人教版初中数学七年级上册期末数学试卷(2019-2020学年湖南省长沙市天心区长郡教育集团
2019-2020学年最新人教版七年级上学期期末考试数学试卷(附答案)
![2019-2020学年最新人教版七年级上学期期末考试数学试卷(附答案)](https://img.taocdn.com/s3/m/7b14d6b051e79b896802268e.png)
2019-2020学年七年级上学期期末考试数学试卷一、选择题(本大题共16小题,1-6小题,每小题2分;7-16小题每小题2分,满分共42分,每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各式中结果为负数的是()A.﹣(﹣1)B.|﹣1|C.|1﹣2|D.﹣|﹣1|2.的相反数为()A.2B.﹣C.D.﹣23.下列各式中运算正确的是()A.4m﹣m=3B.a2b﹣ab2=0C.2a3﹣3a3=a3D.xy﹣2xy=﹣xy4.已知x=﹣5是方程k(x+4)﹣2k﹣x=14的解,则k值为()A.﹣3B.﹣2C.2D.35.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是()A.B.C.D.6.大量事实证明,环境污染治理刻不容缓,据统计,全球每分钟约有852.1万吨污水排入江河湖海,把852.1万用科学记数法表示为()A.0.8521×106B.8521×107C.8.521×106D.8.521×1077.在0,﹣1,﹣x,,3﹣x,,中,是单项式的有()A.3个B.4个C.5个D.6个8.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x元,那么根据题意,所列方程正确的是()A.0.7(1+0.6)x=x﹣36B.0.7(1+0.6)x=x+36C.0.7(1+0.6x)=x﹣36D.0.7(1+0.6x)=x+369.如图,点C在线段AB上,点D是AC的中点,如果CD=4,AB=14,那么BC长度为()A.4B.5C.6D.6.510.下列结论正确的是()A.﹣3ab2和b2a是同类项B.不是单项式C.a比﹣a大D.2是方程2x+1=4的解11.设n是自然数,则的值为()A.1或﹣1B.0C.﹣1D.0或112.在如图所示的2019年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A.27B.51C.65D.7213.如图,点C、D为线段AB上两点,AC+BD=a,且AD+BC=AB,则CD等于()A.a B.a C.a D.a14.如图所示的运算程序中,若开始输入的x值为11,则第1次输出的结果为14,第2次输出的结果为7,…,第2019次输出的结果为()A.1B.2C.4D.715.如图,OD平分∠AOB,OE平分∠BOC,∠COD=20°,∠AOB=140°,则∠DOE的度数为()A.35°B.45°C.55°D.60°16.已知整数a1、a2、a3、a4、…满足下列条件:a1=﹣1,a2=﹣|a1+2|,a3=﹣|a2+3|,a4=﹣|a3+4|,…,a n+1=﹣|a n+n+1|(n为正整数)依此类推,则a2019的值为()A.﹣1009B.﹣1010C.﹣2019D.﹣2020二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.若单项式与4x m y4的和是一个单项式,则m﹣n=.18.请阅读下面的诗句:“栖树一群鸦,鸦树不知数,四只栖一树,五只没处去,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗中谈到的鸦为只,树为棵.19.已知∠1=42°13′,则∠1的余角是,补角是.20.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为.三、解答题(本大题共7个小题,共66分,解答应写出文字说明、证明步骤成演算步骤)21.(8分)计算(1)﹣22×3+(﹣2)3÷9(2)|﹣36|×()+(﹣8)÷(﹣2)222.(14分)整式与方程(1)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.(2)解方程:①4﹣x=3(2﹣x)②=323.(6分)如图,已知A、B、C、D四点,根据下列语句画图:(1)画直线AB.(2)画射线AD、BC,交于点P.(3)在平面内找到一点O,使点O到A、B、C、D四点距离最短.24.(9分)一辆出租车从A地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>6且x<14,单位:km):(1)写出这辆出租车每次行驶的方向;(2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x表示);(3)这辆出租车一共行驶了多少路程(结果用x表示)?25.(9分)(1)观察下列各式,并完成填空:21﹣12=9=9×;75﹣57=18=9×;96﹣69=27=9×,45﹣54=﹣9=9×;27﹣72=﹣45=9×;19﹣91=﹣72=9×.(2)请用文字补全上述规律:把一个两位数的个位数字和十位数字交换位置,原数与所得新数的差等于的9倍;(3)请用含有a、b的等式表示上述规律,并说明它的正确性.26.(10分)某主题公园的门票价格规定如下表:某校初一甲、乙两班共105人去游主题公园,如果两班都以班为单位分别购票,则一共需付496元.(1)如果两班联合作为一个团体购票,可节约多少钱?(2)如甲班人数多于乙班人数,求两班各有多少名学生?27.(10分)如图,数轴上有A,B两点,AB=18,原点O是线段AB上的一点,OA=2OB.(1)求出A,B两点所表示的数;(2)若点C是线段AO上一点,且满足AC=CO+CB,求C点所表示的数;(3)若点E以3个单位长度/秒的速度从点A沿数轴向点B方向匀速运动,同时点F以1个单位长度/秒的速度从点B沿数轴向右匀速运动,并设运动时间为t秒,问t为多少时,E、F两点重合.并求出此时数轴上所表示的数.参考答案与试题解析一、选择题(本大题共16小题,1-6小题,每小题2分;7-16小题每小题2分,满分共42分,每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】逐项计算,再由负数的定义判断即可.【解答】解:∵﹣(﹣1)=1,|﹣1|=1,|1﹣2|=1,﹣|﹣1|=﹣1,∴为负数的是﹣|﹣1|,故选:D.【点评】本题主要考查相反数和绝对值的计算,掌握绝对值的计算是解题的关键.2.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数为﹣,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.【分析】根据合并同类项得到4m﹣m=3m,2a3﹣3a3=﹣a3,xy﹣2xy=﹣xy,于是可对A、C、D进行判断;由于a2b与ab2不是同类项,不能合并,则可对B进行判断.【解答】解:A、4m﹣m=3m,所以A选项错误;B、a2b与ab2不能合并,所以B选项错误;C、2a3﹣3a3=﹣a3,所以C选项错误;D、xy﹣2xy=﹣xy,所以D选项正确.故选:D.【点评】本题考查了合并同类项:把同类项的系数相加减,字母和字母的指数不变.4.【分析】把x=﹣5代入方程k(x+4)﹣2k﹣x=14得到关于k的一元一次方程,解之即可.【解答】解:把x=﹣5代入方程k(x+4)﹣2k﹣x=14得:﹣k﹣2k+5=14,解得:k=﹣3,【点评】本题考查了一元一次方程的解,正确掌握解一元一次方程的方法是解题的关键.5.【分析】根据面动成体,梯形绕下底边旋转是圆锥加圆柱,可得答案.【解答】解:梯形绕下底边旋转是圆锥加圆柱,故C正确;故选:C.【点评】本题考查了点、线、面、体,利用面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱.6.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:852.1万=8.521×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.【分析】单项式的定义:数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式.【解答】解:在0,﹣1,﹣x,,3﹣x,,中,是单项式的有:在0,﹣1,﹣x,共4个.故选:B.【点评】本题主要考查了单项式的定义,解题的关键是熟记定义.8.【分析】设这件夹克衫的成本价是x元,根据售价=成本价+36,即可得出关于x的一元一次方程,此题得解.【解答】解:设这件夹克衫的成本价是x元,依题意,得:0.7(1+0.6)x=x+36.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.【分析】由线段中点的定义可求AC的长,利用线段的和差关系可求BC的长度.【解答】解:∵点D是AC的中点,如果CD=4,∴AC=2CD=8∴BC=AB﹣AC=6故选:C.【点评】本题考查了两点间的距离,线段中点的定义,熟练运用线段的和差求线段的长度是本题的关键.10.【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.【解答】解:A、﹣3ab2和b2a是同类项,故本选项符合题意;B、是单项式,故本选项不符合题意;C、当a=0时,a=﹣a,故本选项不符合题意;D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;故选:A.【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.11.【分析】分n为奇数和偶数两种情况,根据有理数乘方运算法则计算可得.【解答】解:若n为奇数,则n+2也是奇数,此时==﹣1;若n为偶数,则n+2也为偶数,此时==1;故选:A.【点评】本题主要考查有理数的乘方,解题的关键是掌握有理数的乘方的运算法则和分类讨论思想的运算.12.【分析】根据日历中竖列相邻三个数的特点,用代数式表示出三个竖列相邻数的和,根据日历上的数字都是整数,其和为整数可得结论【解答】解:设数列中中间数为x,则上面的数为(x﹣7),下面的数为(x+7).由题意,竖列中三个相邻的数的和为:x+x﹣7+x+7=3x.由于65不是3的整倍数,所以三个数的和不可能是C.故选:C.【点评】本题考查了日历上竖列相邻数的特点及一元一次方程的应用.找到竖列上相邻三个数的特点是解决本题的关键.13.【分析】把AC+BD=a代入AD+BC=AB得出(a+CD))=2CD+a,求出方程的解即可.【解答】解:∵AD+BC=AB=AC+CD+BD+CD,AC+BD=a,AB=AC+BD+CD,∴(a+CD))=2CD+a,解得:CD=a,故选:B.【点评】本题考查了求两点之间的距离,能得出关于CD的方程是解此题的关键.14.【分析】通过计算发现数据之间的规律,利用规律推理具体数的结果.【解答】解:第1次输出为14,第2次输出为7,第3次输出为10,第4次输出为5,第5次输出为8,第6次输出为4,第7次输出为2,第8次输出为1,第9次输出为4,…即:14,7,10,5,8,4,2,1,4,2,1,…从第6次开始,每4,2,1三个数循环一次,所以(2019﹣5)÷3=671…1.故选:C.【点评】本题考查学生的计算和推理能力,找出数据循环的规律,难点是找出规律.15.【分析】首先根据OD平分∠AOB,求出∠AOD、∠BOC的度数是多少;然后求出∠COE的度数,即可求出∠DOE的度数是多少.【解答】解:∵OD平分∠AOB,∠AOB=140°,∴∠AOD=∠AOB=70°,∴∠BOC=∠AOB﹣∠AOD﹣∠COD=50°,∴∠COE=∠BOC=25°,∴∠DOE=∠COD+∠COE=45°.故选:B.【点评】此题主要考查了角的计算,以及角平分线的定义和应用,要熟练掌握,解答此题的关键是要明确:角平分线可以得到两个相等的角.16.【分析】根据已知条件代入求出数据,再找出数据之间的规律求解即可.【解答】解:把a1=﹣1代入得a2=﹣1,依此类推得a3=﹣2,a4=﹣2,a5=﹣3,类比可得a2n﹣1=﹣n,a2n=﹣n,所以a2019=a2×1010﹣1=﹣1010故选:B.【点评】本题主要考查学生代数求值,通过观察发现数据之间的规律,关键是找出规律.二、填空题(本大题共4个小题;每小题3分,共12分.把答案写在题中横线上)17.【分析】因单项式与4x m y4的和是一个单项式,说明单项式与4x m y4能合并,即是同类项,结合同类项的定义中相同字母的指数也相同的条件,可求m和n的值,再求m ﹣n的值即可.【解答】解:∵单项式与4x m y4的和是一个单项式,∴单项式与4x m y4是同类项,∴m=6,2n=4即m=6,n=2.∴m﹣n=6﹣2=4.【点评】本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项.特别注意运用同类项的定义中相同字母的指数也相同的条件.18.【分析】本题涉及两种分配方法,关键是不管怎么分配鸦的总数是不变的,可设树有x棵,即可列方程:4x+5=5(x﹣1)求解.【解答】解:设树有x棵依题意列方程:4x+5=5(x﹣1)解得:x=10所以树有10棵,鸦的个数为:10×4+5=45故答案为:45,10【点评】本题是典型的分配问题.不管怎么分配鸦的个数是不变的是解题关键.19.【分析】根据余角及补角的定义进行计算即可.【解答】解:∵∠1=42°13′,∴∠1的余角是90°﹣42°13′=47°47′;∠1的补角是:180°﹣42°13′=137°47′.故答案为:47°47′,137°47′.【点评】本题考查的是余角及补角的定义,如果两个角的和等于90°(直角),就说这两个角互为余角.如果两个角的和等于180°(平角),就说这两个角互为补角.20.【分析】由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.【解答】解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.【点评】本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.三、解答题(本大题共7个小题,共66分,解答应写出文字说明、证明步骤成演算步骤)21.【分析】(1)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.注意乘法分配律的简便计算.【解答】解:(1)﹣22×3+(﹣2)3÷9=﹣4×3+(﹣8)÷9=﹣12﹣=﹣12;(2)|﹣36|×()+(﹣8)÷(﹣2)2=36×()+(﹣8)÷4=36×﹣36×﹣2=27﹣30﹣2=﹣5.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.22.【分析】(1)先去掉括号,然后合并同类项,再把x、y的值代入进行计算即可得解.(2)根据去分母、去括号,再移项,合并同类项,把x的系数化为1解答即可.【解答】解:(1)原式=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy,把x=﹣1,y=﹣2代入﹣2x2y+7xy=﹣2×(﹣1)2×(﹣2)+7×(﹣1)×(﹣2)=18;(2)①4﹣x=6﹣3x﹣x+3x=6﹣42x=2x=1;②2(x+1)=12+x﹣62x+2=12+x﹣62x﹣x=12﹣6﹣2x=4.【点评】本题考查了整式加减,先化简然后再代入数据进行求值更加简便,整式的加减实质就是去括号,合并同类项的运算.23.【分析】(1)利用直线的定义得出答案;(2)利用射线的定义得出答案;(3)连接AC、BD,其交点即为点O.【解答】解:(1)如图所示,直线AB即为所求.(2)如图所示,射线AD、BC即为所求.(3)如图所示,点O即为所求.【点评】本题考查的是直线、射线、线段的定义及性质,解答此题的关键是熟知:直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.24.【分析】(1)以A为原点,根据数的符号即可判断车的行驶方向;(2)将四次行驶路程(包括方向)相加,根据判断出租车的位置;(3)将四次行驶路程的绝对值相加即可.【解答】(1)解:第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)x+()+(x﹣5)+2(6﹣x)=7﹣∵x>6且x<14,∴7﹣>0∴经过连续4次行驶后,这辆出租车所在的位置是向东(7﹣)km.(3):|x|+||+|x﹣5|+|2(6﹣x)|=.答:这辆出租车一共行驶了()km的路程.【点评】本题考查了整式的加减,绝对值等知识点的应用,主要考查将实际问题转化为数学问题能力,用数学解决实际问题,题型较好.25.【分析】(1)通过观察找出等式之间的关系,容易得:两位数﹣十位与个位互换的两位数=9×(十位数字﹣个位数字),代入数就可以得出答案;(2)总结(1)可以得出答案;(3)用字母代替数字,再用多项式的去括号合并同类项可以得出结论.【解答】解:(1)21﹣12=9=9×1;75﹣57=18=9×2;96﹣69=27=9×3,45﹣54=﹣9=9×(﹣1);27﹣72=﹣45=9×(﹣5);19﹣91=﹣72=9×(﹣8).故答案为:1,2,3;(﹣1),(﹣5),(﹣8);(2)观察(1)中各式,可发现:原两位数﹣十位与个位互换的两位数=9×(原两位数的十位数字﹣原两位数的个位数字),故答案为:原数十位数字与个位数字的差;(3)设原数十位数字为a,个位数字为b,则(10a+b)﹣(10b+a)=9(a﹣b)(10a+b)﹣(10b+a)=10a+b﹣10b﹣a=9a﹣9b=9(a﹣b)【点评】本题考查学生的通过观察发现规律,并熟练进行整式加减运算,即去括号和合并同类项,关键是发现规律.26.【分析】(1)根据节约费用=496﹣总人数×每张门票价钱,即可求出结论;(2)设甲班有x名学生,则乙班有(105﹣x)名学生,由4.5×105≠496可得出x≥55,再根据总价=4.5×甲班人数+5×乙班人数,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)496﹣105×4=76(元).答:如果两班联合作为一个团体购票,可节约76元钱.(2)设甲班有x名学生,则乙班有(105﹣x)名学生,∵4.5×105=472.5≠496,∴x>51,105﹣x≤50.∴x≥55.根据题意得:4.5x+5(105﹣x)=496,解得:x=58,∴105﹣x=47.答:甲班有58名学生,乙班有47名学生.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)根据数量关系,列式计算;(2)找准等量关系,正确列出一元一次方程.27.【分析】(1)由OA=2OB,OA+OB=18即可求出OA、OB;(2)设OC=x,则AC=12﹣x,BC=6+x,根据AC=CO+CB列出方程即可解决;(3)由点E运动路程=18+点F运动路程,可列方程,可求t的值.【解答】解:(1)∵OA+OB=AB=18,且OA=2OB∴OB=6,OA=12,∴A,B两点所表示的数分别是﹣12,6;(2)设OC=x,则AC=12﹣x,BC=6+x,∵AC=CO+CB,∴12﹣x=x+6+x,∴x=2,∴OC=2,∴C点所表示的数是﹣2;(3)根据题意得:3t=18+t,∴t=9∴当t=9时,E、F两点重合,此时数轴上所表示的数为OB+9=6+9=15.【点评】本题考查一元一次方程的应用,实数与数轴以及数轴上两点之间距离公式的运用,找等量关系列出方程是解决问题的关键,属于中考常考题型.。
2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷 (解析版)
![2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷 (解析版)](https://img.taocdn.com/s3/m/c3bbea47ba0d4a7303763a01.png)
2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷一、选择题(共12小题).1.(3分)2019的倒数是()A.2019B.﹣2019C.D.﹣2.(3分)某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃3.(3分)在“北京2008”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460 000 000帕的钢材.将460 000 000用科学记数法表示为()A.46×107B.4.6×109C.4.6×108D.0.46×109 4.(3分)下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an25.(3分)设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较6.(3分)关于x的方程=1的解为2,则m的值是()A.2.5B.1C.﹣1D.37.(3分)已知方程7x+2=3x﹣6与x﹣1=k的解相同,则3k2﹣1的值为()A.18B.20C.26D.﹣268.(3分)若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m 的值为()A.8B.﹣8C.6D.﹣69.(3分)如图,点C在线段AB上,点E是AC中点,点D是BC中点.若ED=6,则线段AB的长为()A.6B.9C.12D.1810.(3分)用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°11.(3分)如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于()A.90°B.135°C.150°D.120°12.(3分)若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.二.填空题(共8题;每小题3分,共24分)13.(3分)数轴上表示1的点和表示﹣2的点的距离是.14.(3分)已知|a﹣1|+(b+2)2=0,则(a+b)2019的值是.15.(3分)若a﹣5b=3,则17﹣3a+15b=.16.(3分)多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=.17.(3分)某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为元.18.(3分)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜场.19.(3分)已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.20.(3分)如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC =°.三、解答题(共6小题,共60分)21.(5分)计算:﹣10+8÷(﹣2)2+(﹣4)×(﹣3).22.(10分)解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.23.(16分)列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过50张50张以上每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?24.(14分)线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.25.(7分)已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.(1)求a,b的值;(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.26.(8分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.①此时t的值为;(直接填空)②此时OE是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.参考答案一、选择题(共12小题).1.(3分)2019的倒数是()A.2019B.﹣2019C.D.﹣解:2019的倒数是:.故选:C.2.(3分)某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃解:﹣2+12﹣8=10﹣8=2(℃).答:半夜的气温是2℃.故选:B.3.(3分)在“北京2008”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460 000 000帕的钢材.将460 000 000用科学记数法表示为()A.46×107B.4.6×109C.4.6×108D.0.46×109解:460 000 000=4.6×108.故选:C.4.(3分)下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an2解:A.所含的字母相同,并且相同字母的指数也分别相同,是同类项;B.所含的字母相同,并且相同字母的指数也分别相同,是同类项;C.所含的字母相同,并且相同字母的指数也分别相同,是同类项;D.所含的字母相同,但相同字母的指数不相同,所以不是同类项.故选:D.5.(3分)设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>1,则B>A,故选:A.6.(3分)关于x的方程=1的解为2,则m的值是()A.2.5B.1C.﹣1D.3解:把x=2代入方程得:=1,解得:m=1,故选:B.7.(3分)已知方程7x+2=3x﹣6与x﹣1=k的解相同,则3k2﹣1的值为()A.18B.20C.26D.﹣26解:由7x+2=3x﹣6,得x=﹣2,由7x+2=3x﹣6与x﹣1=k的解相同,得﹣2﹣1=k,解得k=﹣3.则3k2﹣1=3×(﹣3)2﹣1=27﹣1=26,故选:C.8.(3分)若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m 的值为()A.8B.﹣8C.6D.﹣6解:根据题中的新定义得:2△m=2m+2+m=﹣16,移项合并得:3m=﹣18,解得:m=﹣6.故选:D.9.(3分)如图,点C在线段AB上,点E是AC中点,点D是BC中点.若ED=6,则线段AB的长为()A.6B.9C.12D.18解:∵点E是AC中点,点D是BC中点,∴AE=CE=AC,CD=BD=BC,∴CE+CD=AC+BC,即ED=(AC+BC)=AB,∴AB=2ED=12;故选:C.10.(3分)用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.11.(3分)如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于()A.90°B.135°C.150°D.120°解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故选:B.12.(3分)若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.解:把x=1代入得:﹣=1,去分母得:4k+2a﹣1+kb﹣6=0,即(b+4)k=7﹣2a,∵不论k取什么实数,关于x的方程﹣=1的根总是x=1,∴,解得:a=,b=﹣4,∴a+b=﹣,故选:C.二.填空题(共8题;每小题3分,共24分)13.(3分)数轴上表示1的点和表示﹣2的点的距离是3.解:∵|1﹣(﹣2)|=3,∴数轴上表示﹣2的点与表示1的点的距离是3.故答案为:3.14.(3分)已知|a﹣1|+(b+2)2=0,则(a+b)2019的值是﹣1.解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,(a+b)2019=(1﹣2)2019=﹣1.故答案为:﹣1.15.(3分)若a﹣5b=3,则17﹣3a+15b=8.解:∵a﹣5b=3,∴17﹣3a+15b=17﹣3(a﹣5b),=17﹣3×3,=17﹣9,=8.故答案为:8.16.(3分)多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=﹣2.解:∵多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x2、x3项,∴a+1=0,b﹣2=0,解得a=﹣1,b=2.∴ab=﹣2.故答案为:﹣2.17.(3分)某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为100元.解:该商品每件的进价为x元,依题意,得:150×80%﹣x=20%x,解得:x=100.故答案为:100.18.(3分)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜4场.解:设甲队胜了x场,则平了(6﹣x)场,3x+(6﹣x)=14,解得:x=4,答:甲队胜了4场.19.(3分)已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是3或13 cm.解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.20.(3分)如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC =40°.解:∵∠COE=100°,∴∠DOE=80°,∵OB平分∠EOD,∴∠BOD=40°,∴∠AOC=40°,故答案为:40.三、解答题(共6小题,共60分)21.(5分)计算:﹣10+8÷(﹣2)2+(﹣4)×(﹣3).解:﹣10+8÷(﹣2)2+(﹣4)×(﹣3)=﹣10+8÷4+12=﹣10+2+12=4.22.(10分)解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.解:(1)去括号得:2x﹣4﹣12x+3=5﹣5x,移项得:2x﹣12x+5x=5+4﹣3,合并得:﹣5x=6,解得:x=﹣1.2;(2)去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x+3﹣12=12x﹣10x﹣1,移项得:6x﹣12x+10x=﹣1﹣3+12,合并得:4x=8,解得:x=2.23.(16分)列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过50张50张以上每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,解得:m=10;当20<m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.24.(14分)线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.25.(7分)已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.(1)求a,b的值;(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.解:(1)∵多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关,∴(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)=(2﹣2b)x2+(a+3)x+ty3﹣5my﹣3,则2﹣2b=0,a+3=0,解得:b=1,a=﹣3;(2)∵当y=1时,代数式的值3,则t﹣5m﹣3=3,故t﹣5m=6,∴当y=﹣1时,原式=﹣t+5m﹣3=﹣6﹣3=﹣9.26.(8分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC都在直线AB的上方.(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.①此时t的值为3;(直接填空)②此时OE是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.解:(1)①∵∠AOC=30°,∠AOB=180°,∴∠BOC=∠AOB﹣∠AOC=150°,∵OD平分∠BOC,∴∠BOD=BOC=75°,∴t==3.②是,理由如下:∵转动3秒,∴∠AOE=15°,∴∠COE=∠AOC﹣∠AOE=15°,∴∠COE=∠AOE,即OE平分∠AOC.(2)三角板旋转一周所需的时间为==72(秒),射线OC绕O点旋转一周所需的时间为=45(秒),设经过x秒时,OC平分∠DOE,由题意:①8x﹣5x=45﹣30,解得:x=5,②8x﹣5x=360﹣30+45,解得:x=125>45,不合题意,③∵射线OC绕O点旋转一周所需的时间为=45(秒),45秒后停止运动,∴OE旋转345°时,OC平分∠DOE,∴t==69(秒),综上所述,t=5秒或69秒时,OC平分∠DOE.(3)如图3中,由题意可知,OD旋转到与OB重合时,需要90÷5=18(秒),OC旋转到与OB重合时,需要(180﹣30)÷8=18(秒),所以OD比OC早与OB重合,设经过x秒时,OC平分∠DOB,由题意:8x﹣(180﹣30)=(5x﹣90),解得:x=,所以经秒时,OC平分∠DOB.。
2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学模拟试卷解析版
![2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学模拟试卷解析版](https://img.taocdn.com/s3/m/59e59b23fe4733687f21aa62.png)
2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.﹣3B.﹣1C.2D.42.(3分)下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4D.a3+a2=a53.(3分)如图直线l1∥l2,则∠α的大小是()A.120°B.130°C.140°D.150°4.(3分)下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=55.(3分)下列结论中正确的是()A.单项式的系数是,次数是4B.单项式m的次数是1,没有系数C.多项式2x2+xy2+3是二次三项式D.在,2x+y,,,,0中整式有4个6.(3分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A.B.C.D.7.(3分)若A为五次多项式,B为四次多项式,则A+B一定是()A.次数不高于九次多项式B.四次多项式C.五次多项式D.次数不定8.(3分)如图,OB是∠AOC内部的一条射线,把三角尺的角的顶点放在点O处,转动三角尺,当三角尺的边OD平分∠AOB时,三角尺的另一边OE也正好平分∠BOC,则∠AOC的度数为()A.100°B.110°C.120°D.130°9.(3分)猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a亥b=ab﹣b,则满足等式的x的值为()A.B.C.D.10.(3分)如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.3个B.4个C.5个D.6个11.(3分)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④12.(3分)如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒二、填空题(共6小题,18分)13.(3分)若∠α=31°42′,则∠α的补角的度数为.14.(3分)已知5x m+2y3与是同类项,则(﹣m)3+n等于.15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值等于.16.(3分)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,则他家距离学校km.17.(3分)如图,在平行线a,b之间放置一个直角三角形,三角形的顶点A,C分别在直线a,b 上,∠ACB=90°,∠BAC=20°,则∠1+∠2=.18.(3分)已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON =.三、解答题(共10题,66分)19.(8分)解方程(1)7y﹣3(3y+2)=6(2)+1=x﹣20.(6分)先化简,再求值:5﹣2(a2b﹣ab2+2)+(3ab2+a2b﹣1),其中a=2,b=﹣1.21.(6分)一元一次方程解答题:已知关于x的方程与x﹣1=2(2x﹣1)的解互为倒数,求m的值.22.(6分)立体几何的三视图:若干个棱长为2cm的正方体摆放成如图所示的形状,回答下列问题:(1)画出该图形的三视图;(2)它的表面积是多少?23.(6分)角度计算题:如图,已知O为AD上一点,∠AOB与∠AOC互补,ON平分∠AOB,OM平分∠AOC,若是∠MON=42°,求∠AOB与∠AOC的度数.24.(6分)线段计算题:已知线段AB=6,在直线AB上取一点C,恰好使AC=2BC,点D为CB 的中点,求线段AD的长.25.(6分)如图,AC,BD相交于点O,AC平分∠DCB,CD⊥AD,∠ACD=45°,∠BAC=60°.(1)证明:AD∥BC;(2)求∠EAD的度数;(3)求证:∠AOB=∠DAC+∠CBD.26.(6分)某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠.乙家的规定如下表:表格说明:批发价分段计算:如:某人批发200千克的苹果;则总费用=50×8×95%+100×8×85%+50×8×75%.(1)如果他批发240千克苹果选择哪家批发更优惠;(2)设他批发x千克苹果(x>100),当x取何值时选择两家批发所花费用一样多.27.(8分)如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠=∠()∴∠3=∠∴AD∥BE()28.(8分)综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(l)∠DPC=;(2)如图②,若三角板PBD保持不动,三角板∠PAC绕点P逆时针旋转,转速为10°/秒,转动一周三角板PAC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立;(3)如图③,在图①基础上,若三角板PAC的边PA从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC 转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?参考答案与试题解析一、选择题(每小题3分,共36分)1.解:∵|﹣1|<|2|<|﹣3|<|4|,∴﹣1最接近标准,故选:B.2.解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.3.解:∵直线ll1∥l2,∴∠BCD=180°﹣130°=50°,∴∠α与∠ACD是对顶角,∴∠α=70°+50°=120°.故选:A.4.解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.5.解:A、单项式的系数是的系数是π,次数是3,不符合题意;B、单项式m的次数是1,系数是1,不符合题意;C、多项式2x2+xy2+3是三次三项式,不符合题意;D、在,2x+y,,,,0中整式有2x+y,,,0,一共4个,符合题意.6.解:A、圆柱是由一长方形绕其一边长旋转而成的;B、圆锥是由一直角三角形绕其直角边旋转而成的;C、该几何体是由直角梯形绕其下底旋转而成的;D、该几何体是由直角三角形绕其斜边旋转而成的.故选:D.7.解:∵A是五次多项式,B是四次多项式,∴A+B的次数是5.∴A+B一定是五次多项式,故选:C.8.解:∵OD边平分∠AOB,OE平分∠BOC,∴∠BOD=∠AOB,∠BOE=∠BOC,∴∠EOD=∠AOB+∠BOC=∠AOC,∵∠EOD=60°,∴∠AOC=2×60°=120°.故选:C.9.解:根据题中的新定义得:×6﹣6=﹣1,整理得:2(1﹣2x)﹣6=﹣1,去括号得:2﹣4x﹣6=﹣1,移项合并得:﹣4x=3,解得:x=﹣,故选:B.10.解:如图,∵DC∥EF,∴∠BCD=∠BFE,∵EG∥BC,∴∠EFB=∠GEF,∵DC∥EF,∴∠EMD=∠GEF=∠GMC,∴∠EMD=∠CDH,∵DH∥EG∥BC,∴∠CDH=∠DCB.∴与∠DCB相等的角的个数为5.故选:C.11.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选:D.12.解:设当AB=8时,运动时间为t秒,由题意得,6t+2t+8=16﹣(﹣8)或6t+2t=16﹣(﹣8)+8,解得:t=2或t=4,故选:C.二、填空题(共6小题,18分)13.解:∵∠α=31°42′,∴∠α的补角的度数=180°﹣31°42′=148°18′.故答案为:148°18′.14.解:∵5x m+2y3与是同类项,∴m+2=3,3=﹣n+1,解得:m=1,n=﹣2,∴(﹣m)3+n=﹣1﹣2=﹣3.故答案为:﹣3.15.解:把x=1代入得:a﹣3b+4=7,即a﹣3b=3,则当x=﹣1时,原式=﹣a+3b+4=﹣3+4=1.故答案为:1.16.解:10分钟=小时,5分钟=小时,设他家距离学校xkm,根据题意得:+=﹣,解得:x=15,即他家距离学校15km,故答案为:15.17.解:∵a∥b,∴∠DAC+∠ECA=180°,又∵∠BAC=30°,∠ACB=90°,∴∠1+∠2=180°﹣30°﹣90°=60°,故答案为:70°18.解:①如图,当OC在∠AOB外部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM+∠BON=40°;②如图,当OC在∠AOB内部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM﹣∠BON=20°,故答案为:40°或20°.三、解答题(共10题,66分)19.解:(1)去括号,得7y﹣9y﹣6=6移项,得7y﹣9y=6﹣6合并同类项,得﹣2y=12系数化1,得y=﹣6(2)去分母,得2(x+1)+6=6x﹣3(x﹣1)去括号,得2x+2+6=6x﹣3x+3移项,得2x﹣6x+3x=3﹣2﹣6合并同类项,得﹣x=﹣5系数化1,得x=520.解:原式=5﹣2a2b+2ab2﹣4+3ab2+a2b﹣1=﹣a2b+5ab2将a=2,b=﹣1代入上式,原式=4+10=14;21.解:方程x﹣1=2(2x﹣1),去括号得:x﹣1=4x﹣2,解得:x=,将x=3代入方程得,=3﹣,去分母得:9﹣3m=18﹣2m,解得:m=﹣9.22.解:(1)三视图如图所示:(2)它的表面积为:(7+5+2+1)×2×(2×2)=120 cm223.解:设∠AOB=x°,因为∠AOC与∠AOB互补,则∠AOC=180°﹣x°.由题意,得﹣=42.∴180﹣x﹣x=84,∴﹣2x=﹣96,解得x=48,故∠AOB=48°,∠AOC=132°.24.解:①当点C在线段AB上时,如图1,∵AC=2BC,设BC=x,则AC=2x,∵AB=AC+BC,∴6=2x+x,∴x=2,∴BC=2,AC=4,∵点D是CB的中点,∴CD=BD=BC=1,∴AD=AC+CD=4+1=5;②当点C在线段AB的延长线上时,如图2,设BC=x,AC=2BC=2x,∵AB=AC﹣BC=x=6,∴x=6,∴BC=6,AC=12,AB=6,∵点D是CB的中点,∴BD=CD=BC=3,∴AD=AB+BD=6+3=9;③当点C在BA的延长线上时,明显,此情况不存在;综上所述,AD的长为5或9.25.(1)证明:∵AC平分∠DCB,∴∠BCD=2∠ACD=2×45°=90°,∵CD⊥AD,∴∠ADC=90°,∴∠BCD+∠ADC=90°+90°=180°,∴AD∥BC;(2)解:∵AC平分∠DCB,∴∠ACB=∠ACD=45°,∵AD∥BC∴∠DAC=∠ACB=45°,∠EAD=180°﹣∠DAC﹣∠BAC=180°﹣45°﹣60°=75°;(3)证明:过点O作OF∥AD,∵AD∥BC,∴∠ADB=∠DBC,OF∥BC,∴∠AOF=∠DAC,∠FOB=∠CBD,∴∠AOB=∠AOF+∠FOB=∠DAC+∠CBD.26.解:(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150﹣50)×8×85%+(240﹣150)×8×75%=1600(元).∵1632>1600,在乙家批发更优惠.(2)当100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(x﹣50)×8×85%=6.8x+40.不可能相等;当x>150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(150﹣50)×8×85%+(x﹣150)×8×75%=6x+160.∵6.8x=6x+160,∴x=200.综上所得:当x=200时他选择任何一家批发所花费用一样多.27.解:∵AB∥CD(已知),∴∠4=∠BAF(两直线平行,同位角相等),∵∠3=∠4(已知),∴∠3=∠BAF(等量代换),∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠CAD(角的和差),∴∠3=∠CAD,∴AD∥BE(内错角相等,两直线平行).故答案为:BAF;两直线平行,同位角相等;BAF;等量代换;等式的性质;角的和差;CAD;内错角相等,两直线平行.28.解:(1)∵∠BPD=∠D=45°,∠APC=60°,∴∠DPC=180°﹣45°﹣60°=75°,故答案为:75°;(2)如图1,此时,BD∥PC成立,∵PC∥BD,∠DBP=90°,∴∠CPN﹣∠DBP=90°,∵∠C=30°,∴∠CPA=60°,∴∠APN=30°,∵转速为10°/秒,∴旋转时间为3秒;如图2,PC∥BD,∵PC∥BC,∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠C=30°,∴∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转D的角度为180°=30°=210°,∵转速为10°/秒,∴旋转时间为21秒,综上所诉,当旋转时间为3或21秒时,PC∥DB成立;(3)设旋转的时间为t秒,由题知,∠APN=3t°,∠BPM=2t°,∴∠BPN=180°﹣∠BPM=180°﹣2t°,∴∠CPD=360°﹣∠BPD﹣∠BPN﹣∠APN﹣∠APC=360°﹣45°﹣(180°﹣2t°)﹣(3t°)﹣60°=75°﹣t°,当∠CPD=∠BPM,即2t°=75°﹣t°,解得:t=25,∴当∠CPD=∠BPM,求旋转的时间是25秒.。
2019-2020学年新人教版七年级上学期期末考试数学试卷含参考答案
![2019-2020学年新人教版七年级上学期期末考试数学试卷含参考答案](https://img.taocdn.com/s3/m/51ba692901f69e3142329413.png)
2019-2020学年七年级上学期期末考试数学试卷一.选择题(共8小题)1.﹣5的绝对值是()A.5B.﹣C.﹣5D.2.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A.a B.b C.c D.d3.如图是一个由两个小正方体和一个圆锥组成的几何体,它的主视图是()A.B.C.D.4.下列说法正确的是()A.﹣的系数是﹣2B.x2+x﹣1的常数项为1C.22ab3的次数是6次D.2x﹣5x2+7是二次三项式5.下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.6.已知等式3a=2b+5,则下列等式不一定成立的是()A.3a﹣5=2b B.3a+1=2b+6C.3ac=2bc D.a=+7.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A.B.C.D.8.如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOD=90°,若∠BOD:∠BOE=1:2,则∠AOF的度数为()A.70°B.75°C.60°D.54°二.填空题(共6小题)9.把多项式2m2﹣4m4+2m﹣1按m的升幂排列.10.长春市奥林匹克公园于2018年年底建成,它的总占地面积约为528000平方米,528000这个数字用科学记数法表示为.11.如图,∠AOB=72°32′,射线OC在∠AOB内,∠BOC=30°40′,则∠AOC=.12.今年十一小长假期间,迟老师一家三口开着一辆轿车去长春市净月潭森林公园度假,若门票每人a元,进入园区的轿车每辆收费40元,则迟老师一家开车进入净月潭森林公园园区所需费用是元(用含a的代数式表示).13.如图,能与∠1构成同位角的角有个.14.如图,在三角形ABC中,AB⊥AC于点A,AB=6,AC=8,BC=10,点P是线段BC上的一点,则线段AP的最小值为.三.解答题(共10小题)15.计算:(1)(+﹣)×(﹣48)(2)(﹣5)3×(﹣)+32÷(﹣2)2×16.计算:(1)3x+2(x﹣)﹣(x+1)(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)17.解下列一元一次方程:(1)4x+7=32﹣x(2)8x﹣3(3x+2)=1(3)2(y﹣)=(3y﹣2)(4)﹣=118.先化前,再求值:2(a2+2a﹣1)﹣3(a2﹣2a﹣3),其中a=﹣2.19.如图,点P是∠AOB的边OB上的一点,点M是∠AOB内部的一点,按下述要求画图,并回答问题:(1)过点M画OA的平行线MN;(2)过点P画OB的垂线PC,交OA于点C;(3)点C到直线OB的距离是线段的长度.20.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG相交于点H,∠C=∠EFG,∠BFG=∠AEM,求证:AB∥CD.(完成下列填空)证明:∵∠BFG=∠AEM(已知)且∠AEM=∠BEC()∴∠BEC=∠BFG(等量代换)∴MC∥()∴∠C=∠FGD()∵∠C=∠EFG(已知)∴∠=∠EFG,(等量代换)∴AB∥CD()21.如图已知点C为AB上一点,AC=12cm,CB=AC,D、E分别为AC、AB的中点,求DE的长.22.如图,已知∠ABC+∠ECB=180°,∠P=∠Q.求证:∠1=∠2.23.如图,直线AB、CD相交于点O,OF平分∠AOE,OF⊥CD,垂足为O.(1)写出图中所有与∠AOD互补的角;(2)若∠AOE=110°,求∠BOD的度数.24.感知:如图①,若AB∥CD,点P在AB、CD内部,则∠P、∠A、∠C满足的数量关系是.探究:如图②,若AB∥CD,点P在AB、CD外部,则∠APC、∠A、∠C满足的数量关系是.请补全以下证明过程:证明:如图③,过点P作PQ∥AB∴∠A=∵AB∥CD,PQ∥AB∴∥CD∴∠C=∠∵∠APC=∠﹣∠∴∠APC=应用:(1)如图④,为北斗七星的位置图,如图⑤,将北斗七星分别标为A、B、C、D、E、F、G,其中B、C、D三点在一条直线上,AB∥EF,则∠B、∠D、∠E满足的数量关系是.(2)如图⑥,在(1)问的条件下,延长AB到点M,延长FE到点N,过点B和点E分别作射线BP和EP,交于点P,使得BD平分∠MBP,EN平分∠DEP,若∠MBD=25°,则∠D﹣∠P =°.参考答案与试题解析一.选择题(共8小题)1.【分析】根据负数的绝对值是它的相反数是,可得答案.【解答】解:﹣5的绝对值是5.故选:A.【点评】本题考查了绝对值,利用了绝对值的性质是解题关键.2.【分析】根据实数的大小比较解答即可.【解答】解:由数轴可得:a<b<c<d,故选:D.【点评】此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3.【分析】根据题目中的几何图形,可以得到它的主视图,从而可以解答本题.【解答】解:由两个小正方体和一个圆锥组成的几何体,它的主视图是,故选:B.【点评】本题考查简单组合的三视图,解答本题的关键是明确题意,画出相应的图形.4.【分析】根据单项式和多项式的有关概念逐一求解可得.【解答】解:A.﹣的系数是﹣,此选项错误;B.x2+x﹣1的常数项为﹣1,此选项错误;C.22ab3的次数是4次,此选项错误;D.2x﹣5x2+7是二次三项式,此选项正确;故选:D.【点评】本题考查多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.5.【分析】根据三棱柱的展开图的特点进行解答即可.【解答】A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误.故选:B.【点评】此题主要考查了几何体展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.6.【分析】根据等式的性质,依次分析各个选项,选出等式不一定成立的选项即可.【解答】解:A.3a=2b+5,等式两边同时减去5得:3a﹣5=2b,即A项正确,B.3a=2b+5,等式两边同时加上1得:3a+1=2b+6,即B项正确,C.3a=2b+5,等式两边同时乘以c得:3ac=2bc+5c,即C项错误,D.3a=2b+5,等式两边同时除以3得:a=+,即D项正确,故选:C.【点评】本题考查了等式的性质,正确掌握等式的性质是解题的关键.7.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选:D.【点评】本题考查了角的表示方法的应用,主要考查学生的理解能力和观察图形的能力.8.【分析】根据角平分线的定义和邻补角的性质计算即可.【解答】解:∵∠BOD:∠BOE=1:2,OE平分∠BOC,∴∠BOD:∠BOE:∠EOC=1:2:2,∴∠BOD=36°,∴∠AOC=36°,又∵∠COF=∠DOF=90°,∴∠AOF=90°﹣36°=54°.故选:D.【点评】本题考查的是对顶角、邻补角的性质以及角平分线的定义,掌握对顶角相等、邻补角之和等于180°是解题的关键.二.填空题(共6小题)9.【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列.【解答】解:多项式2m2﹣4m4+2m﹣1按m的升幂排列为﹣1+2m+2m2﹣4m4,故答案为:﹣1+2m+2m2﹣4m4.【点评】本题考查多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.10.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528000=5.28×105,故答案为:5.28×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.【分析】根据图形进行角的计算即可【解答】解:∠AOC=∠AOB﹣∠BOC=72°32′﹣30°40′=41°52′,故答案为:41°52′.【点评】本题考查的是角的计算,掌握度、分的转化是解本题的关键.12.【分析】根据题意得:每辆车的收费与每个人门票之和列出代数式即可.【解答】解:根据题意得:(40+3a),故答案为:(40+3a)【点评】此题考查了列代数式,弄清题意是解本题的关键.13.【分析】两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.依此求解即可.【解答】解:由同位角的定义知,能与∠1构成同位角的角有∠2、∠3共2个.故答案为2【点评】本题考查了同位角、内错角、同旁内角.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.14.【分析】根据三角形的面积公式即可得到结论.【解答】解:∵AB⊥AC,∴∠BAC=90°,当AP⊥BC时,AP的值最短,∴AP===,∴线段AP的最小值为,故答案为:.【点评】本题考查了垂线段最短,三角形的面积,熟练掌握勾股定理的逆定理即可得到结论.三.解答题(共10小题)15.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算.【解答】解:(1)(+﹣)×(﹣48)=×(﹣48)+×(﹣48)﹣×(﹣48)=﹣40﹣42+46=﹣36;(2)(﹣5)3×(﹣)+32÷(﹣2)2×=(﹣125)×(﹣)+32÷4×=75+8×=75﹣10=65.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.16.【分析】(1)直接去括号,进而合并同类项得出答案;(2)直接去括号,进而合并同类项得出答案.【解答】解:(1)3x+2(x﹣)﹣(x+1)=3x+2x﹣1﹣x﹣1=4x﹣2;(2)5(2a2b﹣ab2)﹣(6a2b﹣3ab2)=10a2b﹣2ab2﹣4a2b+2ab2=6a2b.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.17.【分析】(1)依次移项、合并同类项、系数化为1可得;(2)依次去括号、移项、合并同类项、系数化为1可得;(3)依次去括号、移项、合并同类项、系数化为1可得;(4)依次去分母、去括号、移项、合并同类项、系数化为1可得.【解答】解:(1)4x+7=32﹣x,4x+x=32﹣7,5x=﹣25,x=﹣5;(2)8x﹣9x﹣6=1,8x﹣9x=1+6,﹣x=7,x=﹣7;(3)2y﹣3=y﹣4,2y﹣y=﹣4+3,﹣y=﹣1,y=2.(4)3(5y﹣1)﹣4(2y+6)=12,15y﹣3﹣8y﹣24=12,15y﹣8y=12+3+24,7y=39,y=.【点评】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a形式转化.18.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2a2+4a﹣2﹣3a2+6a+9=﹣a2+10a+7,当a=﹣2时,原式=﹣4﹣20+7=﹣24+7=﹣17.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.【分析】(1)根据平行线的判定画图,(2)根据垂线的定义画图,(3)根据点到直线的距离即可解决问题.【解答】解:(1)如图所示:(2)如图所示:(3)点C到直线OB的距离是线段PC的长度;故答案为:PC.【点评】本题考查作图﹣复杂作图,垂线,点到直线距离,平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【分析】根据同位角相等两直线平行,可证MC∥GF,进而利用平行线的性质和判定证明.【解答】证明:∵∠BFG=∠AEM(已知)且∠AEM=∠BEC(对顶角相等)∴∠BEC=∠BFG(等量代换)∴MC∥GF(同位角相等,两直线平行)∴∠C=∠FGD(两直线平行,同位角相等)∵∠C=∠EFG(已知)∴∠FGD=∠EFG,(等量代换)∴AB∥CD(内错角相等,两直线平行).故答案是:对顶角相等;GF;同位角相等,两直线平行;FGD;内错角相等,两直线平行.【点评】考查了平行线的判定与性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.21.【分析】求DE的长度,即求出AD和AE的长度.因为D、E分别为AC、AB的中点,故DE=,又AC=12cm,CB=AC,可求出CB,即可求出CB,代入上述代数式,即可求出DE的长度.【解答】解:根据题意,AC=12cm,CB=AC,所以CB=8cm,所以AB=AC+CB=20cm,又D、E分别为AC、AB的中点,所以DE=AE﹣AD=(AB﹣AC)=4cm.即DE=4cm.故答案为4cm.【点评】此题要求学生灵活运用线段的和、差、倍、分之间的数量关系,熟练掌握.22.【分析】先判定AB∥CD,则∠ABC=∠BCD,再由∠P=∠Q,则∠PBC=∠QCB,从而得出∠1=∠2.【解答】证明:∵∠ABC+∠ECB=180°,∴AB∥DE,∴∠ABC=∠BCD,∵∠P=∠Q,∴PB∥CQ,∴∠PBC=∠BCQ,∵∠1=∠ABC ﹣∠PBC ,∠2=∠BCD ﹣∠BCQ ,∴∠1=∠2.【点评】本题考查了平行线的判定和性质,解答此题的关键是注意平行线的性质和判定定理的综合运用.23.【分析】(1)根据邻补角的性质可知,与∠AOD 互补的角:∠BOD 与∠AOC ;(2)先求出∠BOE 的度数,然后根据OF 平分∠AOE 求出∠FOE ,再根据OF ⊥CD ,可知∠FOD =90°,求出∠EOD ,最后得出∠BOD =∠BOE ﹣∠EOD 求出答案.【解答】解:(1)与∠AOD 互补的角:∠BOD 与∠AOC ;(2)∵∠AOE =110°,∴∠BOE =180°﹣∠AOE =180°﹣110°=70°,∵OF 平分∠AOE ,∴∠FOE =∠AOE =,∵OF ⊥CD ,∴∠FOD =90°,∴∠EOD =∠FOD ﹣∠FOE =90°﹣55°=35°,∴∠BOD =∠BOE ﹣∠EOD =70°﹣35°=35°.【点评】本题考查了补角以及角平分线的性质.正确运用补角的定义和角平分线性质是解题的关键.24.【分析】作平行线利用平行线的性质与角平分线的性质通过角等量关系转化解题即可.【解答】解:感知:如图①,过点P 作PQ ∥AB∴∠A =∠APQ ,∵AB ∥CD ,PQ ∥AB∴PQ ∥CD ,∴∠C =∠QPC ,∴∠APQ +∠QPC =∠A +∠C ,∠APC =∠A +∠C .故答案为∠P =∠A +∠C ;探究:证明:如图③,过点P 作PQ ∥AB∴∠A=∠APQ∵AB∥CD,PQ∥AB∴PQ∥CD∴∠C=∠CPQ∵∠APC=∠APQ﹣∠CPQ∴∠APC=∠A﹣∠C.故答案为:∠APC=∠A﹣∠C,∠APQ,PQ,∠CPQ,∠APQ,∠CPQ,∠A﹣∠C.应用:(1)如图⑤,过点D作DH∥EF,∴∠HDE=∠E,∵AB∥EF,DH∥EF∴AB∥DH,∴∠B+∠BDH=180°,即∠BDH=180°﹣∠B,∴∠HDE+∠BDH=∠E+180°﹣∠B,即∠BDE+∠B﹣∠E=180°,故答案为∠D+∠B﹣∠E=180°,(2)如图⑥,过点P作PH∥EF,∴∠EPH=∠NEP,∵AB∥EF,PH∥EF,∴AB∥PH,∴∠MBP+∠BPH=180°,∵BD平分∠MBP,∠MBD=25°,∠MBP=2∠MBD=2×25°=50°,∠BPH=180°﹣50°=130°,∵EN平分∠DEP,∴∠NEP=∠DEN∴∠BPE=∠BPH﹣∠EPH=∠BPH﹣∠NEP=∠BPH﹣∠DEN=130°﹣(180°﹣∠DEF)=∠DEF﹣50°由①∠D+∠ABD﹣∠DEF=180°,∵∠MBD=25°,∴∠ABD=155°,∴∠D+∠155°﹣∠DEF=180°,∴∠DEF=∠D﹣25°∴∠BPE=∠DEF﹣50°=∠D﹣25°﹣50°=∠D﹣75°∠D﹣∠BPE=75°即∠D﹣∠P=75°,故答案75.【点评】本题考查了角平分线的性质与平行线的性质,正确运用角平分线与平行线的性质是解题的关键.。
2019-2020学年湖南省长沙市七年级上册期末数学试卷
![2019-2020学年湖南省长沙市七年级上册期末数学试卷](https://img.taocdn.com/s3/m/f95e873a551810a6f4248624.png)
2019-2020学年湖南省长沙市七年级上册期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共12小题,共36.0分)1.2018的倒数是()A. 2018B. 12018C. −12018D. −20182.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A. 3℃B. −3℃C. 4℃D. −2℃3.我国自行设计、自主集成研制的蛟龙号载人潜水器最大下潜深度为7062m.将7062用科学记数法表示为()A. 7.062×103B. 7.1×103C. 0.7062×104D. 7.062×1044.下列单项式中,单项式12ab2的同类项是()A. B. C. −5ab2 D. −ab35.设M=x2+8x+12,N=−x2+8x−3,那么M与N的大小关系是()A. M>NB. M=NC. M<ND. 无法确定6.若x=2是方程4x+2m−14=0的解,则m的值为()A. 10B. 4C. 3D. −37.若关于x的方程2x+4=3m与x−1=m有相同的解,则m的值为()A. 6B. 5C. 52D. −238.若“∗”是新规定的某种运算符号,有x∗y=2x−y,则(−1)∗k=4中k的值为()A. 2B. 6C. −2D. −69.如图,D为线段CB的中点,CD=3,AB=11,则AC的长为()A. 4B. 5C. 6D. 810.把10.26°用度、分、秒表示为()A. 10°15′36″B. 10°20′6″C. 10°14′6″D. 10°26″11.如图,O为直线AB上一点,OE、OF分别是∠AOC、∠BOC的平分线,则∠EOF的度数是A. 60°B. 80°C. 90°D. 100°12.若关于x的方程2x+a=9−a(x−1)的解是x=3,则a的值为()A. 1B. 2C. −3D. 5第II卷(非选择题)二、填空题(本大题共8小题,共24.0分)13.已知|a−1|=3,|b|=3,a,b在数轴上对应的点分别为A、B,则A、B两点间距离等于.14.若m,n满足|m−6|+(7+n)2=0,则(m+n)2018=______.15.若2m−n−4=2,则4m−2n−9=______ .16.关于x、y的多项式2x3+x2−mx3−2x2+1不含x3项,则m的值是______.17.某件商品的标价是110元,按标价的八折销售时,仍可获利10%,则这件商品每件的进价为______元.18.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛.19.已知点C在直线AB上,若AC=4cm,BC=6cm,E、F分别为线段AC、BC的中点,则EF=______cm.20.如图,直线AB,CD相交于点O,OA平分且,则______ .三、计算题(本大题共1小题,共5.0分)21.计算:(1)(+8)+(−7)−(−3)(2)−8÷(−2)+4×(−3)四、解答题(本大题共5小题,共55.0分)22.解方程:(1)2(x+1)−3(3x−4)=2(2)3x−14−5x−76=123.某车间有28名工人,生产某种螺栓和螺母,一个螺栓的两头各套上一个螺母配成一套,每人每天平均生产螺栓12个或螺母18个.问:多少名工人生产螺栓,多少名工人生产螺母,才能使一天所生产的螺栓和螺母刚好配套?24.(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.25.代数式(x3−1)−2(x3−3)+x3的值与x的值有关吗?请说明理由26.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM与∠CON的数量关系,并说明理由.答案和解析1.【答案】B,【解析】解:2018的倒数是12018故选:B.直接利用倒数的定义进而分析得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.2.【答案】B【解析】【分析】此题主要考查了有理数的加减混合运算的应用,要熟练掌握.根据有理数的加减混合运算的运算方法,结合题意列出算式即可解答.【解答】解:根据题意可列算式:10+2−15=12−15=−3,则半夜的气温是−3℃,故选B.3.【答案】A【解析】解:7062用科学记数法表示为7.062×103,故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】【分析】本题考查了同类项的知识,解答本题的关键是掌握同类项的定义,属于基础题.解题时,根据同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,结合选项逐一判断即可.【解答】解:A.12a2b与12ab2所含字母相同,但相同字母的指数不相同,不是同类项,故此选项错误;B.3ab与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误;C.−5ab2与12ab2所含字母相同,且相同字母的指数也相同,是同类项,故此选项正确;D.−ab3与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误.故选C.5.【答案】A【解析】【分析】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.将M与N代入M−N中,去括号合并得到最简结果,根据结果的正负即可做出判断.【解答】解:因为M−N=(x2+8x+12)−(−x2+8x−3)=x2+8x+12+x2−8x+3= 2x2+15>0,所以M>N.故选A.6.【答案】C【解析】【分析】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值;把x=2代入方程计算即可求出m的值.【解答】解:将x=−2代入方程得:8+2m−14=0,解得m=3,故选C.7.【答案】A【解析】【分析】本题考查了同解方程,利用同解方程得出关于m的方程是解题关键.根据同解方程,可得关于m的方程,解方程可得答案.【解答】解:由题意,得x=m+1,2(m+1)+4=3m,解得m=6,故选:A.8.【答案】D【解析】【分析】此题考查了新定义运算以及解一元一次方程,解题关键是掌握新定义运算的规则.解题时,先将新定义方程转化为一元一次方程,求解,即可求出k的值.【解答】解:根据题中的新定义得:(−1)∗k=−2−k,所求方程化为−2−k=4,k=−6.故选D.9.【答案】B【解析】解:∵D为线段CB的中点,CD=3,∴BC=2CD=6,∴AC=AB−BC=5.故选:B.根据线段中点的定义求出BC,结合图形计算即可.本题考查的是两点间的距离的计算,掌握线段中点的定义、灵活运用数形结合思想是解题的关键.10.【答案】A【解析】【分析】此类题是进行度分秒的换算,相对比较简单,注意以60为进制即可.【解答】解:∵0.26°×60=15.6′,0.6′×60=36″,∴10.26°用度、分、秒表示为10°15′36″.故选:A.11.【答案】C【解析】【分析】此题考查了角平分线定义,熟练掌握角平分线定义是解本题的关键.由OE与OF为角平分线,利用角平分线定义得到两对角相等,由平角的定义及等式的性质即可求出所求角的度数.【解答】解:∵OE、OF分别是∠AOC、∠BOC的平分线,∴∠AOE=∠COE,∠COF=∠BOF,∵∠AOC+∠COB=∠AOE+∠COE+∠COF+∠FOB=180°,∴2(∠COE+∠COF)=180°,即∠COE+∠COF=90°,则∠EOF=∠COE+∠COF=90°.故选C.12.【答案】A【解析】解:将x=3代入方程2x+a=9−a(x−1),得:6+a=9−2a,解得:a=1,故选:A.把x=3代入方程,即可二次一个关于a的方程,求出方程的解即可.本题考查了解一元一次方程和一元一次方程的解的应用,能得出关于a的一元一次方程是解此题的关键.13.【答案】1或5或7【解析】解:∵|a−1|=3,∴a−1=3或a−1=−3,a=4或a=−2;∵|b|=3,∴b=±3,分为四种情况:①当a=4,b=3时,A、B两点间的距离是4−3=1;②当a=4,b=−3时,A、B两点间的距离是4−(−3)=7;③当a=−2,b=3时,A、B两点间的距离是3−(−2)=5;④当a=−2,b=−3时,A、B两点间的距离是(−2)−(−3)=1.则A,B两点间距离等于1或5或7.故答案为:1或5或7.求出a=4或−2,b=±3,分为四种情况:①当a=4,b=3时,②当a=4,b=−3时,③当a=−2,b=3时,④当a=−2,b=−3时,求出A、B两点间的距离即可求解.本题考查了数轴,绝对值,注意:若数轴上A表示的数是m,B表示的数是n(m>n),数轴上两点A、B间的距离表示为|m−n|,也可以表示为m−n(大的数减去小的数).14.【答案】1【解析】【分析】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质,可求出m、n的值,然后再代值计算即可得出答案.【解答】解:∵|m−6|+(7+n)2=0,∴m−6=0且7+n=0,解得:m=6、n=−7,则原式=(6−7)2018=1.故答案为:1.15.【答案】3【解析】解:由2m−n−4=2得,2m−n=6,4m−2n−9=2(2m−n)−9,=2×6−9,=12−9,=3.故答案为3.先求出2m−n的值,然后整体代入进行计算即可得解.本题考查了代数式求值,整体思想的利用是解题的关键.16.【答案】2【解析】解:∵关于x、y的多项式2x3+x2−mx3−2x2+1不含x3项,∴2−m=0,解得:m=2.故答案为:2.直接利用多项式中不含x3项,得出2−m=0,进而得出答案.此题主要考查了多项式,得出x3项的系数为零是解题关键.17.【答案】80【解析】【分析】此题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.设这种商品每件的进价为x元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设这种商品每件的进价为x元,根据题意得:110×80%−x=10%x,解得:x=80,则这种商品每件的进价为80元.故答案为80.18.【答案】4【解析】解:8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x场,则3x+(7−x)=15,解得:x=4.故答案是:4.8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x场,总分数为15即可列出方程,即可解题.本题考查了一元一次方程的应用,本题中根据题意找出总比赛场数为7是解题的关键.19.【答案】5或1【解析】【分析】本题考查了两点间的距离,分类讨论是解题关键.分类讨论点C在线段AB上,点C在线段AB的反向延长线上,根据中点分线段相等,可得AE与CE的关系,BF与CF的关系,可根据线段的和差,可得答案.【解答】解:当点C在线段AB上,E、F分别为线段AC、BC的中点,CE=AE=12AC=2cm,CF=BF=12BC=3cm,EF=CE+CF=2+3=5cm;当点C在线段AB的反向延长线上,E、F分别为线段AC、BC的中点,CE=AE=12AC=2cm,CF=BF=12BC=3cm,EF=CF−CE=3−2=1cm,故答案为5或1.20.【答案】30°【解析】【分析】本题考查了邻补角的定义,对顶角相等的性质,角平分线的定义有关知识,根据邻补角的定义求出∠EOC,再根据角平分线的定义求出∠AOC,然后根据对顶角相等解答.【解答】解:∵∠EOC:∠EOD=1:2,∴∠EOC=180°×11+2=60°,∵OA平分∠EOC,∴∠AOC=∠EOA=12×60°=30°,∴∠BOD=∠AOC=30°.故答案为30°.21.【答案】解:(1)(+8)+(−7)−(−3)=8+(−7)+3=4;(2)−8÷(−2)+4×(−3)=4+(−12)=−8.【解析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.【答案】(1)解:去括号得:2x+2−9x+12=2移项得:2x−9x=2−2−12合并同类项得:−7x=−12系数化为1得:x=12;7(2)解:去分母得:3(3x−1)−2(5x−7)=12,去括号得:9x−3−10x+14=12,移项得:9x−10x=12+3−14,合并同类项得:−x=1,系数化为1得:x=−1.【解析】本题主要考查一元一次方程的解法,掌握一元一次方程的一般步骤是解题的关键.(1)可去括号,移项,合并同类项,把系数化为1即可求解;(2)可先去分母,去括号,再移项,合并同类项,把系数化为1即可求解.23.【答案】解:设应分配x名工人生产螺栓,(28−x)名工人生产螺母.根据题意,得12x×2=18×(28−x),解得x=12,则28−x=16,答:12名工人生产螺栓,16名工人生产螺母,才能使一天所生产的螺栓和螺母刚好配套.【解析】本题主要考查一元一次方程的应用.解题的关键是找出题目中的等量关系.设应分配x名工人生产螺栓,(28−x)名工人生产螺母,根据等量关系为:生产的螺栓的数量×2=生产的螺母的数量,由此可列出方程求解.24.【答案】解:(1)∵M是AC的中点,AC=6cm,∴MC=12AC=6×12=3cm,又因为CN:NB=1:2,BC=15cm,∴CN=15×13=5cm,∴MN=MC+CN=3+5=8cm,∴MN的长为8cm;(2)∵∠BOE=2∠AOE,∠AOB=∠BOE+∠AOE,∴∠BOE=23∠AOB,∵OF平分∠AOB,∴∠BOF=12∠AOB,∴∠EOF=∠BOE−∠BOF=16∠AOF,∵∠EOF=20°,∴∠AOB=120°.【解析】(1)直接利用两点之间距离分别得出CN,MC的长进而得出答案;(2)直接利用角平分线的性质以及结合已知角的关系求出答案.此题主要考查了角平分线的定义以及两点之间距离,正确把握相关定义是解题关键.25.【答案】解:该代数式的值与x的值无关.理由:∵(x3−1)−2(x3−3)+x3=x3−1−2x3+6+x3=5,故该代数式的值与x的值无关.【解析】直接利用整式的加减运算法则计算得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.26.【答案】解:(1)由图1可知∠AOC=60°,∠AON=90°,∴∠CON=∠AOC+∠AON=60°+90°=150°,(2)在图2中,要分三种情况讨论:①当∠AOC=∠COM=60°时,此时旋转角∠BOM= 60°,由10°t=60°,解得t=6,②当∠AOM=∠COM=30°时,此时旋转角∠BOM=150°,由10°t=150°,解得t=15.③当∠AOC=∠AOM=60°时,此时旋转角∠BOM=240°,由10°t=240°,解得t=24,综上所述,得知t的值为6或15或24,(3)当ON在∠AOC内部时,∠AOM−∠CON=30°,其理由是:设∠AON=x°,则有∠AOM=∠MON−∠AON=(90−x)°,∠CON=∠AOC−∠AON=(60−x)°,∴∠AOM−∠CON=(90−x)°−(60−x)°=30°.【解析】本题主要考查角的和、差关系,此题很复杂,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.(1)根据已知及角的计算,求出∠CON的值,(2)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分三种情况讨论,即可求出t的值;(3)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.。
长沙市2019-2020学年七年级上学期期末数学试题(II)卷
![长沙市2019-2020学年七年级上学期期末数学试题(II)卷](https://img.taocdn.com/s3/m/03780b650242a8956bece4f7.png)
长沙市2019-2020学年七年级上学期期末数学试题(II)卷姓名:________ 班级:________ 成绩:________一、单选题1 . 若,则的值为()A.40B.-2C.2D.212 . 一把直尺和一块三角板(含角)摆放位置如图所示,直尺与三角板的两直角边分别交于点、点另一边与三角板的两直角边分别交点、点且,那么的大小为()A.B.C.D.3 . 如图是由若干个小正方体所搭成的几何体,那么从左边看这个几何体时,所看到的几何图形是()C.D.A.B.4 . 已知线段AB=2,延长AB至点C,使AC=3AB,则线段BC的长是()A.8B.6C.5D.45 . 截至2014年1月初,济南户籍总人口613.4万人,其中613.4万人用科学记数法表示为()A.6.134×102人B.613.4×104人C.6.134×105人D.6.134×106人6 . 如图由七个相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.7 . 的相反数是()A.5B.C.0D.18 . 如果kx2+(k+1)x+3中不含x的一次项,则k的值为()A.1B.-1C.0D.29 . 下列哪一个数是﹣3的相反数的绝对值的倒数()A.3B.﹣3C.D.10 . 根据如图所示的计算程序,若输入的值,则输出的值为()A.-2B.-7C.5D.3二、填空题11 . 如图,将三角尺ABC沿BC方向平移,得到三角形A′CC′.已知∠B=30°,∠ACB=90°,则∠BAA′的度数为________.12 . 如图.O是直线AB上的一点.∠AOC=53°17',则∠BOC的度数是____.13 . 数a和b的绝对值分别为2和5,且在数轴上表示a的点在表示b的点左侧,则b的值为______.14 . 数列:0,2,4,8,12,18,…是我国的大衍数列,也是世界数学史上第一道数列题.该数列中的奇数项可表示为,偶数项表示为.如:第一个数为=0,第二个数为=2,…现在数轴的原点上有一点P,依次以大衍数列中的数为距离向左右来回跳跃.第1秒时,点P在原点,记为P1;第2秒时,点P向左跳2个单位,记为P2,此时点P2所表示的数为-2;第3秒时,点P向右跳4个单位,记为P3,此时点P3所表示的数为2;…按此规律跳跃,点P20表示的数为______.15 . 如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是______.三、解答题16 . 如图,已知∠1=∠2,∠B=∠C,试说明AB∥CD.17 . 如图,△ABC中,∠A=50°,∠ABC的平分线与∠C的外角∠ACE平分线交于D,求∠D的度数.18 . 已知单项式3a2b2m-n与-2a2b是同类项(ab≠0),c,d互为倒数,e,f互为相反数,试求(e+f)-2cd+(2m-n)2的值.19 . 如图,点O为直线AB上一点,∠AOC=48°,OD平分∠AOC,OE⊥OD交于点O.(1)求出∠BOD的度数;(2)试用计算说明∠COE=∠BOE.20 . 计算:.21 . 计算(1)﹣2.47×0.75+0.47×﹣6×0.75(2)﹣14+(﹣2)﹣|﹣9|22 . 如图1,AM∥CN,点B为平面内一点,AB⊥BC于B,过B作BD⊥AM.(1)求证:∠ABD=∠C;(2)如图2,在(1)问的条件下,分别作∠ABD、∠DBC的平分线交DM于E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,①求证:∠ABF=∠AFB;②求∠CBE的度数.23 . 如图所示,在平整的地面上,若干个完全相同的小正方体堆成一个几何体.(1)这个几何体由个小正方体组成;(2)请在网格中画出这个几何体的三视图.。
人教版2019-2020学年度第一学期七年级数学期末考试题(含答案)
![人教版2019-2020学年度第一学期七年级数学期末考试题(含答案)](https://img.taocdn.com/s3/m/68d8626743323968011c9280.png)
人教版2019-2020学年度第一学期七年级数学期末考试卷(试卷共4页,考试时间为90分钟,满分120分)一、选择题(本题共12个小题,每小题3分,共36分.将正确答案的字母填入方框中) 1.2-等于( )A .-2B .12-C .2D .122.在墙壁上固定..一根横放的木条,则至少..需要钉子的枚数是 ( ) A .1枚 B .2枚 C .3枚 D .任意枚3.下列方程为一元一次方程的是( ) A .y +3= 0B .x +2y =3C .x 2=2xD .21=+y y4.下列各组数中,互为相反数的是( )A .)1(--与1B .(-1)2与1 C .1-与1 D .-12与15.下列各组单项式中,为同类项的是( ) A .a 3与a 2B .12a 2与2a 2C .2xy 与2xD .-3与a 6.如图,数轴A 、B 上两点分别对应实数a 、b ,则下列结论正确的是A .a +b>0B .ab >0C .110a b -<D .110a b +>7.下列各图中,可以是一个正方体的平面展开图的是( )8.把两块三角板按如图所示那样拼在一起,则∠ABC 等于( ) A .70° B .90° C .105° D .120° 9.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为 ( )A .69°B .111°C .141°D .159°10.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获 利28元,若设这件夹克衫的成本是x 元,根据题意,可得到的方程是( ) A .(1+50%)x×80%=x -28 B .(1+50%)x×80%=x +28 C .(1+50%x)×80%=x -28 D .(1+50%x)×80%=x +2811.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米.设A 港和B 港相距x 千米.根据题意,可列出的方程是 ( ) A .32428-=x x B .32428+=x x C .3262262+-=+x x D .3262262-+=-x x 12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110 B.158 C.168D .178二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上) 13.-3的倒数是________.14.单项式12-xy 2的系数是_________.15.若x =2是方程8-2x =ax 的解,则a =_________. 16.计算:15°37′+42°51′=_________.17.青藏高原是世界上海拔最高的高原,它的面积约为2 500 000平方千米.将2 500 000用科学记数法表示应为_________________平方千米. 18.已知,a -b =2,那么2a -2b +5=_________.19.已知y 1=x +3,y 2=2-x ,当x =_________时,y 1比y 2大5.20.根据图中提供的信息,可知一个杯子的价格是________元.三、解答题(本大题共8个小题;共60分)A B C D6 2 22 4 2 0 4 8 84 446 (43)共94元第8题图21.(本小题满分6分)计算:(-1)3-14×[2-(-3)2] .22.(本小题满分6分)一个角的余角比这个角的21少30°,请你计算出这个角的大小.23.(本小题满分7分)先化简,再求值:41(-4x 2+2x -8)-(21x -1),其中x =21.24.(本小题满分7分) 解方程:513x +-216x -=1.25.(本小题满分7分)一点A 从数轴上表示+2的点开始移动,第一次先向左移动1个单位,再向右移动2个单位;第二次先向左移动3个单位,再向右移动4个单位;第三次先向左移动5个单位,再向右移动6个单位……(1)写出第一次移动后这个点在数轴上表示的数为 ;(2)写出第二次移动结果这个点在数轴上表示的数为 ; (3)写出第五次移动后这个点在数轴上表示的数为 ; (4)写出第n 次移动结果这个点在数轴上表示的数为 ; (5)如果第m 次移动后这个点在数轴上表示的数为56,求m 的值.26.(本小题满分8分)如图,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE . 求:∠COE 的度数.27.(本小题满分8分)如图,已知线段AB 和CD 的公共部分BD =13AB =14CD ,线段AB 、CD 的中点E 、F 之间距离是10cm ,求AB 、CD 的长.AE DBFC28.(本小题满分11分)某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识....解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接..写出签字笔的单价可能为元.数学试题参考答案及评分说明一、选择题(每小题3分,共36分)1.C ;2.B ;3.A;4.D;5.B;6. D;7.C;8.D;9.C;10. B;11.A;12.B.二、填空题(每题3分,共24分)13.31-;14.21-;15.2;16.58°28′;17.2.5×106;18.9;19.2;20.8.三、解答题(共60分)21.解:原式= -1-14×(2-9) (3)分=-1+47 (5)分=43……………………………………………………………………………6分22.解:设这个角的度数为x. ……………………………………………………………1分由题意得:30)90(21=--xx (3)分解得:x=80 ...........................................................................5分答:这个角的度数是80° (6)分23.解:原式=1212212+--+-xxx………………………………………………3分=12--x (4)分把x=21代入原式:原式=12--x=1)21(2--……………………………………………………………5分=45-……………………………………………………………………………7分24.解:6)12()15(2=--+x x . ……………………………………………2分612210=+-+x x . (4)分8x =3. (6)分83=x . …………………………………………………………7分 25.解:(1)第一次移动后这个点在数轴上表示的数是3; ……………………………1分(2)第二次移动后这个点在数轴上表示的数是4; ……………………………2分 (3)第五次移动后这个点在数轴上表示的数是7; ……………………………3分 (4)第n 次移动后这个点在数轴上表示的数是n +2; …………………………5分 (5)54. ………………………………………………………………………7分 26.解:∵∠AOB =90°,OC 平分∠AOB ∴∠BOC =12∠AOB =45°, ………………………………………………………2分 ∵∠BOD =∠COD -∠BOC =90°-45°=45°, ………………………………4分∠BOD =3∠DOE∴∠DOE =15, ……………………………………………………………………7分 ∴∠COE =∠COD -∠DOE =90°-15°=75° …………………………………8分 27.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm . …………………………1分∵点E 、点F 分别为AB 、CD 的中点,∴AE =12AB =1.5x cm ,CF =12CD =2x cm . ...................................................3分 ∴EF =AC -AE -CF =2.5x cm . (4)分∵EF =10cm ,∴2.5x =10,解得:x =4. ………………………………………………………………6分∴AB =12cm ,CD =16cm . ……………………………………………………………8分 28.解:(1)设钢笔的单价为x 元,则毛笔的单价为(x +4)元. ………………………1分由题意得:30x +45(x +4)=1755 (3)分解得:x =21则x +4=25. ……………………………………………………………………4分答:钢笔的单价为21元,毛笔的单价为25元. ……………………………………5分 (2)设单价为21元的钢笔为y 支,所以单价为25元的毛笔则为(105-y )支. …6分 根据题意,得21y +25(105-y )=2447.………………………………………………7分解之得:y =44.5 (不符合题意) . ……………………………………………………8分 所以王老师肯定搞错了. ……………………………………………………………9分 (3)2或6. ………………………………………………………………………11分〖答对1个给1分,答错1个倒扣1分,扣到0分为止〗28.(3)解法提示:设单价为21元的钢笔为z 支,签字笔的单价为a 元则根据题意,得21z+25(105-z)=2447-a. 即:4z=178+a ,因为 a 、z 都是整数,且178+a 应被4整除,所以 a 为偶数,又因为a 为小于10元的整数,所以 a 可能为2、4、6、8. 当a=2时,4z=180,z=45,符合题意; 当a=4时,4z=182,z=45.5,不符合题意; 当a=6时,4z=184,z=46,符合题意; 当a=8时,4z=186,z=46.5,不符合题意. 所以笔记本的单价可能2元或6元.〖本题也可由①问结果,通过讨论钢笔单价得到答案〗。
人教版2019-2020学年七年级上册期末数学试卷含答案解析
![人教版2019-2020学年七年级上册期末数学试卷含答案解析](https://img.taocdn.com/s3/m/96c4bb7ff12d2af90242e6a9.png)
人教版2019-2020学年七年级上册期末数学试卷含答案解析一、选择题(每小题2分,共20分)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m 2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.43.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×1084.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a46.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)27.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=60009.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18二、填空题(每小题3分,共30分)11.单项式的系数是,次数是.12.﹣8的立方根是,9的算术平方根是.13.近似数13.7万精确到位.14.用度表示30°9′36″为.15.已知2x6y2和﹣是同类项,则m﹣n的值是.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的位数.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是.三、解答题(本大题共有8小题,共50分)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|22.解下列方程(1)4+3(x﹣2)=x(3)=1﹣.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab 成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是;(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”;(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为;则乙厂家运往A地的自行车的量数为;则乙厂家运往B地的自行车的量数为;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x=,y=.参考答案与试题解析一.选择题(共10小题)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.4【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:在所列6个数中无理数有、这两个,故选:B.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:因为两点之间线段最短.故选:D.5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a4【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、7ab﹣3ab=4ab,故计算错误,不合题意;C、2ab+3ab=5ab,正确,符合题意;D、a2+a2=2a2,故计算错误,不合题意;故选:C.6.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)2【分析】根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.7.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【分析】∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:如图,由题意,可知:∠AOD=60°,∴∠CAE=30°,∵∠BAF=20°,∴∠BAC=∠CAE+∠EAF+∠BAF=30°+90°+20°=140°,故选:D.8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=6000【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,40x+60(x﹣20)=6000,故选:A.9.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a﹣2b>0,c﹣2b>0,则原式=a+c﹣a+2b﹣c+2b=4b.故选:B.10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18【分析】根据题意可以得到本次考试的实际满分是多少,从而可以计算出某一个同学按照这个规则的最后分数是93分,他实际考试被扣了多少分,本题得以解决.【解答】解:由题意可得,这次考试总分为:82+(100﹣82)×2=118(分),如果某一个同学按照这个规则的最后分数是93分,则这个同学的实际考试被扣了:118﹣[82+(93﹣82)×2]=118﹣(82+11×2)=118﹣(82+22)=118﹣104=14(分),故选:B.二.填空题(共10小题)11.单项式的系数是,次数是 4 .【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式的系数是,次数是4;故答案为:;4.12.﹣8的立方根是﹣2 ,9的算术平方根是 3 .【分析】根据立方根和算术平方根的定义求解可得.【解答】解:﹣8的立方根是﹣2,9的算术平方根是3,故答案为:﹣2、3.13.近似数13.7万精确到千位.【分析】根据近似数的精确度求解.【解答】解:近似数13.7万精确到千位.故答案为千.14.用度表示30°9′36″为30.16°.【分析】根据度分秒的进率为60,再进行换算即可.【解答】解:30°9′36″=30.16°,故答案为:30.16°15.已知2x6y2和﹣是同类项,则m﹣n的值是0 .【分析】根据同类项得定义得出m、n的值,继而代入计算可得.【解答】解:根据题意知3m=6,即m=2、n=2,所以m﹣n=2﹣2=0,故答案为:0.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为 2 .【分析】根据新定义列出关于x的方程,解之可得.【解答】解:由题意得2(5x﹣3)﹣3(1﹣3x)=29,10x﹣6﹣3+9x=29,10x+9x=29+6+3,19x=38,x=2,故答案为:2.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为0 .【分析】根据a、b互为相反数,m、n互为倒数,可以求得a+b和mn的值,从而可以求得所求式子的值.【解答】解:∵a、b互为相反数,m、n互为倒数,∴a+b=0,mn=1,∴2018a+2017b+mnb=2017(a+b)+a+b=2017×0+0=0,故答案为:0.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有⑥(填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.【解答】解:∵AB,CD相交于点O,∠BOE=90°,∴①∠AOC与∠COE互为余角,正确;②∠BOD与∠COE互为余角,正确;③∠AOC=∠BOD,正确;④∠COE与∠DOE互为补角,正确;⑤∠AOC与∠BOC=∠DOE互为补角,正确;⑥∠AOC=∠BOD≠∠COE,错误;故答案为:⑥.19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的9 位数.【分析】根据题意得28=256,29=512,根据规律可知最高位应是1×28,故可求共由有9位数.【解答】解:∵28=256,29=512,且256<365<512,∴最高位应是1×28,则共有8+1=9位数,故答案为:9.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是 1 .【分析】从题目中可见这是一组奇数的排列,求一共有1011个数的代数和的绝对值,根据奇数做差可求出最小值.【解答】解:根据题意,要求出其代数和的绝对值最小值,相邻两位做差,差值都为2,则其中1010个数做差的绝对值最小值为:(1010÷2)×2=1010如果剩余的一个数取﹣1009或﹣1011,整个代数和最小,即|1010﹣1009|=1或|1010﹣1011|=1所以其代数和的绝对值最小值是:1故答案为:1三.解答题(共8小题)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣1+36×=﹣1+6=5;(2)原式=2+﹣3=.22.解下列方程(1)4+3(x﹣2)=x(2)=1﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4+3x﹣6=x,移项合并得:2x=2,解得:x=1;(2)去分母得:8x﹣2=6﹣3x+1,移项合并得:11x=9,解得:x=.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.【分析】原式去括号合并得到最简结果,把m的值代入计算即可求出值.【解答】解:原式=﹣8m2+7m2﹣2m﹣3m2+4m=﹣4m2+2m,当m=﹣时,原式=﹣1﹣1=﹣2.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.【分析】(1)画线段AD,BC即可;(2)画射线AB与直线CD,交点记为E点;(3)根据垂线段最短作出垂线段即可求解.【解答】解:(1)如图所示:(2)如图所示:(3)如图所示:理由是垂线段最短.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.【分析】(1)根据M、N分别是AC、BC的中点,求出MC、CN的长度,MN=MC+CN;(2)根据(1)的方法求出MN=AB;(3)作出图形,MC=AC,CN=BC,所以MN=AC﹣CB.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=×4+×6=5cm,所以MN的长为5cm.(2)同(1),MN=AC+CB=(AC+CB)=(a+b).(3)图如右,MN=(a﹣b).理由:由图知MN=MC﹣NC=AC﹣BC=a﹣b=(a﹣b).26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab 成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是(0,0);(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”(4,);(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.【分析】(1)根据“有趣数对”的定义即可得到结论;(2)根据“有趣数对”的定义列方程即可得到结论;(3)根据根据“有趣数对”的定义即可得到结论;(4)根据“有趣数对”的定义列方程即可得到结论.【解答】解:(1)∵0+0=0×0,∴数对(0,0)是“有趣数对”;∵5+=,5×=,∴(5,)不是“有趣数对”,故答案为:(0,0);(2)∵(a,)是“有趣数对”,∴a=a+,解得:a=﹣3;(3)符合条件的“有趣数对”如(4,);故答案为:(4,);(4)∵(a2+a,4)是“有趣数对”∴a2+a+4=4(a2+a),解得:a2+a=,∴﹣2a2﹣2a=﹣2(a2+a)=﹣2×=﹣,∴3﹣2a2﹣2a=3﹣=.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为20﹣x;则乙厂家运往A地的自行车的量数为30﹣x;则乙厂家运往B地的自行车的量数为30+x;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?【分析】(1)根据表格中的数据填空;(2)根据总运费是470元列出方程并解答.【解答】解:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为 20﹣x;则乙厂家运往A地的自行车的量数为 30﹣x;则乙厂家运往B地的自行车的量数为 30+x;故答案是:20﹣x;30﹣x;30+x.(2)根据题意,得5x+6(20﹣x)+10(30﹣x)+4(30+x)=470解得x=10则20﹣x=10(辆)30﹣x=20(辆)30+x=40(辆)答:甲厂家运往B地的自行车的量数为10辆,则甲厂向B运算自行车的数量是10辆;乙厂家运往A地的自行车的量数为20辆;乙厂家运往B地的自行车的量数为40辆.28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为9x;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是21 ;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x= 1 ,y=19 .【分析】观察数字之间的关系,根据每行、每列、每条对角线上的三个数之和相等;(1)(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)(2)﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6将数从小到大排序,最中间的数填入中心位置,大小匹配填﹣2的两侧;(3)三个数之和18+x,2边填16,以此为突破口;(4)设第一行最后一个数是m,则每一个横或斜方向的线段的和是28+m,以此展开推理;【解答】解:(1)三阶幻方如图所示:用x的代数式表示幻方中9个数的和S=(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)=9x;故答案为9x;(2)三阶幻方如图所示:(3)故答案为21;(4)如图所示:x=1,y=19;故答案气为1,19;。
2019-2020学年人教版七年级第一学期期末考试数学试卷有答案
![2019-2020学年人教版七年级第一学期期末考试数学试卷有答案](https://img.taocdn.com/s3/m/81ba8729e87101f69f319528.png)
2019-2020学年上学期期末考试七年级数学试卷说明:本试卷共4页,满分120分,考试时间100分钟. 注意事项:1.选择题、填空题和解答题都在答题卡上作答,不能答在本试卷上.2.作图(含辅助线)或画表,用铅笔(如2B 铅笔)进行画线、绘图、要求痕迹清晰.第Ⅰ卷 选择题(共30分)一.选择题(10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上)1.34的绝对值是( ) A .-34 B .34C .43D .34±2.下列四个数中最小的数是( )A .-310 B .-3C .0D .53.用科学计数法表示2017000,正确的是( ) A .2017×310B .2.017×510C .2.017×610 D .0.2017×7104.下列简单几何体中,属于柱体的个数是( )A.5B .4C.3D .25.计算43+(-77)+27+(-43)的结果是( ) A .50B .-104C .-50D .1046.下列各式成立的是( ) A .4334⨯=B .3662=-C .91313=⎪⎭⎫ ⎝⎛D .161412=⎪⎭⎫⎝⎛-7.下列每组单项式是同类项的是( )A .xy 2与yx 31-B .y 2x 3与2x 2y -C .x 21-与xy 2- D .xy 与yz8.下列调查中,适合用普查的是( )A .中央电视台春节联欢晚会的收视率B .一批电视机的寿命C .全国中学生的节水意识D .某班每一位同学的体育达标情况9.过某个多边形一个顶点的所有对角线,将这个多边形分成了5个三角形,则这个多边形是 A .五边形B .六边形C .七边形D .八边形10.用棋子摆出下列一组“口”字,按照这种方法摆下去,则第n 个“口”字需要用棋子第一个“口” 第二个“口” 第三个“口”第Ⅱ卷 非选择题(共70分)二、填空题(本大题6小题,每小题4分,共24分.把答案填在答题卡上)11.计算()[]3116÷+-的结果为 .12.如图是一个正方体纸盒的展开图,正方体的各面标有数字1、2、 3、-3、A 、B ,相对面上的两个数互为相反数,则A= .第12题图13.某场电影成人票25元/张,卖出m 张,学生票15元/张,卖出n 张,共得票款 元14.把角度化为秒的形式,则05.5= .15.在一次全市的数学监测中,某6名学生的成绩与全市学生的平均分80的差分别为5、-2、8、 11、5、-6,则这6名学生的平均成绩为 分。
湖南省长沙市天心区长郡教育集团2019-2020学年七年级上学期期末数学试卷 (含解析)
![湖南省长沙市天心区长郡教育集团2019-2020学年七年级上学期期末数学试卷 (含解析)](https://img.taocdn.com/s3/m/a2348c5acc1755270622082f.png)
湖南省长沙市天心区长郡教育集团2019-2020学年七年级上学期期末数学试卷一、选择题(本大题共12小题,共36.0分)1.−2018的倒数是()A. 2018B. −12018C. 12018D. −20182.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A. 3℃B. −3℃C. 4℃D. −2℃3.我国研制的“曙光3000服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学记数法可表示为()A. 4032×108B. 403.2×109C. 4.032×1011D. 0.4032×10124.下列单项式中,单项式12ab2的同类项是()A. B. C. −5ab2 D. −ab35.已知有一整式与2x2+5x−2的和为2x2+5x+4,则此整式为().A. 2B. 6C. 10x+6D. 4x2+10x+26.方程3x+1=12m+4的解是x=2,则m的值是()A. 4B. 5C. 6D. 77.关于x的方程3x+2m=−1与方程x+2=2x+1的解相同,则m的值为()A. 2B. −2C. 1D. −18.若“※”是新规定的某种运算符号,得x※y=x4+y,则(−1)※k=6中k的值为()A. −3B. 3C. −5D. 59.如图,已知线段AB=12cm,点N在AB上,NB=2cm,M是AB中点,那么线段MN的长为()A. 5cmB. 4cmC. 3cmD. 2cm10.15°48′36″用度表示为().A. 15.4836°B. 15.81°C. 15°D. 15.4°11.如图,点O是直线AD上一点,射线OC、OE分别是∠AOB、∠BOD的平分线,∠COE=()°.A. 60B. 70C. 90D. 不能确定12.如果关于x的方程x−m+2=0(m为常数)的解是x=−1,那么m的值是()A. m=3B. m=−3C. m=1D. m=−1二、填空题(本大题共8小题,共24.0分)13.数轴上表示3和7的两点之间的距离是______ ,数轴上表示−3和5的两点之间的距离是______.14.若|a−3|+(b+1)2=0,则2a−b的值是______.15.若2a−3b2=5,则10−4a+6b2的值是______.16.若关于x,y的多项式4xy3–2ax2–3xy+2x2–1不含x2项,则a=__________.17.一件商品标价121元,若九折出售,仍可获利10%,则这件商品的进价为_______元.18.某地中学生校园足球联赛,共赛17轮(即每对均需参赛17场),记分办法是:胜1场得3分,平1场得1分,负1场得0分.在这次校园足球联赛中,光明足球队得16分,且踢平场数是所负场数的k倍(k为正整数),则k的所有可能值之和为______ .19.线段AB=12cm,点C是AB的中点,点D在直线AB上,若AB=3AD,则CD的长为______cm.20.如图所示,直线AB与直线CD相交于点O,OC平分∠AOE,∠BOD:∠EOB=2:1,则∠AOC=.三、计算题(本大题共1小题,共5.0分)21.计算:(−5)×(−2)+(−2)2÷4.四、解答题(本大题共5小题,共55.0分)22.解方程:(1)2(x+1)+3=1−(x−1);(2)1−2x5=2−3−x2.23.某车间20个工人生产螺钉和螺母,每人每天平均生产螺母800个或螺钉600个,一个螺钉要配2个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉呢?24.(1)如图1,线段AC=6cm,线段BC=15cm,点M是AC的中点,在CB上取一点N,使得CN:NB=1:2,求MN的长.(2)如图2,∠BOE=2∠AOE,OF平分∠AOB,∠EOF=20°.求∠AOB.25.代数式(x3−1)−2(x3−3)+x3的值与x的值有关吗?请说明理由26.如图1,点O为直线AB上一点,过点O作射线OC,使∠AOC=60°,将一直角三角板MON的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)求∠CON的度数;(2)如图2是将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周的情况.在旋转的过程中,当第t秒时,三条射线OA、OC、OM构成相等的角,求此时t的值;(3)将图1中的三角板绕点O逆时针旋转至图3,使ON在∠AOC的内部时,请探究∠AOM与∠CON 的数量关系,并说明理由.-------- 答案与解析 --------1.答案:B.解析:解:−2018的倒数是:−12018故选:B.直接利用倒数的定义进而分析得出答案.此题主要考查了倒数,正确把握倒数的定义是解题关键.2.答案:B解析:此题主要考查正负数在实际生活中的应用,上升用正数表示,下降用负数表示,学生在学这一部分时一定要联系实际.上升用加,下降用减,列出算式后利用有理数的加法和减法法则计算.解:根据题意可列算式:10+2−15=12−15=−3(℃).故选B.3.答案:C解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.解:将403,200,000,000用科学记数法可表示为4.032×1011.故选C.解析:本题考查了同类项的知识,解答本题的关键是掌握同类项的定义,属于基础题.解题时,根据同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项,结合选项逐一判断即可.解:A.12a2b与12ab2所含字母相同,但相同字母的指数不相同,不是同类项,故此选项错误;B.3ab与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误;C.−5ab2与12ab2所含字母相同,且相同字母的指数也相同,是同类项,故此选项正确;D.−ab3与12ab2所含字母相同,但字母b的指数不相同,不是同类项,故此选项错误.故选C.5.答案:B解析:本题主要考查了整式的加减,由于一整式与(2x2+5x−2)的和为(2x2+5x+4),那么把(2x2+ 5x+4)减去(2x2+5x−2)即可得到所求整式.解:依题意得(2x2+5x+4)−(2x2+5x−2)=2x2+5x+4−2x2−5x+2=6.6.答案:C解析:此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.由x=2为方程的解,将x=2代入方程即可求出m的值.m+4,解:将x=2代入方程得:6+1=12解得:m=6.故选:C.7.答案:B解析:解:方程x+2=2x+1,解得:x=1,把x=1代入得:3+2m=−1,解得:m=−2,故选:B.求出第二个方程的解得到x的值,代入第一个方程计算即可求出m的值.此题考查了同解方程,同解方程即为两个方程解相同的方程.8.答案:D解析:此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,即可求出解.利用题中的新定义化简所求方程,即可求出k的值.解:根据题中的新定义得:(−1)※k=1+k,所求方程化为1+k=6,解得:k=5.故选D.9.答案:B解析:这是一道考查两点间的距离的题目,解题关键在于根据中点的定义求出BM的长度,即可求出答案.解:∵AB=12cm,M是AB的中点,∴BM=6cm,∵NB=2cm,∴MN=BM−NB=4cm.故选B.10.答案:B解析:本题主要考查度分秒化度的方法,记住度分秒之间的换算进率是解决问题的关键.先把秒除以60化成分,再分除以60化成度即可.解:∵36′′÷60=0.6′,48.6′÷60=0.81°,∴15°48′36″用度表示为15.81°.故选B.11.答案:C解析:解:∵射线OC、OE分别是∠AOB、∠BOD的平分线,∴∠BOC=12∠AOB,∠BOE=12∠BOD,∵∠AOD=∠AOB+∠BOD=180°,∴12(∠AOB+∠BOD)=90°,即∠BOC+∠BOE=90°,∴∠COE=90°.故选C.根据角平分线定义得出∠BOC=12∠AOB,∠BOE=12∠BOD,根据∠AOD=∠AOB+∠BOD=180°,求出∠BOC+∠BOE=90°,即可得出答案.本题考查了角的平分线定义的应用,主要考查学生的计算能力.12.答案:C解析:理解一元一次的解和解一元一次方程的概念是解此题的关键.本题考查了一元一次方程两个概念,重点是理解一元一次方程的解和会解一元一次方程.解:把x=−1,代入方程关于x的方程x−m+2=0(m为常数)得:−1−m+2=0,解得:m=1,故选:C.13.答案:4;8解析:本题考查的是数轴,熟知数轴上两点间的距离等于两点所表示数的差的绝对值是解答此题的关键.直接根据数轴上两点间的距离公式求解即可.解:数轴上表示3和7的两点之间的距离是|3−7|=4,数轴上表示−3和5的两点之间的距离是|−3−5|=8.故答案为4,8.14.答案:7解析:解:∵|a−3|+(b+1)2=0,∴a−3=0且b+1=0,则a=3、b=−1,∴2a−b=2×3−(−1)=6+1=7,故答案为:7.根据非负数的性质,可求出a、b的值,然后将代数式化简再代值计算.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.答案:0解析:解:∵2a−3b2=5,∴10−4a+6b2=10−2(2a−3b2)=10−2×5=0;故答案为:0.把2a−3b2=5看作一个整体,代入代数式进行计算即可得解.本题考查了代数式求值,整体思想的利用是解题的关键.16.答案:1解析:此题主要考查了多项式的定义,正确把握定义是解题关键.多项式中不含哪一项,就是整理后令该项的系数为0即可求出代数式中待定字母的值.解:4xy3–2ax2–3xy+2x2–1=4xy3+(2−2a)x2–3xy–1∵关于x,y的多项式4xy3−2ax2−3xy+2x2−1不含x2的项,∴2−2a=0,解得:a=1,故答案为1.17.答案:99解析:本题主要考查一元一次方程的应用.此题的等量关系:实际售价=标价的九折=进价×(1+利润率),设未知数,列方程求解即可.解:设这件商品的进价为x元,根据题意得(1+10%)x=121×0.9解得x=99则这件商品的进价为99元.故答案为99.18.答案:3解析:解:设所负场数为x场,胜(17−x−kx)场,平kx场,可得:3(17−x−kx)+kx=16,,解得:x=352k+3所以k的所有可能值为:1或2,所以k的所有可能值之和为1+2=3,故答案为:3.设所负场数为x场,胜(17−x−kx)场,平kx场,等量关系为:负的场数的得分+胜的场数的得分+平的场数的得分=16,把相关数值代入求解即可.此题主要考查了一元一次方程的应用,根据已知表示出胜、负、平所得总分是解题关键.19.答案:2或10解析:解:∵AB=12cm,AB=3AD,∴AD=4cm,∵点C是AB的中点,∴AC=6cm,①当点D在线段AB上时,CD=AC−AD=2cm;②当点D在线段BA的延长线上时,CD=AC+AD=10cm.故答案为:2或10.此题需要分类讨论,①当点D在线段AB上时,②当点D在线段BA的延长线上时,分别画出图形,计算即可得出答案.此题考查了两点间的距离求解,解答本题的关键是分类讨论点D的位置,有一定难度,注意不要遗漏.20.答案:72°解析:此题主要考查了角平分线的性质、对顶角、以及邻补角的性质和应用,解答此题的关键是要明确邻补角的性质:邻补角互补,即和为180°.首先根据邻补角的性质:邻补角互补,即和为180°,求出∠BOD 的大小即可.解:∵直线AB与直线CD相交于点O,OC平分∠AOE,∴∠AOC=∠EOC=∠BOD,∵∠BOD:∠EOB=2:1∵∠EOC+∠BOE+∠BOD=180°,∴∠BOD+12∠BOD+∠BOD=180°∴∠BOD=72°即∠AOC=72°故答案为72°.21.答案:解:(−5)×(−2)+(−2)2÷4=10+4+4=18.解析:根据有理数的乘法和加减法可以解答本题.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.答案:解:(1)去括号,得2x+2+3=1−x+1,移项、合并同类项,得3x=−3,方程两边同时除以3,得x=−1;(2)去分母,得2(1−2x)=20−5(3−x),去括号,得2−4x=20−15+5x,移项、合并同类项,得−9x=3,方程两边同时除以−9,得x=−13.解析:此题考查了解一元一次方程的解法,熟练掌握解一元一次方程的法则是解本题的关键.(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.23.答案:解:设应分配x名工人生产螺钉,则有(20−x)名工人生产螺母,由题意得,800(20−x)=2×600x,解得:x=8.答:应分配8人生产螺钉.解析:设应分配x名工人生产螺钉,根据一个螺钉要配2个螺母,每天的产品刚好配套,可得生产的螺母数是螺钉的2倍,由此可得出方程,解出即可.本题考查了一元一次方程的应用,属于基础题,解答本题关键是得出生产的螺母数是螺钉的2倍这一等量关系.24.答案:解:(1)∵M是AC的中点,AC=6cm,∴MC=12AC=6×12=3cm,又因为CN:NB=1:2,BC=15cm,∴CN=15×13=5cm,∴MN=MC+CN=3+5=8cm,∴MN的长为8cm;(2)∵∠BOE=2∠AOE,∠AOB=∠BOE+∠AOE,∴∠BOE=23∠AOB,∵OF平分∠AOB,∴∠BOF=12∠AOB,∴∠EOF=∠BOE−∠BOF=16∠AOF,∵∠EOF=20°,∴∠AOB=120°.解析:(1)直接利用两点之间距离分别得出CN,MC的长进而得出答案;(2)直接利用角平分线的性质以及结合已知角的关系求出答案.此题主要考查了角平分线的定义以及两点之间距离,正确把握相关定义是解题关键.25.答案:解:该代数式的值与x的值无关.理由:∵(x3−1)−2(x3−3)+x3=x3−1−2x3+6+x3=5,故该代数式的值与x的值无关.解析:直接利用整式的加减运算法则计算得出答案.此题主要考查了整式的加减运算,正确合并同类项是解题关键.26.答案:解:(1)由图1可知∠AOC=60°,∠AON=90°,∴∠CON=∠AOC+∠AON=60°+90°=150°,(2)在图2中,要分三种情况讨论:①当∠AOC=∠COM=60°时,此时旋转角∠BOM=60°,由10°t=60°,解得t=6,②当∠AOM=∠COM=30°时,此时旋转角∠BOM=150°,由10°t=150°,解得t=15.③当∠AOC=∠AOM=60°时,此时旋转角∠BOM=240°,由10°t=240°,解得t=24,综上所述,得知t的值为6或15或24,(3)当ON在∠AOC内部时,∠AOM−∠CON=30°,其理由是:设∠AON=x°,则有∠AOM=∠MON−∠AON=(90−x)°,∠CON=∠AOC−∠AON=(60−x)°,∴∠AOM−∠CON=(90−x)°−(60−x)°=30°.解析:本题主要考查角的和、差关系,此题很复杂,难点是找出变化过程中的不变量,需要结合图形来计算,在计算分析的过程中注意动手操作,在旋转的过程中得到不变的量.(1)根据已知及角的计算,求出∠CON的值,(2)根据已知条件可知,在第t秒时,三角板转过的角度为10°t,然后按照OA、OC、ON三条射线构成相等的角分三种情况讨论,即可求出t的值;(3)根据三角板∠MON=90°可求出∠AOM、∠NOC和∠AON的关系,然后两角相加即可求出二者之间的数量关系.。
2019-2020学年新人教版七年级上学期期末考试数学试卷含参考答案
![2019-2020学年新人教版七年级上学期期末考试数学试卷含参考答案](https://img.taocdn.com/s3/m/0e280c743169a4517723a3d3.png)
2019-2020学年七年级上学期期末考试数学试卷一、填空题(每小题3分,共24分)1.(3分)﹣5的倒数是.2.(3分)2018年10月24日通车的港珠澳大桥连接香港、澳门、珠海,是目前世界上最长的跨海大桥,是中国从桥梁大国走向桥梁强国的里程碑之作,大桥总投资12690000万元,数字12690000用科学记数法表示为.3.(3分)将数轴上表示﹣1的点A向右移动5个单位长度,此时点A所对应的数为.4.(3分)计算:90°﹣42°15′=.5.(3分)已知代数式2x﹣y的值是5,则代数式4x﹣2y﹣13的值是.6.(3分)观察下列单项式:a,﹣4a2,9a3,﹣16a4,…按此规律第9个单项式是.7.(3分)已知|x|=8,|y|=4且x>y,则x﹣y的值为.8.(3分)某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是.二、选择题(每小题3分,共27分)9.(3分)如果+20%表示增加20%,那么﹣8%表示()A.减少8%B.减少20%C.增加20%D.增加8%10.(3分)如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体11.(3分)下列各式中结果为负数的是()A.﹣(﹣3)B.|﹣3|C.(﹣3)2D.﹣3212.(3分)如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 等于()A.30°B.45°C.50°D.60°13.(3分)已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.14.(3分)下列计算正确的是()A.3x2﹣x2=3B.﹣3a2﹣2a2=﹣a2C.3(a﹣1)=3a﹣1D.﹣2(x+1)=﹣2x﹣215.(3分)下列结论正确的是()A.x=2是方程2x+1=4的解B.5不是单项式C.﹣3ab2和b2a是同类项D.单项式的系数是316.(3分)某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x名,则可列方程为()A.3×10x=2×16(34﹣x)B.3×16x=2×10(34﹣x)C.2×16x=3×10(34﹣x)D.2×10x=3×16(34﹣x)17.(3分)芳芳购买手机卡,可选择“全球通”卡和“神州行”卡,使用时“全球通”卡每月需交固定费用50元,免费通话时间为150分钟,超过150分钟的部分按0.50元/分钟计费;“神州行”卡不收固定费用,但通话每分钟收话费0.30元.若芳芳每月手机费预算为100元,那么她最合算的选择是()A.“全球通”卡B.“神州行”卡C.“全球通”卡、“神州行”卡一样D.无法确定三、解答题(共69分)18.(17分)计算.(1)﹣7+(﹣8)﹣(﹣18)﹣13(2)(﹣1)3×(﹣5)﹣(﹣3)÷(﹣)(3)()÷(﹣)(4)﹣12018﹣2×[13﹣(﹣5)2]19.(5分)先化简,再求值4xy﹣(2x2+5xy)+2(x2+y2),其中x=﹣2,y=20.(8分)解下列方程(1)3(x﹣2)﹣4=5x﹣3(2)﹣1=21.(6分)有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.1元,则出售这20筐白菜可卖多少元?22.(6分)几何计算:如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.解:因为∠BOC=3∠AOB,∠AOB=40°所以∠BOC=°所以∠AOC=+=°+°=°因为OD平分∠AOC所以∠COD==°.23.(8分)如图,某种窗户由上下两部分组成,其上部是用木条围成的半圆形,且半圆内部用了三根等长的木条分隔,下部是用木条围成的边长相同的四个小正方形,木条宽厚不计,已知下部的小正方形的边长为a米.(1)用含a的式子分别表示窗户的面积和木条用料(实线部分)的总长;(2)若a=1,窗户上安装的是玻璃,玻璃每平方米25元,木条每米20元,求制作这扇窗户需要多少元?(π取3,结果精确到个位)24.(5分)如图,已知线段AB,延长AB到C,使BC=,D为AC的中点,DC=3cm,求BD的长.25.(8分)某超市计划购进甲、乙两种型号的节能灯共1200只,这两种节能灯的进价、售价如下表:(1)如果进货款恰好为46000元,那么可以购进甲型节能灯多少只?(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?26.(6分)已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意点,其对应的数为x.(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是:;(3)如果点P以每分钟2个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.参考答案与试题解析一、填空题(每小题3分,共24分)1.【解答】解:因为﹣5×()=1,所以﹣5的倒数是.2.【解答】解:将12690000用科学记数法表示为1.269×107.故答案为:1.269×107.3.【解答】解:﹣1+5=4.答:此时点A所对应的数为4.故答案为:4.4.【解答】解:90°﹣42°15′=89°60′﹣42°15′=47°45′,故答案为:47°45′.5.【解答】解:由2x﹣y=5,得到原式=2(2x﹣y)﹣13=10﹣13=﹣3,故答案为:﹣36.【解答】解:从单项式:a,﹣4a2,9a3,﹣16a4,25a5…,可得第n个式子为:(﹣1)n+1n2a n,故第9个单项式为:81a9.故答案为:81a9.7.【解答】解:∵|x|=8,|y|=4且x>y,∴x=8,y=±4,则x﹣y=4或12.故答案为:4或12.8.【解答】解:设答对1道题得x分,答错1道题得y分,根据题意得:,解得:,答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.二、选择题(每小题3分,共27分)9.【解答】解:如果+20%表示增加20%,那么﹣8%表示减少8%,故选:A.10.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.11.【解答】解:A、﹣(﹣3)=3,是正数,故本选项不符合题意;B、|﹣3|=3是正数,故本选项不符合题意;C、(﹣3)2=9是正数,故本选项不符合题意;D、﹣32=﹣9是负数,故本选项符合题意.故选:D.12.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选:A.13.【解答】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=AB,则点C是线段AB中点.故选:C.14.【解答】解:A、原式=2x2,不符合题意;B、原式=﹣5a2,不符合题意;C、原式=3a﹣3,不符合题意;D、原式=﹣2x﹣2,符合题意,故选:D.15.【解答】解:A、x=1.5是2x+1=4的解,不符合题意;B、5是单项式,不符合题意;C、﹣3ab2和b2a是同类项,符合题意;D、单项式的系数是,不符合题意,故选:C.16.【解答】解:设加工大齿轮的工人有x名,则加工小齿轮的工人有(34﹣x)名,根据题意得:3×16x=2×10(34﹣x).故选:B.17.【解答】解:购买“全球通”卡100元能打的分钟数为+150=250(分钟),购买“神州行”卡100元能打的分钟数为=(分钟),∵250<,∴购买“神州行”卡较合算;故选:B.三、解答题(共69分)18.【解答】解:(1)﹣7+(﹣8)﹣(﹣18)﹣13=(﹣7)+(﹣8)+18+(﹣13)=﹣10;(2)(﹣1)3×(﹣5)﹣(﹣3)÷(﹣)=(﹣1)×(﹣5)﹣3×4=5﹣12=﹣7;(3)()÷(﹣)=()×(﹣36)=(﹣8)+9+2=3;(4)﹣12018﹣2×[13﹣(﹣5)2]=﹣1﹣=﹣1﹣=﹣1+27=26.19.【解答】解:原式=4xy﹣2x2﹣5xy+2x2+2y2=﹣xy+2y2,当x=﹣2,y=时,原式=1.20.【解答】解:(1)去括号得:3x﹣6﹣4=5x﹣3,移项合并得:﹣2x=7,解得:x=﹣3.5;(2)去分母得:2x+2﹣4=2﹣x,移项合并得:3x=4,解得:x=.21.【解答】解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐重5.5千克;(2)1×(﹣3)+8×(﹣2)+2×(﹣1.5)+3×0+1×2+4×2.5=﹣3﹣16﹣3+2+10=﹣10(千克).故20筐白菜总计不足10千克;(3)2.1×(25×20﹣10)=2.1×490=1029(元).故出售这20筐白菜可卖1029元.22.【解答】解:∵∠BOC=3∠AOB,∠AOB=40°,∴∠BOC=120°,∴∠AOC=∠AOB+∠BOC=40°+120°=160°,∵OD平分∠AOC,∴∠COD=∠AOC==80°,故答案为:120,∠AOB,∠BOC,40,120,160,∠AOC,80.23.【解答】解:(1)S=2a×2a+πa2=4a2+πa2即窗户的面积为(4a2+πa2)cm2.15a+a=(15+π)a(cm)即制作这种窗户所需材料的总长度(15+π)a(cm).(2)a=1时,25(4a2+πa2)+20(15+π)a≈25×(4×1+×3×1)+20×(15+3)×1=137.5+360=497.5≈498(元),即制作这扇窗户需要498元.24.【解答】解:∵D为AC的中点,DC=3cm,∴AC=2DC=6cm,∵BC=AB,∴BC=AC=2cm,∴BD=CD﹣BC=1cm.25.【解答】解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙型节能灯1200﹣x=1200﹣400=800只.答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.26.【解答】解:(1)MN的长为3﹣(﹣1)=4.(2)x=(3﹣1)÷2=1;(3)①点P是点M和点N的中点.根据题意得:(3﹣2)t=3﹣1,解得:t=2.②点M和点N相遇.根据题意得:(3﹣2)t=3+1,解得:t=4.故t的值为2或4.故答案为:4;1.。
湖南省长沙市2019-2020学年数学七上期末考试试题
![湖南省长沙市2019-2020学年数学七上期末考试试题](https://img.taocdn.com/s3/m/903c2c8e5ef7ba0d4b733b14.png)
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.如图是某几何体的表面展开图,则该几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱2.如图,从A地到B地有多条道路,一般地,为了省时人们会走中间的一条直路而不会走其它的路,其理由是( )A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.两点之间,直线最短3.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cmB.3cmC.6cmD.7cm4.下列运用等式的性质,变形正确的是( )A.若x2=6x,则x=6B.若2x=2a﹣b,则x=a﹣bC.若a=b,则ac=bcD.若3x=2,则x=3 25.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为m厘米,宽为n厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是()A.4m厘米B.4n厘米C.2(m+n)厘米D.4(m-n)厘米6.如图所示,a、b是有理数,则式子a b a b b a++++-化简的结果为()A.3a +bB.3a -bC.3b +aD.3b -a7.下列各组中两个单项式为同类项的是 A.23x 2y 与-xy 2 B.20.5a b 与20.5a cC.3b 与3abcD.20.1m n -与215nm 8.解方程1﹣362x x -=,去分母,得( ) A.1﹣x ﹣3=3xB.6﹣x ﹣3=3xC.6﹣x+3=3xD.1﹣x+3=3x 9.关于x 的方程2x m 3-=1的解为2,则m 的值是( ) A .2.5 B .1 C .-1 D .310.下列说法正确的是( )①两个正数中倒数大的反而小,②两个负数中倒数大的反而小,③两个有理数中倒数大的反而小,④两个符号相同的有理数中倒数大的反而小.A.①②④B.①C.①②③D.①④11.如图,在数轴上点M 表示的数可能是( )A. 3.5-B. 1.5-C.2.4D. 2.4- 12.计算(-3)2等于( )A.-9B.-6C.6D.9 二、填空题13.如图,已知C 为线段AB 的中点,D 在线段CB 上.若DA=6,DB=4,则CD=_____.14.如图,直线AB 、CD 、EF 相交于点O ,AB ⊥CD ,OG 平分∠AOE ,如果∠FO D = 28°,那么∠AOG =______度.15.某通信公司的移动电话计费标准每分钟降低a 元后,再下调了20%,现在收费标准是每分钟b 元,则原来收费标准每分钟是_____元.16.某小组几名同学准备到图书馆整理一批图书,若一名同学单独做要 40h 完成.现在该小组全体同学一起先做 8h 后,有 2 名同学因故离开,剩下的同学再做 4h ,正好完成这项工作.假设每名同学的工作效率相同,问该小组共有多少名同学?若设该小组共有 x 名同学,根据题意可列方程为___________.17.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.18.单项式23x y -的系数是____. 19.∣x ∣=4, ∣y ∣=6,且xy >0,则∣x -y ∣=_____20.点A 在数轴上距原点5个单位长度,且位于原点的左侧,若将点A 向右移动4个单位长度,再向左移动1个单位长度,则此时点A 表示的数是________.三、解答题21.如图,直线 AB 、CD 相交于 O ,∠BOC =70°,OE 是∠BOC 的角平分线,OF 是OE 的反向延长线.(1)求∠1,∠2,∠3 的度数;(2)判断 OF 是否平分∠AOD ,并说明理由.22.如图1,在平面直角坐标系中,已知点A (0,a ),B (0,b )在y 轴上,点 C (m ,b )是第四象限内一点,且满足()2860a b -++=,△ABC 的面积是56;AC 交x 轴于点D ,E 是y 轴负半轴上的一个动点.(1)求C 点坐标;(2)如图2,连接DE ,若DE ⊥AC 于D 点,EF 为∠AED 的平分线,交x 轴于H 点,且∠DFE =90°,求证:FD 平分∠ADO ;(3)如图3,E 在y 轴负半轴上运动时,连EC ,点P 为AC 延长线上一点,EM 平分 ∠AEC ,且PM ⊥EM 于M 点,PN ⊥x 轴于N 点,PQ 平分∠APN ,交x 轴于Q 点,则E 在运动过程中,MPQ ECA∠∠的大小是否发生变化,若不变,求出其值;若变化,请说明理由.23.方程x ﹣7=0与方程5x ﹣2(x+k )=2x ﹣1的解相同,求代数式k 2﹣5k ﹣3的值.24.用正方形硬纸板做三棱柱盒子,如图1,每个盒子由3个长方形侧面和2个三边均相等的三角形底面组成,硬纸板以如图2两种方法裁剪(裁剪后边角料不再利用),现有19 张硬纸板,裁剪时x张用了A方法,其余用B方法.(1)求裁剪出的侧面和底面的个数(分别用含x的代数式表示);(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?25.先化简,再求值(1)求代数式14(4a 2-2a-8)-(12a-1),其中a=1; (2)求代数式12x-2(x-13y 2)+(-32x+13y 2)的值,其中x=23,y=-2. 26.用“⊗”规定一种新运算:对于任意有理数a 和b ,规定a ⊗b=ab 2+2ab+a .如:1⊗3=1×32+2×1×3+1=16(1)求2⊗(-1)的值;(2)若(a+1)⊗3=32,求a 的值;(3)若m=2⊗x ,n=(14x )⊗3(其中x 为有理数),试比较m 、n 的大小. 27.(1)计算:﹣1+(﹣2)÷(﹣23)×13 (2)计算:(﹣34+16﹣38)×(﹣24) (3)计算:﹣24÷(﹣8)﹣14×(﹣2)2 28.计算:(1)()222202--÷- (2)()()1178245122-÷-+⨯--÷⨯ (3)()2012111 1.2512123⎛⎫--⨯+- ⎪⎝⎭ (4)()()()2221231x x x x x -+--++-【参考答案】***一、选择题1.B2.C3.D4.C5.B6.D7.D8.C9.B10.A11.D12.D二、填空题13.114.5915.(a+ SKIPIF 1 < 0b ). 解析:(a+54b ). 16. SKIPIF 1 < 0 解析:84(2)14040x x -+= 17.118.- SKIPIF 1 < 0 解析:-13 19.220.-2三、解答题21.(1)∠1=35°,∠2=110°,∠3=35°;(2)OF 平分∠AOD .22.(1)a=8,b=-6, AB=14, BC=8, C (8,-6);(2)见解析;(3)MPQ 1ECA 2∠∠= 23.-724.(1)侧面()276x +个,底面()955x -个;(2)3025.(1)-1(2)226.(1)0;(2)a=1;(3)m >n .27.(1)0;(2)23;(3)1.28.(1)原式9=-;(2)原式34=;(3)原式0=;(4)原式23x x =--+.。
2019-2020学年湖南省长沙市天心区七年级(上)期末数学试卷
![2019-2020学年湖南省长沙市天心区七年级(上)期末数学试卷](https://img.taocdn.com/s3/m/369930ac27284b73f3425084.png)
2019-2020学年湖南省长沙市天心区七年级(上)期末数学试卷题号一二三四总分得分第I卷(选择题)一、选择题(本大题共12小题,共36.0分)1.如图,表示互为相反数的两个点是()A. M与QB. N与PC. M与PD. N与Q2.如图是由6个相同的小正方体搭成的几何体,那么从上面看这个几何体得到的图形是()A.B.C.D.3.据财政部在2018年全国人民代表大会上的预算报告,今年全国一般公共预算支出209830亿元,209830这个数用科学记数法表示为()A. 20.983×104B. 2.0983×105C. 0.20983×106D. 2.0983×1064.下列方程中,是一元一次方程的是()A. 3x+5y=10B. 35x2+3x=1 C. 3x+5=8 D. 2x+2=15.下列计算正确的是()A. −3(a+b)=−3a+3bB. 2(x+y)=2x+yC. x3+2x5=3x8D. −x3+3x3=2x36.关于单项式−23πa3b2,下列说法正确的是()A. 系数为−23B. 次数为5 C. 次数为6 D. 系数为237.实数a、b在数轴上对应点如图,那么下列各式中一定为负数的是()A. a+bB. b−aC. |a−b|D. |a|−|b|8.下列等式的变形中,正确的有()①由5x=3,得x=53;②由a=b,得−a=−b;③由ac =bc,得a=b;④由m=n,得mn=1.A. 1个B. 2个C. 3个D. 4个9.已知:−2x2y和3y m x n是同类项,则m,n的值分别为()A. m=2,n=1B. m=1,n=2C. m=−2,n=3D. m=3,n=−210.若x2+3x−5的值为7,则3x2+9x−2的值为()A. 44B. 34C. 24D. 1411.线段MN=16cm,点A在线段MN上,且MA=13NA,B为线段NA的中点,则线段MB的长为()A. 8cmB. 10cmC. 12cmD. 14cm12.若关于x的方程3x−5=2x+a的解与方程4x+5=−7的解相同,则a等于()A. −2B. 2C. −8D. 8第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)13.已知∠α=52°,则它的余角等于______度.14.单项式−x27的系数是______ .15.若m2+mn=−7,n2−5mn=−17,则m2+6mn−n2=______.16.已知方程(a−2)x|a|−1+4=0是关于x的一元一次方程.则a的值为______.17.地图上有三个地方分别用A,B,C三点表示,若点B在点A的正西方向,点C在点A的南偏西15°方向,那么∠CAB=______°.18.求1+2+22+23+⋯+22019的值,可令S=1+2+22+23+⋯+22019,2S=2+22+23+⋯+22020,2S−S=22020−1.S=22020−1.仿照以上推理,计算出1+5+52+53+⋯+52020=______.三、计算题(本大题共1小题,共6.0分)19.计算:−22−(−2)3×29−6÷|−23|.四、解答题(本大题共7小题,共60.0分)20.解下列方程:(1)4x−7=x+14;(2)1−x+32=2x−1521.求5(3x2y−xy2)−4(−xy2+3x2y)的值,其中|x+2|+(y−3)2=0.22.一架在无风情况下航速为696km/ℎ的飞机,逆风飞行一条航线用了3h,顺风飞行这条航线用了2.8ℎ.求:(1)风速;(2)这条航线的长度.23.如图,∠AOB与∠BOD互为余角,OB是∠AOC的平分线,∠AOB=25°,求∠COD的度数.24.小张去水果市场购买苹果和橘子,他看中了A,B两家的苹果和橘子,这两家的苹果和橘子的品质都一样,售价也相同,但每千克苹果要比每千克橘子多12元,买2千克苹果与买5千克橘子的费用相同.设每千克橘子x元.(1)求每千克苹果和橘子的售价;(2)经洽谈,A家优惠方案是:每购买10千克苹果,送1千克橘子;B家优惠方案是:若购买的苹果超过5千克,则购买的橘子打八折.假设小张购买30千克苹果和a千克橘子(a>3).①请用含a的式子分别表示出小张在A,B两家购买苹果和橘子的总费用;②小张在A,B两家购买苹果和橘子的总费用相同时,求a的值.25.阅读下面的材料:1×2=1(1×2×3−0×1×2),3(2×3×4−1×2×3),2×3=133×4=1(3×4×5−2×3×4),3×3×4×5=20.由以上三个等式相加,可得:1×2+2×3+3×4=13读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+⋯+10×11(写出过程).(2)1×2+2×3+3×4+⋯+n(n+1)=________.(3)1×2×3+2×3×4+3×4×5=________.26.A,B两点在数轴上如图所示,其中O为原点,点A对应的有理数为a,点B对应的有理数为b,且点A距离原点6个单位长度,a、b满足b−|a|=2.(1)a=______;b=______;(2)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0)①当PO=2PB时,求点P的运动时间t:②当PB=6时,求t的值:(3)当点P运动到线段OB上时,分别取AP和OB的中点E、F,则AB−OP的值是否EF 为一个定值?如果是,求出定值,如果不是,说明理由.答案和解析1.【答案】C【解析】解:2和−2互为相反数,此时对应字母为M与P.故选:C.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.【答案】A【解析】解:从上边看,故选:A.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:数据209830用科学记数法表示为2.0983×105,故选B.4.【答案】C【解析】解:A、3x+5y=10中含有两个未知数,故A错误;B、35x2+3x=1中未知数的次数为2,故B错误;C、3x+5=8是一元一次方程,故C正确;D、2x+2=1的分母中含有未知数,故D错误.故选:C.只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.据此作答.本题主要考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键.5.【答案】D【解析】解:A、−3(a+b)=−3a−3b,原式计算错误,故本选项错误;B、2(x+y)=2x+2y,原式计算错误,故本选项错误;C、x3和2x5不是同类项,不能合并,故本选项错误;D、−x3+3x3=2x3,原式计算正确,故本选项正确;故选D.根据去括号的法则以及合并同类项的法则,结合选项判断.本题考查了去括号以及合并同类项,掌握运算法则是解题的关键.6.【答案】B【解析】【分析】本题考查了单项式的概念,根据单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数,判断即可.【解答】解:单项式−23πa3b2的系数是−23π,次数是5,故选项ACD错误,选项B正确,故选B.7.【答案】D【解析】【分析】本题考查的是绝对值,数轴有关知识,根据数轴得出a<0,b>0,且|b|>|a|,然后再进行解答即可.【解答】解:A.∵a<0,b>0,且b|>|a|,则a+b>0,为正数;B.∵a<0,b>0,∴b−a>0,为正数;C.∵a<0,b>0,则|a−b|>0,为正数;D.∵a<0,b>0,且b|>|a|,∴|a|−|b|<0,为负数.故选D.8.【答案】B【解析】【试题解析】【分析】此题考查了等式的性质,掌握等式的性质是关键,根据等式的性质,逐个分析即可得到答案.【解答】解:①若5x=3,则x=35,故①错误;②由a=b,得−a=−b,故②正确;③由ac =bc,得a=b,故③正确;④若m=n≠0时,则mn=1,故④错误;故选B.9.【答案】B【解析】解:−2x2y和3y m x n是同类项,得m=1,n=2,故选:B.根据同类项是字母相同且相同字母的指数也相同,可得答案.本题考查了同类项,利用了同类项的定义求解即可.10.【答案】B【解析】解:∵x2+3x−5=7,∴x2+3x=12,则原式=3(x2+3x)−2=3×12−2=36−2=34,故选:B.先由x2+3x−5=7得x2+3x=12,再整体代入到原式=3(x2+3x)−2,计算可得.本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.11.【答案】B【解析】【分析】本题考查了线段的和差及线段中点的定义.解题的关键是根据题意画出图形,利用图形和中点的定义求解.解题时先根据MA=13NA及MN的长可求出MA、NA的长,然后由中点的定义可求得AB的长,进而求出MB的长度即可.【解答】解:如图,∵MN=16cm,MA=13NA,∴NA=16×34=12cm,MA=16×14=4cm,∵B为线段NA的中点,∴AB=12NA=12×12=6cm,∴MB=MA+AB=4+6=10cm.∴线段MB的长为10cm.故选B.12.【答案】C【解析】【分析】本题考查了同解方程.解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号.因为两方程解相同,把求得x的值代入方程,即可求得常数项的值.先通过方程4x+5=−7求得x的值,因为方程3x−5=2x+a的解与方程4x+5=−7的解相同,把x的值代入方程3x−5=2x+a,即可求得a的值.【解答】解:解方程4x+5=−7得,x=−3,因为方程3x−5=2x+a的解与方程4x+5=−7的解相同,所以把x=−3代入到方程3x−5=2x+a中得,−9−5=−6+a解得a=−8.故选C.13.【答案】38【解析】解:∵∠α=52°,∴∠α的余角=90°−52°=38°.故答案为:38.本题考查了互为余角的定义:如果两个角的和为90°,那么这两个角互为余角.根据互为余角的定义作答.14.【答案】−17【解析】解:单项式−x27的系数是:−17.故答案是:−17.根据单项式系数的定义来选择,单项式中数字因数叫做单项式的系数.本题考查单项式的系数,注意单项式中数字因数叫做单项式的系数.15.【答案】10【解析】解:由题意可知:m2+mn=−7,n2−5mn=−17,∴m2+6mn−n2=(m2+mn)−(n2−5mn)=−7−(−17)=17−7=10,故答案为:10.根据整式的运算法则即可求出答案.本题考查整式的运算,解题的关键熟练运用整式的运算法则,本题属于基础题型. 16.【答案】−2【解析】解:由一元一次方程的特点得,{a −2≠0|a|−1=1, 解得:a =−2.故答案为:−2.只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax +b =0(a,b 是常数且a ≠0),高于一次的项系数是0.据此可得出关于a 的方程,继而可求出a 的值.本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.17.【答案】75【解析】【分析】本题主要考查了角的计算及方向角的定义,根据题意画出图形是解题的关键.首先根据题意画出图形,然后可知∠CAD =15°,∠BAD =90°,从而可求得∠CAB 的度数.【解答】解:如图所示:根据题意可知:∠BAD =90°,∠CAD =15°,∠CAB =∠BAD −∠CAD =90°−15°=75°.故答案为75.18.【答案】52021−14【解析】【分析】本题考查了有理数的乘方和数字类的规律问题,读懂题目信息,理解题中方法是解题的关键.根据题目信息,设S=1+5+52+53+⋯+52020,表示出5S=5+52+53+ 54…+52021,然后相减除以4求出S即可.【解答】解:设S=1+5+52+53+⋯+52020,则5S=5+52+53+54+⋯+52021,5S−S=(5+52+53+54+⋯+52021)−(1+5+52+53+⋯+52020)= 52021−1,4S=52021−1所以,S=52021−14.故答案为52021−14.19.【答案】解:原式=−4−(−8)×29−6÷23=−4+16−6×3=−4+169−9=−1129.【解析】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.根据有理数的乘除法和减法可以解答本题.20.【答案】解:(1)4x−x=14+7x=7(2)10−5(x+3)=2(2x−1)10−5x−15=4x−2−5x−5=4x−2x=−1 3【解析】根据一元一次方程的解法即可求出答案.本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.21.【答案】54.【解析】[分析]先去括号,然后合并同类项进行化简,根据非负数的性质求出x、y的值代入化简后的式子进行计算即可.[详解]解:原式=15x2y−5xy2+4xy2−12x2y=3x2y−xy2,由题意可知:x=−2,y=3,∴原式=3×4×3−(−2)×32=54.[点睛]本题考查了整式的加减——化简求值,非负数的性质,解一元一次方程等,熟练掌握去括号法则以及合并同类项法则是解本题的关键.22.【答案】解:(1)设风速为xkm/ℎ,根据题意得:3(696−x)=2.8(696+x),解得:x=24,答:风速为24km/ℎ;(2)航线的长度为3×(696−24)=2016(km),答:这条航线的长度为2016km.【解析】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.注意风速、顺风速、无风速、逆风速四者之间的关系.设风速为xkm/ℎ,则顺风速度为(696+x)km/ℎ,逆风的速度为(696+x)km/ℎ,根据逆风3小时和顺风2.8小时的路程相等列出方程求解即可.23.【答案】解:∵OB是∠AOC的平分线,∴∠BOC=∠AOB=25°,∵∠AOB与∠BOD互为余角,∴∠BOD=90°−∠AOB=90°−25°=65°,∴∠COD=∠BOD−∠BOC=65°−25°=40°.【解析】本题考查了余角和补角,角平分线的定义,属于基础题,熟记相关概念是解题的关键.根据角平分线的定义求出∠BOC,再根据余角的定义列式求出∠BOD,然后计算即可得解.24.【答案】解:(1)设每千克橘子x元,则每千克苹果(x+12)元,根据题意得,2(x+12)=5x解得,x=8,∴x+12=20,答:每千克苹果的售价为20元,每千克橘子的售价为8元;(2)由(1)知,橘子每千克8元,苹果每千克20元,①在A家购买苹果和橘子所花的费用30×20+8(a−3010)=(8a+576)元,在B家购买苹果和橘子所花的费用30×20+8a×0.8=(6.4a+600)元;②由题意得:8a+576=6.4a+600解得,a=15.∴a的值是15.【解析】本题考查的是一元一次方程的应用,列代数式等知识.(1)设每千克橘子x元,根据题意列出方程即可解答;(2)先分别计算出在A家和B家购买苹果和橘子的费用,然后再进行解答即可.25.【答案】(1)原式=13(1×2×3−0×1×2)+13(2×3×4−1×2×3)+1 3(3×4×5−2×3×4)+⋯+13(10×11×12−9×10×11)=13(10×11×12−0×1×2)=13(10×11×12)=440;(2)13n(n+1)(n+2);(3)90.【解析】【分析】此题考查数字的变化规律,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.由题意可得规律:n×(n+1)=13[n×(n+1)×(n+2)−(n−1)×n×(n+1)].进一步利用规律解答即可.【解答】解:(1)见答案;(2)1×2+2×3+3×4+⋯+n×(n+1)=13(1×2×3−0×1×2)+13(2×3×4−1×2×3)+13(3×4×5−2×3×4)+⋯+13[n×(n+1)×(n+2)−(n−1)×n×(n+1)]=1n(n+1)(n+2)故答案为13n(n+1)(n+2);(3)1×2×3=14(1×2×3×4−0×1×2×3);2×3×4=14(2×3×4×5−1×2×3×4);3×4×5=14(3×4×5×6−2×3×4×5);1×2×3+2×3×4+3×4×5=14(1×2×3×4−0×1×2×3)+14(2×3×4×5−1×2×3×4) +1(3×4×5×6−2×3×4×5)=14(3×4×5×6)=90.26.【答案】(1)−68(2)①∵OP=2PB,可知点P在点O的右侧:2t−6=2(14−2t)或2t−6=2(2t−14),解得t=173或11.②14−2t=6或2t−14=6解得t=4或10.(3)当点P运动到线段OB上时,AP中点E表示的数是−6+2t−62=−6+t,OB的中点F表示的数是4,所以EF=4−(−6+t)=10−t,则AB−OPEF =14−(2t−6)10−t=2.所以AB−OPEF的值为定值2.【解析】【分析】考查了一元一次方程的应用,数轴,两点间的距离公式,中点坐标公式.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.(1)由点A距离原点6个单位长度,点A在原点左边,可求出a,再由b−|a|=2,可求出b;(2)①②根据题意构建方程即可解决问题;(3)根据中点坐标公式分别表示出点E表示的数,点F表示的数,再计算AB−OPEF即可.【解答】解:(1)∵点A距离原点6个单位长度,点A在原点左边,∴a=−6,∵b−|a|=2.∴b=8,故答案为−6,8.(3)见答案.。
2019-2020学年湖南省长沙市长沙县七年级(上)期末数学试卷(附详解)
![2019-2020学年湖南省长沙市长沙县七年级(上)期末数学试卷(附详解)](https://img.taocdn.com/s3/m/24e792bc1b37f111f18583d049649b6648d709c1.png)
2019-2020学年湖南省长沙市长沙县七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1. 下列数−10,+312,−0.9,1,0,35,π,−4.95中,正分数有( ) A. 5个B. 4个C. 3个D. 2个2. −3的相反数是( ) A. −3 B. 3 C. −13 D. 13 3. 据长沙市气象部门数据记录,长沙市的历史最高气温出现在7月份为40℃,历史最低气温出现在12月份为−6℃,则长沙市的历史最高气温比历史最低气温要高( )A. 34℃B. 46℃C. −34℃D. −46℃4. 现在网购越来越多地成为人们的一种消费方式,刚刚过去的2018年天猫“双11”全球狂欢节某网店的总交易额超过1207000元,1207000用科学记数法表示( )A. 1.207×106B. 0.1207×107C. 12.07×105D. 1.207×1055. 下列说法正确的是( )A. 多项式ab +c 是三项式B. 1是单项式C. 多项式2x 2+3y +1的次数是3D. 单项式a 既没有系数,也没有次数6. 下列计算正确的是( )A. 3x 2⋅2x 3=5x 5B. 4y 2−y 2=3C. 3x 2y +yx 2=4x 2yD. x +2y =3xy7. 已知a ,b 为有理数,它们在数轴上的对应位置如图所示,把a ,−b ,a +b ,a −b 按从小到大的顺序排列,正确的是( )A. a <a −b <−b <a +bB. a −b <a +b <−b <aC. a −b <a <−b <a +bD. a −b <−b <a <a +b8. 下列方程变形正确的是( )A. 方程3x−2=2x+1,移项可得3x−2x=1+2B. 方程3−x=2−5(x−1)去括号,得3−x=2−5x−1C. 方程32t=23,未知数的系数化为1,得t=1D. 方程x−10.2−x0.5=1可化成10x−102−10x5=109.如果x=2是方程12x+a=−1的解,那么a的值是()A. 0B. 2C. −2D. −610.点A、B、C在同一直线上,AB=3cm,BC=1cm,点D为AC的中点,则AD长为()A. 2cmB. 1cmC. 2cm或1cmD. 无法确定11.轮船A在海上航行,从轮船A处观测灯塔B在其北偏东45°,观测灯塔C在其南偏东70°,则此时∠BAC度数是()A. 65°B. 110°C. 115°D. 135°12.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A. 4B. 6C. 12D. 15二、填空题(本大题共6小题,共18.0分)13.化简:|π−3.15|+π=______ .14.将8.7654用四舍五入法精确到百分位的近似数是______.15.在a2+(3k−6)ab+b2+9中,不含ab项,则k=______.16.若∠α的余角为54°37′,则∠α的补角为______.17.某种商品零售价为每件900元,为了适应市场竞争,商店按零售价的9折降价,并让利40元销售,仍可获利10%(相对进价),设这种商品进货每件为x元,则根据题意可列一元一次方程为______.18.“二十四点”游戏的规则是这样的,任取四个1到13之间的自然数,将这四个数(每个数都要用到且只用一次)进行加减乘除四则运算,使其结果等于24.例如:1、2、3、4,可做运算(1+2+3)×4=24,其中1、2、3、4都用到了且只用一次(注意,上述运算与4×(1+2+3)应视为相同方法).现有四个有理数:3、4、6、10,运用上述规则写出2种不同方式的运算,使其结果等于24.可以表示为:(1)______;(2)______.三、解答题(本大题共8小题,共66.0分)19.计算下列各式:(1)6+(−15)−2−(−1.4);(2)(−4.5)×(−2)÷(−13)×3.20.计算下列各式,尽量使用简便方法:(1)(−2)3×322−(−22)÷14;(2)−16×5+(−5)×(−216).21.解下列方程:(1)x−2(3x−6)=7;(2)1−2x3−3x+16=1.22.如图,平面上有四个点A、B、C、D,根据下列语句用尺规作图.(1)画直线AB;(2)作射线CB;(3)连接线段BD、AC,相交于点E(需标注);(4)连接AD,并延长至F,使得DF=AD.23.如图,OA、OB、OC是从O出发的三条射线,射线OM平分∠AOB,射线ON平分∠BOC.(1)已知∠AOB=90°,∠BOC=30°,求∠MON的度数;(2)如果不知道∠AOB与∠BOC的度数,只知道∠AOC=120°,你能求出∠MON的度数吗?如果能,请写出解答过程;如果不能,说明理由.24. 已知M =3a 2b −[2ab 2−6(ab −12a 2b)+4ab]−2ab .(1)化简代数式M ;(2)若|2a +3|+(b −2)2=0,试求M 的值.25. 某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.(1)如果某产品要求甲种零件与乙种零件每天生产的个数按照3:4配比,那么应该安排几名工人加工甲种零件,几名工人加工乙种零件?(2)已知每加工一个甲种零件可获利15元,每加工一个乙种零件可获利20元.若此车间某天一共获利1240元,求这一天有几名工人加工甲种零件.26. 符号“G ”表示一种运算,它对一些数的运算结果,分2种类型表示如下:运算类型①:G(1)=1,G(2)=3,G(3)=5,G(4)=7,G(5)=9,……运算类型②:G(12)=2,G(13)=4,G(14)=6,G(15)=8,G(16)=10,……请同学们认真观察运算规律,并利用以上2种类型的运算规律,解决下列问题:(1)求值:G(6)=______;G(17)=______;G(20)−G(120)=______;(2)填空:若G(a)=99,则a =______;若G(b)=50,则b =______;(3)小明按照运算类型①的规律,计算出G(3x +2)−G(2x −1)的值为4046,试求有理数x 的值.答案和解析1.【答案】D【解析】解:在−10,+312,−0.9,1,0,35,π,−4.95中,正分数有+312,35,共2个. 故选:D .利用正分数的定义(大于0的分数是正分数)解答即可得出答案.此题考查了有理数,熟练掌握正分数的定义是解本题的关键.2.【答案】B【解析】解:−3的相反数是3.故选:B .依据相反数的定义求解即可.本题主要考查的是相反数的定义,熟练掌握相反数的定义是解题的关键.3.【答案】B【解析】解:由题意得:40−(−6)=40+6=46℃,故选:B .利用有理数的减法进行计算即可.本题考查了有理数的减法,熟练掌握有理数的减法法则是解题的关键.4.【答案】A【解析】【分析】本题考查了科学记数法,科学记数法中a 的要求和10的指数n 的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1207000用科学记数法表示1.207×106,故选A.5.【答案】B【解析】解:A、多项式ab+c是二次二项式,故此选项错误;B、1是单项式,故此选项正确;C、多项式2x2+3y的次数是2,故此选项错误;D、单项式a的系数是1,次数是1,故此选项错误.故选:B.直接利用多项式的次数与项数确定方法和单项式次数与系数确定方法分别判断即可.此题主要考查了多项式的次数与项数和单项式得出与系数,正确把握相关定义是解题关键.6.【答案】C【解析】解:3x2⋅2x3=6x5,故A不正确,不符合题意;4y2−y2=3y2,故B不正确,不符合题意;3x2y+yx2=4x2y,故C正确,符合题意;x+2y中没有同类项,不能合并,故D不正确,不符合题意;故选:C.根据单项式乘法、合并同类项逐个判断即可.本题考查单项式的乘法和合并同类项,解题的关键是掌握单项式乘法和合并同类项的法则.7.【答案】D【解析】解:根据数轴可以得到a<0<b,且|a|<|b|,设a=−1,b=3,则a−b=−1−3=−4,−b=−3,a+b=−1+3=2,∴a−b<−b<a<a+b,故选:D.先根据a,b两点在数轴上的位置判断出其符号,进而可得出结论.本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.8.【答案】A【解析】解:A、方程3x−2=2x+1,移项可得3x−2x=1+2,符合题意;B、方程3−x=2−5(x−1)去括号,得3−x=2−5x+5,不符合题意;C、方程32t=23,未知数系数化为1,得t=49,不符合题意;D、方程x−10.2−x0.5=1可化为10x−102−10x5=1,不符合题意.故选:A.各方程整理得到结果,即可作出判断.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,求出解.9.【答案】C【解析】解:将x=2代入方程12x+a=−1得1+a=−1,解得:a=−2.故选:C.此题可将x=2代入方程,然后得出关于a的一元一次方程,解方程即可得出a的值.此题考查的是一元一次方程的解法,方程两边可同时减去1,即可解出a的值.10.【答案】C【解析】解:∵AB=3cm,BC=1cm,∴AC=AB+BC=4cm或AC=AB−BC=2cm.∵点D为线段AC的中点,∴AD=12AC=2cm或1cm,故选:C.由AB、BC的长度可得出AC的长度,由点D为线段AC的中点可得出AD的长度.本题考查了两点间的距离,利用线段之间的关系求出线段AC的长度是解题的关键.11.【答案】A【解析】解:如图:由题意得:∠BAC=180°−45°−70°=65°,故选:A.用平角180°减去两个角度的和即可.本题考查了方向角,根据题目的已知条件画出图形是解题的关键.12.【答案】B【解析】解:盒子的容积为3×2×1=6.故选B.由图可知,无盖长方体盒子的长是3,宽是2,高是1,所以盒子的容积为3×2×1=6.正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.13.【答案】3.15【解析】解:|π−3.15|+π,=3.15−π+π,=3.15.故答案为:3.15.根据负数的绝对值等于它的相反数去掉绝对值号,然后解答即可.本题考查了绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.14.【答案】8.77【解析】解:将8.7654用四舍五入法精确到百分位的近似数是8.77.故答案为:8.77.把千分位上的数字5进行四舍五入即可.本题考查了近似数与精确度.经过四舍五入得到的数称为近似数;近似数精确到哪一位,应当看末位数字实际在哪一位.近似数与精确数的接近程度,可以用精确度表示.15.【答案】2【解析】解:∵多项式a2+(3k−6)ab+b2+9不含ab项,∴3k−6=0,解得:k=2,故答案为:2.根据多项式不含ab项得出3k−6=0,再求出k即可.本题考查了整式的加减和解一元一次方程,能得出关于k的方程是解此题的关键.16.【答案】144°37′【解析】解:∠A的补角为:180°−(90°−54°37′)=90°+54°37′=144°37′.故答案为:144°37′.根据余角和补角的定义可知∠A的补角比∠A的余角大90°,列式解答即可.本题考查的是余角及补角的定义,比较简单.如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.进行计算即可求解.17.【答案】x×(1+10%)=900×90%−40【解析】解:设进价为x元,可列方程:x×(1+10%)=900×90%−40,故答案为:x×(1+10%)=900×90%−40.通过理解题意可知商店按零售价的九折且让利40元销售即销售价=900×90%−40,得出等量关系为x×(1+10%)=900×90%−40,解答即可.此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.18.【答案】3×(4−6+10)=2410−4+3×6=24【解析】解:(1)3×(4−6+10)=24;(2)10−4+3×6=24.故答案为:(1)3×(4−6+10)=24;(2)10−4+3×6=24.利用“二十四点”游戏的规则判断即可.此题考查了有理数的混合运算,弄清“二十四点”游戏的规则是解本题的关键.19.【答案】解:(1)原式=6−0.2−2+1.4=(6+1.4)−(0.2+2)=7.4−2.2=5.2;(2)原式=9×(−3)×3=−81.【解析】(1)减法转化为加法,再利用加法交换律和结合律计算即可;(2)先计算乘法、将除法转化为乘法,进一步计算乘法即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.+4×420.【答案】解:(1)原式=−8×92=−36+16=−20;(2)原式=−5×(6−216)=−5×(−200)=1000.【解析】(1)先计算乘方、将除法转化为乘法,再计算乘法,最后计算加法即可;(2)先提取公因数−5,再计算括号内的减法,继而计算乘法即可.本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.21.【答案】解:(1)x−2(3x−6)=7,x−6x+12=7,x−6x=7−12,−5x=−5,x=1;(2)1−2x3−3x+16=1,2(1−2x)−(3x+1)=6,2−4x−3x−1=6,−4x−3x=6+1−2,−7x=5,x=−57.【解析】(1)先去括号,再移项、合并同类项,最后将系数化为1即可;(2)先去分母,然后去括号,再移项、合并同类项,最后将系数化为1即可.本题考查一元一次方程的解,熟练掌握一元一次方程的解法是解题的关键.22.【答案】解:(1)如图,直线AB即为所求;(2)如图,射线CB即为所求;(3)如图,线段BD、AC即为所求(4)如图,DF即为所求.【解析】根据射线,直线,线段的定义作出图形即可.本题考查作图−复杂作图直线,射线,线段的定义等知识,解题的关键是熟练直线,射线,线段的定义,属于中考常考题型.23.【答案】解:(1)∵射线OM平分∠AOB,∠AOB=90°,∴∠BOM=12∠AOB=45°,∵射线ON平分∠BOC,∠BOC=30°,∴∠BON=12∠BOC=15°,∴∠MON=∠BOM+∠BON=45°+15°=60°;(2)∵射线OM平分∠AOB,∴∠BOM=12∠AOB,∵射线ON平分∠BOC,∴∠BON=12∠BOC,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOC=12(∠AOB+∠BOC)=12∠AOC,∵∠AOC=120°,∴∠MON=60°.【解析】(1)首先根据角平分线定义可得∠BOM=12∠AOB=45°,再根据角平分线定义可得∠BON=12∠BOC=15°,即可得∠MON的度数;(2)根据角平分线定义可得∠BOM=12∠AOB,再根据角平分线定义可得∠BON=12∠BOC,即可得∠MON=12∠AOC=120°.此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.24.【答案】解:(1)M=3a2b−[2ab2−6(ab−12a2b)+4ab]−2ab=3a2b−[2ab2−6ab+3a2b+4ab]−2ab=3a2b−2ab2+6ab−3a2b−4ab−2ab=−2ab2;(2)∵|2a+3|+(b−2)2=0,∴2a+3=0且b−2=0,,b=2,解得:a=−32,b=2时,当a=−32M=−2×(−3)×222=3×4=12.【解析】(1)先去小括号,再去中括号,最后合并同类项即可;(2)根据绝对值和偶次方的非负性求出a、b的值,再代入求出答案即可.本题考查了绝对值和偶次方的非负性,整式的加减等知识点,能正确根据整式的加减法则进行计算是解此题的关键.25.【答案】解:(1)设生产甲种零件的工人有x人,根据题意得:5x×4=4(16−x)×3,解得x=6,16−x=16−6=10,答:安排生产甲零件的工人为6人、安排生产乙种零件的工人为10人;(2)设这一天有y名工人加工甲种零件,则这天加工甲种零件有5y个,乙种零件有4(16−y)个,根据题意得:根据题意,得15×5y+20×4(16−y)=1240,解得y=8.答:这一天有8名工人加工甲种零件.【解析】(1)根据题意可以列出相应的一元一次方程,从而可以解答本题;(2)等量关系为:加工甲种零件的总利润+加工乙种零件的总利润=1240,把相关数值代入求解即可.本题考查一次方程的应用,解题的关键是读懂题意,找出等量关系列方程.26.【答案】1112150126【解析】解:(1)G(6)=6+(6−1)=6+5=11,G(17)=(6+1)+(6−1)=7+5=12,G(20)−G(120)=20+(20−1)−[(19+1)+(19−1)]=20+19−(20+18)=39−38=1,故答案为:11,12,1;(2)当G(a)=99时,如是运算①,则a+a−1=99,解得:a=50;如是运算②,99是奇数,不符合题意;当G(b)=50时,如是运算①,50是偶数,不符合题意;如是运算②,则1b −1+1+1b−1−1=50,解得:b=126,故答案为:50,126;(3)由题意得:G(3x+2)−G(2x−1)=4046,∴3x+2+3x+2−1−[2x−1+2x−1−1]=4046,解得:x=2020,故有理数x的值是2020.(1)根据所给的两种运算进行求解即可;(2)分两种运算进行求解即可;(3)利用运算①的规律进行求解即可.本题主要考查代数式求值,解答的关键是理解清楚题意,分析出运算的规律.。
2019-2020学年新人教版七年级上学期期末测试数学试卷(附答案)
![2019-2020学年新人教版七年级上学期期末测试数学试卷(附答案)](https://img.taocdn.com/s3/m/21f27f1f33687e21ae45a913.png)
2019-2020学年七年级上学期期末测试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的.每小题2分,共18分)1.(2分)﹣6的倒数是()A.﹣B.C.﹣6D.62.(2分)以下各图均由彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()A.B.C.D.3.(2分)如图,是一个正方体,用一个平面去截这个正方体,截面形状不可能为下图中的()A.B.C.D.4.(2分)下列四个生产生活现象,可以用公理“两点之间,线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上5.(2分)我市某校七年级进行了一次数学测验,参加人数共360人,为了了解这次数学测验成绩,下列所抽取的样本中较为合理的是()A.抽取各班学号末位数为3和3的整数倍的同学的数学成绩B.抽取后120名同学的数学成绩C.抽取前120名同学的数学成绩D.抽取(1)、(6)两班同学的数学成绩6.(2分)如图,∠AOB是直角,∠AOC=60°,OE平分∠AOB,OF平分∠AOC,则∠EOF的度数是()A.150°B.75°C.45°D.30°7.(2分)实数a、b在数轴上的位置如图所示,则化简|a﹣b|﹣b的结果为()A.a﹣2b B.2b﹣a C.﹣a D.a8.(2分)某市出租车收费标准为:起步价(3千米以内或3千米)10元,3千米后每千米价1.8元,则某人乘坐出租车x(x>3)千米需付费()元.A.10+1.8x B.3+1.8xC.10+1.8(x﹣3)D.3+1.8(x﹣3)9.(2分)元旦前夕,某商店购进某种特色商品100件,按进价每件加价30%作为定价,可是总卖不出去,后来每件按定价降价20%,以每件104元出售,终于在元旦前全部售出,则这批商品在销售过程中的盈亏情况是()A.亏40元B.赚400元C.亏400元D.不亏不赚二、填空题(每小题2分,共18分)10.(2分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,2017年中哈铁路(中国至哈萨克斯坦)运输量达12800000,将12800000用科学记数法表示为.11.(2分)2.5°=″.12.(2分)下列图形中,是柱体的有.(填序号)13.(2分)正六边形从一个顶点出发可以画条对角线,这些对角线把正六边形分割成个三角形.14.(2分)d是最大的负整数,e是最小的正整数,f的相反数等于它本身,则d+e﹣f的值是.15.(2分)多项式2(a2﹣3xy)﹣(a2﹣3mxy)化简的结果为a2,则m=.16.(2分)已知多项式3x2﹣4x+6的值为9,则多项式的值为.17.(2分)“*”是规定的一种运算法则:a*b=a2﹣ab﹣3b.若(﹣2)*(﹣x)=7,那么x=.18.(2分)填在如图各正方形中的四个数之间都有相同的规律,则a+b﹣c的值是.三、(本大题共2小题,19题5分,20题7分,共12分)19.(5分)计算:24÷[(﹣2)3+4]﹣3×(﹣11)20.(7分)解方程:.四、(本大题共2小题,每小题8分,共16分)21.(8分)已知A=2a2﹣3b2,B=﹣a2+2b2,C=5a2﹣b2.(1)用含有a、b的代数式表示A+B﹣C;(2)若a=﹣,b=,求(1)中代数式的值.22.(8分)学校为提高同学身体素质,开展了冬季体育锻炼活动.班主任老师让甲、乙二人在长为400米的圆形跑道上进行跑步训练,已知甲每秒钟跑5米,乙每秒钟跑3米.请列方程解决下面的问题.(1)两人同时同地同向而跑时,经过几秒钟两人首次相遇?(2)两人同时同地背向而跑时,首次相遇时甲比乙多跑了多少米?五、(本大题共2小题,每小题8分,共16分)23.(8分)小林所在的班级开展了分组学习竞赛活动,每次竞赛后获得前两名的小组都要颁发优胜奖状.一段时间后,老师让小林用所学的数据收集与整理知识把各组获得奖状的次数整理如下.有一些项目还没有统计完,请用现有数据帮助小林完成下面任务.(1)请将表格补充完整;(2)请将条形统计图补充完整;(3)扇形统计图中,求表示第四小组扇形的圆心角度数.24.(8分)如图,是一个由边长为a的多个小立方块搭成的几何体.(1)从正面、左面、上面观察该几何体,分别画出你所看到的几何体的形状图;(2)该几何体的表面积是.六、(本题满分9分)25.(9分)元旦期间,小颖、小亮等科技小组同学随一些辅导老师一起到科技园进行科技实验,下面是他们在购买实验材料时,小颖与小亮的对话(如图),试根据图中的信息,解答下列问题:(1)小颖他们一共去了几个辅导老师,几个学生?(2)请你帮助小亮算一算,用哪种方式购票更省钱?说明理由.七、(本题满分11分)26.(11分)如图,已知数轴上有两点A、B,它们对应的数分别为a、b,其中a=12.(1)在点B的左侧作线段BC=AB,在B的右侧作线段BD=3AB(要求尺规作图,不写作法,保留作图痕迹);(2)若点C对应的数为c,点D对应的数为d,且AB=20,求c、d的值;(3)在(2)的条件下,设点M是BD的中点,N是数轴上一点,且CN=2DN,请直接写出MN的长.参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的.每小题2分,共18分)1.【解答】解:﹣6的倒数是﹣.故选:A.2.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.3.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选:D.4.【解答】解:A、根据两点确定一条直线,故本选项错误;B、确定树之间的距离,即得到相互的坐标关系,故本选项错误;C、根据两点之间,线段最短,故本选项正确;D、根据两点确定一条直线,故本选项错误.故选:C.5.【解答】解:某校七年级进行了一次数学测验,参加人数共360人,为了了解这次数学测验成绩,抽取各班学号末位数为3和3的整数倍的同学的数学成绩,故选:A.6.【解答】解:∵∠AOB是直角,OE平分∠AOB,∴∠AOE=45°,∵∠AOC=60°,OF平分∠AOC,∴∠AOF=30°,∴∠EOF=45°+30°=75°.故选:B.7.【解答】解:由图可知:a<0<b,∴a﹣b<0,可得:|a﹣b|﹣b=﹣a+b﹣b=﹣a,故选:C.8.【解答】解:乘出租x千米的付费是:10+1.8(x﹣3)故选:C.9.【解答】解:设该商品每件的进价为x元由题意列方程:x(1+30%)(1﹣20%)=104解得:x=100所以100件商品的利润为:100×(104﹣100)=400元故选:B.二、填空题(每小题2分,共18分)10.【解答】解:将12800000用科学记数法表示为:1.28×107.故答案为:1.28×107.11.【解答】解:2.5°=9000“;故答案为:900012.【解答】解:①是圆锥,②是正方体,属于棱柱,③是圆柱,④是棱锥,⑤是球,⑥是三棱柱.所以是柱体的有②③⑥.13.【解答】解:正六边形从一个顶点出发可以画6﹣3=3条对角线,这些对角线把正六边形分割成6﹣2=4个三角形.故答案为:3,4.14.【解答】解:∵d是最大的负整数,e是最小的正整数,f的相反数等于它本身,∴d=﹣1,e=1,f=0,∴d+e﹣f=(﹣1)+1+0=0.故答案为:0.15.【解答】解:∵2(a2﹣3xy)﹣(a2﹣3mxy)=2a2﹣6xy﹣a2+3mxy=a2+(3m﹣6)xy=a2∴3m﹣6=0,解得:m=2.故答案为:2.16.【解答】解:由已知得:3x2﹣4x+6=9,即3x2﹣4x=3,,=(3x2﹣4x)+6,=×3+6=7.故答案为:7.17.【解答】解:∵a*b=a2﹣ab﹣3b,(﹣2)*(﹣x)=7,∴4﹣2x+3x=7,解得:x=3.故答案为:3.18.【解答】解:由图可知,左上角的数字依次为0,2,4,6,8,10,右上角的数字都是左上角的数字加3,左下角的数字都是左上角的数字加4,右下角的数字都是前一副图中右上角数字与本幅图中左下角数字的乘积加1,则a=10+3=13,b=10+4=14,c=(8+3)×14+1=155,∴a+b﹣c=13+14﹣155=﹣128,故答案为:﹣128.三、(本大题共2小题,19题5分,20题7分,共12分)19.【解答】解:24÷[(﹣2)3+4]﹣3×(﹣11)=24÷(﹣8+4)+33=24÷(﹣4)+33=﹣6+33=27.20.【解答】解:去分母得:5(y﹣1)=20﹣2(y+2),去括号得:5y﹣5=20﹣2y﹣4,移项合并得:7y=21.解得:y=3.四、(本大题共2小题,每小题8分,共16分)21.【解答】解:(1)A+B﹣C=(2a2﹣3b2)+(﹣a2+2b2)﹣(5a2﹣b2)=2a2﹣3b2﹣a2+2b2﹣5a2+b2=﹣4a2;(2)将a=﹣代入,原式=﹣4×=﹣1.22.【解答】解:(1)设x秒钟两人首次相遇.由题意得:5x﹣3x=400,解得:x=200.答:两人同时同地同向而跑时,经过200秒钟两人首次相遇.(2)设y秒钟两人首次相遇.由题意得:5x+3x=400,解得:y=50.5×50﹣3×50=100(米)答:两人同时同地背向而跑时,首次相遇时甲比乙多跑了100米.五、(本大题共2小题,每小题8分,共16分)23.【解答】解:(1)补全表格如下:(2)补全直方图如下:(3)表示第四小组扇形的圆心角度数为×360°=108°.24.【解答】解:(1)如图所示:(2)此几何体的表面积为2×(7+6+8)×a2=42a2,故答案为:42a2.六、(本题满分9分)25.【解答】解:(1)设小颖他们一共去了x个辅导老师,则去了(15﹣x)个学生,依题意,得:50x+50×0.5×(15﹣x)=500,解得:x=5,∴15﹣x=10.答:小颖他们一共去了5个辅导老师,10个学生.(2)若按团体购票:16×50×0.6=480(元).∵480<500,∴按团体购票方式购票更省钱.七、(本题满分11分)26.【解答】解:(1)如图,线段BC、BD为所求线段;(2)∵且AB=20,BC=AB,BD=3AB,∴AC=40,AD=40,∵a=12,∴c=12﹣40=﹣28,d=12+40=52;(3)分情况讨论:①点N在线段CD上,由(2)得CD=52﹣(﹣28)=80,点B对应的数为12﹣20=﹣8,∴BD=52﹣(﹣8)=60,∵点M是BD的中点,∴点M对应的数为52﹣30=22,∵CN=2DN,∴DN=,∴点N对应的数为,∴MN=;②点N在线段CD的延长线上,∵CN=2DN,∴DN=CD=80,∴点N对应的数为52+80=132,∴MN=132﹣22=110.故MN的长为或110.。
2019-2020学年湖南省长沙市天心区明德教育集团七年级(上)期末数学试卷
![2019-2020学年湖南省长沙市天心区明德教育集团七年级(上)期末数学试卷](https://img.taocdn.com/s3/m/20227ccc33687e21af45a9fc.png)
2019-2020学年湖南省长沙市天心区明德教育集团七年级(上)期末数学试卷一、选择题(共12小题,每小题3分,共36分) 1.(3分)如果数a 与2互为相反数,那么a 是( ) A .2B .0C .2-D .23-2.(3分)如图所示的几何体,从上面看所得到的图形是( )A .B .C .D .3.(3分)长沙市2018年完成一般公共预算收入1544.95亿元,2019年预计比上年同期增长10.09%,1544.95用科学记数法表示为( ) A .31.5449510⨯B .81.5449510⨯C .111.5449510⨯D .121.5449510⨯4.(3分)已知下列方程:①12x x -=;②0.21x =;③33x x=-;④6x y -=;⑤0x =,其中一元一次方程有( ) A .2个B .3个C .4个D .5个5.(3分)下面的计算正确的是( ) A .651a a -=B .()a b a b --=-+C .2323a a a +=D .2()2a b a b +=+6.(3分)下列说法正确的是( ) A .x 的指数是0 B .1-是一次单项式 C .2ab -的系数是2-D .x 的系数是07.(3分)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .b a <C .0ab >D .||||b a <8.(3分)下列利用等式的性质,错误的是( ) A .由a b =,得到11a b -=- B .由22a b=,得到a b = C .由a b =,得到ac bc =D .由ac bc =,得到a b =9.(3分)若23x b a -与12y a b -是同类项,则x y -的值为( ) A .2B .3-C .1-D .010.(3分)若整式223x x -的值为5,则整式2469x x -++的值是( ) A .1-B .14C .5D .411.(3分)点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是( ) A .AC BC =B .AC BC AB +=C .2AB AC =D .12BC AB =12.(3分)关于x 的方程243x m -=和2x m +=有相同的解,则m 的值是( ) A .10B .8-C .10-D .8二、填空题(本题共6个小题,每小题3分,共18分) 13.(3分)如果40α∠=︒,那么α∠的余角等于 . 14.(3分)单项式23x yπ-的系数是 .15.(3分)一个整式减去22a b -后所得的结果是22a b --,则这个整式是 .16.(3分)如果方程||(1)20m m x -+=是表示关于x 的一元一次方程,那么m 的取值是 . 17.(3分)如图,以O 点为观测点,OA 的方向是北偏东15︒,OB 的方向是北偏西40︒,若AOC AOB ∠=∠,则OC 的方向是 .18.(3分)请通过计算推测20203个位数是 . 三、解答题(共8个小题,共66分) 19.(6分)计算:32110(1)2|34|()23----⨯-20.(6分)解方程:31123x x +--=21.(8分)已知223A x y xy =+-,22232B xy y x =++. (1)化简:B A -;(2)已知2|2|(1)0x y ++-=,求B A -的值.22.(8分)在风速为24/km h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8h ,它逆风飞行同样的航线要用3h .求(1)无风时这架飞机在这一航线的平均航速; (2)两机场之间的航程是多少?23.(9分)如图,已知AOB ∠和COD ∠都是BOC ∠的余角,OE 、OF 分别为AOB ∠和COD ∠的角平分线,如果130AOD ∠=︒, (1)求BOC ∠的度数; (2)求EOF ∠的度数.24.(9分)为了打造“书香校园”,明德华兴中学计划购买20张书柜和一批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张200元,书架每只80元,A 超市的优惠政策为每买一张书柜赠送一只书架,B 超市的优惠政策为所有商品八折,设购买书架x 只(20)x ….(1)若规定只能到其中一个超市购买所有物品,当购买书架多少只时,到两家超市购买所需费用一样;(2)若学校想购买20张书柜和100只书架,且可到两家超市自由选购,你认为至少要准备多少货款,请用计算的结果来验证你的说法.25.(10分)材料1新规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”, (3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把()0a a a an a a ÷÷⋯≠}个记作?a ,读作“a 的圈n 次方”. (1)直接写出计算结果:1()2-^③ .我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?如:()()()()()()31111(3)333333()3333⎛⎫⎛⎫⎛⎫-=-÷-÷-÷-=-⨯-⨯-⨯-=-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭④(2)仿照上面的算式,将一个非零有理数a 的圈n 次方写成幂的形式等于 ;材料2新规定:自然数1到n 的连乘积用!n 表示,例如:1!1=,2!122=⨯=,3!1236=⨯⨯=,4!123424=⨯⨯⨯=,⋯⋯在这种规定下: (3)算一算:116!()(2)()3!32÷-⨯---÷④⑤⑥26.(10分)如图,线段AB 和CD 在数轴上运动,开始时,点A 与原点O 重合,且32CD AB =-.(1)若8AB =,且B 为AC 线段的中点,求点D 在数轴上表示的数.(2)在(1)的条件下,线段AB 和CD 同时开始向右运动,线段AB 的速度为3个单位/秒,线段CD 的速度为2个单位/秒,经过t 秒恰好有24AC BD +=,求t 的值.(3)若线段AB 和CD 同时开始向左运动,且线段AB 的速度大于线段CD 的速度,在点A 和C 之间有一点P (不与点B 重合),且有AB AP AC DP ++=,此时线段BP 为定值吗?若是,请求出这个定值,若不是,请说明理由.2019-2020学年湖南省长沙市天心区明德教育集团七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分) 1.(3分)如果数a 与2互为相反数,那么a 是( ) A .2B .0C .2-D .23-【解答】解:a 与2互为相反数,那么a 是2-, 故选:C .2.(3分)如图所示的几何体,从上面看所得到的图形是( )A .B .C .D .【解答】解:从上面看下来,上面一行是1个正方体,中间一行是2个正方体,下面一行是一个正方体,故选C .3.(3分)长沙市2018年完成一般公共预算收入1544.95亿元,2019年预计比上年同期增长10.09%,1544.95用科学记数法表示为( ) A .31.5449510⨯B .81.5449510⨯C .111.5449510⨯D .121.5449510⨯【解答】解:将1544.95用科学记数法表示为:31.5449510⨯. 故选:A .4.(3分)已知下列方程:①12x x -=;②0.21x =;③33x x=-;④6x y -=;⑤0x =,其中一元一次方程有( ) A .2个B .3个C .4个D .5个【解答】解:根据一元一次方程定义可知: 下列方程: ①12x x-=; ②0.21x =;③33x x=-; ④6x y -=; ⑤0x =,其中一元一次方程有②⑤. 故选:A .5.(3分)下面的计算正确的是( ) A .651a a -=B .()a b a b --=-+C .2323a a a +=D .2()2a b a b +=+【解答】解:A 、65a a a -=,本选项错误;B 、()a b a b --=-+,本选项正确;C 、22a a +不是同类项,不能合并,本选项错误;D 、2()22a b a b +=+,本选项错误.故选:B .6.(3分)下列说法正确的是( ) A .x 的指数是0 B .1-是一次单项式 C .2ab -的系数是2-D .x 的系数是0【解答】解:A 、x 的指数是1,故选项错误;B 、1-是单项式,故选项错误;C 、2ab -的系数是2-是正确的;D 、x 的系数是1,故选项错误.故选:C .7.(3分)实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .0a b +=B .b a <C .0ab >D .||||b a <【解答】解:根据图形可知: 21a -<<-, 01b <<,则||||b a <; 故选:D .8.(3分)下列利用等式的性质,错误的是( ) A .由a b =,得到11a b -=- B .由22a b=,得到a b = C .由a b =,得到ac bc =D .由ac bc =,得到a b =【解答】解:当0c =时,0ac bc ==, 但a 不一定等于b 故D 错误 故选:D .9.(3分)若23x b a -与12y a b -是同类项,则x y -的值为( ) A .2B .3-C .1-D .0【解答】解:23x b a -Q 与12y a b -是同类项, 1x ∴=,12y -=,解得1x =,1y =-,112x y ∴-=+=.故选:A .10.(3分)若整式223x x -的值为5,则整式2469x x -++的值是( ) A .1-B .14C .5D .4【解答】解:2235x x -=Q ,224692(23)92591x x x x ∴-++=--+=-⨯+=-. 故选:A .11.(3分)点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是( ) A .AC BC =B .AC BC AB +=C .2AB AC =D .12BC AB =【解答】解:A 、AC BC =,则点C 是线段AB 中点;B 、AC BC AB +=,则C 可以是线段AB 上任意一点;C 、2AB AC =,则点C 是线段AB 中点;D 、12BC AB =,则点C 是线段AB 中点. 故选:B .12.(3分)关于x 的方程243x m -=和2x m +=有相同的解,则m 的值是( ) A .10B .8-C .10-D .8【解答】解:由243x m -=得:342m x +=;由2x m +=得:2x m =- 由题意知3422m m +=- 解之得:8m =-. 故选:B .二、填空题(本题共6个小题,每小题3分,共18分) 13.(3分)如果40α∠=︒,那么α∠的余角等于 50︒ . 【解答】解:40a ∠=︒Q ,a ∴∠的余角904050=︒-︒=︒.故答案为:50︒. 14.(3分)单项式23x yπ-的系数是 3π- . 【解答】解:单项式23x y π-的系数是3π-,故答案为:3π-.15.(3分)一个整式减去22a b -后所得的结果是22a b --,则这个整式是 22b - . 【解答】解:22222222()a b a b a b a b -+--=---22b =-,故答案为22b -.16.(3分)如果方程||(1)20m m x -+=是表示关于x 的一元一次方程,那么m 的取值是 1- . 【解答】解:由一元一次方程的特点得101m m -≠⎧⎨=⎩,解得1m =-. 故填:1-.17.(3分)如图,以O 点为观测点,OA 的方向是北偏东15︒,OB 的方向是北偏西40︒,若AOC AOB ∠=∠,则OC 的方向是 北偏东70︒ .【解答】解:OA Q 的方向是北偏东15︒,OB 的方向是北偏西40︒, 401555AOB ∴∠=︒+︒=︒, AOC AOB ∠=∠Q , 55AOC ∴∠=︒, 155570︒+︒=︒Q ,OC ∴的方向是北偏东70︒.故答案为:北偏东70︒.18.(3分)请通过计算推测20203个位数是 1 .【解答】解:133=Q ,239=,3327=,4381=,53243=,⋯,3n ∴的尾数每4个循环一次,20204505÷=Q ,20203∴个位数与43的个位数相同, 20203∴个位数是1,故答案为1.三、解答题(共8个小题,共66分) 19.(6分)计算:32110(1)2|34|()23----⨯-【解答】解:32110(1)2|34|()23----⨯-310(1)4()23=---⨯-(1)45=--+0=.20.(6分)解方程:31123x x +--= 【解答】解:Q21123x x +--=, 3(3)2(1)6x x ∴+-=,39226x x ∴+-+=, 116x ∴+=, 5x ∴=-21.(8分)已知223A x y xy =+-,22232B xy y x =++. (1)化简:B A -;(2)已知2|2|(1)0x y ++-=,求B A -的值.【解答】解:(1)2222(232)(3)B A xy y x x y xy -=++-+-22222323xy y x x y xy =++--+ 23x xy =+;(2)由题意得,20x +=,10y -=, 解得,2x =-,1y =,当2x =-,1y =时,223(2)3(2)12B A x xy -=+=-+⨯-⨯=-.22.(8分)在风速为24/km h 的条件下,一架飞机顺风从A 机场飞到B 机场要用2.8h ,它逆风飞行同样的航线要用3h .求(1)无风时这架飞机在这一航线的平均航速; (2)两机场之间的航程是多少?【解答】解:(1)设无风时飞机的航速是x 千米/时, 依题意得:2.8(24)3(24)x x ⨯+=⨯-, 解得:696x =.答:无风时飞机的航速是696千米/时.(2)由(1)知,无风时飞机的航速是696千米/时,则3(69624)2016⨯-=(千米).答:两机场之间的航程是2016千米.23.(9分)如图,已知AOB ∠和COD ∠都是BOC ∠的余角,OE 、OF 分别为AOB ∠和COD ∠的角平分线,如果130AOD ∠=︒,(1)求BOC ∠的度数;(2)求EOF ∠的度数.【解答】解:AOB ∠Q 和COD ∠都是BOC ∠的余角,90AOB BOC ∴∠+∠=︒,90COD BOC ∠+∠=︒,()()180AOB BOC COD BOC ∴∠+∠+∠+∠=︒,180********BOC AOD ∴∠=︒-∠=︒-︒=︒;(2)解:AOB ∠Q 与COD ∠都是BOC ∠的余角,50BOC ∠=︒,905040AOB ∴∠=︒-︒=︒,905040COD ∠=︒-︒=︒,OE Q 、OF 分别是AOB ∠、COD ∠的平分线,11402022AOE AOB ∴∠=∠=⨯︒=︒, 11402022DOF COD ∠=∠=⨯︒=︒, 130202090EOF AOD AOE DOF ∴∠=∠-∠-∠=︒-︒-︒=︒.24.(9分)为了打造“书香校园”,明德华兴中学计划购买20张书柜和一批书架(书架不少于20只),现从A 、B 两家超市了解到:同型号的产品价格相同,书柜每张200元,书架每只80元,A 超市的优惠政策为每买一张书柜赠送一只书架,B 超市的优惠政策为所有商品八折,设购买书架x 只(20)x …. (1)若规定只能到其中一个超市购买所有物品,当购买书架多少只时,到两家超市购买所需费用一样;(2)若学校想购买20张书柜和100只书架,且可到两家超市自由选购,你认为至少要准备多少货款,请用计算的结果来验证你的说法.【解答】解:(1)设购买书架x 只时,到两家超市购买所需费用一样.根据题意得:2020080(20)0.8(2020080)x x ⨯+-=⨯⨯+,解得:50x =.答:购买书架50只时,到两家超市购买所需费用一样;(2)到A 超市购买20个书柜和20个书架,到B 超市购买80只书架,钱数最少, 共需货款:2020080(10020)0.89120⨯+⨯-⨯=(元).答:至少要准备9120元货款.25.(10分)材料1新规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作2③,读作“2的圈3次方”, (3)(3)(3)(3)-÷-÷-÷-记作(3)-④,读作“3-的圈4次方”,一般地,把()0a a a a n a a ÷÷⋯≠}个记作?a ,读作“a 的圈n 次方”. (1)直接写出计算结果:1()2-^③ 2- . 我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?如:()()()()()()31111(3)333333()3333⎛⎫⎛⎫⎛⎫-=-÷-÷-÷-=-⨯-⨯-⨯-=-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭④ (2)仿照上面的算式,将一个非零有理数a 的圈n 次方写成幂的形式等于 ; 材料2新规定:自然数1到n 的连乘积用!n 表示,例如:1!1=,2!122=⨯=,3!1236=⨯⨯=,4!123424=⨯⨯⨯=,⋯⋯在这种规定下: (3)算一算:116!()(2)()3!32÷-⨯---÷④⑤⑥ 【解答】解:(1)1()2-^③ 1(22)2=-⨯⨯ 2=-.故答案为2;(2)非零有理数a 的圈n 次方写成幂的形式等于:a a a a a ÷÷÷÷⋯÷111a a a a=⨯⨯⨯⋯⨯11n a a -=⨯ 2n a -=21n a -=.故答案为:21n a -;(3)原式11234569()16(123)8=⨯⨯⨯⨯⨯÷⨯--÷⨯⨯ 8103=-- 383=-. 26.(10分)如图,线段AB 和CD 在数轴上运动,开始时,点A 与原点O 重合,且32CD AB =-.(1)若8AB =,且B 为AC 线段的中点,求点D 在数轴上表示的数.(2)在(1)的条件下,线段AB 和CD 同时开始向右运动,线段AB 的速度为3个单位/秒,线段CD 的速度为2个单位/秒,经过t 秒恰好有24AC BD +=,求t 的值.(3)若线段AB 和CD 同时开始向左运动,且线段AB 的速度大于线段CD 的速度,在点A 和C 之间有一点P (不与点B 重合),且有AB AP AC DP ++=,此时线段BP 为定值吗?若是,请求出这个定值,若不是,请说明理由.【解答】解:(1)32CD AB =-Q ,8AB =,24222CD ∴=-=,8AB CB ==Q ,882238AD AB BC CD ∴=++=++=,∴点D 在数轴上表示的数为38.(2)由题意:24AC BD +=,823382(38)24t t t t ∴+-++-+=或3(82)(38)(382)24t t t t -+++-+=, 解得7t =或31.答:t 的值为7或31.(3)如图,设AB x =,PB y =,PC z =,则32CD x =-.Q,++=AB AP AC DP∴+++++=+-,x x y x y z z x32 y=-<(舍去),解得10∴的值无定值.PB。
2019-2020学年湖南省长沙市天心区明德教育集团七年级(上)期末数学试卷(教师版)
![2019-2020学年湖南省长沙市天心区明德教育集团七年级(上)期末数学试卷(教师版)](https://img.taocdn.com/s3/m/7be9759efe4733687f21aacd.png)
2019-2020学年湖南省长沙市天心区明德教育集团七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.(3分)如果数a与2互为相反数,那么a是()A.2B.0C.﹣2D.﹣【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:a与2互为相反数,那么a是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)如图所示的几何体,从上面看所得到的图形是()A.B.C.D.【分析】从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【解答】解:从上面看下来,上面一行是1个正方体,中间一行是2个正方体,下面一行是一个正方体,故选C.【点评】本题考查了三种视图中的俯视图,比较简单.3.(3分)长沙市2018年完成一般公共预算收入1544.95亿元,2019年预计比上年同期增长10.09%,1544.95用科学记数法表示为()A.1.54495×103B.1.54495×108C.1.54495×1011D.1.54495×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1544.95用科学记数法表示为:1.54495×103.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个【分析】根据一元一次方程的定义:只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.即可判断.【解答】解:根据一元一次方程定义可知:下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有②⑤.故选:A.【点评】本题考查了一元一次方程的定义,解决本题的关键是掌握一元一次方程的定义.5.(3分)下面的计算正确的是()A.6a﹣5a=1B.﹣(a﹣b)=﹣a+bC.a+2a2=3a3D.2(a+b)=2a+b【分析】A、合并同类项得到结果,即可作出判断;B、利用去括号法则去括号得到结果,即可作出判断;C、原式为最简的,不能合并;D、利用去括号法则去括号后得到结果,即可作出判断.【解答】解:A、6a﹣5a=a,本选项错误;B、﹣(a﹣b)=﹣a+b,本选项正确;C、a+2a2不是同类项,不能合并,本选项错误;D、2(a+b)=2a+2b,本选项错误.故选:B.【点评】此题考查了添括号与去括号,以及合并同类项,熟练掌握法则是解本题的关键.6.(3分)下列说法正确的是()A.x的指数是0B.﹣1是一次单项式C.﹣2ab的系数是﹣2D.x的系数是0【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:A、x的指数是1,故选项错误;B、﹣1是单项式,故选项错误;C、﹣2ab的系数是﹣2是正确的;D、x的系数是1,故选项错误.故选:C.【点评】考查了单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.7.(3分)实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0B.b<a C.ab>0D.|b|<|a|【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【解答】解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选:D.【点评】此题主要考查了实数与数轴,解答此题的关键是根据数轴上的任意两个数,右边的数总比左边的数大,负数的绝对值等于它的相反数,正数的绝对值等于本身.8.(3分)下列利用等式的性质,错误的是()A.由a=b,得到1﹣a=1﹣b B.由=,得到a=bC.由a=b,得到ac=bc D.由ac=bc,得到a=b【分析】根据等式的性质即可判断.【解答】解:当c=0时,ac=bc=0,但a不一定等于b故D错误故选:D.【点评】本题考查等式的性质,注意ac=bc,且c≠0时,才能有a=b,本题属于基础题型.9.(3分)若﹣3b x a2与2a1﹣y b是同类项,则x﹣y的值为()A.2B.﹣3C.﹣1D.0【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),求出x,y的值,再代入代数式计算即可.【解答】解:∵﹣3b x a2与2a1﹣y b是同类项,∴x=1,1﹣y=2,解得x=1,y=﹣1,∴x﹣y=1+1=2.故选:A.【点评】本题考查了同类项,关键是熟悉同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫同类项.10.(3分)若整式2x2﹣3x的值为5,则整式﹣4x2+6x+9的值是()A.﹣1B.14C.5D.4【分析】先将整式﹣4x2+6x+9变形为﹣2(2x2﹣3x)+9,再将2x2﹣3x=5代入计算即可.【解答】解:∵2x2﹣3x=5,∴﹣4x2+6x+9=﹣2(2x2﹣3x)+9=﹣2×5+9=﹣1.故选:A.【点评】本题考查了代数式求值,整体的数学思想和正确运算的能力.11.(3分)点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、C、D都可以确定点C是线段AB中点.【解答】解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.【点评】根据线段的中点能够写出正确的表达式.反过来,也要会根据线段的表达式来判断是否为线段的中点.12.(3分)关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10B.﹣8C.﹣10D.8【分析】在题中,可分别求出x的值,当然两个x都是含有m的代数式,由于两个x相等,可列方程,从而进行解答.【解答】解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2由题意知=m﹣2解之得:m=﹣8.故选:B.【点评】根据题目给出的条件,列出方程组,便可求出未知数.二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)如果∠α=40°,那么∠α的余角等于50°.【分析】根据互为余角的两角之和为90°,即可得出答案.【解答】解:∵∠a=40°,∴∠a的余角=90°﹣40°=50°.故答案为:50°.【点评】本题考查了余角的知识,属于基础题,解答本题的关键是熟记互为余角的两角之和为90°.14.(3分)单项式﹣的系数是﹣.【分析】根据单项式中的数字因数叫做单项式的系数解答.【解答】解:单项式﹣的系数是﹣,故答案为:﹣.【点评】本题考查的是单项式的概念,掌握单项式中的数字因数叫做单项式的系数是解题的关键.15.(3分)一个整式减去a2﹣b2后所得的结果是﹣a2﹣b2,则这个整式是﹣2b2.【分析】根据整式的加减进行计算即可.【解答】解:a2﹣b2+(﹣a2﹣b2)=a2﹣b2﹣a2﹣b2=﹣2b2,故答案为﹣2b2.【点评】本题考查了整式的加减,掌握被减式=减式+差式是解题的关键.16.(3分)如果方程(m﹣1)x|m|+2=0是表示关于x的一元一次方程,那么m的取值是﹣1.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.据此可得出关于m的方程,继而可求出m的值.【解答】解:由一元一次方程的特点得,解得m=﹣1.故填:﹣1.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.17.(3分)如图,以O点为观测点,OA的方向是北偏东15°,OB的方向是北偏西40°,若∠AOC=∠AOB,则OC的方向是北偏东70°.【分析】先求出∠AOB=55°,再求得OC的方位角,从而确定方位.【解答】解:∵OA的方向是北偏东15°,OB的方向是北偏西40°,∴∠AOB=40°+15°=55°,∵∠AOC=∠AOB,∴∠AOC=55°,∵15°+55°=70°,∴OC的方向是北偏东70°.故答案为:北偏东70°.【点评】主要考查了方位角.能够根据方位角的描述准确的找到所对应的角度是解题的关键.18.(3分)请通过计算推测32020个位数是1.【分析】分别求出31=3,32=9,33=27,34=81,35=243,…,通过观察可得3n的尾数每4个循环一次,进而求得32020个位数与34的个位数相同.【解答】解:∵31=3,32=9,33=27,34=81,35=243,…,∴3n的尾数每4个循环一次,∵2020÷4=505,∴32020个位数与34的个位数相同,∴32020个位数是1,故答案为1.【点评】本题考查数字的变化规律;能够通过求3n的一系列数,找到3n的尾数的规律是解题的关键.三、解答题(共8个小题,共66分)19.(6分)计算:(﹣1)3﹣22﹣|3﹣4|×(﹣)【分析】根据有理数的乘方、有理数的乘法和减法可以解答本题.【解答】解:(﹣1)3﹣22﹣|3﹣4|×(﹣)=(﹣1)﹣4﹣×(﹣)=(﹣1)﹣4+5=0.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(6分)解方程:﹣=1【分析】根据一元一次方程即可求出答案【解答】解:∵=1,∴3(x+3)2(x﹣1)=6,∴3x+9﹣2x+2=6,∴x+11=6,∴x=﹣5【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.21.(8分)已知A=x2+3y2﹣xy,B=2xy+3y2+2x2.(1)化简:B﹣A;(2)已知|x+2|+(y﹣1)2=0,求B﹣A的值.【分析】(1)根据去括号法则、合并同类项法则把B﹣A化简;(2)根据非负数的性质分别求出x、y,代入计算得到答案.【解答】解:(1)B﹣A=(2xy+3y2+2x2)﹣(x2+3y2﹣xy)=2xy+3y2+2x2﹣x2﹣3y2+xy=x2+3xy;(2)由题意得,x+2=0,y﹣1=0,解得,x=﹣2,y=1,当x=﹣2,y=1时,B﹣A=x2+3xy=(﹣2)2+3×(﹣2)×1=﹣2.【点评】本题考查的是整式的化简求值、非负数的性质,掌握整式的加减混合运算法则是解题的关键.22.(8分)在风速为24km/h的条件下,一架飞机顺风从A机场飞到B机场要用2.8h,它逆风飞行同样的航线要用3h.求(1)无风时这架飞机在这一航线的平均航速;(2)两机场之间的航程是多少?【分析】(1)设无风时飞机的航速是x千米/时,根据顺风速度×顺风时间=逆风速度×逆风时间,列出方程求出x的值即可.(2)由“航程=速度×时间”进行计算.【解答】解:(1)设无风时飞机的航速是x千米/时,依题意得:2.8×(x+24)=3×(x﹣24),解得:x=696.答:无风时飞机的航速是696千米/时.(2)由(1)知,无风时飞机的航速是696千米/时,则3×(696﹣24)=2016(千米).答:两机场之间的航程是2016千米.【点评】此题考查了一元一次方程的应用,用到的知识点是顺风速度=无风时的速度+风速,逆风速度=无风时的速度﹣风速,关键是根据顺风飞行的路程等于逆风飞行的路程列出方程.23.(9分)如图,已知∠AOB和∠COD都是∠BOC的余角,OE、OF分别为∠AOB和∠COD的角平分线,如果∠AOD=130°,(1)求∠BOC的度数;(2)求∠EOF的度数.【分析】(1)根据∠AOB和∠COD都是∠BOC的余角,可得∠AOB+∠BOC=90°,∠COD+∠BOC=90°,再根据∠AOD=130°,即可得出∠BOC的度数;(2)根据互为余角的两个角的和等于90°求出∠AOB、∠COD的度数,再根据角平分线的定义以及角的和差关系即可得解.【解答】解:∵∠AOB和∠COD都是∠BOC的余角,∴∠AOB+∠BOC=90°,∠COD+∠BOC=90°,∴(∠AOB+∠BOC)+(∠COD+∠BOC)=180°,∴∠BOC=180°﹣∠AOD=180°﹣130°=50°;(2)解:∵∠AOB与∠COD都是∠BOC的余角,∠BOC=50°,∴∠AOB=90°﹣50°=40°,∠COD=90°﹣50°=40°,∵OE、OF分别是∠AOB、∠COD的平分线,∴∠AOE=∠AOB=×40°=20°,∠DOF=∠COD=×40°=20°,∴∠EOF=∠AOD﹣∠AOE﹣∠DOF=130°﹣20°﹣20°=90°.【点评】本题考查了余角的定义,角平分线的定义,熟记概念并准确识图,理清图中各角度之间的关系是解题的关键.24.(9分)为了打造“书香校园”,明德华兴中学计划购买20张书柜和一批书架(书架不少于20只),现从A、B两家超市了解到:同型号的产品价格相同,书柜每张200元,书架每只80元,A超市的优惠政策为每买一张书柜赠送一只书架,B超市的优惠政策为所有商品八折,设购买书架x只(x≥20).(1)若规定只能到其中一个超市购买所有物品,当购买书架多少只时,到两家超市购买所需费用一样;(2)若学校想购买20张书柜和100只书架,且可到两家超市自由选购,你认为至少要准备多少货款,请用计算的结果来验证你的说法.【分析】(1)设购买书架x只时,到两家超市购买所需费用一样.根据在A超市购买所需的钱数=在B超市购买所需的钱数建立方程,求解即可;(2)根据A超市和B超市的优惠政策,可知:到A超市购买20个书柜和20个书架,到B超市购买80只书架,钱数最少,再计算即可.【解答】解:(1)设购买书架x只时,到两家超市购买所需费用一样.根据题意得:20×200+80(x﹣20)=0.8×(20×200+80x),解得:x=50.答:购买书架50只时,到两家超市购买所需费用一样;(2)到A超市购买20个书柜和20个书架,到B超市购买80只书架,钱数最少,共需货款:20×200+80×(100﹣20)×0.8=9120(元).答:至少要准备9120元货款.【点评】此题考查一元一次方程的应用,解题关键是要读懂题目的意思,理解A超市和B超市的优惠政策.25.(10分)材料1新规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把(a≠0)记作aⓝ,读作“a的圈n次方”.(1)直接写出计算结果:(﹣)③=﹣2.我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?如:(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=(﹣3)×(﹣)×(﹣)×(﹣)=(﹣3)×(﹣)3(2)仿照上面的算式,将一个非零有理数a的圈n次方写成幂的形式等于;材料2新规定:自然数1到n的连乘积用n!表示,例如:1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,……在这种规定下:(3)算一算:6!÷(﹣)④×(﹣2)⑤﹣(﹣)⑥÷3!【分析】(1)根据材料1新规定即可得结果;(2)归纳总结得规律即可;(3)利用得出的结论进行计算即可得到结果.【解答】解:(1)(﹣)③=(﹣)÷(﹣)÷(﹣)=﹣(×2×2)=﹣2.故答案为﹣2;(2)非零有理数a的圈n次方写成幂的形式等于:a÷a÷a÷a÷…÷a=a×××…×=a×=a2﹣n=.故答案为:;(3)原式=1×2×3×4×5×6÷9×(﹣)﹣16÷(1×2×3)=﹣10﹣=﹣.【点评】本题考查了规律型﹣数字的变化类,解决本题的关键是根据数字的变化规律进行有理数的混合运算.26.(10分)如图,线段AB和CD在数轴上运动,开始时,点A与原点O重合,且CD=3AB﹣2.(1)若AB=8,且B为AC线段的中点,求点D在数轴上表示的数.(2)在(1)的条件下,线段AB和CD同时开始向右运动,线段AB的速度为3个单位/秒,线段CD的速度为2个单位/秒,经过t秒恰好有AC+BD=24,求t的值.(3)若线段AB和CD同时开始向左运动,且线段AB的速度大于线段CD的速度,在点A和C之间有一点P(不与点B重合),且有AB+AP+AC=DP,此时线段BP为定值吗?若是,请求出这个定值,若不是,请说明理由.【分析】(1)求出AB,BC,CD的值即可解决问题.(2)分两种情形构建方程解决问题即可.(3)如图,设AB=x,PB=y,PC=z,则CD=3x﹣2.根据AB+AP+AC=DP,构建关系式解决问题即可.【解答】解:(1)∵CD=3AB﹣2,AB=8,∴CD=24﹣2=22,∵AB=CB=8,∴AD=AB+BC+CD=8+8+22=38,∴点D在数轴上表示的数为38.(2)由题意:AC+BD=24,∴16+2t﹣3t+30+2t﹣3t=24或3t﹣(16+2t)+3t﹣(30+2t)=24,解得t=11或35.答:t的值为11或35.(3)如图,设AB=x,PB=y,PC=z,则CD=3x﹣2.∵AB+AP+AC=DP,∴x+x+y+x+y+z=z+3x﹣2,解得y=﹣1<0(舍去),∴PB的值无定值.如图,设AB=x,PB=y,PC=z,则CD=3x﹣2.∵AB+AP+AC=DP,∴x+x﹣y+x﹣y+z=z+3x﹣2,解得y=1.∴PB的定值为1.综上所述,线段BP为定值为1.【点评】本题考查一元一次方程的应用,解题的关键是理解题意,学会设未知数,构建方程解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)2019的倒数是()A.2019B.﹣2019C.D.﹣2.(3分)某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃3.(3分)在“北京2008”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460 000 000帕的钢材.将460 000 000用科学记数法表示为()A.46×107B.4.6×109C.4.6×108D.0.46×109 4.(3分)下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an25.(3分)设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较6.(3分)关于x的方程=1的解为2,则m的值是()A.2.5B.1C.﹣1D.37.(3分)已知方程7x+2=3x﹣6与x﹣1=k的解相同,则3k2﹣1的值为()A.18B.20C.26D.﹣268.(3分)若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8B.﹣8C.6D.﹣69.(3分)如图,点C在线段AB上,点E是AC中点,点D是BC中点.若ED=6,则线段AB的长为()A.6B.9C.12D.1810.(3分)用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°11.(3分)如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于()A.90°B.135°C.150°D.120°12.(3分)若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.二.填空题(共8题;每小题3分,共24分)13.(3分)数轴上表示1的点和表示﹣2的点的距离是.14.(3分)已知|a﹣1|+(b+2)2=0,则(a+b)2019的值是.15.(3分)若a﹣5b=3,则17﹣3a+15b=.16.(3分)多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=.17.(3分)某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为元.18.(3分)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜场.19.(3分)已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是cm.20.(3分)如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC =°.三、解答题(共6小题,共60分)21.(5分)计算:﹣10+8÷(﹣2)2+(﹣4)×(﹣3).22.(10分)解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.23.(16分)列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:购买贺卡数不超过30张30张以上不超过50张50张以上每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?24.(14分)线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.25.(7分)已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.(1)求a,b的值;(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.26.(8分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC 都在直线AB的上方.(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.①此时t的值为;(直接填空)②此时OE是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.2019-2020学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.(3分)2019的倒数是()A.2019B.﹣2019C.D.﹣【分析】直接利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.【解答】解:2019的倒数是:.故选:C.【点评】此题主要考查了倒数,正确把握相关定义是解题关键.2.(3分)某地一天早晨的气温是﹣2℃,中午温度上升了12℃,半夜又下降了8℃,则半夜的气温是()A.﹣16℃B.2℃C.﹣5℃D.9℃【分析】根据有理数的加减混合运算的运算方法,用早上的温度加上中午上升的温度,再减去半夜又下降的温度,求出半夜的气温是多少即可.【解答】解:﹣2+12﹣8=10﹣8=2(℃).答:半夜的气温是2℃.故选:B.【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:有理数加减法统一成加法.3.(3分)在“北京2008”奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为460 000 000帕的钢材.将460 000 000用科学记数法表示为()A.46×107B.4.6×109C.4.6×108D.0.46×109【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:460 000 000=4.6×108.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列各组单项式中,不是同类项的是()A.4a2y与B.xy3与﹣xy3C.2abx2与x2ba D.7a2n与﹣9an2【分析】如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项.【解答】解:A.所含的字母相同,并且相同字母的指数也分别相同,是同类项;B.所含的字母相同,并且相同字母的指数也分别相同,是同类项;C.所含的字母相同,并且相同字母的指数也分别相同,是同类项;D.所含的字母相同,但相同字母的指数不相同,所以不是同类项.故选:D.【点评】本题考查同类项的概念,解题的关键是正确理解同类项的概念,本题属于基础题型.5.(3分)设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>1,则B>A,故选:A.【点评】此题主要考查了整式的加减,关键是掌握求差法比较大小.6.(3分)关于x的方程=1的解为2,则m的值是()A.2.5B.1C.﹣1D.3【分析】把x=2代入方程计算即可求出m的值.【解答】解:把x=2代入方程得:=1,解得:m=1,故选:B.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.7.(3分)已知方程7x+2=3x﹣6与x﹣1=k的解相同,则3k2﹣1的值为()A.18B.20C.26D.﹣26【分析】根据同解方程,可得关于k的方程,根据解方程,可得答案.【解答】解:由7x+2=3x﹣6,得x=﹣2,由7x+2=3x﹣6与x﹣1=k的解相同,得﹣2﹣1=k,解得k=﹣3.则3k2﹣1=3×(﹣3)2﹣1=27﹣1=26,故选:C.【点评】本题考查了同解方程,利用同解方程的出关于k的方程是解题关键.8.(3分)若“△”是新规定的某种运算符号,设x△y=xy+x+y,则2△m=﹣16中,m的值为()A.8B.﹣8C.6D.﹣6【分析】利用题中的新定义化简所求方程,求出方程的解即可得到m的值.【解答】解:根据题中的新定义得:2△m=2m+2+m=﹣16,移项合并得:3m=﹣18,解得:m=﹣6.故选:D.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.9.(3分)如图,点C在线段AB上,点E是AC中点,点D是BC中点.若ED=6,则线段AB的长为()A.6B.9C.12D.18【分析】根据线段的中点的定义得出ED=(AC+BC)=AB,即可求出AB的长.【解答】解:∵点E是AC中点,点D是BC中点,∴AE=CE=AC,CD=BD=BC,∴CE+CD=AC+BC,即ED=(AC+BC)=AB,∴AB=2ED=12;故选:C.【点评】本题考查了两点间的距离、线段的中点的定义;由线段中点的定义得出ED=AB 是解决问题的关键.10.(3分)用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°【分析】利用度分秒之间的换算关系进行计算即可.【解答】解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.【点评】此题主要考查了度分秒的换算,关键是掌握1°=60′,1′=60″.11.(3分)如图,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM、ON分别是∠AOC、∠BOD的平分线,∠MON等于()A.90°B.135°C.150°D.120°【分析】根据平角和角平分线的定义求得.【解答】解:∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=90°(互为补角)∵OM,ON分别是∠AOC,∠BOD的平分线,∴∠MOC+∠NOD=(30°+60°)=45°(角平分线定义)∴∠MON=90°+45°=135°.故选:B.【点评】本题考查了角平分线的定义.由角平分线的定义,结合补角的性质,易求该角的度数.12.(3分)若不论k取什么实数,关于x的方程(a、b是常数)的根总是x=1,则a+b=()A.B.C.D.【分析】把x=1代入得出(b+4)k=7﹣2a,根据方程总有根x=1,推出b+4=0,7﹣2a=0,求出即可.【解答】解:把x=1代入得:﹣=1,去分母得:4k+2a﹣1+kb﹣6=0,即(b+4)k=7﹣2a,∵不论k取什么实数,关于x的方程﹣=1的根总是x=1,∴,解得:a=,b=﹣4,∴a+b=﹣,故选:C.【点评】本题考查了解二元一次方程组和一元一次方程的解的应用,能根据题意得出关于a、b的方程组是解此题的关键,此题是一道比较好的题目,但有一点难度.二.填空题(共8题;每小题3分,共24分)13.(3分)数轴上表示1的点和表示﹣2的点的距离是3.【分析】直接根据数轴上两点间的距离公式求解即可.【解答】解:∵|1﹣(﹣2)|=3,∴数轴上表示﹣2的点与表示1的点的距离是3.故答案为:3.【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.14.(3分)已知|a﹣1|+(b+2)2=0,则(a+b)2019的值是﹣1.【分析】根据非负数的性质,可求出a、b的值,然后将代数式化简再代值计算.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,(a+b)2019=(1﹣2)2019=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.15.(3分)若a﹣5b=3,则17﹣3a+15b=8.【分析】把a﹣5b的值代入代数式进行计算即可得答案.【解答】解:∵a﹣5b=3,∴17﹣3a+15b=17﹣3(a﹣5b),=17﹣3×3,=17﹣9,=8.故答案为:8.【点评】本题考查了代数式求值,整体思想的利用是解题的关键.16.(3分)多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x3项和x2项,则ab=﹣2.【分析】多项式中不含二次项和三次项,则说明这两项的系数为0,列出关于a,b等式,求出后再求代数式值.【解答】解:∵多项式2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含x2、x3项,∴a+1=0,b﹣2=0,解得a=﹣1,b=2.∴ab=﹣2.故答案为:﹣2.【点评】本题考查了多项式不含某一项就是这一项的系数等于0,列式求解a、b的值是解题的关键.17.(3分)某商品每件标价为150元,若按标价打8折后,仍可获利20%.则该商品每件的进价为100元.【分析】该商品每件的进价为x元,根据利润=售价﹣进价,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:该商品每件的进价为x元,依题意,得:150×80%﹣x=20%x,解得:x=100.故答案为:100.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.18.(3分)甲、乙两队开展足球对抗赛,规定胜一场得3分,平一场得1分,负一场得0分,甲、乙两队共比赛6场,甲队保持不败,共得14分,甲队胜4场.【分析】根据分数可得等量关系为:甲胜场的得分+平场的得分=14,把相关数值代入求解即可.【解答】解:设甲队胜了x场,则平了(6﹣x)场,3x+(6﹣x)=14,解得:x=4,答:甲队胜了4场.【点评】本题考查用一元一次方程解决实际问题,得到总得分的等量关系是解决本题的关键.19.(3分)已知线段AB=8cm.在直线AB上画线段AC=5cm,则BC的长是3或13cm.【分析】可分两种情况:当C点在线段AB上时;当C点在线段BA的延长线上时,利用线段的和差可计算求解.【解答】解:当C点在线段AB上时,BC=AB﹣AC=8﹣5=3(cm);当C点在线段BA的延长线上时,BC=AB+AC=8+5=13(cm).故BC的长为3或13cm.故答案为3或13.【点评】本题主要考查两点间的距离,注意分类讨论.20.(3分)如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=40°.【分析】利用邻补角性质可得∠EOD的度数,再利用角平分线定义核对顶角相等可得答案.【解答】解:∵∠COE=100°,∴∠DOE=80°,∵OB平分∠EOD,∴∠BOD=40°,∴∠AOC=40°,故答案为:40.【点评】此题主要考查了对顶角和邻补角,关键是掌握对顶角相等、邻补角互补.三、解答题(共6小题,共60分)21.(5分)计算:﹣10+8÷(﹣2)2+(﹣4)×(﹣3).【分析】根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答】解:﹣10+8÷(﹣2)2+(﹣4)×(﹣3)=﹣10+8÷4+12=﹣10+2+12=4.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.(10分)解方程(1)2(x﹣2)﹣3(4x﹣1)=5(1﹣x);(2)﹣1=x﹣.【分析】(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣4﹣12x+3=5﹣5x,移项得:2x﹣12x+5x=5+4﹣3,合并得:﹣5x=6,解得:x=﹣1.2;(2)去分母得:3(2x+1)﹣12=12x﹣(10x+1),去括号得:6x+3﹣12=12x﹣10x﹣1,移项得:6x﹣12x+10x=﹣1﹣3+12,合并得:4x=8,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.23.(16分)列方程解应用题(1)某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:50张以上购买贺卡数不超过30张30张以上不超过50张每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?【分析】(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,根据生产的螺栓和螺母正好配套,即可得出关于x的一元一次方程,解之即可得出结论;(2)(i)根据总价=单价×数量,分别求出两班购买贺卡所需费用,比较做差后即可得出结论;(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张,分0<m<20,20<m ≤30及30<m<35三种情况,根据购买贺卡的总费用为150元,即可得出关于m的一元一次方程,解之即可得出结论.【解答】解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元).答:七(01)班购买贺卡费用为187元,七(02)班购买贺卡费用为140元,七(02)班费用更节省,省47元.(ii)设第一次购买贺卡m张,则第二次购买贺卡(70﹣m)张.当0<m<20时,3m+2(70﹣m)=150,解得:m=10;当20<m≤30时,3m+2.5(70﹣m)=150,解得:m=﹣50(不合题意,舍去);当30<m<35时,2.5m+2.5(70﹣m)=175≠150,无解.答:第一次购买贺卡10张,第二次购买贺卡60张.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.24.(14分)线段与角的计算.(1)如图1,已知点C为AB上一点,AC=15cm,CB=AC,若D、E分别为AC、AB 的中点,求DE的长.(2)已知:如图2,∠AOB被分成∠AOC:∠COD:∠DOB=2:3:4,OM平分∠AOC,ON平分∠DOB,且∠MON=90°,求∠AOB的度数.【分析】(1)先根据题意得出BC及AB的长,再根据中点的定义得出AE和AD的长,进而可得出结论;(2)根据题意设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,再根据角平分线的定义以及∠MON=90°,即可求出∠AOB的度数.【解答】解:(1)∵AC=15cm,CB=AC,∴CB=×15=10(cm),∴AB=15+10=25(cm).∵D,E分别为AC,AB的中点,∴AE=BE=AB=12.5cm,DC=AD=AC=7.5cm,∴DE=AE﹣AD=12.5﹣7.5=5(cm);(2)设∠AOC=2x,∠COD=3x,∠DOB=4x,则∠AOB=9x,∵OM平分∠AOC,ON平分∠DOB,∴∠MOC=x,∠NOD=2x,∴∠MON=x+3x+2x=6x,又∵∠MON=90°,∴6x=90°,∴x=15°,∴∠AOB=135°.【点评】本题考查了角的定义以及角平分线的定义,熟练掌握定义是解答此题的关键.25.(7分)已知多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关.(1)求a,b的值;(2)当y=1时,代数式的值3,求:当y=﹣1时,代数式的值.【分析】(1)直接合并同类项进而得出x的次数为零进而得出答案;(2)直接利用y=1时得出t﹣5m=6,进而得出答案.【解答】解:(1)∵多项式(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)的值与字母x的取值无关,∴(2x2+ax+ty3﹣1)﹣(2bx2﹣3x+5my+2)=(2﹣2b)x2+(a+3)x+ty3﹣5my﹣3,则2﹣2b=0,a+3=0,解得:b=1,a=﹣3;(2)∵当y=1时,代数式的值3,则t﹣5m﹣3=3,故t﹣5m=6,∴当y=﹣1时,原式=﹣t+5m﹣3=﹣6﹣3=﹣9.【点评】此题主要考查了整式的加减运算,正确合并同类项是解题关键.26.(8分)如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(∠D=30°)的直角顶点放在点O处,一边OE在射线OA上,另一边OD与OC 都在直线AB的上方.(1)将图1中的三角板绕点O以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OD恰好平分∠BOC.①此时t的值为3;(直接填空)②此时OE是否平分∠AOC?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠DOE?请说明理由;(3)在(2)问的基础上,经过多长时间OC平分∠DOB?请画图并说明理由.【分析】(1)根据:时间=进行计算.通过计算,证明OE平分∠AOC.(2)由于OC的旋转速度快,需要考虑三种情形.(3)通过计算分析,OC,OD的位置,然后列方程解决.【解答】解:(1)①∵∠AOC=30°,∠AOB=180°,∴∠BOC=∠AOB﹣∠AOC=150°,∵OD平分∠BOC,∴∠BOD=BOC=75°,∴t==3.②是,理由如下:∵转动3秒,∴∠AOE=15°,∴∠COE=∠AOC﹣∠AOE=15°,∴∠COE=∠AOE,即OE平分∠AOC.(2)三角板旋转一周所需的时间为==72(秒),射线OC绕O点旋转一周所需的时间为=45(秒),设经过x秒时,OC平分∠DOE,由题意:①8x﹣5x=45﹣30,解得:x=5,②8x﹣5x=360﹣30+45,解得:x=125>45,不合题意,③∵射线OC绕O点旋转一周所需的时间为=45(秒),45秒后停止运动,∴OE旋转345°时,OC平分∠DOE,∴t==69(秒),综上所述,t=5秒或69秒时,OC平分∠DOE.(3)如图3中,由题意可知,OD旋转到与OB重合时,需要90÷5=18(秒),OC旋转到与OB重合时,需要(180﹣30)÷8=18(秒),所以OD比OC早与OB重合,设经过x秒时,OC平分∠DOB,由题意:8x﹣(180﹣30)=(5x﹣90),解得:x=,所以经秒时,OC平分∠DOB.【点评】本题目考查了角平分线的定义,旋转的速度,角度,时间的关系,应用方程的思想是解决问题的关键,还需要通过计算进行初步估计位置,掌握分类思想,注意不能漏解.。