初三数学相似单元测试
【初三数学】天津市九年级数学下(人教版)第二十七章《相似》测试卷(含答案)
人教版数学九年级下册第二十七章 相似 章末复习卷一、选择题:1、制作一块3m ×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A .360元B .720元C .1080元D .2160元 2.如果x ∶y =2∶3,则下列各式不成立的是( D ) A.x +y y =53 B.y -x y =13C.x 2y =13D.x +1y +1=343.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,若BD =2AD ,则( B )A.AD AB =12 B .AE EC =12 C.AD EC =12 D .DE BC =12 4. 下列各组图形中有可能不相似的是( A ) A .各有一个角是45°的两个等腰三角形 B .各有一个角是60°的两个等腰三角形 C .各有一个角是105°的两个等腰三角形 D .两个等腰直角三角形5.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且∠ ,将 绕点A 顺时针旋转 ,使点E 落在点处,则下列判断不正确的是 DA. ′是等腰直角三角形B. AF 垂直平分C. ′∽D. ′是等腰三角形6. 下列图形中不是位似图形的是( C )7.已知△ABC中,AB=AC,∠A=36°,以点A为位似中心把△ABC的各边放大2倍后得到△AB′C′,则∠B的对应角∠B′的度数为( C )A.36° B.54° C.72° D.144°8、若四条线段a,b,c,d成比例,且a=3 cm,b=2 cm,c=9 cm,则线段d的长为( C )A.4 cmB.5 cmC.6 cmD.8 cm9.如图,在△ABC中,DE∥BC,,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE 的长为( C )A.6 B.8 C.10 D.1210. 如图所示3个图形中是位似图形的有( B )A.1个 B.2个 C.3个 D.0个二、填空题:11、在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,则海口与三亚的实际距离约为 222 千米.12. 若k=a-2bc=b-2ca=c-2ab,且a+b+c≠0,则k= -1 .13.若△ABC∽△A1B1C1,AB=2,A1B1=3;则△A1B1C1与△ABC的相似比为 3∶2 .14.如图,有三个三角形,其中相似的是①与② .15. 如图,四边形ABCD与四边形EFGH位似,位似中心点是O,OEOA=35,则FGBC=35.三、解答题16.若a+23=b4=c+56,且2a-b+3c=21.试求a∶b∶c.解:a∶b∶c=4∶8∶7.17.已知四边形ABCD和A1B1C1D1中,ABA1B1人教版九年级数学下册复习_第27章_相似_单元测试卷(有答案)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知,则下面结论成立的是()A. B. C. D.2. 下列各组中的四条线段成比例的是()A.,,,B.,,,C.,,,D.,,,3. 如图,若,则的度数是()A. B. C. D.4. 下列各组线段中,能成比例的是()A.,,,B.,,,C.,,,D.,,,5. 若点是线段的黄金分割点,设,则的长为()A. B. C. D.或6. 如图,,,、分别交于点、,则图中相似的三角形有()A.个B.个C.个D.个7. 正常人的体温一般在,室温太高、太低都会感觉不舒服.有人研究认为人的满意温度与正常体温的比是黄金分割比,根据你的生活体验和数学知识,该温度约为()A. B. C. D.8. 如图,中,若,,,则的长为()A. B. C. D.9. 若的各边都分别扩大到原来的倍,得到,下列结论正确的是()A.与的对应角不相等B.与不一定相似C.与的相似比为D.与的相似比为10. 如果线段、、、满足,那么下列等式不一定成立的是()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,在矩形中,、分别是、的中点.若矩形与矩形是相似的矩形,则________.12. 如图,,,已知,,则图中线段的长________,________,________.13. 若两个三角形的相似比为,且较大的三角形的周长为,则较小的三角形的周长为________ .14. 如图,在中,、分别是、边上的点;,,.当________时,.15. 如果两个位似图形的对应线段长分别为和,且两个图形的面积之差为,则较大的图形的面积为________.16. 如图,添加一个条件:________=tag_underline,使,17. 如图,在中,点、分别在、上,.若,,则的值为________.18. 已知,则的值为________.19. 小亮带着他弟弟在阳光下散步,小亮的身高为米,他的影子长米.若此时他的弟弟的影子长为米,则弟弟的身高为________米.20. 如图,中,,,,为的中点,若动点以的速度从点出发,沿着的方向运动,设点的运动时间为秒,连接,当是直角三角形时,的值为________.三、解答题(本题共计8 小题,共计60分,)21.(4分) 如图,是由经过位似变换得到的(1)求出与的相似比,并指出它们的位似中心;(2)是的位似图形吗?如果是,求相似比;如果不是说明理由;(3)如果相似比为,那么的位似图形是什么?22.(8分) 【问题情境】如图,中,,,我们可以利用与相似证明,这个结论我们称之为射影定理,试证明这个定理;【结论运用】如图,正方形的边长为,点是对角线、的交点,点在上,过点作,垂足为,连接,(1)试利用射影定理证明;(2)若,求的长.23. (8分)如图,在中,,于,求证:,.24.(8分) 如图,在中,,是边上的高,是边上的一点,,,垂足分别为,.(1)求证:;(2)与是否垂直?若垂直,请给出证明;若不垂直,请说明理由.25.(8分) 如图,在平面直角坐标系中,的三个顶点分别为,,.(1)以原点为位似中心,将缩小为原来的,得到.请在第一象限内,画出.(2)在(1)的条件下,点的对应点的坐标为________,点的对应点的坐标为________.26. (8分)已知矩形与矩形是位似图形,为位似中心.已知矩形的周长为,,,求与的长.27. (8分)要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为、、,另一个三角形框架的一边长为,它的另外两边长分别可以为多少?28.(8分) 如图,在中,,,,动点(与点,不重合)在边上,交于点.(1)当的面积与四边形的面积相等时,求的长;(2)当的周长与四边形的周长相等时,求的长;(3)试问在上是否存在点,使得为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出的长.参考答案与试题解析人教版九年级数学下册复习第27章相似单元测试卷一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】A【考点】比例的性质【解析】根据等式的性质,可得答案.【解答】、两边都除以,得,故符合题意;、两边除以不同的整式,故不符合题意;、两边都除以,得,故不符合题意;、两边除以不同的整式,故不符合题意;2.【答案】A【考点】比例线段比例的性质【解析】理解成比例线段的概念,注意在线段两两相乘时,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等.【解答】解:根据两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.所给选项中,只有中,,四条线段成比例,故选:.3.【答案】C【考点】相似三角形的性质【解析】根据三角形的内角和等于求出,再根据相似三角形对应角相等可得.【解答】解:在中,,∵,∴.故选.4.【答案】D【考点】比例线段【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.对选项一一分析,排除错误答案.【解答】解:、,故选项错误;、,故选项错误;、,故选项错误;、,故选项正确.故选.5.【答案】D【考点】黄金分割【解析】根据黄金分割的概念得到较长线段根据黄金分割的概念得到较长线段,再根据,即可得出答案.【解答】解:∵是的黄金分割点,∴较长线段,∵,∴,∴较短的线段;故选.6.【答案】B【考点】相似三角形的判定【解析】根据,可以判定图中所有的三角形相似,即可得出与相似的三角形.【解答】解:,∴,,∵,∴,∴与相似三角形有对.故选.7.【答案】C【考点】黄金分割【解析】根据人的满意温度与正常体温的比是黄金分割比,可知该温度约为.【解答】解:∵人的满意温度与正常体温的比是黄金分割比,而正常人的体温一般在,∴人的满意温度约为.故选.8.【答案】D【考点】平行线分线段成比例【解析】由,根据比例的性质,可得,又由,根据平行线分线段成比例定理,即可求得的长.【解答】解:∵,∴,又∵,∴,∴.故选.9.【答案】C【考点】相似图形相似三角形的判定【解析】相似三角形的对应边之比等于相似比,据此即可解答.【解答】解:因为的各边都分别扩大到原来的倍,得到,那么的各边为的倍,即与的相似比为.故选 . 10.【答案】 C【考点】比例的性质 【解析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可. 【解答】解: 、∵,∴,即,正确,不符合题意;、∵,∴,即,正确,不符合题意;、∵,∴ , ,∴,错误,符合题意,、∵ 、 、正确,∴ 相除可得,正确,不符合题意; 故选 .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】【考点】相似多边形的性质 【解析】首先设 ,则 ,进而利用矩形 与矩形 是相似的矩形,则,进而求出即可. 【解答】解:设 ,则 ,∵ 矩形 与矩形 是相似的矩形, ∴,人教版九年级下册数学《相似》单元测试(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( )A.34B.43C.916D.169 2.已知b a =513,则a -b a +b的值是( )A.23B.32C.94D.493.如图,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O.若AD =1,BC =3,则AO CO 的值为( )A.12B.13C.14D.194.如图,在△ABC 中,DE ∥BC ,DE 分别与AB ,AC 相交于点D ,E.若AD =12,DB =4,则DE ∶BC 的值为( )A.23B.12C.34D.355.如图,不能判定△AOB 和△DOC 相似的条件是( )A .AO ·CO =BO ·DO B.AO DO =ABCDC .∠A =∠D D .∠B =∠C6.如图,矩形ABCD ∽矩形ADFE ,AE =1,AB =4,则AD =( )A .2B .2.4C .2.5D .37.已知如图①,②中各有两个三角形,其边长和角的度数如图上标注,则对图①,②中的两个三角形,下列说法正确的是( )A .只有①相似B .只有②相似C .都不相似D .都相似8.如图,在8×4的矩形网格中,每个小正方形的边长都是1.若△ABC 的三个顶点在图中相应的格点上,图中点D ,E ,F 也都在格点上,则下列与△ABC 相似的三角形是( )A .△ACDB .△ADFC .△BDFD .△CDE9.如图,点M 在BC 上,点N 在AM 上,CM =CN ,AM AN =BMCM,下列结论正确的是( )A .△ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACMD .△CMN ∽△BCA10.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,EG ∥AB ,且AE ∶EC =3∶2.若BC =10,则FG 的长为( )A.1 B.2 C.3 D.411.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为( )A.4米 B.3.8米 C.3.6米 D.3.4米12.在Rt△ABC和Rt△DEF中,已知∠C=∠F=90°,在下列条件中:①∠A=30°,∠E =60°;②AC=5,BC=4,DF=15,EF=12;③AB=5,AC=3,DE=10,DF=6;④AC∶AB =1∶3,DF=a,DE=3a.能够判断Rt△ABC∽Rt△DEF的有( )A.1个 B.2个 C.3个 D.4个13.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合.若AB=2,BC=3,则△FCB′与△DGB′的面积之比为( )A.9∶4 B.16∶9 C.4∶3 D.3∶214.如图,将△ABC的高AD四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S1,S2,S3,S4,则S1∶S2∶S3∶S4等于( )A.1∶2∶3∶4 B.2∶3∶4∶5 C.1∶3∶5∶7 D.3∶5∶7∶9 15.如图,在△ABC中,AC=BC,CD是边AB上的高线,且有2CD=3AB=6,CE=EF=DF,则下列判断中不正确的是( )A.∠AFB=90° B.BE= 5C.△EFB∽△BFC D.∠ACB+∠AEB=45°16.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1 cm的速度从点A出发,沿折线AC —CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图像如图2所示.当点P运动5秒时,PD的长是( )A.1.5 cm B.1.2 cm C.1.8 cm D.2 cm二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.如图,已知AD∥BE∥CF,且AB=4,BC=5 ,EF=4,则DE=.18.如图,已知△OAB与△OA′B′是位似比为1∶2的位似图形,点O为位似中心.若△OAB 内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标是.19.如图,在△ABC 中,AB =AC =10,BC =16,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E.则当BD =4时,CE = ;当∠AED =90°时,BD = . 三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)如图,矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE =1.8,连接AE 并延长交DC 于点F ,求CFCD的值.21.(本小题满分9分)如图,△ABC 的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O 为位似中心画△DEF ,使它与△ABC 位似,且位似比为2;(2)在(1)的条件下,若M(a ,b)为△ABC 边上的任意一点,则△DEF 的边上与点M 对应的点M ′的坐标为 .22.(本小题满分9分)已知:如图,在△ABC 中,BC =10,BC 边上的高h =5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F ,点D 为BC 上一点,连接DE ,DF ,△DEF 的面积为4,求点E 到BC 的距离.23.(本小题满分9分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于点E,交AC延长线于点F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.24.(本小题满分10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE =0.8 m,CA=30 m(点A,E,C在同一直线上).已知小明的身高EF是1.7 m,请你帮小明求出楼高AB.(结果精确到0.1 m)25.(本小题满分10分)如图,在△ABC中,BC=8 cm,AC=6 cm,点P从B出发,沿人教版数学九年级下册第二十七章相似章末专题训练人教版数学九年级下册第二十七章相似章末专题训练一、选择题1.下列各组图形相似的是( B )A.B.C.D.2.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A.360元B.720元C.1080元D.2160元3.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是( D )A. 6B. 8C. 9D. 124.如图,已知DE∥BC,EF∥AB,则下列比例式错误的是( C )A. B.C. D.5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是( B )A.=B.=C.∠A=∠ED.∠B=∠D6.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( C )A.1对B.2对C.3对D.4对7.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为( C )A. 1B.C.D. 28. 下列说法正确的是( A )A. 位似图形一定是相似图形B. 相似图形一定是位似图形C. 两个位似图形一定在位似中心的同侧D. 位似图形中每对对应点所在的直线必互相平行9.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为( A )A. 1∶2B. 1∶4C. 2∶1D. 4∶110. 如图,△ABC∽△DEF,相似比为1∶2.若BC=1,则EF的长是( D )A.1 B.2 C.3 D.4二、填空题11.如图所示,C为线段AB上一点,且满足AC∶BC=2∶3,D为AB的中点,且CD=2 cm,则AB=________ cm.【答案】20则海口与三12.在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,亚的实际距离约为千米.【答案】22213.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为__________.【答案】114.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F.若CD =5,BC =8,AE =2,则AF = .【答案】16915.在△ABC 中,AB =6 cm ,AC =5 cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且S △ADE ∶S 四边形BCED =1∶8,则AD =__________ cm. 【答案】2或 三、解答题16. 已知四条线段a ,b ,c ,d 的长度,试判断它们是否成比例: (1)a =16 cm,b =8 cm,c =5 cm,d =10 cm; (2)a =8 cm,b =5 cm,c =6 cm,d =10 cm.(1) 【答案】∵8×10=80,16×5=80,∴bd =ac.∴能够成比例. (2) 【答案】∵8×6=48,10×5=50,∴不能够成比例.17.问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息如图1:甲组:测得一根直立于平地,长为80 cm 的竹竿的影长为60 cm ; 如图2:乙组:测得学校旗杆的影长为900 cm ;如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350 cm ,影长为300 cm. 解决问题:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?(2)如图3,设太阳光线MH 与⊙O 相切于点M ,请根据甲、丙两组得到的信息,求景灯灯罩的半径?【答案】解(1)∵同一时刻物高与影长成正比,∴=,即=,解得DE=1 200 cm;(2)连接OM,设OM=r,∵同一时刻物高与影长成正比,∴=,即=,解得NG=400 cm,在Rt△NGH中,NH===500 cm,设⊙O的半径为r,∵MH与⊙O相切于点M,∴OM⊥NH,∴∠NMO=∠NGH=90°,又∵∠ONM=∠GNH,∴△NMO∽△NGH,∴=,即=,又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,∴500r=300(50+r),解得r=75 cm.故景灯灯罩的半径是75 cm.18.如图已知,在△ABC中,CD⊥AB,BE⊥AC,BE交CD于点O.求证:△ABE∽△OCE.证明:因为CD⊥AB,BE⊥AC,所以∠AEB=∠ADC=90°.又∠A=∠A,所以∠ABE=∠OCE.又因为∠AEB=∠OEC,所以△ABE∽△OCE.18.如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:(1)△ABD≌△BCE;(2)△AEF∽△ABE.【答案】证明 (1)∵△ABC 是等边三角形, ∴AB =BC ,∠ABD =∠C =∠BAC =60°, 在△ABD 和△BCE 中,∴△ABD ≌△BCE (SAS); (2)∵△ABD ≌△BCE , ∴∠BAD =∠CBE , ∴∠EAF =∠ABE , ∵∠AEF =∠BEA , ∴△AEF ∽△ABE .19. 如图,在平面直角坐标系中,△ABC 的顶点坐标为A (-2,3),B (-3,2),C (-1,1).(1)若将△ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A 1B 1C 1; (2)画出△A 1B 1C 1绕原点旋转180°后得到的△A 2B 2C 2;(3)△A'B'C'与△ABC 是位似图形,请写出位似中心的坐标: ; (4)顺次连接C ,C 1,C',C 2,所得到的图形是轴对称图形吗? (1) 【答案】如答图.(2) 【答案】如答图.(3) 【答案】(0,0)(4) 【答案】如答图,所得图形是轴对称图形.20.如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP还相似吗?为什么?【答案】(1)证明如图1,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∴∠BPG+∠CPF=135°,在△BPG中,∵∠B=45°,∴∠BPG+∠BGP=135°,∴∠BGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP;(2)解△PBG与△FCP相似.理由如下:如图2,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠人教版九年级下册数学《第27章相似》单元测试卷(解析版)一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:42.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=13.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:55.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:817.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:278.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm二.填空题(共5小题)11.若,则=.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是km.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm (结果保留根号).14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.2019年人教版九年级下册数学《第27章相似》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:4【分析】根据比例的基本性质,a:b=3:2,b2=ac,则b:c可求.【解答】解:∵b2=ac,∴b:a=c:b,∵a:b=3:2,∴b:c=a:b=3:2.故选:B.【点评】利用比例的基本性质,对比例式和等积式进行互相转换即可得出结果.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.×3≠2×,故本选项错误;B.4×10≠5×6,故本选项错误;C.2×=×2,故本选项正确;D.4×1≠3×2,故本选项错误;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念和变形是解题的关键,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 【分析】根据黄金分割的定义得出=,从而判断各选项.【解答】解:∵点C是线段AB的黄金分割点且AC>BC,∴=,即AC2=BC•AB,故A、B错误;∴AC=AB,故C错误;BC=AC,故D正确;故选:D.【点评】本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键.4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:5【分析】由DE∥CB,根据平行线分线段成比例定理,可求得AE、AC的比例关系.【解答】解:∵DE∥BC,AD:DB=3:2,∴AE:EC=3:2,∴AE:AC=3:5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,根据已知得出AE与EC的关系是解题关键.5.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【分析】因为直角三角形三边扩大同样的倍数,而角的度数不会变,所以得到的新的三角形是直角三角形.【解答】解:因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.【点评】主要考查“角的度数和它的两边的长短无关”的知识点.6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【分析】直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【解答】解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故选:B.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.7.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.【分析】根据相似三角形的判定,易得出△ABC的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.【解答】解:∵小正方形的边长为1,∴在△ABC中,EG=,FG=2,EF=,A中,一边=3,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故A错误;B中,一边=1,一边=,一边=,有,即三边与△ABC中的三边对应成比例,故两三角形相似.故B正确;C中,一边=1,一边=,一边=2,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故C错误;D中,一边=2,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故D错误.故选:B.【点评】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.【分析】首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.【点评】此题主要考查了相似三角形的性质与判定,关键是掌握判断三角形相似的方法和相似三角形的性质.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm【分析】据小孔成像原理可知△AOB∽△COD,利用它们的对应边成比例就可以求出CD 之长.【解答】解:如图过O作直线OE⊥AB,交CD于F,依题意AB∥CD∴OF⊥CD∴OE=12,OF=2而AB∥CD可以得△AOB∽△COD∵OE,OF分别是它们的高∴,∵AB=6,∴CD=1,故选:D.【点评】本题考查了相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,还有会用相似三角形对应边成比例.二.填空题(共5小题)11.若,则=.【分析】根据合比定理[如果a:b=c:d,那么(a+b):b=(c+d):d(b、d≠0)]解答即可.【解答】解:∵,∴,即=.故答案为:.【点评】本题主要考查了合比定理:在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是58km.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,5.8÷=5800000厘米=58千米.即实际距离是58千米.故答案为:58.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为3(﹣1)cm(结果保留根号).【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念和AC>BC,得:AC=AB=3(﹣1).故本题答案为:3(﹣1).【点评】此题考查了黄金分割点的概念,要熟记黄金比的值.14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=8:5.【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF 即可得出结论.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.。
九年级数学相似试卷免费【含答案】
九年级数学相似试卷免费【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个比例不是相似图形的相似比?A. 2:1B. 3:2C. 5:4D. 1:32. 若两个三角形的对应边长比为2:3,则它们的面积比为:A. 2:3B. 4:9C. 3:2D. 9:43. 在相似三角形中,下列哪个比例是正确的?A. 对应角相等B. 对应边成比例C. 对应角相等且对应边成比例D. 所有的角都相等4. 下列哪个图形不是相似图形?A. 两个正方形B. 两个矩形C. 两个圆D. 两个三角形5. 若两个相似三角形的面积分别为36cm²和81cm²,则它们的相似比为:A. 1:3B. 3:1C. 2:3D. 3:2二、判断题(每题1分,共5分)1. 相似图形的对应角相等。
()2. 相似图形的面积比等于相似比的平方。
()3. 所有的等边三角形都是相似的。
()4. 相似图形的周长比等于相似比。
()5. 两个三角形的对应角相等,则它们一定相似。
()三、填空题(每题1分,共5分)1. 相似图形的对应边成______。
2. 若两个三角形的相似比为2:3,则它们的面积比为______。
3. 相似三角形的______相等。
4. 若两个相似三角形的周长分别为12cm和18cm,则它们的相似比为______。
5. 相似图形的面积比等于______的平方。
四、简答题(每题2分,共10分)1. 简述相似图形的定义。
2. 两个三角形相似的条件是什么?3. 相似三角形的性质有哪些?4. 如何计算相似三角形的面积比?5. 相似图形的周长比与相似比有什么关系?五、应用题(每题2分,共10分)1. 已知两个相似三角形的相似比为3:4,其中一个三角形的面积为54cm²,求另一个三角形的面积。
2. 两个相似图形的周长分别为24cm和36cm,求它们的相似比。
3. 两个相似三角形的面积分别为100cm²和225cm²,求它们的相似比。
九年级数学相似测试题及答案
九年级数学相似测试题及答案九年级数学相似测试题及答案很快又到期末考试了,接下来小编为你带来九年级数学相似测试题及答案,希望对你有帮助。
第二十七章相似27.1 图形的相似A.足球上所有“黑片”形状相同【拓展探究】14.在一矩形花坛ABCD的四周修筑小路,使得相对两条小路的宽均相等.若AB=20米,AD=30米,则小路的宽x与的比值为多少时,能使小路四周所围成的矩形A'B'C'D'与矩形ABCD相似?请说明理由.【答案与解析】1(解析:C中==,==,所以=,所以a,b,c,d是成比例线段.故选C.)2.D(解析:两个平行四边形的角不一定相等,所以不一定相似;两个菱形的角不一定相等,所以不一定相似;两个矩形的对应边不一定成比例,所以不一定相似;两个等腰直角三角形对应边成比例,对应角相等,两个三角形相似.故选D.)3.B(解析:根据相似多边形的对应边成比例,可得=,所以=,所以B'C'=16.故选B.)4.A(解析:根据相似多边形的对应角相等及四边形内角和为360°可得138°+60°+75°+α=360°,解得α=87°.故选A.)5.B(解析:矩形的四个角都是直角,所以三个矩形的对应角相等,甲和丙的对应边的比相等,而甲和乙的对应边的比不相等,即甲和丙的对应边成比例,甲和乙的对应边不成比例,所以甲和丙相似,甲和乙不相似.故选B.)6.= a=bx(解析:根据成比例线段定义可得=,由比例基本性质可得a=bx.故填=,a=bx.)7.(解析:设a=5,b=2,则==.故填.)8.21.72(解析:设实际距离为x c,根据图上距离∶实际距离=比例尺,可得=,解得x=2172000,2172000 c=21.72 .故填21.72.)9.⑤⑥(解析:对应角相等、对应边成比例的两个多边形相似,所以①②错误;两个多边形不相似时,对应角可能相等,如矩形和正方形不相似,但对应角相等,所以③错误;两个多边形不相似时,对应边可能成比例,如菱形和正方形不相似,但对应边成比例,所以④错误;任意两个正方形对应角相等,对应边成比例,故任意两个正方形都相似,所以⑤正确;全等多边形是相似多边形的特例,所以⑥正确.故填⑤⑥.)10.解:(1)设矩形ABCD的长AD=x,则DM=AD=x.∵矩形DMNC 与矩形ABCD相似,∴=,即=,∴x=4或x=-4(舍去).∴AD的长为4. (2)矩形DMNC与矩形ABCD的相似比为4∶4=1∶.11.(解析:设x=,=3,z=5,所以===.故填.)12.18 c(解析:∵梯形AEFD∽梯形EBCF,∴=,∴=,解得EF=18.故填18c.)13.提示:设正方形ABCD的边长为a,因为EFGH也是正方形,所以两个正方形相似.连接EG,HF可知正方形ABCD的面积是正方形EFGH 面积的两倍,故正方形EFGH的面积是a2,所以边长为a,所以正方形ABCD与四边形EFGH的相似比为a∶a=∶1.14.解:∵矩形A'B'C'D'与矩形ABCD相似,∴=,即=,∴20(30+2x)=30(20+2),解得=.∴小路的宽x与的比值为时,矩形A'B'C'D'与矩形ABCD相似.本节课首先提出问题:矩形黑板四周加宽后的四边形与原四边形形状是否相同?学生往往会不假思索地认为相同,教师告诉学生其实不相同,本节课的内容就可以解释为什么不相同,顺势导入课题,再以学生熟悉的放大镜导入新课,让学生体会数学与实际生活密切联系,通过探究放大镜下的三角形、四边形与原图形的对应边、对应角之间的关系,很自然地引出相似多边形的概念,在概念的探究过程中,教师以小问题的形式层层深入,让学生体会概念的形成过程,易于理解和掌握,在探究相似多边形的性质及应用时,学生以小组合作交流为主,课堂气氛活跃,学生思维敏捷,达到了良好效果.本节课的内容较为简单,重点是探究相似多边形的概念、性质及应用其进行有关的计算,因为是课容量较小的课时,所以应该大胆放手,给学生大胆展示的时间和空间,但学生展示自己的热情不够,表现拘谨,放不开.学生是课堂的唯一主角,教师只是课堂上的引导者,所以在以后的教学中应鼓励学生大胆展示自己,善于发表自己的看法,作为教师,在数学课上应尽量给他们表现的.机会.相似多边形是在相似图形的基础上,通过对对应边、对应角数量关系的一个刻画得出的.以黑板加宽的生活实例导入新课,由于直观上观察相似,所以教师给出不相似的结论后,更能激发学生的学习兴趣,同时让学生体会数学于生活,与生活息息相关,然后以学生的自主探究为主线,探究相似多边形的概念和性质,课堂上教师以问题形式引导学生探究,多给学生思考、交流、展示的时间和空间,让学生在课堂上体验知识的形成过程,提高数学思维能力及分析问题、解决问题的能力.练习(教材第27页)1.提示:根据比例尺列出方程,求得两地的实际距离为3000 .2.解:相似.因为对应角相等,对应边成比例.3.提示:根据两个多边形相似,对应边成比例,可求得a=3,b=4.5,c=4,d=6.习题27.1(教材第27页)1.解:2∶200000=1∶100000.2.解:任意两个矩形不一定相似,因为任意两个矩形的对应边不一定成比例.3.提示:根据相似多边形的对应边成比例可得x=6,=3.5.5.(1)解:∵AD=2,BD=4,AE=2.5,EC=5,∴AB=AD+BD=2+4=6,AC=AE+EC =2.5+5=7.5.又∵DE=3,BC=9,∴==,==,==. (2)证明:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.在△ADE与△ABC 中,∠A=∠A,∠ADE=∠B,∠AED=∠C,且===,∴△ADE与△ABC相似.6.解:这两个矩形不相似.理由如下:由题意可知小路内边缘所形成的矩形的长为30 ,宽为20 ,小路外边缘所形成的矩形的长为30+1×2=32(),宽为20+1×2=22(),∵≠,即两个矩形的对应边不成比例,∴这两个矩形不相似.7.解:若两个多边形仅有对应角相等,则它们不相似.例如:矩形A的长与宽分别为6 c和4 c,矩形B的长与宽分别为5 c和3 c,对应边的比分别为6∶5,4∶3,∵6∶5≠4∶3,∴这两个矩形不相似.若两个多边形仅有对应边成比例,则这两个多边形也不相似.例如:边长为3 c的正方形和边长为4 c、内角分别为60°,60°,120°,120°的菱形,对应边的比为,但对应角不相等,∴这两个多边形不相似.8.解:设原来矩形的长为x,宽为,则对折后的矩形的长为,宽为x.由相似图形的性质可知x∶=∶,2=x2,x=或x=-(舍去),∴x=,即x∶=∶1,即原来矩形的长宽比是∶1.将这张纸再对折下去,得到的矩形都相似,理由如下:两次对折后得到的矩形的长与宽分别为x和,则x∶=∶=2∶1,即两次对折后得到的矩形与原矩形相似,如此重复下去,结论相同.(1)本节课的相似多边形是在相似图形的基础上,通过对对应边、对应角进行数量上的刻画得出的,相似图形是本章内容的基础,所以本节课的相似多边形起着承上启下的作用,为后面学习相似三角形起着推波助澜的作用.在教学设计中要在紧扣教材的基础上创造性地使用教材,在教学导入中,以加宽黑板这一生活实例和学生熟悉的放大镜问题导入新课,让学生体会到数学于生活,又应用于生活,同时又激发了学生学习的欲望,学生带着疑问走进课堂,在学习过程中会收获更多的知识.(2)线段成比例是探究相似多边形概念和性质的基础,在教学设计时首先知道什么是线段的比,导出四条线段成比例的概念,为探究相似多边形的概念做好铺垫.通过探究放大镜下的三角形、四边形的对应边、对应角之间的关系,很自然地得到相似多边形的概念,让学生亲身经历知识的形成过程,体会由特殊到一般的数学思想方法.(3)在课堂上注重学生能力的培养,教学设计中,学生自主探究有关概念、性质及例题时,由小问题层层深入解决,在教师问题的引导下,学生通过自主探究、小组合作交流等数学活动得出结论和解题思路,培养学生分析问题、解决问题的能力;教学设计中习题的设计解决验证导入中的实例,做到首尾呼应,提高学生应用数学的能力;通过小组合作交流,培养学生合作意识,提高与他人交流的能力.已知矩形ABCD中,AB=1,在BC上取一点E,将△ABE沿AE向上折叠,使B点落在AD上的F点.若四边形EFDC与矩形ABCD相似,求AD 的长.〔解析〕设AD=x,由四边形EFDC与矩形ABCD相似,根据相似多边形对应边的比相等列出比例式,求解即可,用方程思想解答几何题是常用的思想方法.解:∵矩形ABCD中,AF由AB折叠而得,∴ABEF是正方形.又∵AB=1,∴AF=AB=EF=1.设AD=x,则FD=x-1.∵四边形EFDC与矩形ABCD相似,∴=,即=.解得x1=,x2=(负值,舍去).∴AD=.。
九年级数学相似单元测试题[1]
九年级数学相似单元测试题(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学相似单元测试题(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学相似单元测试题(word版可编辑修改)的全部内容。
初三数学相似单元测试题一、选择题:(每小题3分,共24分) 1、已知dcba=则下列各式中错误的是( ) db ca dbc a Dd c c b a a C b c d a B d b c a A --=++-=-==)()()(.) 2、下列结论中正确的是( )A 、 有一个角相等的两个等腰三角形一定相似。
B 、 有两边成比例的两个直角三角形一定相似。
C 、两个矩形一定相似.D 、 有一个角相等的两个菱形一定相似。
3、下列条件不能判定△ABC 与△A ′B ′C ′相似的是( ) A 、∠C=∠C ′=90° ∠B=∠A ′=50°(B )∠A=∠A ′=90°''''B A C B AB BC = (C)∠A=∠A ′''''C B BC B A AB = (D)''''''B A ACC A BC C B AB == 4、如图P 是正方形ABCD 边BC 上的一点,E 是BC 上中点,下列条件不能推出△ABP 与△PCE 相似的是( )A 、∠APB=∠EPCB 、AP ⊥ EPC 、P 是BC 边中点D 、BP :PC=2:15、如图直角梯形ABCD 中AD ⊥AB ,∠C 和∠B 的角平分线的交点E 恰好在AD 上,下列结论错误的有( )个。
数学九年级上册相似试卷【含答案】
数学九年级上册相似试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若两个三角形的对应角相等,则它们是相似的,这句话是否正确?A. 正确B. 错误2. 在ΔABC和ΔDEF中,若AB/DE = BC/EF = AC/DF,则这两个三角形是否相似?A. 相似B. 不相似3. 两个相似三角形的面积比是9:1,它们的边长比是:A. 3:1B. 1:3C. 9:1D. 1:94. 若ΔABC ∽ ΔA'B'C',则以下哪个比例是错误的?A. AB/A'B' = BC/B'C'B. AB/A'B' = AC/A'C'C. AB/A'B' = (BCAC)/(B'C'A'C')D. AB/A'B' = (BC+AC)/(B'C'+A'C')5. 在ΔABC中,AB = 6cm, BC = 8cm, ∠B = 90°,若ΔDEF ∽ ΔABC,且EF = 4cm,则DE的长度是:A. 3cmB. 4cmC. 5cmD. 6cm二、判断题(每题1分,共5分)6. 相似三角形的对应边长之比相等。
()7. 相似三角形的面积比等于对应边长比的平方。
()8. 若两个三角形的对应边成比例,则这两个三角形一定相似。
()9. 在ΔABC中,若AB = AC,则ΔABC是等腰三角形。
()10. 两个全等三角形的面积比一定是1:1。
()三、填空题(每题1分,共5分)11. 在ΔABC和ΔDEF中,若AB/DE = BC/EF = AC/DF = 2/3,则ΔABC与ΔDEF______。
12. 若ΔABC ∽ ΔA'B'C',且AB = 6cm, A'B' = 9cm,则BC与B'C'的长度之比是______。
(完整word版)九年级数学相似三角形单元测试题及答案
九年级数学相似单元测试(1)一.选择题(每小题3分洪30分) 1.在比例尺为 A.1250km b 3 1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( C. 12.5km D.1.25km 2•已知a 2 B.125km =c = 0,则匕空的值为 4 cA. 4 5 3. 已知/ ABC 的三边长分别为 相似,那么/ A ' B ' C '的第三边长应该是B.11 2D. 1 2 2,,6,2,/A ' B ' C '的两边长分别是 ( C.2 1 和.3,如果/ ABC 与/ A ' B ' C ' ) A. 24. 在相同时刻,物高与影长成正比 C.-6D.三 2 3 如果高为 1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( ) D 15米 D A 20米 B 18米 5. 如图,/ACB= Z ADC=90 ° ,BC=a,AC=b,AB=c,要使/ ABC s/CAD, 只要CD 等于 ( ) 2 2 2A. —B.—C.abD.— c a c c 6. —个钢筋三角架三长分别为20cm,50cm,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和 50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A. 一种 B.两种 C.三种 D.四种 7、 用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在 A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置 8、 如图,口 ABCD 中,EF // AB , DE : EA = 2 : 3, EF = 4,贝U CD 的长( )A 16 A.亍 C 16米 C . 10 D . 16 窗户的高在在室地直线上影长则那的高貉为窗户的下檐到教严面勺距离 C . 2米 D . 1.5 米BC=1米(点B CABC 的边BC10、 某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ 上,△ ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 二傾空题(每小题3分洪30分) 11、 已知冬=3,则= y 4 y 12、 .已知点C 是线段AB 的黄金分割点,且AC>BC,则AC : AB= _________ . 13、 .把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 ___________________ .14、 如图,/ABC 中,D,E 分别是AB,AC 上的点(DE.JBC ),当 ________ 或 ________ 或 _______ 时,/ ADE 与/ ABC 相似. 15、 在厶ABC 中,/ B = 25° , AD 是BC 边上的高,并且AD 2 = BD • DC ,则/ BCA 的度数为 _______________ 。
初三数学相似测试题及答案
初三数学相似测试题及答案一、选择题(每题3分,共15分)1. 若三角形ABC与三角形DEF相似,且AB:DE = 2:3,那么三角形ABC的面积与三角形DEF的面积之比是多少?A. 4:9B. 2:3C. 1:2D. 1:32. 在直角三角形中,若两直角边长分别为3和4,则斜边长为多少?A. 5B. 6C. 7D. 83. 若一个三角形的三边长分别为a, b, c,且满足a/b = b/c,那么这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 不规则三角形4. 已知三角形ABC与三角形DEF相似,且角A等于角D,角B等于角E,那么角C与角F的关系是什么?A. 相等B. 互补C. 互为余角D. 互为补角5. 如果一个三角形的三边长分别为3, 4, 5,那么这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 不规则三角形二、填空题(每题2分,共10分)6. 若三角形ABC与三角形DEF相似,且AB = 2DE,那么AC与DF的比例是________。
7. 已知三角形ABC的面积为24平方厘米,若三角形ABC与三角形DEF 相似,且DE = 4AB,则三角形DEF的面积为________平方厘米。
8. 若三角形ABC与三角形DEF相似,且角A等于角D,角B等于角E,那么角C等于角F,且角C与角F的度数是________。
9. 直角三角形的斜边长为13,一条直角边长为5,另一条直角边长为________。
10. 若三角形ABC与三角形DEF相似,且BC/EF = 1/2,那么三角形ABC的周长与三角形DEF的周长之比是________。
三、解答题(每题5分,共20分)11. 已知三角形ABC与三角形DEF相似,且AB = 6cm,DE = 9cm,求AC与EF的比例。
12. 已知三角形ABC的三边长分别为3cm,4cm,5cm,求三角形ABC的面积。
13. 若三角形ABC与三角形DEF相似,且角A等于角D,角B等于角E,求角C与角F的度数。
浙教版九年级数学上第四章 相似三角形单元测试(含解析)
第四章相似三角形单元测试一、单选题(共10题;共30分)1、已知△ABC∽△DEF,AB:DE=1:2,则△ABC与△DEF的周长比等于()A、1:2B、1:4C、2:1D、4:12、如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为( )A、B、C、D、3、如图,Rt△ABC∽Rt△DEF,∠A=35°,则∠E的度数为().A、35°B、45°C、55°D、65°4、如图,菱形ABCD中,对角线A C、BD相交于点O,M、N分别是边A B、AD的中点,连接OM、ON、MN,则下列叙述正确的是()A、△AOM和△AON都是等边三角形B、四边形MBON和四边形MODN都是菱形5、若=,则的值为()A、1B、C、D、6、如图,在△ABC中,D,E分别是AB和AC上的点,满足AD=3,AE=2,EC=1,DE∥BC,则AB=()A、6B、4.5C、2D、1.57、已知△ABC∽△A′B′C′,△A′B′C′的面积为6,周长为△ABC周长的一半,则△ABC的面积等于()A、1.5B、3C、12D、248、如图,如果AB∥CD∥EF,那么下列结论正确的是()A、B、C、D、9、在△ABC中,点D,E分别在边AB,AC上,且DE∥BC,下列结论错误的是()A、B、C、D、10、两个相似三角形的面积比为1:4,则它们的相似比为()A、1:4B、1:2C、1:16D、无法确定二、填空题(共8题;共24分)11、若两个三角形的相似比为2:3,则这两个三角形对应角平分线的比为________ 、12、如图,直线AA1∥BB1∥CC1,如果,AA1=2,CC1=6,那么线段BB1的长是________ 、13、已知,则=________14、如图,△ABC与△DEF是位似图形,位似比为2:3,已知AB=4,则DE的长为________15、已知线段AB的长为10厘米,点P是线段AB的黄金分割点,那么较长的线段AP的长等于________厘米、16、如图,AB∥CD∥EF,如果AC=2,AE=5.5,DF=3,那么BD=________、17、若= ,则=________、18、如图,添加一个条件:________,使△ADE∽△AC B、三、解答题(共5题;共36分)19、如图,△ABC中,AB=AC,F为BC的中点,D为CA延长线上一点,∠DFE=∠B、(1)求证:△CDF∽△BFE;(2)若EF∥CD,求证:2CF2=AC•C D、20、两个相似五边形,一组对应边的长分别为3cm和4.5cm,如果它们的面积之和是78cm2,则这两个五边形面积各是多少cm2?21、如图,一个矩形广场的长为60m,宽为40m,广场内两条纵向小路的宽均为1.5m,如果设两条横向小路的宽都为x m,那么当x为多少时,小路内外边缘所围成的两个矩形相似?22、在△ABC中,点D是AB边上一点(不与AB重合),AD=kBD,过点D作∠EDF+∠C=180°,与C A、CB分别交于E、F、(1)如图1,当DE=DF时,求的值、(2)如图2,若∠ACB=90°,∠B=30°,DE=m,求DF的长(用含k,m的式子表示)23、如图,四边形中ABCD中,E,F分别是AB,CD的中点,P为对角线AC延长线上的任意一点,PF 交AD于M,PE交BC于N,EF交MN于K、求证:K是线段MN的中点、四、综合题(共1题;共10分)24、将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°)、点D为AB的中点,DE交AC于点P,DF经过点C、(1)求∠ADE的度数;(2)如图②,在图①的基础上将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,求证:、答案解析一、单选题1、【答案】A【考点】相似三角形的性质【解析】直接根据相似三角形周长的比等于相似比即可得出结论、【解答】∵△ABC∽△DEF,AB:DE=1:2,∴△ABC与△DEF的周长比为1:2、故选A、本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比、2、【答案】B【考点】相似三角形的判定与性质【解析】【分析】由在梯形ABCD中,AD∥BC,可得△AOD∽△COB,然后由相似三角形的对应边成比例求得答案、【解答】∵在梯形ABCD中,AD∥BC,∴△AOD∽△COB,∴,∵AD=1,BC=3,∴、故答案为:B3、【答案】C【考点】相似三角形的性质【解析】【解答】∵Rt△ABC∽Rt△DEF,∠A=35°,∴∠D=∠A=35°、∵∠F=90°,∴∠E=55°、故选C、【分析】由Rt△ABC∽Rt△DEF,∠A=35°,根据相似三角形的对应角相等,即可求得∠D的度数,又由∠F=90°,即可求得∠E的度数、【考点】位似变换【解析】【解答】根据位似图形的定义可知A.O与OM和AM的大小却无法判断,所以无法判断△AMO和△AON是等边三角形,故错误;B.无法判断BM是否等于OB和BM是否等于OC,所以也无法判断平行四边形MBON和MODN是菱形,故错误;C.四边形MBCO和四边形NDCO是位似图形,故此选项正确;D.无法判断四边形MBCO和NDCO是等腰梯形,故此选项错误;故选C.【分析】在Rt△ABO中,根据直角三角形斜边上的中线等于斜边的一半可得,OM=AM=BM,但AO与OM和AM的大小却无法判断,所以无法判断△AMO和△AON是等边三角形.同样,我们也无法判断BM 是否等于OB和BM是否等于OC,所以也无法判断平行四边形MBON和MODN是菱形,也无法判断四边形MBCO和NDCO是等腰梯形.根据位似图形的定义可知四边形MBCO和四边形NDCO是位似图形,故本题选C.5、【答案】D【考点】比例的性质【解析】【解答】解:∵=,∴==、故选D、【分析】根据合分比性质求解、6、【答案】B【考点】平行线分线段成比例【解析】【解答】解:∵DE∥BC,∴,∵AD=3,AE=2,EC=1,∴,∴DB= =1.5,∴AB=AD+DB=3+1.5=4.5,【分析】根据平行线分线段成比例定理得出,再把A D、AE、EC代入求出DB,最后根据AB=AD+DB代入计算即可、7、【答案】D【考点】相似三角形的性质【解析】【解答】解:∵△ABC与△A′B′C′的周长比为2:1,△ABC∽△A′B′C′,∴△ABC与△A′B′C′的面积比为4:1,又△A′B′C′的面积为6,∴△ABC的面积=24,故选:D、【分析】根据题意求出两个三角形的周长比,根据相似三角形的性质解答即可、8、【答案】B【考点】平行线分线段成比例【解析】【解答】解:A、∵AB∥CD∥EF,∴,故错误;B、∵AB∥CD∥EF,∴,故正确;C、∵AB∥CD∥EF,∴,故错误;D、∵AB∥CD∥EF,∴,∴AC•DF=BD•CE,故错误、故选B、【分析】由AB∥CD∥EF,根据平行线分线段成比例定理求解即可求得答案、注意排除法在解选择题中的应用、9、【答案】C【考点】相似三角形的判定与性质【解析】【解答】解:∵DE∥BC,∴△ADE∽△ABC,,∴= ,选项A、B、D正确;选项C错误、【分析】根据平行线分线段成比例定理和相似三角形对应边对应成比例作答、10、【答案】B【考点】相似三角形的性质【解析】【解答】解:∵两个相似三角形的面积比为1:4,∴它们的相似比为1:2,故选:B、【分析】根据相似三角形面积的比等于相似比的平方解答即可、二、填空题11、【答案】2:3【考点】相似三角形的性质【解析】【解答】∵两个相似三角形的相似比为2:3,∴这两个三角形对应角平分线的比为2:3、故答案为2:3、【分析】根据相似三角形对应角平分线的比等于相似比的性质解答、12、【答案】3【考点】平行线分线段成比例【解析】【解答】解:如图:过A1作AE∥AC,交BB1于D,交CC1于E,∵直线AA1∥BB1∥CC1,∴四边形ABDA1和四边形BCED是平行四边形,∴AA1=2,CC1=6,∴AA1=BD=CE=2,EC1=6﹣2=4,,∴∵BB1∥CC1,∴,∴,∴DB1=1,∴BB1=2+1=3,故答案为:3、【分析】过A1作AE∥AC,交BB1于D,交CC1于E,得出四边形ABDA1和四边形BCED是平行四边形,求出AA1=BD=CE=2,EC1=6﹣2=4,,根据BB1∥CC1得出,代入求出DB1=1即可、13、【答案】【考点】比例的性质【解析】【解答】解:∵∴设x=2k,y=3k,∴原式=故答案为、【分析】由,则可设x=2k,y=3k,然后把x=2k,y=3k代入原式进行分式的运算即可、14、【答案】6【考点】位似变换【解析】【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3,∴AB:DE=2:3,∴DE=6、故答案为:6、【分析】位似图形就是特殊的相似图形,位似比等于相似比、利用相似三角形的性质即可求解、15、【答案】5 ﹣5【考点】黄金分割【解析】【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP= AB=(5 ﹣5)厘米,故答案为:5 ﹣5、【分析】根据黄金比值是计算即可、16、【答案】【考点】平行线分线段成比例【解析】【解答】解:∵AC=2,AE=5.5,∴CE=3.5,AB∥CD∥EF,∴,∴BD= ,故答案为:、【分析】根据平行线分线段成比例定理即可得到结论、17、【答案】【考点】比例的性质【解析】【解答】解:∵= ,∴设a=2k,b=5k,∴= = ,故答案为:、【分析】根据已知设a=2k,b=5k,代入求出即可、18、【答案】∠ADE=∠C(答案不唯一)【考点】相似三角形的判定【解析】【解答】解:添加∠ADE=∠C、理由如下:∵∠ADE=∠C,∠A=∠A,∴△ADE∽△AC B、故答案为:∠ADE=∠C(答案不唯一)、【分析】△ADE和△ACB有一个公共角,再有一组角对应相等,那么这两个三角形就相似、三、解答题19、【答案】(1)证明:∵∠DFB=∠DFE+∠EFB=∠C+∠FDC,∴∠EFB=∠FDC,∵AB=AC,∴∠C=∠B,∴△CDF∽△BFE;(2)解:∵EF∥CD,∴∠EFD=∠FDC,∵∠B=∠C,∠DEG=∠B,∴∠FDC=∠C=∠B,∴△CDF∽△BCA,∴,∵BC=2CF,DF=CF,∴,∴CF2=AC•C D、【考点】相似三角形的判定与性质【解析】【分析】(1)根据外角的性质得到∠EFB=∠FDC,由等腰三角形的性质得到∠C=∠B,证得△CDF∽△BFE;(2)根据平行线的性质得到∠EFD=∠FDC,∠C=∠EFB,根据等腰三角形的性质得到∠B=∠C,等量代换得到∠FDC=∠C,推出△CDF∽△BCA,根据相似三角形的性质得到结论、20、【答案】解:设较小五边形与较大五边形的面积分别是xcm2,ycm2、则=()2=,因而x=y、根据面积之和是78cm2,得到y+y=78,解得:y=54,则x=×54=24、即较小五边形与较大五边形的面积分别是24cm2,54cm2、【考点】相似多边形的性质【解析】【分析】根据相似多边形相似比即对应边的比,面积的比等于相似比的平方,即可解决、21、【答案】解:∵小路内外边缘所围成的两个矩形相似,∴解得,x=1m,答:当x为1m时,小路内外边缘所围成的两个矩形相似、【考点】相似多边形的性质【解析】【分析】根据相似多边形的性质:对应边的比相等列出比例式,解出x的值即可、22、【答案】解:(1)如图1,连接CD,∵∠EDF+∠C=180°,∴D,E,C,F四点共圆,∵DE=DF,∴∠DCE=∠DCF,根据正弦定理得①,,∴,②,∵∠ADC=180°﹣∠BDC,∴sin∠ADC=sin∠BDC,①÷②d得,,∵AD=kBD,∴=k;(2)∵∠ACB=90°,∠B=30°,∴∠A=60°,根据正弦定理得:③,,④,由(1)知D,E,C,F四点共圆,∴∠DEA+∠DFB=180°,∴sin∠DEA=sin∠DFB,④÷③得:,∴DF=,∵AD=kBD,DE=m,∴DF=、【考点】相似三角形的判定与性质【解析】【分析】(1)连接CD,由∠EDF+∠C=180°,推出D,E,C,F四点共圆,根据正弦定理得①,,②,①÷②得,,根据AD=kBD,根据得到结论;(2)根据三角形的内角和得到∠A=60°,根据正弦定理得:③,,④,④÷③得:,求得DF=,即可得到结论、23、【答案】证明:∵EF截△PMN,则(1)∵BC截△PAE,则(2),∴即有,所以(3),∵CD截△PMA,则,即,∴(4)因AP=AC+CP,得2CP+AC=2AP﹣AC,由(3),(4)得,,即,所以由(1)得NK=KM,即K是线段MN的中点、【考点】相似三角形的判定与性质【解析】【分析】根据题意,EF截△PMN,则(1);BC截△PAE,则(2);所以(3)、而CD截△PMA,则,即,∴(4),因AP=AC+CP,得2CP+AC=2AP﹣AC,由(3),(4)得,,即,所以由(1)得NK=KM,即K是线段AM的中点、四、综合题24、【答案】(1)解:∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD= AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°(2)解:∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴、【考点】相似三角形的判定与性质【解析】【分析】(1)首先证明∠ACD=∠A,再求出∠ADC=120°,再根据∠ADE=∠ADC﹣∠EDF计算即可得解;(2)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明、。
【期末复习】九年级上《第四章相似三角形》单元检测试卷有答案
期末专题复习:浙教版九年级数学上册第四章相似三角形单元检测试卷一、单选题(共10题;共30分)1.如图,△ABC中,AD⊥BC于D ,下列条件:①∠B+∠DAC=90°;②∠B=∠DAC;③ = ;④AB2=BD•BC .其中一定能够判定△ABC是直角三角形的有()A. 1B. 2C. 3D. 42.已知△ABC∽△DEF,相似比为2,且△ABC的面积为16,则△DEF的面积为()A. 32B. 8C. 4D. 163.在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A. 1:20B. 1:20000C. 1:200000D. 1:20000004.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB::3,则下列结论正确的是( )A. B. C. ∠∠ D. ∠∠5.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A. 5:7B. 3:5C. 2:3D. 2:56.如图,在△ABC中,点D、E分别在AB、AC边上,且DE∥BC,若= ,则的值等于()A. B.3 C. D.7.已知,直角坐标系中,点E(-4,2),F(-1,-1),以O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点的坐标为()A. (2,-1)或(-2,1)B. (8,-4)或(-8,4)C. (2,-1)D. (8,-4)8.如图,已知BC∥DE,则下列说法中不正确的是()A. 两个三角形是位似图形B. 点A是两个三角形的位似中心C. AE︰AD是位似比D. 点B与点E、点C与点D是对应位似点9.如图,▱ABCD中,AE∶ED=1∶2,S△AEF=6 cm2,则S△CBF等于( )A. 12 cm2B. 24 cm2C. 54 cm2D. 15 cm210.如图,已知矩形ABCD,AB=6,BC=8,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为()A. B. C. D.二、填空题(共10题;共30分)11.两个相似三角形的周长的比为,它们的面积的比为________.12.如图,点在的边上,请你添加一个条件,使得∽,这个条件可以是________.13.如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则BD=________ .14.如图,点为△的边上一点,,.若∠∠,则________.15.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,若,则________.16.如图,△AOB中,∠O=90°,AO=8cm,BO=6cm,点C从A点出发,在边AO上以4cm/s的速度向O点运动,与此同时,点D从点B出发,在边BO上以3cm/s的速度向O点运动,过OC的中点E作CD的垂线EF,则当点C运动了________ s时,以C点为圆心,2cm为半径的圆与直线EF相切.17.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么=________ .18.已知点P是边长为4的正方形ABCD内一点,且PB="3" , BF⊥BP,垂足是点B, 若在射线BF上找一点M,使以点B, M, C为顶点的三角形与△ABP相似,则BM为________ .19.如图,在平行四边形ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF∶CF=________ .20.如图,在一块直角三角板ABC中,∠C=90°,∠A=30°,BC=1,将另一个含30°角的△EDF的30°角的顶点D放在AB边上,E,F分别在AC,BC上,当点D在AB边上移动时,DE始终与AB垂直,若△CEF与△DEF 相似,则AD=________.三、解答题(共8题;共60分)21.如图,在△ABC和△ADE中,已知∠B=∠D ,∠BAD=∠CAE ,求证:△ABC∽△ADE .22.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.23.如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E、F.求证:四边形AFGE与四边形ABCD相似.24.如图,在△ABC中,AC=8cm,BC=16cm,点P从点A出发,沿着AC边向点C以1cm/s的速度运动,点Q从点C出发,沿着CB边向点B以2cm/s的速度运动,如果P与Q同时出发,经过几秒△PQC和△ABC 相似?25.如图,点E是四边形ABCD的对角线BD上一点,且∠BAC=∠BDC=∠DAE.①试说明BE·AD=CD·AE;②根据图形特点,猜想可能等于哪两条线段的比?并证明你的猜想,(只须写出有线段的一组即可)26.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,过点B作射线BB1∥AC.动点D从点A出发沿射线AC 方向以每秒5个单位的速度运动,同时动点E从点C沿射线AC方向以每秒3个单位的速度运动.过点D 作DH⊥AB于H,过点E作EF⊥AC交射线BB1于F,G是EF中点,连接DG.设点D运动的时间为t秒.(1)当t为何值时,AD=AB,并求出此时DE的长度;(2)当△DEG与△ACB相似时,求t的值.27.如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.28.如图,在Rt△ABC中,AB=AC=4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD 至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;(2)当点D在线段AB上时,连接AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.答案解析部分一、单选题1.【答案】B2.【答案】C3.【答案】D4.【答案】B5.【答案】D6.【答案】D7.【答案】A8.【答案】C9.【答案】C10.【答案】C二、填空题11.【答案】4:912.【答案】∠C=∠ABP(答案不唯一)13.【答案】14.【答案】15.【答案】116.【答案】17.【答案】18.【答案】3或19.【答案】20.【答案】或三、解答题21.【答案】解答:如图,∵∠BAD=∠CAE ,∴∠BAD+∠BAE=∠CAE+∠BAE ,即∠DAE=∠BAC .又∵∠B=∠D ,∴△ABC∽△ADE .22.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C223.【答案】证明:∵四边形ABCD是正方形,AC是对角线,∴∠DAC=∠BAC=45°.又∵GE⊥AD,GF⊥AB,∴EG=FG,且AE=EG,AF=FG.∴AE=EG=FG=AF,即四边形AFGE为正方形.∴===,且∠EAF=∠DAB,∠AFG=∠ABC,∠FGE=∠BCD,∠AEG=∠ADC. ∴四边形AFGE与四边形ABCD相似24.【答案】解:设经过x秒,两三角形相似,则CP=AC-AP=8-x,CQ=2x,①当CP与CA是对应边时,,即,解得x=4秒;②当CP与BC是对应边时,,即,解得x= 秒;故经过4或秒,两个三角形相似25.【答案】解:①∵∠BAC=∠DAE,∴∠BAC+∠CAE=∠DAE+∠CAE,即∠DAC=∠BAE,∵∠AEB=∠ADB+∠DAE,∠ADC=∠ADB+∠BDC,又∵∠DAE=∠BDC,∴∠AEB=∠ADC,∴△BEA∽△CDA,∴= ,即BE·AD=CD·AE;②猜想= 或(),由△BEA∽△CDA可知,= ,即= ,又∵∠DAE=∠BAC,∴△BAC∽△EAD,∴= 或()26.【答案】解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB= =5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6﹣5=1.(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE﹣AD=3+3t﹣5t=3﹣2t,若△DEG与△ACB相似,则或,∴=或=,∴t=或t= ;当AD>AE(即t>)时,DE=AD﹣AE=5t﹣(3+3t)=2t﹣3,若△DEG与△ACB相似,则或,∴=或=,解得t=或t=;综上所述,当t=或或或时,△DEG与△ACB相似.27.【答案】(1)证明:连接OD,∵OA=OD,∴∠ODA=∠OAD,∵AD∥OC,∴∠OAD=∠COD,∠ODA=∠COD,∴∠COD=∠BOC,在△COD和△BOC中:∠∠,∴△COD≌△BOC,∴∠ODC=∠OBC=90°,∴CD为圆O的切线;(2)解:∵△COD≌△COB,∴BC=CD,∵DE=2BC,∴DE=2CD,∵AD∥OC,∴△DAE∽△COE,∴AD:OC=ED:AC=2:3.28.【答案】解:(1)当0<t≤4时,S=t2,当4<t≤时,S=-t2+8t-16,当<t<8时,S=t2-12t+48;(2)存在,理由:当点D在线段AB上时,∵AB=AC,∴∠B=∠C=(180°-∠BAC)=45°.∵PD⊥BC,∴∠BPD=90°,∴∠BDP=45°,∴PD=BP=t,∴QD=PD=t,∴PQ=QD+PD=2t.过点A作AH⊥BC于点H,∵AB=AC,∴BH=CH=BC=4,AH=BH=4,∴PH=BH-BP=4-t,在Rt△APH中,AP==;(ⅰ)若AP=PQ,则有=2t.解得:=,=(不合题意,舍去);(ⅱ)若AQ=PQ,过点Q作QG⊥AP于点G,如图(1),∵∠BPQ=∠BHA=90°,∴PQ∥AH.∴∠APQ=∠PAH.∵QG⊥AP,∴∠PGQ=90°,∴∠PGQ=∠AHP=90°,∴△PGQ∽△AHP,∴=,即=,∴PG=,若AQ=PQ,由于QG⊥AP,则有AG=PG,即PG=AP,即=.解得:t1=12-4,t2=12+4(不合题意,舍去);(ⅲ)若AP=AQ,过点A作AT⊥PQ于点T,如图(2),易知四边形AHPT是矩形,故PT=AH=4.若AP=AQ,由于AT⊥PQ,则有QT=PT,即PT=PQ,即4=×2t.解得t=4.当t=4时,A、P、Q三点共线,△APQ不存在,故t=4舍去.综上所述,存在这样的t,使得△APQ成为等腰三角形,即=秒或t2=(12-4)秒;(3)四边形PMAN的面积不发生变化.理由如下:∵等腰直角三角形PQE,∴∠EPQ=45°,∵等腰直角三角形PQF,∴∠FPQ=45°.∴∠EPF=∠EPQ+∠FPQ=45°+45°=90°,连接AP,如图(3),∵此时t=4秒,∴BP=4×1=4=BC,∴点P为BC的中点.∵△ABC是等腰直角三角形,∴AP⊥BC,AP=BC=CP=BP=4,∠BAP=∠CAP=∠BAC=45°,∴∠APC=90°,∠C=45°,∴∠C=∠BAP=45°,∵∠APC=∠CPN+∠APN=90°,∠EPF=∠APM+∠APN=90°,∴∠CPN=∠APM,∴△CPN≌△APM,∴S△CPN=S△APM,∴S=S△APM+S△APN=S△CPN+S△APN=S△ACP=×CP×AP=×4×4=8.四边形PMAN∴四边形PMAN的面积不发生变化,此定值为8.。
浙教版数学九年级上册第四章相似三角形 单元测试(含答案)
浙教版数学九年级上册第四章相似三角形一、选择题1.已知c 是a 和b 的比例中项,a =2,b =18,则c =( )A .±6B .6C .4D .±32.如图,DE ∥BC ,在下列比例式中,不能成立的是()A .AD DB =AEECB .DE BC =AEEC C .AB AD =AC AED .DB EC =ABAC3.如果两个相似三角形的周长之比为5:7,那么这两个三角形的面积之比为( )A .5:7B .7:5C .25:49D .49:254.如图,已知AB ∥CD ∥EF ,AE =9,AC =6,BD =4,则BF 的长是( )A .5B .6C .7D .85.小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如图),然后在A 处树立一根高2米的标杆,测得标杆的影长AC 为3米,则楼高为( )A .10米B .12米C .15米D .22.5米6.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是( )A .B .C.D.7.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为( ).A.1:2B.1:3C.1:4D.1:58.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB的面积为5,则下列结论中正确的是( )A.m=5B.m=45C.m=35D.m=109.如图,已知AB=AC,∠B<30°,BC上一点D满足∠BAD=120°,BDCD =73,则ADAC的值为( )A.12B.33C.13D.3210.如图,在边长为2的正方形ABCD中,对角线AC与BD相交于点O,点P是BD上的一个动点,过点P作EF∥AC,分别交正方形的两条边于点E,F,连接OE,OF,设BP=x,△OEF的面积为y,则能大致反映y与x之间的函数关系的图像为( )A .B .C .D .二、填空题11.如图,线段AC 、BD 交于点O ,请你添加一个条件: ,使△AOB ∽△COD .12.如图,点G 为△ABC 的重心,GE ∥AC ,若DE =2,则DC = .13.在某市建设规划图上,城区南北长为120cm ,该市城区南北实际长为36km ,则该规划图的比例尺是 .14.如图,在Rt △ABC 中,∠ABC =90°,AB =4,AC =5,AE 平分∠BAC ,点D 是AC 的中点,AE 与BD交于点O ,则的值AOOE .15.如图, EB 为驾驶员的盲区,驾驶员的眼睛点 P 处与地面 BE 的距离为1.6米,车头 FACD 近似看成一个矩形,且满足 3FD =2FA ,若盲区 EB 的长度是6米,则车宽 FA 的长度为 米.16.如图,在△ABC中,点D是AC边上一点,将△ABD沿BD翻折得到△EBD,BE与AC交于点F,设AF=x,EF=y.(1)当BE⊥AC,x=9,y=3时,AD的长是 ;(2)当BD=BF,2x=7y时,△DEF与△ABD的面积之比是 .三、解答题17.如图,已知D、E分别是△ABC的边AB、AC上的点,DE∥BC,ADBD =32,求DEBC的值.18.如图,在△ABC中,D为BC上一点,∠BAD=∠C.(1)求证:△ABD∽△CBA;(2)若AB=6,BD=3,求CD的长.19.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部的(全身)的高度比,可以增加视觉美感,按比例,如果雕像的高为2m,那么它的下部设计为多高?(结果保留小数点后两位)参考数据:2=1.414,3=1.732,5=2.23620.如图,在矩形ABCD中,AB=6,BC=4,E是边BC上的一点(不与B、C重合),DF⊥AE,垂足为F.(1)求证:△ABE∽△DFA;S△ABE,求BE的长.(2)若S△DFA=1321.如图,在△ABC中,AD是BC上的高,且BC=3,AD=2,矩形EFGH的顶点F、G在边BC上,顶点E、H分别在边AB、AC上.(1)设EF=x(0<x<2),矩形EFGH的周长为y,求y关于x的函数解析式;(2)当EFGH为正方形时,求正方形EFGH的面积.22.如图,矩形ABCD中,点M在对角线BD上,过点A、B、M的圆与BC交于点E.(1)若AM=4,EB=EM=3,求BM.(2)若AB=6,BC=8,①求AM:ME.②若BM=7,求BE.23.如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长交BC于点E,过点Q作QF//AC,交BD于点F,设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形;(2)设五边形OECQF的面积为S(c m2),试确定S与t的函数关系式;(3)在运动过程中,当S五边形OECQF:S△ACD=9:16时.直接写出t的值.答案解析部分1.【答案】A2.【答案】B3.【答案】C4.【答案】B5.【答案】A6.【答案】A7.【答案】C8.【答案】B9.【答案】A10.【答案】C11.【答案】AB∥CD(答案不唯一)12.【答案】6.13.【答案】1:3000014.【答案】9415.【答案】12716.【答案】5;1417.【答案】3518.【答案】(1)证明:∵∠BAD=∠C,∠B=∠B,∴△ABD∽△CBA(2)解:设DC=x,∵△ABD∽△CBA,∴ABBD=BCAB,∴63=2+x6,解得,x=9;即CD=719.【答案】1.24米.20.【答案】(1)证明:∵四边形ABCD是矩形,AB=6,BC=4,∴∠B=90°,AD∥BC,AD=BC=4,∴∠AEB=∠DAF,∵DF⊥AE,∴∠DFA=90°,∴∠B=∠DFA,∴△ABE∽△DFA;(2)解:∵△ABE∽△DFA,S△DFA=13S△ABE,∴(AEAD )2=S△ABES△DFA=3,∴AEAD=3或AEAD=−3(负数不符合题意,舍去),∴AE=3AD=43,∴BE=AE2−AB2=(43)2−62=12=23,∴BE的长为23.21.【答案】(1)解:设AD,EH交于点M,∵矩形EFGH,∴EH∥BC,AM⊥EH,∴△ABC∼△AEH,∴EHBC=AMAD∵EF=DM=x,AD=2∴AM=2−x∴EH3=2−x2∴EH=32(2−x)∴y=2(EH+EF)=2(3−32x+x)=−x+6(0<x<2)∴y关于x的函数解析式为∴y=−x+6(0<x<2)(2)解:当EFGH为正方形时,∴EF=EH,由(1)得:EF =x ,EH =32(2−x),∵EF =EH ,∴x =3(2−x)2,∴x =65,即EF =65.正方形EFGH 的面积=65×65=3625.22.【答案】(1)245(2)①43,②17423.【答案】(1)解:在矩形ABCD 中,AB =6cm ,BC =8cm ,∴AC =10,①当AP =PO =t ,如图1,过P 作PM ⊥AO 于点M ,∴AM =12AO =52,∵∠PMA =∠ADC =90°,∠PAM =∠CAD ,∴△APM∽△ACD ,∴AP AC =AM AD,∴AP =t =258,②当AP =AO =t =5,∴当t 为258或5时,△AOP 是等腰三角形;(2)解:如图2,过点O 作OH ⊥BC 交BC 于点H ,则OH =12CD =12AB =3cm ,由矩形的性质可知∠PDO =∠EBO ,DO =BO ,又得∠DOP =∠BOE ,∴△DOP≌BOE(ASA),∴BE =PD =8−t ,则S △BOE =12BE ⋅OH =12×3(8−t)=12−32t.∵FQ//AC ,∴△DFQ∽△DOC ,相似比为DQ DC =t6,∴S △DFQ S △DOC =t 236,∵S △DOC =14S 矩形ABCD =14×6×8=12c m 2,∴S △DFQ =12×t 236=t 23,∴S 五边形OECQF =S △DBC −S △BOE −S △DFQ =12×6×8−(12−32t)−t 23=−13t 2+32t +12;∴S 与t 的函数关系式为S =−13t 2+32t +12;(3)t =3或32。
初三数学相似练习题及答案
初三数学相似练习题及答案相似性是数学中一个重要的概念,通过对两个图形或者物体进行比较,我们可以得出它们之间的相似性质。
相似性不仅在几何中有应用,在生活中也有很多实际的应用。
本文将介绍一些初三数学中的相似性练习题及其答案,希望能帮助同学们更好地理解和掌握这一概念。
练习题一:在下面的图形中,黄色区域是正方形ABCD的内部。
已知比值为3:4的两条边分别为EF和GH。
求证:矩形EFGH和正方形ABCD相似。
解答:首先,我们可以观察到矩形EFGH与正方形ABCD具有共同的一个角A。
根据三角形的AA判定相似性质,我们只需要证明另外两个对应边的比值相等即可。
设矩形EFGH的长为x,宽为y。
根据题目中的条件,我们可以列出以下等式:EF = 3AB = x + yBC = CD = AD = x根据正方形的性质,我们知道正方形ABCD的边长相等,所以可以得到以下等式:AB = BC = CD = AD因此,可以得到以下关系:x + y = xy = 0由此可见,矩形EFGH的宽度y等于0,这是不可能的。
故我们得到的结论是错误的。
练习题二:在下面的图形中,已知三角形ABC与三角形DEF相似。
已知AC = 10cm,BC = 6cm。
若DE = 8cm,求EF的长度。
解答:根据题目中的已知条件,我们可以列出以下等式:AC/DE = BC/EF代入已知数值,可以得到:10/8 = 6/EF交叉相乘并移项,我们可以得到:10EF = 8 * 6计算右边的乘积,我们得到:10EF = 48最后,将式子两边同时除以10,我们可以求得:EF = 48/10 = 4.8所以,EF的长度为4.8cm。
练习题三:在下面的图形中,已知三角形ABC与三角形DEF相似。
已知AC = 12cm,BC = 8cm,EF = 18cm。
求DE的长度。
解答:根据题目中的已知条件,我们可以列出以下等式:AC/DE = BC/EF代入已知数值,可以得到:12/DE = 8/18交叉相乘并移项,我们可以得到:8DE = 12 * 18计算右边的乘积,我们得到:8DE = 216最后,将式子两边同时除以8,我们可以求得:DE = 216/8 = 27所以,DE的长度为27cm。
九年级数学相似三角形单元测试题及答案
九年级数学 相似 单元测试一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A .1250km ﻩ B.125k m C.ﻩ12.5k m D.1.25km 2.已知0432≠==c b a ,则cb a +的值为ﻩ ﻩﻩ( )A.54 ﻩﻩﻩB.45 ﻩ C .2D.213.已知⊿A BC 的三边长分别为2,6,2,⊿A ′B ′C′的两边长分别是1和3,如果⊿AB C与⊿A′B′C′相似,那么⊿A ′B ′C ′的第三边长应该是ﻩﻩﻩ( )A.2 ﻩB.22 ﻩﻩC.26 ﻩﻩ D.334.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为ﻩﻩ ﻩ ﻩﻩﻩ ﻩﻩ( )A 20米ﻩB 18米ﻩ ﻩC 16米ﻩﻩﻩ D 15米5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB =c,要使⊿ABC ∽⊿CAD, 只要CD 等于 ﻩﻩ ﻩﻩ ﻩ ﻩ( )A.c b 2 ﻩ B.a b 2 ﻩ C.cab ﻩﻩﻩ D.c a 26.一个钢筋三角架三 长分别为20c m,50cm,60cm ,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ﻩﻩﻩﻩﻩﻩ ( ) A.一种 ﻩ B.两种 C.三种 ﻩﻩD.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部ﻩ C 原图形的边上 D 任意位置8、如图,□AB CD中,EF ∥A B,DE ∶EA = 2∶3,EF = 4,则CD 的长( ) A .\F (16,3) ﻩ B .8 C.10 D.169.已知a 、b 、c为非零实数,设k=cba b c a a c b +=+=+,则k 的值为() A.2 B.-1 C .2或-1 D.110、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC的边BC 上,△ABC 中边BC =60m,高AD=30m ,则水池的边长应为( ) A 10m ﻩﻩ B 20m ﻩﻩ C 30m ﻩﻩ D 40m二.填空题(每小题3分,共30分) 11、已知43=y x ,则._____=-y y x12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .当或或时,⊿ADE与⊿ABC相似.15、在△ABC中,∠B=25°,AD是BC边上的高,并且AD BD DC2 ·,则∠BCA的度数为____________。
初三数学相似试题及答案
初三数学相似试题及答案
一、选择题
1. 两个三角形相似的条件是()
A. 面积相等
B. 周长相等
C. 边长成比例
D. 角度相等
答案:C
2. 如果两个三角形的对应角相等,那么这两个三角形()
A. 全等
B. 相似
C. 不一定相似
D. 无法判断
答案:B
二、填空题
1. 若△ABC与△DEF相似,且AB:DE = 2:3,那么AC:DF = _______。
答案:2:3
2. 三角形的相似比为3:5,若三角形的一边长为9cm,则另一边长为_______ cm。
答案:15cm
三、解答题
1. 如图所示,△ABC与△DEF相似,已知AB = 6cm,AC = 8cm,DE = 9cm,求BC和EF的长度。
解:由于△ABC与△DEF相似,根据相似三角形的性质,我们有: AB:DE = AC:DF = BC:EF
将已知数值代入比例中,得到:
6:9 = 8:DF = BC:EF
解得DF = 12cm,BC = 10cm。
2. 已知两个相似多边形的面积之比为9:16,求它们的周长之比。
解:设两个相似多边形的周长分别为P和Q,面积分别为A和B。
根据相似多边形的性质,我们知道:
A/B = (P/Q)^2
已知A/B = 9/16,代入公式得:
(9/16) = (P/Q)^2
解得P/Q = 3/4。
结束语
通过本试题的练习,同学们可以加深对相似三角形和相似多边形的理解,掌握它们的性质和计算方法。
希望同学们能够认真练习,提高自己的数学能力。
九年级数学上册 相似全章测试相似全章测试 下人教新课标版
第二十七章 相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( ) A .32 B .41 C .31D .21 2.△ABC 中,DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )A .21=BC DE B .21=∆∆的周长的周长ABC ADE C .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31= 3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )A .△AED ∽△ACB B .△AEB ∽△ACDC .△BAE ∽△ACED .△AEC ∽△DAC4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC=3,则CD 长为( ) A .1 B .23 C .2 D .255.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( )A .1条B .2条C .3条D .4条6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )A .BC DE DB AD = B . ADEF BC BF = C .FC BF EC AE = D .BC DEAB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )A .PA ·AB =PC ·PB B .PA ·PB =PC ·PD C .PA ·AB =PC ·CD D .PA ∶PB =PC ∶PD8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件①∠B +∠DAC =90°②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 一定能判定△ABC 是直角三角形的共( )A .3个 B .2个 C .1个 D .0个二、填空题9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.图910.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61 EB AE ,射线CF 交AB 于E 点,则FD AF等于______.11.如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面积是4m 2,则四边形DEBC 的面积为______.12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是____. 三、解答题13.已知如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1. (1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长.14.已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点,AD =4cm ,DB =9cm ,求CB 的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC ,试在这个网格上画一个与△ABC 相似,且面积最大的△A 1B 1C 1(A 1,B 1,C 1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A (1,0),B (0,2),试以5×5的格点为顶点作△ABC 与△OAB 相似(相似比不为1),并写出C 点的坐标.(1)求∠D 的度数; (2)求证:AC 2=AD ·CE .18.已知:如图,△ABC 中,∠BAC =90°,AB =AC =1,点D 是BC 边上的一个动点(不与B ,C 点重合),∠ADE =45°. (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′. (1)当D 为AB 边的中点时,求S ′∶S 的值; (2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒. (1)求直线AB 的解析式; (2)当t 为何值时,△APQ与△ABO 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S .(1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少?答案与提示第二十七章 相似全章测试1.C . 2.D . 3.C . 4.C . 5.C . 6.C . 7.B . 8.A .9.4.8m . 10.⋅31 11.21m 2. 12.5∶4.13.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ; (2)△ABC ∽△CDE ,DE =1.5.14..cm 133提示:连结AC .15.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 16.C (4,4)或C (5,2).17.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .18.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时, △ABD ≌△DCE .可得.12-=x 当∠ADE 为底角时:⋅=21AE 19.(1)S '∶S =1∶4;(2)).40(41162<<+-=x x x y 20.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P 21.(1)y =x 2-2x -3,A (-1,0),B (3,0);(2))49,43(-D 或D (1,-2). 22.(1);643+-=x y (2)1130=t 或;1350(3)t =2或3. 23.(1)略;(2));30(8311832≤<+-=x x x S (3)当x =3时,S 最大值33=.。
九年级数学上册 第22章 相似形 单元测试卷(沪科版 2024年秋)
九年级数学上册第22章相似形单元测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.已知2x =3y (y ≠0),则下面结论成立的是()A.x y =32B.x 3=2yC.x y =23D.x 2=y 32.下列四组线段中,成比例的是()A .a =1,b =2,c =3,d =4B .a =3,b =6,c =9,d =18C .a =1,b =3,c =2,d =8D .a =1,b =2,c =4,d =63.如图,在△ABC 中,DE ∥BC ,AD =2,BD =3,AC =10,则AE 的长为()A .3B .4C .5D .6(第3题)(第5题)4.已知线段AB =2,点P 是线段AB 的黄金分割点(AP >BP ),则线段AP 的长为()A.5+1B.5-1C.5+12D.5-125.如图,下列条件中不能判定△ACD ∽△ABC 的是()A .∠ADC =∠ACB B.AB BC =AC CDC .∠ACD =∠BD .AC 2=AD ·AB6.如图,在△ABC 中,AB ∥DE ,若AE CE =23,则△ECD 与△ACB 的面积之比为()A.35B.925C.45D.1625(第6题)(第7题)7.如图,小明在A 时测得某树的影长为3m ,B 时测得该树的影长为2m ,若两次日照的光线互相垂直,则树的高度为()A .±6mB.6mC .6mD.5m8.若一个三角形能够分成两个与原三角形都相似的三角形,就把这样的三角形称为和谐三角形,则下列选项中属于和谐三角形的是()A .等边三角形B .等腰三角形C .直角三角形D .等腰三角形或直角三角形9.如图,在△ABC 中,∠ABC =90°,以点A 为圆心,AB 长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论正确的是()A .DE 垂直平分ACB .△ABE ∽△CBAC .BD 2=BC ·BED .CE ·AB =BE ·CA(第9题)(第10题)10.如图,在正方形ABCD 中,F 为AB 上一点,E 是BC 延长线上一点,且AF =EC ,连接EF ,DE ,DF ,M 是EF 的中点,连接MC ,设EF 与BD 和DC 分别相交于点G 和N ,下列结论:①△FGD ∽△BGE ;②若BF =4,则CE =22;③∠CME =∠CDE ;④DG 2=GN ·GE ,其中正确的是()A .①②③B .①③④C .②③④D .①②④二、填空题(本大题共4小题,每小题5分,满分20分)11.已知△ABC ∽△A ′B ′C ′,AD 和A ′D ′是它们的对应中线,若AD =8,A ′D ′=6,则△ABC 与△A ′B ′C ′的周长比是________.12.如图,在平面直角坐标系中,矩形OABC 的顶点坐标分别是O (0,0),C (6,0),B (6,4),A (0,4),已知矩形OA ′B ′C ′与矩形OABC 位似,位似中心是原点O ,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,则点B ′的坐标是____________.(第12题)(第13题)13.如图,线段AB ,CD 的端点都在正方形网格的格点上,它们相交于点M .若每个小正方形的边长都是1,则MCMD的值是________.14.如图,在矩形ABCD 中,AB =4,点E 为边AD 上一点,AE =3,F 为BE 的中点.(第14题)(1)EF =________;(2)若CF ⊥BE ,CE ,DF 相交于点O ,则OCCE=________.三、(本大题共2小题,每小题8分,满分16分)15.已知x +y x=32.(1)求yx 的值;(2)求x -y x +y的值.16.如图,直线l 1∥l 2∥l 3,AC 分别交l 1,l 2,l 3于点A ,B ,C ,DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 交于点O .已知DE =3,EF =6,AB =4.(第16题)(1)求AC的长;(2)若OE:OF=1:3,求OB:AB.四、(本大题共2小题,每小题8分,满分16分)17.如图,在平面直角坐标系中,每个小正方形的边长都是1个单位,△ABC的顶点都在格点上.(第17题)(1)以原点O为位似中心,在第三象限内画出将△ABC放大为原来的2倍后的位似图形△A1B1C1;(2)△A1B1C1的面积为______.18.如图,在△ABC中,AB=AC,∠A=36°,BD为∠ABC的平分线.求证:AD2=AC·DC.(第18题)五、(本大题共2小题,每小题10分,满分20分)19.某校同学参与“项目式学习”综合实践活动,小明所在的数学活动小组利用所学知识测量旗杆EF的高度.如图,他在距离旗杆40m的D处立下一根3m 高的竖直标杆CD,然后调整自己的位置,当他与标杆的距离BD为4m时,他的眼睛、标杆顶端和旗杆顶端在同一直线上,若小明的眼睛离地面的高度AB为1.6m,求旗杆EF的高度.(第19题)20.如图,将等边三角形ABC折叠,使点A落在BC边上的点D处(不与B,C 重合),折痕为EF.(1)求证:△BDE∽△CFD;(2)若BD=6,DC=2,求BE的长(第20题)六、(本题满分12分)21.如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF.求证:(1)AD=DF;(2)DF2=BE·BF.(第21题)七、(本题满分12分)22.阅读下列材料,并完成相应的任务.规定:在一个三角形中,若一个内角是另一个内角度数的n 倍,则称三角形为“n 倍角三角形”.当n =1时,称为“1倍角三角形”,显然等腰三角形是“1倍角三角形”;当n =2时,称为“2倍角三角形”.小康通过探索后发现,“2倍角三角形”的三边有如下关系:在△ABC 中,∠BAC ,∠B ,∠C 所对的边分别为a ,b ,c ,若∠BAC =2∠B ,则a 2-b 2=bc .下面是小康的两种探索证明过程:证法1:如图①,作∠BAC 的平分线AD ,则∠BAD =∠CAD =12∠BAC .∵∠BAC =2∠B ,∴∠BAD =∠CAD =∠B .∴AD =BD .∵∠ACD =∠BCA ,∴△ACD ∽△BCA ,∴AC BC =DC AC =AD AB.设DC =x ,则AD =BD =a -x .(第22题)∴b a =x b =a -x c ,∴b 2=ax ,a 2-ax =bc ,∴a 2-b 2=bc .证法2:如图②,延长CA 到点D ,使得AD =AB =c ,连接BD ,∴∠ABD =∠D .……任务:(1)上述材料中的证法1是通过作辅助线,构造出________三角形来加以证明的(填“全等”或“相似”);(2)请补全证法2剩余的部分.八、(本题满分14分)23.如图,在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,F,E是AC 上两点,连接BE,DF交于△ABC内一点G,且∠EGF=45°.(1)求证:∠FDC=∠AEB;(2)若AE=3CE=6,求BG的长;(3)连接AG,求证:∠EAG=∠ABE.(第23题)答案一、1.A 2.B 3.B4.B5.B6.B7.B8.C9.D 点拨:由题意得AB =AD ,AP 平分∠BAC ,∴∠EAB =∠EAD .在△ABE 与△ADE =AE ,EAB =∠EAD ,=AD ,∴△ABE ≌△ADE ,∴BE =ED ,∠ADE =∠ABC =90°.∴∠EDC =90°=∠ABC .又∵∠C =∠C ,∴△EDC ∽△ABC ,∴CE CA =EDAB,∴CE ·AB =ED ·CA .∵ED =BE ,∴CE ·AB =BE ·CA .A ,B ,C 选项无法证明.故选D.10.B 二、11.4:312.(3,2)或(-3,-2)13.12714.(1)52(2)3239三、15.解:由x +y x=32可得,x =2y .(1)y x =y 2y =12.(2)x -y x +y =2y -y 2y +y =13.16.解:(1)∵l 1∥l 2∥l 3,∴DE ∶DF =AB ∶AC ,即3∶(3+6)=4∶AC ,解得AC =12.(2)∵l 2∥l 3,∴OB ∶OC =OE ∶OF =1∶3,∴OC =3OB .∵AB =4,AC =12,∴BC =8,即OC +OB =8,∴4OB =8,∴OB =2,∴OB ∶AB =2∶4=1∶2.四、17.解:(1)如图,△A 1B 1C 1即为所求.(第17题)(2)1418.证明:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°.∵BD为∠ABC的平分线,∴∠ABD=∠DBC=36°,∴∠ABD=∠A,∠BDC=∠A+∠ABD=72°,∴BD=AD,∠C=∠BDC,∴BC=BD=AD.∵∠DBC=36°=∠A,∠C=∠C,∴△BCD∽△ACB.∴BCAC=CDCB,∴ADAC=CDAD,∴AD2=AC·DC.五、19.解:过点A作AH⊥EF,交CD于点G,交EF于点H.由题意易得HF=DG=AB=1.6m,AG=BD=4m,HG=FD=40m,∴CG=CD-DG=3-1.6=1.4(m).易知CD∥EF,∴△AGC∽△AHE,∴AGAH=CGEH,∴44+40=1.4EH,∴EH=15.4m,∴EF=EH+HF=15.4+1.6=17(m).答:旗杆EF的高度为17m.20.(1)证明:∵△ABC是等边三角形,∴∠B=∠C=∠A=60°.由折叠的性质可得∠EDF=∠A=60°.∵∠FDB=∠C+∠DFC=∠EDF+∠EDB,∴∠EDB=∠DFC,∵∠B=∠C,∴△BDE∽△CFD.(2)解:∵BD=6,DC=2,∴BC=BD+DC=8.∵△ABC是等边三角形,∴AB=AC=BC=8.由折叠的性质可知AE=ED,AF=FD,∴△BDE 的周长为BD +DE +BE =BD +AE +BE =BD +AB =6+8=14,△CFD 的周长为CD +DF +FC =CD +AF +FC =CD +AC =2+8=10.∵△BDE ∽△CFD ,∴BE CD =1410=75.∵DC =2,∴BE 2=75,∴BE =2.8.六、21.证明:(1)过点D 作DG ∥BE 交AB 于点G ,交AC 于点H ,如图所示.(第21题)∵四边形ABCD 为矩形,∴AB ∥CD ,AB =CD ,∴四边形BEDG 为平行四边形,∴DE =BG .∵点E 为CD 的中点,∴DE =12CD ,∴易得BG =AG .∵DG ∥BE ,∴AH HF =AG GB=1,∴点H 为AF 的中点.∵BE ⊥AC ,∴∠AFB =90°.∵DG ∥BE ,∴∠DHF =∠AFB =90°,∴DH 垂直平分AF ,∴AD =DF .(2)∵四边形ABCD 为矩形,∴AD =BC ,∠BCE =90°.∵AD =DF ,∴DF =BC .∵BE ⊥AC ,∴∠BFC =90°,∴∠BFC =∠BCE .∵∠CBF =∠EBC ,∴△BCF ∽△BEC ,∴BC BE =BF BC,∴BC 2=BE ·BF ,∴DF 2=BE ·BF .七、22.解:(1)相似(2)补全证法2剩余的部分如下:∴∠BAC =∠ABD +∠D =2∠D .又∵∠BAC =2∠ABC ,∴∠ABC =∠D .又∵∠ACB =∠BCD ,∴△ACB ∽△BCD ,∴AC BC =BC DC,∴BC 2=AC ·DC ,∴a2=b(b+c),∴a2-b2=bc.八、23.(1)证明:∵∠BAC=90°,AB=AC,∴∠C=45°.∵∠BGD=∠EGF=45°,∴∠C=∠BGD.∵∠FDC=∠EBC+∠BGD,∠AEB=∠EBC+∠C,∴∠FDC=∠AEB.(2)解:∵AE=3CE=6,∴CE=2,∴AB=AC=8.∵∠BAC=90°,∴BE=AB2+AE2=10,BC=AB2+AC2=8 2.∵D为BC的中点,∴BD=4 2.∵∠BGD=∠C,∠DBG=∠EBC,∴△BGD∽△BCE,∴BGBC=BDBE,即BG82=4210,∴BG=325.(3)证明:连接AD.∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=∠CAB=90°.∵∠ABD=∠CBA,∴△ABD∽△CBA,∴ABBC=BDAB,∴AB2=BD·BC.由(2)知BGBC=BDBE,∴BG·BE=BD·BC,∴AB2=BG·BE,∴ABBE=BGAB.∵∠ABG=∠EBA,∴△ABG∽△EBA,∴∠AGB=∠BAE=90°,∴∠EAG+∠BAG=∠BAG+∠ABE=90°,∴∠EAG=∠ABE.。
初三数学相似单元测试题及答案 (优质)
相似单元测评(时间:90分钟,满分:100分)一、选择题(每题3分,共36分)1.下列两个图形:①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形. 其中一定相似的有( )A.2组B.3组C.4组D.5组2.如图,在正方形网格上有6个斜三角形:①△ABC,②△BCD,③△BDE,④△BFG,•⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是( )A.②③④B.③④⑤C.④⑤⑥D.②③⑥3.应中共中央总书记胡锦涛同志的邀请,中国国民党主席连战先生、亲民党主席宋楚瑜先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”,该园占地面积约为800000m2,若按比例尺1:2000缩小后,其面积大约相当于( )A.一个篮球场的面积B.一张乒乓球台台面的面积C.《陕西日报》的一个版面的面积D.《数学》课本封面的面积4.如图,小明设计两个直角,来测量河宽BC,他量得AB=2米,BD=3米,CE=9米,•则河宽BC为( )A.5米B.4米C.6米D.8米5.如图,已知等腰△ABC中,顶角∠A=36°,BD为∠ABC的平分线,则的值等于( )A. B. C.1 D.6.如果整张报纸与半张报纸相似,则此报纸的长与宽的比是( )A.2:1B.C.4:1D.7.△ABC的面积被平行于BC的两条线段三等分,如果BC=12cm,•那么这两条线段中较短的一条的长是( )A.8cmB.6cmC.D.8.如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD上,且CE平分∠BCD,BE•平分∠ABC,则下列关系式中成立的有( )①;②;③;④CE2=CD×BC;⑤BE2=AE ×BC.A.2个B.3个C.4个D.5个9.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有( )A.1个B.2个C.3个D.4个10.如图,点M在BC上,点N在AM上,CM=CN,,下列结论正确的是( )A.△ABM∽△ACBB.△ANC∽△AMBC.△ANC∽△ACMD.△CMN∽△BCA11.在直角坐标系中,已知点A(-2,0),B(0,4),C(0,3),过C作直线交x轴于D,使以D、O、C为顶点的三角形与△AOB相似.这样的直线最多可以作( )A.2条B.3条C.4条D.6条12.(淄博)如图,路灯距地面8米,身高1.6米的小明从距离灯的底部(点O)20米的点A 处,沿OA所在的直线行走14米到点B时,人影的长度( )A.增大1.5米B.减小1.5米C.增大3.5米D.减小3.5米二、填空题(每题3分,共24分)13.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为________.14.(江苏常州)如图,在△ABC中,D、E分别是AB和AC中点,F是BC延长线上一点,DF平分CE于点G,CF=1,则BC=_______,△ADE•与△ABC•的周长之比为_______,•△CFG与△BFD的面积之比为________.15.已知D、E两点分别在△ABC的边AB、AC上,DE∥BC,且△ADE的周长与△ABC•的周长之比为3:7,则AD:DB=________.16.△ABC三边的长分别是2cm、3cm、4cm,与其相似的△DEF的最短边是8cm,那么它的最长边的边长是________.17.(湖南岳阳)如图,要使△ACD∽△ABC,只需添加条件_______(•只要写出一种合适的条件即可).18.如图是幻灯机的工作情况,幻灯片与屏幕平行,光源距幻灯片30cm,•幻灯片距屏幕1.5m,幻灯片中的小树高8cm,则屏幕上的小树高是______.19.如图,在△ABC中,点D在线段BC上,∠BAC=∠ADC,AC=8,BC=16,那么CD=______.20.如图,梯形ABCD中,AD∥BC,AC、BD交于O点,S△AOD:S△COB=1:9,则S△DOC:S=_______.△BOC三、解答题(第21题~24题每题6分,第25、26题每题8分,共40分)21.(湖北荆州)如图,梯形ABCD中,∠A=∠B=90°,且AD=AB,∠C=45°,将它分割成4个大小一样,都与原梯形相似的梯形(在图形中直接画分割线,不需要说明)22.(苏州)如图,梯形ABCD中,AB∥CD,且AB=2CD,E、F分别是AB、BC的中点,EF与BD相交于点M.(1)求证:△EDM∽△FBM;(2)若DB=9,求BM.23.如图,在离树AB的3米远处竖一长2米的杆子CD,站在离杆子1米远EF处的人刚好越过杆顶C看到树顶A,这个人高EF=1.5米,求树高.24.在《九章算术》“勾股”章中有这样一个问题:“今有邑方不知大小,各中开门,出北门二十步有木,出南门十回步,折而西行一千七百七十五步见木.问邑方几何.”用今天的话说,大意是:如图,DEFG是一座正方形小城,北门H位于DG的中点,南门K位于EF的中点,出北门20步到A处有一树木,出南门14步到C,再向西行1775步到B处,正好看到A处的树木(即点D在直线AB上),求小城的边长.25.一块直角三角形木板,一直角边是1.5米,另一直角边长是2米,要把它加工成面积最大的正方形桌面,甲、乙二人的加式方法分别如左图和右图所示,请运用所学知识说明谁的加工方法符合要求.26.如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B 以2cm/s的速度移动,点Q沿DA边从点D开始向A以1cm/s的速度移动.如果P、Q同时出发,用t秒表示移动的时间(0≤t≤6)那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)对四边形QAPC的面积,提出一个与计算结果有关的结论;(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?答案与解析一、选择题1.A 提示:③⑥;2.B3.C 提示:面积比相似比的平方;4.B 提示:由题意知△ABD∽△ACE,;5.B 提示:AD=BD=BC,△ABC∽△BCD;6.B 提示:根据题意设报纸的长为x,宽为y,有;7.C 提示:面积比相似比的平方;8.B 提示:②③④成立;9.B 提示:①③正确;10.B 提示:由CM=CN,∴∠CMN=∠CNM,∴∠AMB=∠ANC,又,∴△ANC∽△AMB;11.C 提示:如图:12.D 提示:设AM=x,BN=y,.二、填空题13.30米提示:设古塔高为h,;14.2,1:2,1:615.3:416.16cm17.∠1=∠ABC或∠2=∠ACB或AC2=AD·AB(答案不唯一)18.48cm19.420.1:3 提示:∵S△AOD:S△COB=1:9,,∵△AOD与△DOC等高,∴S△AOD:S△=1:3,DOC∴S△DOC:S△BOC=1:3.三、解答题21.如图22.(1)证:∵E是AB的中点,∴AB=2EB,∵AB=2CD,∴CD=EB.又AB∥CD,•∴四边形CBED是平行四边形.∴CB∥DE,∴∴△EDM∽△FBM.(2)解:∵△EDM∽△FBM,∴.∵F是BC的中点,∴DE=2BF.∴DM=2BM.∴BM=DB=3.23.3.5米提示:延长AE、BF交于点P,由由.24.解:设小城的边长为x步,根据题意,Rt△AHD∽Rt△ACB,因为有,即,去分母并整理,得x2+34x-71000=0,解得x1=250,x2=-284(不合题意,舍去),所以小城的边长为250步.25.乙加工的方法合理.提示:设甲加工桌面长xm,过点C作CM⊥AB,垂足是M,与GF相交于点N,由GF∥DE,可得三角形相似,而后由相似三角形性质可以得到CN:CM=•GF:AB,即(CM-x):CM=x:AB.由勾股定理可得AB=2.5,由面积相等可求得CM=1.2,•故此可求得x=;设乙加工桌面长ym,由FD∥BC,得到Rt△AFD∽Rt△ACB,所以AF:AC=FD:BC,即(2-y):2=y:1.5,解得y=,很明显x<y,故x2<y2,所以乙加工的方法符合要求.26.(1)对于任何时刻t,AP=2t,DQ=t,QA=6-t,当QA=AP时,△QAP•是等腰直角三角形,即6-t=2t,t=2秒.(2)S△QPC=S△QAC+S△APC =(36-6t)+6t=36cm2,在P、Q两点移动的过程中,四边形QAPC的面积始终保持不变(或P、Q两点到对角线AC的距离之和保持不变)(3)分两种情况:①当时△QAP∽△ABC,则从而t=1.2,②当时△PAQ∽△ABC,则从而t=3.。
初三数学相似单元测试卷
1. 下列各组图形中,能构成相似图形的是()A. 正方形和矩形B. 等腰三角形和等边三角形C. 正五边形和正六边形D. 正方形和菱形2. 已知直角三角形ABC中,∠C=90°,∠A=30°,那么∠B的度数是()A. 60°B. 45°C. 30°D. 90°3. 在△ABC中,∠A=45°,∠B=60°,那么△ABC是()A. 等腰三角形B. 直角三角形C. 锐角三角形D. 钝角三角形4. 已知矩形ABCD中,∠A=90°,AD=6cm,AB=4cm,那么△ABD的周长是()A. 10cmB. 12cmC. 16cmD. 18cm5. 在△ABC中,若AB=6cm,AC=8cm,BC=10cm,则△ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形二、填空题(每题5分,共25分)6. 若两个相似三角形的相似比为2:3,那么它们的面积比为()7. 在△ABC中,∠A=30°,∠B=45°,那么△ABC的周长与面积的比为()8. 在△AB C中,若AB=8cm,AC=6cm,BC=10cm,那么△ABC的面积是()9. 若两个相似多边形的相似比为1:2,那么它们的周长比为()10. 在△ABC中,若∠A=60°,∠B=45°,那么△ABC的面积是()三、解答题(共50分)11. (10分)已知直角三角形ABC中,∠C=90°,∠A=30°,∠B=60°,若AB=6cm,求BC和AC的长度。
12. (10分)已知△ABC和△DEF相似,且AB=4cm,BC=5cm,DE=3cm,求EF的长度。
13. (10分)在△ABC中,∠A=30°,∠B=60°,AB=8cm,求△ABC的周长和面积。
14. (10分)已知矩形ABCD中,∠A=90°,AD=6cm,AB=4cm,求△ABD的周长和面积。
初三数学相似单元测试题及答案
初三数学相似单元测试题及答案相似单元测评1.①两个等腰三角形;②两个直角三角形;③两个正方形;④两个矩形;⑤两个菱形;⑥两个正五边形。
其中一定相似的有( )A。
2组 B。
3组 C。
4组 D。
5组2.如图,在正方形网格上有6个斜三角形: ①△ABC,②△BCD,③△BDE,④△BFG,⑤△FGH,⑥△EFK,其中②~⑥中与三角形①相似的是( )A。
②③④ B。
③④⑤ C。
④⑤⑥ D。
②③⑥3.应中共中央___同志的邀请,___主席___先生、___主席___先生分别从台湾来大陆参观访问,先后来到西安,都参观了新建成的“大唐芙蓉园”,该园占地面积约为800,000平方米,若按比例尺1:2000缩小后,其面积大约相当于( )A。
一个篮球场的面积 B。
一张乒乓球台台面的面积 C。
《陕西日报》的一个版面的面积 D。
《数学》课本封面的面积4.如图,___设计两个直角,来测量河宽BC,他量得AB=2米,BD=3米,CE=9米,则河宽BC为( )A。
5米 B。
4米 C。
6米 D。
8米5.如图,已知等腰△ABC中,顶角∠A=36°,BD为∠ABC的平分线,则 tan∠BAD 的值等于( )A。
tan18° B。
tan36° C。
1 D。
26.如果整张报纸与半张报纸相似,则此报纸的长与宽的比是( )A。
2:1 B。
1:2 C。
4:1 D。
1:47.△ABC的面积被平行于BC的两条线段三等分,如果BC=12cm,则这两条线段中较短的一条的长是( )A。
8cm B。
6cm C。
4cm D。
3cm8.如图,梯形ABCD中,AB∥CD,∠A=90°,E在AD 上,且CE平分∠BCD,BE垂直于AD平分∠ABC,则下列关系式中成立的有( )① CE²=CD×BC;② BE²=AE×BC。
A。
2个 B。
3个 C。
4个 D。
5个9.下列说法: ①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有( )A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学 相似 单元测试(1)一.选择题(每小题3分,共30分)1.在比例尺为1:5000的地图上,量得甲,乙两地的距离25cm,则甲,乙的实际距离是( ) A.1250km B.125km C. 12.5km D.1.25km 2.已知0432≠==c b a ,则c b a +的值为 ( )A.54B.45C.2D.21 3.已知⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是 ( ) A.2 B.22 C.26 D.334.在相同时刻,物高与影长成正比。
如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为 ( )A 20米B 18米C 16米D 15米 5.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD, 只要CD 等于 ( )A.c b 2B.a b 2C.cab D.c a 2 6.一个钢筋三角架三 长分别为20cm,50cm,60cm,现要再做一个与其相似的钢筋三角架,而只有长为30cm 和50cm 的两根钢筋,要求以其中的一根为一边,从另一根截下两段(允许有余料)作为另两边,则不同的截法有 ( ) A.一种 B.两种 C.三种 D.四种7、用位似图形的方法,可以将一个图形放大或缩小,位似中心的位置可以选在( ) A 原图形的外部 B 原图形的内部 C 原图形的边上 D 任意位置8、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,则CD 的长( )A .163B .8C .10D .169、如图,一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠=︒AMC 30,窗户的高在教室地面上的影长MN=23米,窗户的下檐到教室地面的距离BC=1米(点M 、N 、C 在同一直线上),则窗户的高AB 为 ( ) A .3米 B .3米 C .2米 D .1.5米10、某校计划在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC 的边BC 上,△ABC 中边BC=60m ,高AD=30m ,则水池的边长应为( ) A 10m B 20m C 30m D 40m 二.填空题(每小题3分,共30分)11、已知43=y x ,则._____=-y yx12、.已知点C 是线段AB 的黄金分割点,且AC>BC,则AC ∶AB= .13、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .14、如图,⊿ABC 中,D,E 分别是AB,AC 上的点(DE BC),当 或 或 时,⊿ADE 与⊿ABC 相似. 15、在△ABC 中,∠B =25°,AD 是BC 边上的高,并且AD BD DC 2 ·,则∠BCA 的度数为____________。
16、如图,小伟在打网球时,击球点距离球网的水平距离是8米,已知网高是0.8米,要使球恰好能打过网,且落在离网4米的位置,则球拍击球的高度h 为 米.17、如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,那么△ADE 与四边形DBCE 的面积之比是 .18、大矩形的周长是与它位似的小矩形的2倍,小矩形的面积是5cm 2,大矩形的长为5cm,则大矩形的宽为 cm.19、斜拉桥是利用一组组钢索,把桥面重力传递到耸立在两侧高塔上的桥梁,它不需要建造桥墩,(如图所示),其中A 1B 1、A 2B 2、A 3B 3、A 4B 4是斜拉桥上互相平行的钢索,若最长的钢索A 1B 1=80m ,最短的钢索A 4B 4=20m ,那么钢索A 2B 2= m ,A 3B 3= m20、已知△ABC 周长为1,连结△ABC 三边中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,以此类推,第2006个三角形的周长为 三.解答题(60分)21.(8分)在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形(要求:所画三角形为钝角三角形,标明字母,并说明理由). 22.、(5分)如图,测量小玻璃管口径的量具ABC ,AB 的长为10cm ,AC 被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处,且DE ∥AB ,那么小玻璃管口径DE 是多大?23、.如图, 等边⊿ABC ,点D 、E 分别在BC 、AC 上,且BD=CE ,AD 与BE 相交于点F.(1)试说明⊿ABD ≌⊿BCE. (2)⊿AEF 与⊿ABE 相似吗?说说你的理由. (3)BD 2=AD ·DF 吗?请说明理由. (9分)24、(8分)如图:学校旗杆附近有一斜坡.小明准备测量学校旗杆AB 的高度,他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC =20米,斜坡坡面上的影长CD =8米,太阳光线AD 与水平地面成30°角,斜坡CD 与水平地面BC 成30°的角,求旗杆AB 的高度(精确到1米).25、(8分)(06苏州)如图,梯形ABCD 中.AB∥CD.且AB=2CD , E,F 分别是AB ,BC 的中点。
EF 与BD 相交于点M .(1)求证:△EDM∽△FBM; (2)若DB=9,求BM .26、(10分)(06潍坊)如图,在△ABC 的外接圆O 中,D 是弧BC 的中点,AD 交BC 于点E ,连结BD .(1)列出图中所有相似三角形;(2)连结DC ,若在弧 BAC 上任取一点K (点A 、B 、C 除外),连结CK DK DK ,,交BC 于点F ,DC 2=DF ·DK 是否成立?若成立,给出证明;若不成立,举例说明.EB A27、(12分)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A(3,0),B(0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D.(1)求直线AB 的解析式;(2)若S 梯形OBCD =3,求点C 的坐标; (3)在第一象限内是否存在点P,使得以P,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.参考答案1、D2、B3、A4、B5、A6、B7、D8、C9、C 10、B11、-1/4 12、(5-1)/213、2 14、略15、65° 16、2.4米17、1:3 18、4 19、60,40 20、1/2200521、略 22、20/3 23、略 24、20 25、(1)略(2)3 26、(1)△ABD ∽△AEC ∽△BED (2)成立。
证明△DFC ∽△DCK 27、(1)直线AB 解析式为:y=33-x+3. (2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x .由题意:3632+-x =334,解得4,221==x x (舍去)∴C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S 由OA=3OB ,得∠BAO =30°,AD=3CD . ∴ ACD S ∆=21CD ×AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,3).②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M .方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23.∵ 在Rt △P MO 中,∠OPM =30°, ∴ OM =21OP =43;PM =3OM =433.∴3P (43,433).方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .OMPM=x x 333+-=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P (43,433).④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标).当∠OPB =Rt ∠时,点P 在x轴上,不符合要求.综合得,符合条件的点有四个,分别是: 1P (3,3),2P (1,3),3P (43,433),4P (43,43).。