7
第三章 线性系统的时域分析法
3-1 系统时间响应的性能指标
峰值时间tp:响应超过其终值到达第一个峰 值所需时间。 调节时间ts:响应到达并保持在终值 ±5% 内 所需时间。 超调量%:响应的最大偏离量h(tp)与终值 h(∞)之差的百分比,即
%
h( t p ) h() h()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.一阶系统各种典型输入的响应总结

动态特性: 由时间常数T决定, T↑→响应速度↓ ,即响 应时间↑ ,反之亦然

等价关系: (仅适用于线性定常系统)
系统对输入信号导数的响应,就等于系统对该输 入信号响应的导数;
系统对输入信号积分的响应,就等于系统对该输 入信号响应的积分;

跟踪能力: 脉冲输入:无稳态误差,跟踪速度与T有关; 阶跃输入:无稳态误差,即能够跟踪阶跃 信号,
§3-1 控制系统的时域指标

时域分析法
在时间域内(t)研究控制系统性能的方法,直观
准确 通过拉氏变换直接求解系统的微分方程,得到 系统的时间响应,然后根据响应表达式和响应 曲线分析系统的动态性能和稳态性能。

针对系统在典型输入信号作用下的特性来 定义性能指标
1.典型输入信号
根据系统中常见的输入信号设计的理想输入函
5)正弦函数
x(t ) A sin t
2.时间响应过程
动态过程:指系统在典型输入信号作用下,系
统输出量从初始状态到最终状态的响应过程。 又称过渡过程、瞬态过程。
稳态过程:指系统在典型输入信号作用下,当
时间t趋于无穷时,系统输出量的表现形式。
C(t)
延迟时间td
t
3. 性能指标

动态性能指标
动态性能指标——峰值时间tp

时间响应超过稳态值c(∞)达到第一个峰值所需的 时间
C(t)
峰值时间tp
t
动态性能指标——调节时间ts

在稳态值c(∞)附近取一误差带,通常取 , 响应曲线开始进入并保 持在误差带内所需的最小时间,称为调节时间。
5%c ( )或 2%c ( )
5%c()或 2%c()
调节时间 ts
上升时间tr
动态性能指标:情形3
σ%= A 100% B
A
B
tr
tp
ts


1). 延迟时间td
2).上升时间tr


3).峰值时间tp
4).调节时间ts


5).超调量σ%
tr,tp和ts表示控制系统反映输入信号的快速性,

σ %反映系统动态过程的平稳性。即系统的阻尼程 度
其中ts和σ %是最重要的两个动态性能的指标。
引入误差的概念: 当时间t趋于无穷时,系统响应的实际稳态值与 给定值之差。即:
ess cs c()
一阶系统单位斜坡响应存在稳态误差
ess = t – ( t – T ) = T
从曲线上可知,一阶系统单位斜坡响应达到稳态 时具有和输入相同的斜率,只是在时间上滞后 T , 这就存在着 ess = T 的稳态误差。
§专业基础课§
自动控制原理
——第3章 时域分析法
邓晓刚 信息与控制工程学院自动化系
第3章 时域分析法

3-1 控制系统的时域指标 3-2 一阶系统的时间响应


3-3 二阶系统分析
3-4 高阶系统分析
3-5 线性系统的稳定性分析
3-6 稳态误差的分析和计算 3-7 数学模型的实验测定方法
R(s) 100/s C(s)
kt
解:系统的闭环传递函数
1/ kt 100 / s 100 0.01 1 kt s 1 s kt 10 (1)当kt 0.1时, ( s) , 0.1s 1 显然时间常数T 0.1秒.
(s)
因此调节时间为ts 3T 0.3秒,
t=?
0 T 2T 3T 4T
h(t ) 1 e
0 0.632 0.865 0.950 0.982 1
t / T
dh(t ) 1 t / T e dt T
T 0.368
1
T …….
……. …… 0

C(t)
0.95
一阶系统的单位阶跃响应曲线
1
1/T斜率
0.632
h(t ) 1 e t / T
跟踪速度取决于T;
斜坡输入:有位置误差,且稳态误差等于T; 加速度输入:稳态误差无穷大,无法跟踪。
某一阶系统闭环传递函数: C ( s) K (s) R( s) Ts 1
问题: 1. 单位阶跃输入时,t=T时,输出为多少? 2. 单位阶跃输入时, t=0时的阶跃响应曲
线的斜率为?
3. 单位斜坡输入下的稳态误差是多少?
C ( s) 1 闭环传递函数:(s) R( s) Ts 1
1 k 1 开环传递函数:G ( s ) , k 为开环增益 Ts s T
R(s) E (s )
-
k s
C (s )

2.一阶系统单位阶跃响应
1 当r (t ) 1(t )时,R( s) , s
(s)
(2)如果要求ts 0.1秒, ts 3T 3 0.01 0.1, kt
故kt 0.3
关键:化闭环传递函数为标准形式
3.一阶系统的单位脉冲响应
r (t ) (t ), R( s ) 1 1 C ( s) ( s) R( s) Ts 1 (闭环传递函数与脉冲响应函数相同)
t 特点:1)可以用时间常数去度量系统的输出量的数值; 2)初始斜率为1/T;(如何根据上图求T?) 3)无超调;稳态误差ess=0 。 4)ts=3T(5%误差带),ts=4T, 2%误差带 T越小,系统快速性越好
0
T
2T
3T
【例1】一阶系统的结构图如图所示,(1)若 kt=0.1,试求系统的调节时间ts,(2)如果要求 ts 0.1秒。试求反馈系数应取多大?
C ( s) 1 R( s) Ts 1
1 1 1 T 则 C ( s ) ( s ) R ( s) Ts 1 s s Ts 1
拉氏反变换得到 h(t ) c(t ) 1 et /T
对 h(t )求导可得 dh(t ) 1 t /T e dt T

信号名称 单位阶跃信号 时域表达式 1(t),t≥0 复域表达式 1/s
单位斜坡信号
单位加速度信号
t, t≥0
t2/2, t≥0
1/s2
1/s3
单位脉冲信号
δ(t)
1
1)理想脉冲函数(或冲击函数)
0 x( t ) A ( t )

t0 t0
A



x( t )dt A
t / T
为暂态分量。
3T 2T
t
c(t ) (t T ) Te t / T c(0) 0, c(T ) 0.368T , c(2T ) 1.135T , c(3T ) 2.050T , c ( ) t T dc(t ) 0 dt t 0
T 0 -T 0 t-T T 2T 3T 4T
0
A 1
t0 t0
0
t
单位脉冲函数:
2)阶跃函数
0 x(t ) A 1(t ) A
单位阶跃函数:
A
t
A 1
3)斜坡函数(或速度阶跃函数)
0 x( t ) A t ( t ) At t0 t0
4)抛物线函数(或加速度阶跃函数)
0 1 x( t ) A t 2 ( t ) 1 2 2 2 At t0 t0


稳态性能指标——稳态误差
时间趋于无穷时,系统输出与输入变量之 间的差值 ess sv c()
R
+
+
i(t) C
c(t)
§3-2 一阶系统时域分析
1.一阶系统的数学模型
r(t)
( a) 电 路 图
用一阶微分方程描述的控制系统称为一阶系统
dc(t ) 微分方程为:T c(t ) r (t ), T RC为时间常数。 dt
dk (t ) 1 t / T 2e dt T
1/T
1/2T
0
T
2T
3T
4T
dc(t ) 1 2, dt t 0 T
dc(t ) 0.368 dc(t ) , 0, 2 dt t T dt t T
4.一阶系统的单位斜坡响应
1 R(t ) t , R( s) 2 s 1 1 1 T T2 C ( s ) ( s ) R( s ) 2 2 Ts 1 s s s Ts 1 拉氏反变换,单位斜坡 响应为 Ct (t ) (t T ) Te t / T , (t 0) 其中t T为稳态分量, Te
拉氏反变换,单位脉冲响应为 1 t / T k (t ) c(t ) e , (t 0) T dk (t ) 1 t / T 2e dt T
1 t / T k (t ) c(t ) e , T
1 , T 0.368 c(T ) , T 0.135 c(2T ) , T 0.05 c(3T ) , T 0.018 c(4T ) T c(0)
调节时间ts
动态性能指标——超调量σ%

响应曲线超出稳态值的最大偏差与稳态值之比
A
%
B
c(t p ) c() c()
100%
A 100% B

动态性能指标:情形1
A 超调量σ% = A 100% B
B
延迟时间td 上升时间tr 峰值时间tp 调节时间ts
动态性能指标:情形2
延迟时间、上升时间、峰值时间、调标
稳态误差
动态性能指标——延迟时间td

从输入信号开始施加时起,系统输出时间响应第一 次达到稳态值50%所需要的时间
相关文档
最新文档