衡水市数学七年级下学期期末考试试卷
【解析版】衡水市初中数学七年级下期末测试题(含解析)
一、选择题1.如图,数轴上表示2、5的对应点分别为点C ,B ,点C 是AB 的中点,则点A 表示的数是( )A .5-B .25-C .45-D .52-2.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)4.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =15.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个6.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.87.如图,如果AB ∥CD ,那么下面说法错误的是( )A .∠3=∠7B .∠2=∠6C .∠3+∠4+∠5+∠6=180°D .∠4=∠8 8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-3 9.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-2 10.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度11.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行12.若0a <,则下列不等式不成立的是( )A .56a a +<+B .56a a -<-C .56a a <D .65a a< 13.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,014.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )A .453560(2)35x y x y -=⎧⎨-=-⎩B .453560(2)35x y x y =-⎧⎨-+=⎩C .453560(1)35x y x y +=⎧⎨-+=⎩D .453560(2)35x y y x =+⎧⎨--=⎩15.如图,直线l 1∥l 2,被直线l 3、l 4所截,并且l 3⊥l 4,∠1=44°,则∠2等于( )A .56°B .36°C .44°D .46°二、填空题16.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.17.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________.18.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.19.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是_____. 20.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 21.3的平方根是_________.22.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.23.已知关于x 的不等式组40339ax x +<⎧⎨-<⎩恰好有2个整数解,则整数a 的值是___________. 24.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.25.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.三、解答题26.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.(1)求y关于x的函数表达式.(2)若购进A种的数量不少于B种的数量.①求至少购进A种多少本?②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)27.某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表明一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图.学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为;(2)把条形统计图补充完整;(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?28.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?29.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?30.解方程组:1234311236x yx y-+⎧-=⎪⎪⎨--⎪-=⎪⎩【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.D4.A5.B6.C7.D8.A9.A10.B11.A12.C13.B14.B15.D二、填空题16.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>17.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点18.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=19.a>﹣1【解析】分析:∵由得x≥﹣a;由得x<1∴解集为﹣a≤x<1∴﹣a<1即a>﹣1∴a的取值范围是a>﹣120.【解析】将代入方程得a-2=3解得a=5故答案为521.【解析】试题解析:∵()2=3∴3的平方根是故答案为:22.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程23.【解析】【分析】首先确定不等式组的解集先利用含a的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a的不等式从而求出a的范围【详解】解:解得不等式组的解集为:且∵不等式组只有224.145【解析】【分析】如图:延长AB交l2于E根据平行线的性质可得∠AED=∠1根据可得AE//CD根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB交l2于E∵l25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】首先可以求出线段BC的长度,然后利用中点的性质即可解答.【详解】∵表示2C,B,,∵点C是AB的中点,则设点A的坐标是x,则∴点A表示的数是故选C.【点睛】本题主要考查了数轴上两点之间x1,x2的中点的计算方法.2.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.3.D解析:D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征. 4.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.5.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.6.C解析:C【解析】【分析】根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.【详解】解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,即210x+90(15﹣x)≥1800故选C.【点睛】本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.7.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.8.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A9.A解析:A【解析】【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可.【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->x b ∴>综合上述可得32b -≤<-故选A.【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.10.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P 到直线l 的距离是线段PB 的长度,故选B.11.A解析:A【解析】分析:根据平行线的判定与性质,对顶角的性质,平行线的作图,逐一判断即可. 详解:根据平行公理的推论,可知:在同一平面内,垂直于同一直线的两条直线平行,故正确;根据对顶角的定义,可知相等的角不一定是对顶角,故不正确;根据两条平行的直线被第三条直线所截,同旁内角互补,故不正确;根据平行公理,可知过直线外一点有且只有一条直线与已知直线平行,故不正确. 故选:A.点睛:此题主要考查了平行线的判定与性质,关键是熟记公理的内容和特点,找到反例说明即可.12.C解析:C【解析】【分析】直接根据不等式的性质进行分析判断即可得到答案.【详解】A .0a <,则a 是负数,56a a +<+可以看成是5<6两边同时加上a ,故A 选项成立,不符合题意;B .56a a -<-是不等式5<6两边同时减去a ,不等号不变,故B 选项成立,不符合题意;C .5<6两边同时乘以负数a ,不等号的方向应改变,应为:56a a >,故选项C 不成立,符合题意;D .65a a<是不等式5<6两边同时除以a ,不等号改变,故D 选项成立,不符合题意. 故选C .【点睛】 本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.13.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.14.B解析:B【解析】根据题意,易得B.15.D解析:D【解析】解:∵直线l 1∥l 2,∴∠3=∠1=44°.∵l 3⊥l 4,∠2=90°-∠3=90°-44°=46°.故选D .二、填空题16.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+2根据题意得m+2>0解得m>解析:m>-2【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.17.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x <3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7, ∴7833a ≤<. 故答案为:7833a ≤<. 【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a 的代数式的取值范围.18.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=解析:48cm 2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S 空白部分=(10-2)×(8-2)=48(cm 2)故答案为48 cm 2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.19.a >﹣1【解析】分析:∵由得x≥﹣a ;由得x <1∴解集为﹣a≤x <1∴﹣a <1即a >﹣1∴a 的取值范围是a >﹣1解析:a >﹣1【解析】分析:∵由x a 0+≥得x≥﹣a ;由12x x 2-->得x <1.∴x a 0{12x x 2+≥-->解集为﹣a≤x <1. ∴﹣a <1,即a >﹣1.∴a 的取值范围是a >﹣1.20.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12x y =⎧⎨=⎩代入方程,得 a-2=3解得a=5,故答案为5.21.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:22.0【解析】【分析】根据二元一次方程的定义可以得到x 的次数等于1且系数不等于0由此可以得到m 的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x 的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.23.【解析】【分析】首先确定不等式组的解集先利用含a 的式子表示根据整数解的个数就可以确定有哪些整数解根据解的情况可以得到关于a 的不等式从而求出a 的范围【详解】解:解得不等式组的解集为:且∵不等式组只有2 解析:4-,3-【解析】【分析】首先确定不等式组的解集,先利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:解得不等式组40339ax x +<⎧⎨-<⎩的解集为: 4-<x<4a 且a<0 ∵不等式组只有2个整数解∴不等式组的整数解是:2,3∴41-2a≤< ∴-4a<2≤-,∵a 为整数∴整数a 的值是-4, -3故答案为:4-,3-【点睛】此题考查一元一次不等式组的整数解,熟练掌握运算法则是解题关键24.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.25.-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值【详解】∵点M(a-1a+1)在x轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x轴上的点的纵坐标等于0解析:-1【解析】【分析】根据x轴上的点纵坐标等于0列出方程求解得到a的值.【详解】∵点M(a-1,a+1)在x轴上,∴a+1=0,解得a=-1,故答案为:-1.【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.三、解答题26.(1)y=30035x-,(2)①至少购进A种40本,②30.【解析】【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C 种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c>y∴c>300235c x--∴c>30037x-,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥300235c x--∴c≥150﹣4x∴c>30037x-,且x,y,c为正整数,∴C种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.27.(1)120,30°;(2)答案见解析;(3)1375人.【解析】【分析】(1)根据“从来不管”的人数和百分比求出总份数,根据总份数和严加干涉的分数求出百分比,然后计算圆心角的度数;(2)根据总分数求出稍加询问的人数,然后补全统计图;(3)根据题意求出“从来不管”和“稍加询问”的百分比求出全校的人数.【详解】解:(1)30÷25%=120(人)10÷120×360°=30°故答案为:120,30°(2)如图所示:(3)1500×3080120=1375(人)则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.28.安排25人加工甲部件,则安排60人加工乙部件,共加工200套.【解析】试题分析:首先设安排甲部件x个人,则(85-x)人生产乙部件,根据甲零件数量的3倍等于乙零件数量的2倍列出方程进行求解.试题解析:设甲部件安排x人,乙部件安排(85-x)人才能使每天加工的甲、乙两种部件刚好配套由题意得:3×16x=2×10(85-x)解得:x=25 则85-x=85-25=60(人)答:甲部件安排20人,乙部件安排60人才能使每天加工的甲、乙两种部件刚好配套.考点:一元一次方程的应用.29.(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.【解析】【分析】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,根据“若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元”即可列方程组求解;(2)设购进电脑机箱z台,根据“可用于购买这两种商品的资金不超过22240元,所获利润不少于4100元”即可列不等式组求解.【详解】解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:1087000254120x y x y +=⎧⎨+=⎩, 解得:60800x y =⎧⎨=⎩, 答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m 台,购进液晶显示器(50-m )台,根据题意得:60800(50)2224010160(50)4100m m m m +-≤⎧⎨+-≥⎩, 解得:24≤m≤26,因为m 要为整数,所以m 可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400, 方案二的利润:25×10+25×160=4250, 方案三的利润:26×10+24×160=4100, ∴方案一的利润最大为4400元.答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器.第①种方案利润最大为4400元.【点睛】考点:方案问题,方案问题是初中数学的重点,在中考中极为常见,一般难度不大,需熟练掌握.30.42x y =⎧⎨=⎩【解析】【分析】本题应对两个方程进行化简,把分数化为整数,然后运用加减消元法进行运算.【详解】 解:原方程组化为:12034311236x y x y -+⎧-=⎪⎪⎨--⎪-=⎪⎩即4310328x y x y -⎧⎨-⎩=①=②将①×2-②×3,得x =4. 将x =4代入①,得y =2.∴原方程组的解为42 xy=⎧⎨=⎩。
衡水市七年级数学下册期末试卷选择题汇编精选考试题及答案
一、选择题1.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个答案:B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确;⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误;故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数. 2.正整数n 小于100,并且满足等式236n n n n ⎡⎤⎡⎤⎡⎤++=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中[]x 表示不超过x 的最大整数,例如:[][]1.5122==,,则满足等式的正整数的个数为( )A .2B .3C .12D .16 答案:D解析:D【分析】利用不等式[x ]≤x 即可求出满足条件的n 的值.【详解】解:若2n ,3n ,6n 有一个不是整数, 则22n n ⎡⎤⎢⎥⎣⎦<或者33n n ⎡⎤⎢⎥⎣⎦<或者66n n ⎡⎤⎢⎥⎣⎦<, ∴][][236236n n n n n n n ⎡⎤++++=⎢⎥⎣⎦<, ∴2n ,3n ,6n 都是整数,即n 是2,3,6的公倍数,且n <100, ∴n 的值为6,12,18,24,......96,共有16个,故选:D .【点睛】本题主要考查不等式以及取整,关键是要正确理解取整的定义,以及[x ]≤x <[x ]+1式子的应用,这个式子在取整中经常用到.3.已知点E (x 0,y 0),F (x 2,y 2),点M (x 1,y 1)是线段EF 的中点,则0212x x x +=,0212y y y +=.在平面直角坐标系中有三个点A (1,-1),B (-1,-1),C (0,1),点P (0,2)关于A 的对称点为P 1(即P ,A ,P 1三点共线,且PA =P 1A ),P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称点重复前面的操作,依次得到P 4,P 5,P 6,…,则点P 2015的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)答案:A解析:A【解析】试题解析:设P 1(x ,y ),∵点A (1,-1)、B (-1,-1)、C (0,1),点P (0,2)关于A 的对称点为P 1,P 1关于B 的对称点P 2, ∴2x =1,22y +=-1,解得x=2,y=-4, ∴P 1(2,-4).同理可得,P 1(2,-4),P 2(-4,2),P 3(4,0),P 4(-2,-2),P 5(0,0),P 6(0,2),P 7(2,-4),…,…,∴每6个数循环一次. ∵20156=335…5, ∴点P 2015的坐标是(0,0).故选A .4.如图,长方形ABCD 中,7AB =,第一次平移长方形ABCD 沿AB 的方向向右平移5个单位,得到长方形1111D C B A ,第3次平移将长方形1111D C B A 沿11A B 的方向向右平移5个单位,得到长方形2222A B C D ,…第n 次平移将长方形1111n n n n A B C D ----的方向平移5个单位,得到长方形(2)n n n n A B C D n >,若n AB 的长度为2022,则n 的值为( )A .403B .404C .405D .406答案:A解析:A【分析】根据平移的性质得出AA 1=5,A 1A 2=5,A 2B 1=A 1B 1-A 1A 2=7-5=2,进而求出AB 1和AB 2的长,然后根据所求得出数字变化规律,进而得出AB n =(n +1)×5+2求出n 即可.【详解】解:∵AB =7,第1次平移将长方形ABCD 沿AB 的方向向右平移5个单位,得到长方形A 1B 1C 1D 1,第2次平移将长方形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到长方形A 2B 2C 2D 2…, ∴AA 1=5,A 1A 2=5,A 2B 1=A 1B 1-A 1A 2=7-5=2,∴AB 1=AA 1+A 1A 2+A 2B 1=5+5+2=12,∴AB 2的长为:5+5+7=17;∵AB 1=2×5+2=12,AB 2=3×5+2=17,∴AB n =(n +1)×5+2=2022,解得:n =403.故选:A .【点睛】此题主要考查了平移的性质以及一元一次方程的应用,根据平移的性质得出AA 1=5,A 1A 2=5是解题关键.5.如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2017的坐标为( )A .(504,504)B .(﹣504,504)C .(﹣504,﹣504)D .(﹣505,504) 答案:D解析:D【解析】分析:根据各个点的位置关系,可得出下标为4的倍数的点在第一象限,被4除余1的点在第二象限,被4除余2的点在D 第三象限,被4除余3的点在第四象限,点P2017的在第二象限,且纵坐标=2016÷4,再根据第二项象限点的规律即可得出结论. 本题解析:由规律可得, 2017÷4=504…1 ,∴ 点 P2017 的在第二象限的角平分线上,∵ 点 P5(−2,1), 点 P9(−3,2), 点 P13(−4,3) ,∴ 点 P2017(−505,504) ,故选D.点睛:本题考查了规律型:点的坐标,是一个阅读理解,猜想规律的题目,解答此题的关键要首先确定点的大致位置,处于此位置的点的规律,推出点的坐标.6.如图,在平面直角坐标系中,一动点从原点O 出发,按向上.向右.向下.向右的方向依次平移,每次移动一个单位,得到()10,1A ,()21,1A ,()31,0A ,()42,0A ,…那么点2021A 的坐标为( )A .()505,0B .()505,1C .()1010,0D .()1010,1 答案:D解析:D【分析】根据图象移动的得出移动4次一个循环,得出结果即可;【详解】根据图象可得移动4次图象完成一个循环,∵202145051÷=,∴2021A 的坐标是()()5052,11010,1⨯=;故答案选D .【点睛】本题主要考查了点的坐标规律题,准确计算是解题的关键.7.已知1x ,2x ,…,2019x 均为正数,且满足()()122018232019M x x x x x x =++++++,()()122019232018N x x x x x x =++++++,则M ,N 的大小关系是( ) A .M N < B .M N >C .M ND .M N ≥ 答案:B解析:B【分析】设122018p x x x =+++,232018q x x x =++,然后求出M -N 的值,再与0进行比较即可.【详解】解:根据题意,设122018p x x x =+++,232018q x x x =++,∴1p q x -=,∴()()12201823201920192019()M x x x x x x p q x pq p x =++++++=•+=+•;()()12201923201820192019()N x x x x x x p x q pq q x =++++++=+•=+•; ∴20192019()M N pq p x pq q x -=+•-+•=2019()x p q •- =201910x x •>;∴M N >;故选:B.【点睛】本题考查了比较实数的大小,以及数字规律性问题,解题的关键是熟练掌握作差法比较大小.8.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)答案:D解析:D【解析】分析:用定义的规则分别计算出P 1,P 2,P 3,P 4,P 5,P 6,观察所得的结果,总结出规律求解.详解:因为P 1(1,-1)=(0,2);P 2(1,-1)=P 1(P 1(1,-1))=P 1(0,2)=(2,-2);P 3(1,-1)=P 1(P 2(2,-2))=(0,4);P 4(1,-1)=P 1(P 3(0,4))=(4,-4);P 5(1,-1)=P 1(P 4(4,-4))=(0,8);P 6(1,-1)=P 1(P 5(0,8))=(8,-8);……P 2n-1(1,-1)=……=(0,2n );P 2n (1,-1)=……=(2n ,-2n ).因为2017=2×1009-1,所以P 2017=P 2×1009-1=(0,21009).故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.9.以下11个命题:①负数没有平方根;②内错角相等;③同旁内角互补,两直线平行;④一个正数有两个立方根,它们互为相反数;⑤无限不循环小数是无理数;⑥数轴上的点与实数有一一对应关系;⑦过一点有且只有一条直线和已知直线垂直;⑧不相交的两条直线叫做平行线;⑨从直线外一点到这条直线的垂线段,叫做这点到直线的距离.⑩开方开不尽的数是无理数;⑪相等的两个角是对顶角;其中真命题的个数为()A.5 B.6 C.7 D.8答案:A解析:A【分析】根据相关知识逐项判断即可求解.【详解】解:①“负数没有平方根”,是真命题②“内错角相等”,缺少两直线平行这一条件,是假命题;③“同旁内角互补,两直线平行”,是真命题;④“一个正数有两个立方根,它们互为相反数”,一个正数有一个立方根,是假命题;⑤“无限不循环小数是无理数”,是真命题;⑥“数轴上的点与实数有一一对应关系”,是真命题;⑦“过一点有且只有一条直线和已知直线垂直”,缺少在同一平面内条件,是假命题;⑧“不相交的两条直线叫做平行线”,缺少在同一平面内条件,是假命题;⑨“从直线外一点到这条直线的垂线段,叫做这点到直线的距离”,应为“从直线外一点到这条直线的垂线段的长度,叫做这点到直线的距离”,是假命题.⑩“开方开不尽的数是无理数”,是真命题;⑪“相等的两个角是对顶角”,相等的角有可能是对顶角,但不一定是对顶角,是假命题.所以真命题有5个.故选:A【点睛】本题考查判断真假命题、平方根、立方根、平行线的判定、无理数、实数与数轴关系、直线外一点到直线的距离、对顶角等知识,综合性较强,熟知相关知识点是解题关键.10.3的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间答案:C解析:C【分析】先根据19位于两个相邻平方数16和25【详解】解:由于16<19<25,所以45<<,因此738<<,故选:C.【点睛】本题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.11.如图,A、B、C、D)A.点A B.点B C.点C D.点D答案:D解析:D【分析】根据3<10<4即可得到答案.【详解】∵9<10<16,∴3<10<4,∴最适合表示10的点是点D,故选:D.【点睛】此题考查利用数轴表示实数,实数的大小比较,正确比较实数是解题的关键.12.如图,在数轴上表示1,3的对应点分别为A B、,点B关于点A的对称点为C,则点C 表示的数为()A31B.13C.23D32答案:C解析:C【分析】首先根据表示13A、点B可以求出线段AB的长度,然后根据点B 和点C关于点A对称,求出AC的长度,最后可以计算出点C的坐标.【详解】解:∵表示13A、点B,∴AB31,∵点B关于点A的对称点为点C,∴CA=AB,∴点C的坐标为:1−31)=3故选:C.【点睛】本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.13.如图,在平面直角坐标系xOy中,点(1,0)P.点P第1次向上跳动1个单位至点1(1,1)P,紧接着第2次向左跳动2个单位至点2(1,1)P-,第3次向上跳动1个单位至点3P,第4次向右跳动3个单位至点4P ,第5次又向上跳动1个单位至点5P ,第6次向左跳动4个单位至点6P ,……,照此规律,点P 第2020次跳动至点2020P 的坐标是( )A .(506,1010)-B .(505,1010)-C .(506,1010)D .(505,1010) 答案:C解析:C【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第2020次跳动后,纵坐标为202021010÷=;其中4的倍数的跳动都在y 轴的右侧,那么第2020次的跳动得到的横坐标也在y 轴的右侧。
河北省衡水市七年级下学期数学期末试卷
河北省衡水市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2016·济南) 下列运算正确的是()A . a2+a=2a3B . a2•a3=a6C . (﹣2a3)2=4a6D . a6÷a2=a32. (2分) (2015九上·山西期末) 下列图形中既是中心对称图形,又是轴对称图形的是()A .B .C .D .3. (2分)(2017·兴化模拟) 人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为()A . 77×10﹣5B . 0.77×10﹣7C . 7.7×10﹣6D . 7.7×10﹣74. (2分)(2019·本溪模拟) 下列事件为必然事件的是()A . 掷一枚普通的正方体骰子,掷得的点数不小于1B . 任意购买一张电影票,座位号是奇数C . 抛一枚普通的硬币,正面朝上D . 一年有367天5. (2分) (2020七下·揭阳期末) 如图,直线AB//CD,EF分别与AB、CD交于G、H,∠1=55°,则∠2的度数为()A . 105°B . 115°C . 125°D . 135°6. (2分)如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是()A . 9B . 14C . 16D . 不能确定7. (2分)(2019·青白江模拟) 下列计算正确的是()A . a +a =2aB . (-2a ) =-4aC . (a+2)(a-1)=a +a-2D . (a+b) =a +b8. (2分)等腰直角三角形的外接圆半径等于()A . 腰长B . 腰长的倍C . 底边的倍D . 腰上的高9. (2分) (2016七下·东台期中) 如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A . (a+b)(a﹣b)=a2﹣b2B . (a﹣b)2=a2﹣2ab+b2C . (a+b)2=a2+2ab+b2D . a2+ab=a(a+b)10. (2分) (2018八上·武汉月考) 已知图中的两个三角形全等,则∠ 度数是()A . 72°B . 60°C . 58°D . 50°二、填空题 (共9题;共10分)11. (2分) (2020七下·邛崃期末) 一个角是,则这个角的余角的度数是________.12. (1分) (2020七下·金水月考) 已知是完全平方式,则 =________.13. (1分) (2019·大连) 如图,,,则________°.14. (1分)在三角形的中线,高线,角平分线中,一定能把三角形的面积等分的是________.15. (1分) (2019八上·南岗期末) 已知,,则的值为________.16. (1分)(2017·泸州) 在一个不透明的袋子中装有4个红球和2个白球,这些球除了颜色外无其他差别,从袋子中随机摸出一个球,则摸出白球的概率是________.17. (1分) (2019八上·孝南月考) 一个正方形和两个等边三角形的位置如图所示,∠3=50°,则∠1+∠2=________。
河北省衡水市七年级下学期数学期末考试试卷
河北省衡水市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题:(本大题共12小题,每小题3分,共36分.) (共12题;共36分)1. (3分) (2019七下·海曙期中) 下列方程是二元一次方程的是()A .B .C .D .2. (3分) (2017八上·泸西期中) 下列图案是我国几家银行的标志,其中不是轴对称图形的是()A .B .C .D .3. (3分)如图,图形旋转多少度后能与自身重合()A . 45°B . 60°C . 72°D . 90°4. (3分)若△ABC的三条边a,b,c满足a2+2ab=c2+2bc,则△ABC的形状是()A . 直角三角形B . 等腰直角三角形C . 等边三角形D . 等腰三角形5. (3分)以下五个图形中,是中心对称的图形共有()A . 2个B . 3个C . 4个D . 5个6. (3分) (2016八上·桑植期中) 已知am=2,an=3,则a4m﹣3n的值是()A . ﹣B .C . ﹣D .7. (3分) (2019九上·东阳期末) 为了解某班学生一周的体育锻炼的时间,某综合实践活动小组对该班50名学生进行了统计如表:则这组数据中锻炼时间的众数是()锻炼的时间(小时)78910学生人数(人)816188A . 16人B . 8小时C . 9小时D . 18人8. (3分)已知x=1,y=2,则代数式x﹣y的值为()A . 1B . -1C . 2D . -39. (3分) (2016七下·迁安期中) 如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A . 1B . 2C . 3D . 410. (3分) (2018八下·深圳期中) 如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不能得出BE∥DF的是()A . AE=CFB . BE=DFC . ∠EBF=∠FDED . ∠BED=∠BFD11. (3分)如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为()A .B .C . 5D . 612. (3分)(2018·龙东模拟) 如图,在△ABC中,BC的垂直平分线交AC于点E,交BC于点D,且AD=AB,连接BE交AD于点F,下列结论:①∠EBC=∠C;②△EAF∽△EBA;③BF=3EF;④∠DEF=∠DAE,其中结论正确的个数有()A . 1个B . 2个C . 3个D . 4个二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)13. (3分) (2019八上·大洼月考) 计算的结果为________.14. (3分) (2015七上·句容期末) 已知|m﹣2|+(n+1)2=0,则m﹣n=________.15. (3分)如图,直线a、b与直线c相交,且a∥b,∠α=55°,则∠β=________.16. (3分)(2017·大连模拟) 一艘轮船在静水中的最大航速为30km/h,它以最大航速沿顺流航行90km所用时间,与以最大航速逆流航行60km所用时间相等.设江水流速为vkm/h,则可列方程为________.17. (3分)若3xny2与xy1-m是同类项,则m+n=________.18. (3分) (2020七上·抚顺期末) 已知整数a1 , a2 , a3 , a4 ,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2020的值为________.三、解答题:(本大题共8小题,满分66分) (共8题;共68分)19. (10分)用代入法解下列方程组:20. (5分)(2018·徐州) 如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1 ,②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2 ,③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.21. (7分) (2016七上·罗山期末) 化简后再求值:x﹣2(3y2﹣2x)﹣4(2x﹣y2),其中|x﹣2|+(y+1)2=0.22. (8.0分) (2017八下·路南期末) 某总公司为了评价甲、乙两个分公司去年的产值,统计了这两个分公司去年12个月的产值(单位:万元)情况,分别如下图所示:(1)利用上图中的信息,完成下表:(2)假若你是公司的总经理,请你从以下三个不同的角度对两个分公司的产值进行分析,对两个分公司做出评价;①从平均数和众数相结合看(分析哪个公司产值好些);②从平均数和中位数相结合看(分析哪个公司产值好些).③从平均数和方差相结合看(分析哪个公司产值好些).23. (8分) (2015七下·滨江期中) 某汽车制造厂开发一款新式电动汽车,计划一年生产安装240辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练工和2名新工人每月可安装8辆电动汽车;2名熟练工和3名新工人每月可安装14辆电动汽车.(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?24. (10.0分) (2019七下·武汉月考) 如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.25. (10.0分) (2019八下·东莞月考) 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2 ,善于思考的小明进行了以下探索:设a+b (其中a、b、m、n均为整数),则有:a+b ,∴a=m2+2n2 , b=2mn ,这样小明就找到了一种把类似a+b 的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b ,用含m、n的式子分别表示a、b得:a=________,b=________;(2)利用所探索的结论,用完全平方式表示出:7+4 =________.(3)请化简: .26. (10分) (2019七下·南海期中) 如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.参考答案一、选择题:(本大题共12小题,每小题3分,共36分.) (共12题;共36分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题:(本大题共8小题,满分66分) (共8题;共68分)19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
衡水市七年级下学期数学期末考试试卷
衡水市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) 9的平方根是()A . ±3B . 3C . -3D . ±62. (2分)(2017·独山模拟) 在实数π、、、0.1234中,无理数的个数为()A . 1B . 2C . 3D . 43. (2分)如图,直线L1∥L2 ,L3⊥L4 ,有三个命题:①∠1+∠3=90°;②∠2+∠3=90°;③∠2=∠4.下列说法中,正确的是()A . 只有①正确B . 只有②正确;C . ①和③正确D . ①②③都正确4. (2分)(2018·莘县模拟) 如图,直线l1∥l2 ,等腰直角△ABC的两个顶点A,B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A . 35°B . 30°C . 25°D . 20°5. (2分) (2019八下·江都月考) 下列调查中,最适合采用抽样调查的是()A . 对某地区现有的16名百岁以上老人睡眠时间的调查B . 对“神舟十一号”运载火箭发射前零部件质量情况的调查C . 对某校九年级三班学生视力情况的调查D . 对某市场上某一品牌电脑使用寿命的调查6. (2分) (2019八上·大庆期末) 已知,则下列不等式成立的是A .B .C .D .7. (2分) (2019七上·大埔期末) 如图是某班一次数学测试成绩的频数直方图,则成绩在69.5~89.5分范围内的学生共有()A . 24人B . 10人C . 14人D . 29人8. (2分) (2019八上·威海期末) 如图,若将线段AB平移至A1B1 ,则a+b的值为()A . ﹣3B . 3C . ﹣2D . 09. (2分) (2019七上·香坊期末) 在平面直角坐标系中,点(-3,4)所在的象限为()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分) (2019七下·长春期中) 小月去买文具,打算买5支单价相同的签字笔和3本单价相同的笔记本,她与售货员的对话如下,那么一支笔和一本笔记本应付()小月:您好,我要买5支签字笔和3本笔记本售货员:好的,那你应付款52元小月:刚才我把两种文具的单价弄反了,以为要付44元A . 10元B . 11元C . 12元D . 13元二、填空题 (共5题;共5分)11. (1分) (2013八下·茂名竞赛) 有一个数值转换器,原理如右图.当输入的时,输出的等于________ .12. (1分) (2016七下·济宁期中) 如图,在下列正方形网格中,标注了射阳县城四个大型超市的大致位置(小方格的边长为1个单位).若用(0,﹣2)表示苏果超市的位置,用(4,1)表示文峰超市的位置,则大润发超市的位置可表示为________.13. (1分)一块长方形的菜地,长比宽多 3m,周长不超过 30m.那么这块菜地的长最多是________m.14. (1分) (2018七下·浦东期中) 已知数轴上的点A、B所对应的实数分别是 -1.2和,那么A、B两点之间的距离为________15. (1分) (2018七下·深圳期中) 如图,将三角板的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=________°.三、综合题 (共7题;共51分)16. (10分)计算:17. (2分) (2019七上·句容期中) 如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1且小于2的数(数轴上1与2这两个数的点空心,表示这个范围不包含数1和2).请你在数轴上表示出一个范围,使得这个范围:(1)包含所有大于-3且小于0的数[画在数轴(1)上];(2)包含这两个数,且只含有5个整数[画在数轴(2)上];(3)同时满足以下三个条件:[画在数轴(3)上]①至少有100对互为相反数和100对互为倒数;②有最小的正整数;③这个范围内最大的数与最小的数表示的点的距离大于3但小于4.18. (6分)如图,△ABC平移后的图形是△A'B'C',其中A与A'、B与B'、C与C'是对应点,请画出平移后的△A'B'C'.19. (7分) (2017八上·梁子湖期末) 如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1;(2)在y轴上找出一点P,使得PA+PB的值最小,直接写出点P的坐标;(3)在平面直角坐标系中,找出一点A2,使△A2BC与△ABC关于直线BC对称,直接写出点A2的坐标.20. (6分) (2019八下·卢龙期中) “校园安全”受到社会的广泛关注,某校政教处对部分学生就校园安全知识的了解程度,进行了随机抽样调查,并绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________名;(2)请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小.21. (10分) (2016八下·固始期末) 在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB 上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.22. (10分)(2012·成都) “城市发展交通先行”,成都市今年在中心城区启动了缓堵保畅的二环路高架桥快速通道建设工程,建成后将大大提升二环路的通行能力.研究表明,某种情况下,高架桥上的车流速度V(单位:千米/时)是车流密度x(单位:辆/千米)的函数,且当0<x≤28时,V=80;当28<x≤188时,V是x的一次函数.函数关系如图所示.(1)求当28<x≤188时,V关于x的函数表达式;(2)若车流速度V不低于50千米/时,求当车流密度x为多少时,车流量P(单位:辆/时)达到最大,并求出这一最大值.(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、综合题 (共7题;共51分)16-1、17-1、17-2、17-3、18-1、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、。
河北省衡水市七年级下学期期末考试数学试题
河北省衡水市七年级下学期期末考试数学试题姓名:________班级:________成绩:________一、 选择题 (共 6 题;共 12 分)1. (2 分) (2017 七下·平定期中) 下列图形中,周长最长的是( )A.B.C.D. 2. (2 分) 下列调查中,适合用全面调查方式的是( ) A . 了解一批灯泡的使用寿命 B . 了解一批炮弹的杀伤半径 C . 了解某班学生 50 米跑的成绩 D . 了解一批袋装食品是否含有防腐剂3. (2 分) (2019 七下·贵池期中) 下列各数 0.010010001, 数的个数有( ),0,0.22, , ,其中无理A . 1个B . 2个C . 3个D . 4个4. (2 分) 下列各组中,是二元一次方程 x+2y=3 的解的是( )A.第 1 页 共 11 页B.C. D.5. (2 分) (2019 七下·隆昌期中) 不等式组的解集在数轴上可表示为( )A.B.C.D. 6. (2 分) 一组数 2,1,3,x,7,y,23,…,如果满足“从第三个数起,若前两个数依次为 a、b,则紧随 其后的数就是 2a﹣b”,例如这组数中的第三个数“3”是由“2×2﹣1”得到的,那么这组数中 y 表示的数为( ) A . -9 B . -1 C.5 D . 21二、 填空题 (共 6 题;共 7 分)7. (2 分)的算术平方根是________,=________.8. (1 分) 剧院里 5 排 2 号可用(5,2)表示,则(7,4)表示 ________.9. ( 1 分 ) (2017 七 下 · 台 州 期 中 ) 已 知 方 程 组 ①的解是, 则方程组②的解是________。
10. (1 分) 如图,在转 45°,得到,中 与 AB 交于点 E,则,点 D 为 BC 中点,将 =________.绕点 D 逆时针旋第 2 页 共 11 页11. (1 分) (2019 八上·萧山期中) 已知关于 是________.的不等式的解在数轴上的表示如图,则 的值12. (1 分) 平面内四条直线共有三个交点,则这四条直线中最多有________ 条平行线.三、 解答题。
河北省衡水市七年级下学期期末考试数学试题
河北省衡水市七年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2018七下·腾冲期末) 若a>b,则下列各式中不正确的是()A . 7+a>7+bB . a﹣7>b﹣7C . 7a>7bD . ﹣>﹣2. (2分)下列命题是假命题的是()A . ± 是的平方根B . 81的平方根是9C . 0.04的算术平方根是0.2D . ﹣27的立方根是﹣33. (2分)多项式15a3b2(a+b)c+10a2b(a+b)的公因式是()A . 5a3b2(a+b)B . a2b(a+b)C . 5ab(a+b)D . 5a2b(a+b)4. (2分)如图,在四边形ABCD中,对角线AC平分∠DAB,∠ABD=52°,∠ABC=116°,∠ACB=α°,则∠BDC 的度数为()A . αB .C . 90﹣αD . 90﹣α5. (2分)(2017·青岛模拟) 如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m>kx﹣1的解集在数轴上表示正确的是()A .B .C .D .6. (2分) (2020八上·许昌期末) 下列因式分解正确的是()A .B .C .D .7. (2分)三角形的重心是三角形三条()的交点。
A . 中线B . 高C . 角平分线D . 垂直平分线8. (2分) (2019七下·蔡甸月考) 下列说法:①若a与c相交,b与c相交,则a与b相交;②若a//b,b//c,那么a//c;③经过直线外一点有且只有一条直线与已知直线平行;④两条直线的位置关系有平行与相交.其中错误的说法有()A . 3个B . 2个C . 1个D . 0个9. (2分)(2019·泰山模拟) 如图,在菱形ABCD中,∠A=60°,4D=4,点F是AB的中点,过点F作FE⊥AD,垂足为E,将△AEF沿点A到点B的方向平移,得到△A'E’F',设点P、P’分别是EF、E'F'的中点,当点A’与点B重合时,四边形PP’CD的面积为()A . 7B . 6C . 8D . 8 -410. (2分)(2020·乐清模拟) 下列计算中,正确的是()A .B .C .D .11. (2分)(2018·武进模拟) 如图,□ABCD中,AC=3cm,BD=5cm,则边AD的长可以是()A . 3cmB . 4cmC . 5cmD . 6cm12. (2分) (2019八上·邯郸月考) 如图,△ABC中,AB⊥BC ,BE⊥AC ,∠1=∠2,AD=AB ,则下列结论错误的是()A . BF=DFB . ∠1=∠EFDC . BF>EFD . FD∥BC13. (2分) (2019八上·大渡口期末) 若分式,则分式的值等于()A . ;B . ;C . ;D . .14. (2分)(2018·合肥模拟) 将下列多项式因式分解,结果中不含有因式(a+1)的是()A . a2-1B . a2+aC . a2+a-2D . (a+2)2-2(a+2)+1二、填空题 (共6题;共7分)15. (1分) (2017九下·东台期中) 用科学记数法表示2030000,应记作________.16. (1分) (2018七下·柳州期末) x与3的和不小于5,用不等式表示为________.17. (2分) (2016七上·义马期中) 多项式2x3﹣x2y2﹣3xy+x﹣1是________次________项式.18. (1分)若3m=5,3n=6,则3m﹣n的值是________ .19. (1分)(2019·临海模拟) 若关于x的方程的解为整数,且不等式组无解,则所有满足条件的非负整数a的和为________.20. (1分) (2019八下·十堰期中) 对于两个实数a、b,定义运算@如下:a@b= ,例如3@4= .那么15@x2=4,则x等于________.三、解答题 (共6题;共43分)21. (5分) (2019七下·川汇期末) 已知x、y满足方程组且,求实数a的取值范围.22. (5分) (2018七下·宝安月考) 计算:(x﹣2)2﹣(x+3)(x﹣3)23. (10分)(2020·杭州模拟) 已知:如图,△ABC中,AB=AC,D,E分别是边BC,AC上的点.且BD=EC,∠ADE=∠B.(1)求证:AD=DE.(2)若∠ADE=40°,求∠ADB的度数.24. (5分) (2016七下·五莲期末) 已知,如图,∠BAG=45°,∠AGD=135°,∠E=∠F.求证:∠BAE=∠CGF.25. (5分) (2016七下·博白期中) 某车间有工人56名,生产一种螺栓和螺母,每人每天平均能生产螺栓24个或螺母36个,应分配多少人生产螺栓,多少人生产螺母,才能使一个螺栓配2个螺母刚好配套?26. (13分) (2019七上·莲湖期中) 计算(1)(2)计算,嘉嘉同学的计算过程如下:原式请你判断嘉嘉的计算过程是否正确,若不正确,请写出正确的计算过程.(3)定义一种运算:观察下列各式:,.①请你想一想: ________.②若,那么 ________ (填或)③先化简,在求值:其中 .________参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共6题;共7分)15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共43分)21-1、22-1、23-1、23-2、24-1、25-1、26-1、26-2、26-3、。
河北省衡水市七年级下学期数学期末考试试卷
河北省衡水市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如果7x4﹣k=y是二元一次方程,那么k的值是()A . 2B . 3C . 1D . 02. (2分) (2016九上·北区期中) 下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .3. (2分) (2019七上·扶绥期中) 下面是一个被墨水污染过的方程:,答案显示此方程的解是,被墨水遮盖的是一个常数,则这个常数是()A . 2B . -2C .D .4. (2分) (2016七上·遵义期末) 一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是()A . 120元B . 125元C . 135元D . 140元5. (2分)若a>b,则下列式子正确的是()A . ﹣0.5a>﹣0.5bB . 0.5a>0.5bC . a+c<b+cD . a﹣c<b﹣c6. (2分) (2016高二下·抚州期中) (x-2y)2+|z-2x|=0,那么2x+2y+2z=()A . 6yB . 8yC . 14yD . 16y7. (2分)一文具店的装订机的价格比文具盒的价格的3倍少1元,购买2把装订机和6个文具盒共需70元,问装订机与文具盒价格各是多少元?设文具盒的价格为x元,装订机的价格为y元,依题意可列方程组为()A .B .C .D .8. (2分)在三角形ABC中,AB=7,BC=2,并且AC的长为奇数,则AC=()A . 3B . 5C . 7D . 99. (2分)六盘水市“琼都大剧院”即将完工,现需选用同一批地砖进行装修,以下不能镶嵌的地板是()A . 正五边形地砖B . 正三角形地砖C . 正六边形地砖D . 正四边形地砖10. (2分)(2020·南充模拟) 不等式组的最大整数解为a,最小整数解为b,则()A . -14B . -15C . -16D . -17二、填空题 (共5题;共10分)11. (1分) (2020七下·九台期中) 在下列方程中①x+2y=3,② ,③ ,④,是一元一次方程的有________(填序号).12. (1分) (2020七下·莘县期末) 若关于x,y的二元一次方程组的解也是二元一次方程2x-y=-7的解,则k的值是________。
河北省衡水市七年级下学期数学期末试卷
河北省衡水市七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共18分)1. (3分)(2016·龙岩) 下列四个实数中最小的是()A .B . 2C .D . 1.42. (3分) (2019九下·江都月考) 在平面直角坐标系的第四象限内有一点P,点P到x轴距离为2,到y轴距离为1,则点P的坐标为()A . (-2,1)B . (2,-1)C . (-1,2)D . (1,-2)3. (3分)已知(, 3)和关于原点对称,则的值为()A . -1B .C . -D . 14. (3分)(2018·重庆) 下列调查中,最适合采用全面调查(普查)的是()A . 对我市中学生每周课外阅读时间情况的调查B . 对我市市民知晓“礼让行人”交通新规情况的调查C . 对我市中学生观看电影《厉害了,我的国》情况的调查D . 对我国首艘国产航母002型各零部件质量情况的调查5. (3分) (2016八上·达县期中) 不等式组的所有整数解的和是()A . 2B . 3C . 5D . 66. (3分) (2016八上·连州期末) 下面各式中,计算正确的是()A .B .C .D . (﹣1)3=﹣3二、填空题 (共8题;共23分)7. (3分)(2019·道外模拟) 计算的结果是________.8. (3分) (2020八上·江汉期末) 如图,点O是△ABC角平分线的交点,过点O作MN∥BC分别与AB,AC 相交于点M,N,若,,,则△AMN的周长为________.9. (3分) (2019九上·灌云月考) 写一个最接近的整数是________.10. (2分) (2017七下·郾城期末) 不等式4﹣3x>2x﹣6的非负整数解是________.11. (3分)已知P(1﹣3a,a﹣2)在第三象限,则a的取值范围是________.12. (3分)(2019·丹阳模拟) 如图,转盘中6个扇形的面积都相等.任意转动转盘一次,当转盘停止转动时,指针指向偶数的概率是________.13. (3分)(2018·天水) 已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是________.14. (3分)(2013·钦州) 不等式组的解集是________.三、(本大题共5小题,每小题6分,共30分) (共5题;共30分)15. (6分) (2017七下·福建期中) 解下列方程解下列方程组.(1)(2)16. (6分)(1)计算:(π﹣)0+()﹣1﹣﹣ta n30°;(2)解方程:+=1;(3)解不等式组,并把解集在数轴上表示出来.17. (6分) (2018八上·东台期中) 如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB、DF⊥AC,垂足分别为E、F,且BE=CF.求证:AB=AC.18. (6分) (2016九上·吴中期末) 2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ________ ;扇形统计图中的圆心角α等于 ________ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.19. (6分) (2013七下·茂名竞赛) 某宾馆客房有三人客房、双人客房,收费数据如下表:为吸引游客,实行团体入住五折优惠措施,一个50人的旅游团优惠期间到该宾馆入住,住了若干间三人普通间客房和双人普通房间客房。
衡水市七年级下学期数学期末考试试卷
衡水市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2015七下·石城期中) 观察下列选项中的图案,能通过图案(1)平移得到的是()A .B .C .D .2. (2分)(2017·官渡模拟) 一元一次不等式x+1≥2的解在数轴上表示为()A .B .C .D .3. (2分)若∠1与∠2是同旁内角,∠1=40°,则∠2的度数是()A . 40°B . 140°C . 40°或140°D . 不能确定4. (2分)(2017·天河模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D是AB上一动点,过点D 作DE⊥AC于点E,DF⊥BC于点F,连接EF,则线段EF的最小值是()C . 4.6D . 4.45. (2分)下列调查中,适宜采用普查方式的是()A . 调查市场上酸奶的质量情况B . 调查某品牌圆珠笔芯的使用寿命C . 调查乘坐飞机的旅客是否携带了危禁物品D . 调查《最强大脑》节目的收视率情况6. (2分)在3.14,-, 0,π,0.701 ,,3.464664666…(相邻两个4之间6的个数逐次加1)几个数中,无理数的个数是()A . 1B . 2C . 3D . 47. (2分)在平面直角坐标系中,点P(-3,4)到x轴的距离为()A . 3B . -3C . 4D . -48. (2分)解为的方程组是()A .B .C .D .9. (2分)小马虎做了下列四道题:① = ;②2+ =2 ;③ = ﹣ =5﹣3=2;④ =﹣.他拿给好朋友聪聪看,聪聪告诉他只做对了()A . 4道B . 3道10. (2分)两人练习跑步,如果乙先跑16米,甲8秒可追上乙,如果乙先跑2秒钟,则甲4秒可追上乙,求甲乙二人每秒各跑多少米?若设甲每秒跑x米,乙每秒跑y米,则所列方程组应该是()。
河北省衡水市七年级下学期末数学试卷
河北省衡水市七年级下学期末数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列命题中,假命题是()A . 平行四边形是中心对称图形B . 三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C . 对于简单的随机样本,可以用样本的方差去估计总体的方差D . 若x2=y2 ,则x=y2. (2分)下面的说法中正确的为()A . ﹣1不是单项式B . ﹣a表示负数C . 1是绝对值最小的数D . 不是多项式3. (2分)下列各几何体中,直棱柱的个数是()A . 2B . 3C . 4D . 54. (2分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A .B .C .D .5. (2分)云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡和经济损失.灾情牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手.截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款80100万元.科学记数法表示为()元.A . 8.01×107B . 80.1×107C . 8.01×108D . 0.801×1096. (2分) (2015七下·威远期中) 将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有﹣个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A . 8(x﹣1)<5x+12<8B . 0<5x+12<8xC . 0<5x+12﹣8(x﹣1)<8D . 8x<5x+12<87. (2分) (2015七下·新会期中) 下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根;③负数没有立方根.其中正确的个数有()A . 0个B . 1个C . 2个D . 3个8. (2分)有以下四点:A(0,1)、B(2,1)、C(3,2)、D(3,1),猜想其中在一条直线上的三个点是()A . A,B,CB . A,C,DC . A,B,DD . B,C,D9. (2分)欣赏并说出下列各商标图案,是利用平移来设计的有()A . 2个B . 3个C . 5个D . 6个10. (2分) (2018八上·港南期中) 下列图形不具有稳定性的是()A . 正方形B . 等腰三角形C . 直角三角形D . 钝角三角形12. (2分)已知点A(4,2),B(-2,2),则直线AB ()A . 平行于x轴B . 平行于y轴C . 经过原点D . 以上都有可能二、填空题 (共8题;共8分)13. (1分) (2019七下·郑州期中) 一个角的余角的 3 倍比它的补角的 2 倍少110°,则这个角的度数为________.14. (1分) (2016七上·端州期末) 若 | x | = 5,则x的值为________.15. (1分) (2017七下·寿光期中) 两个角的两边互相平行,其中一个角为50°,那么另一角的度数是________.16. (1分)在直角坐标平面内,圆心O的坐标是(3,-5),如果圆O经过点(0,-1),那么圆O与x轴的位置关系是________.17. (1分) (2017八下·富顺竞赛) 一个等腰三角形一腰上的中线将周长分成15和9两个部分,则该三角形的底边长为________ .18. (1分)如图所示,∠1=________°.19. (1分)(2017·新吴模拟) 如图是一个废弃的扇形统计图,小华利用它的阴影部分来制作一个圆锥,则这个圆锥的底面半径是________.20. (1分)八边形的外角和是________ 。
河北省衡水市数学七年级下学期期末考试试卷
河北省衡水市数学七年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2017八下·宜兴期中) 下列图标既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2017·南山模拟) 如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1 ,则a+b的值为()A . 2B . 3C . 4D . 53. (2分)(2017·罗平模拟) 如图,直线AB∥CD,∠A=70°,∠C=40°,则∠E等于()A . 30°B . 40°C . 60°D . 70°4. (2分) (2017七下·永春期中) 下列几种形状的瓷砖中,只用一种不能够铺满地面的是()A . 正三角形;B . 正四边形;C . 正五边形;D . 正六边形.5. (2分)(2012·葫芦岛) 正方形ABCD与正五边形EFGHM的边长相等,初始如图所示,将正方形绕点F顺时针旋转使得BC与FG重合,再将正方形绕点G顺时针旋转使得CD与GH重合…按这样的方式将正方形依次绕点H、M、E旋转后,正方形中与EF重合的是()A . ABB . BCC . CDD . DA6. (2分) (2017八上·义乌期中) 长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A . 4B . 5C . 6D . 97. (2分) (2017八上·哈尔滨月考) 如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②EC平分∠DEF;③AD垂直平分CE.其中结论正确的有()个A . 1B . 2C . 3D . 08. (2分) (2016八上·蕲春期中) 如图,已知AC=AD,BC=BD,则有______个正确结论.()①AB垂直平分CD②CD垂直平分AB③AB与CD互相垂直平分④CD平分∠ACB.A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共7分)9. (1分) (2018八上·沙洋期中) 等腰三角形腰上的高与另一腰的夹角为30°,则底角度数是________或________.10. (1分)比a的3倍大5的数是9,列出方程是________ .11. (1分)如图所示,图案绕中心至少旋转________ 可以和原来图形互相重合.12. (1分) (2016九上·柳江期中) 等腰三角形的底和腰是方程x2﹣7x+10=0的两根,则这个三角形的周长是________.13. (1分)若不等式组恰有两个整数解,则m的取值范围是________.14. (2分) (2018八上·绍兴期末) 如图,平面直角坐标系中有一正方形OABC,点C的坐标为(﹣2,﹣1),则点A坐标为________,点B坐标为________.三、综合题 (共10题;共84分)15. (10分)解答题:(1)(2)(3).16. (10分)(2017·海口模拟) 根据要求进行计算:(1)计算:(﹣1)5+15×3﹣2﹣;(2)求不等式组:的所有整数解.17. (5分) (2016八上·浙江期中) 已知:如图,在△ABC中,∠BAC=80°,AD⊥BC于D,AE平分∠DAC,∠B=60°,求∠C、∠DAE的度数.18. (5分) (2017八下·柯桥期中) 本学期开学初,学校体育组对九年级某班50名学生进行了跳绳项目的测试,根据测试成绩制作了下面两个统计图.根据统计图解答下列问题:(1)本次测试的学生中,得4分的学生有多少人?(2)本次测试的平均分是多少分?(3)通过一段时间的训练,体育组对该班学生的跳绳项目进行第二次测试,测得成绩的最低分为3分,且得4分和5分的人数共有45人,平均分比第一次提高了0.8分,问第二次测试中得4分、5分的学生各有多少人?19. (10分) (2018八上·宁波期中) 如图,由长度为1个单位的若干小正方形组成的网格图中,点A、B、C 在小正方形的顶点上.①在图中画出与△ABC关于直线l成轴对称的△AB′C′;②写出三角形ABC的面积;③以AC为边作与△ABC全等的三角形(只要作出一个符合条件的三角形即可);④在直线l上找一点P,使PB+PC的长最短.20. (5分) (2017八下·福建期中) 如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.21. (10分)(2019·德惠模拟) 已知△ABC是等边三角形,四边形ADEF是菱形,∠ADE=120°(AD>AB).(1)如图①,当AD与边BC相交,点D与点F在直线AC的两侧时,BD与CF的数量关系为________.(2)将图①中的菱形ADEF绕点A在平面内逆时针旋转α(0°<α<180°).Ⅰ.判断(1)中的结论是否仍然成立,请利用图②证明你的结论.Ⅱ.若AC=4,AD=6,当△ACE为直角三角形时,直接写出CE的长度.22. (10分)(2017·广西模拟) 某公司计划从本地向甲、乙两地运送海产品进行销售.本地与甲、乙两地都有铁路和公路相连(如图所示),铁路的单位运价为2元/(吨•千米),公路的单位运价为3元/(吨•千米)(1)若公司计划往甲、乙两地运输海产品共需铁路运费3680元,公路运费780元,求计划从本地向甲乙两地运输海产品各多少吨?(2)经市场调查发现,甲地海产品的实际需求量比计划减少a(a>0)吨,但运到甲、乙两地的总量不变,且运到甲地的海产品不少于运到乙地的海产品,当a为多少时,实际总运费w最低?最低总运费是多少?(参考公式:货运运费=单位运价×运输里程×货物重量)23. (10分) (2018八上·海淀期末) 如图,CN是等边△ 的外角内部的一条射线,点A关于CN的对称点为D,连接AD,BD,CD,其中AD,BD分别交射线CN于点E,P.(1)依题意补全图形;(2)若,求的大小(用含的式子表示);(3)用等式表示线段,与之间的数量关系,并证明.24. (9分) (2019八下·黄陂月考) 已知:△ABC为等边三角形(1)若D为△ABC外一点,满足∠CDB=30º,求证:(2)若D为△ABC内一点,DC=3,DB=4,DA=5,求∠CDB的度数(3)若D为△ABC内一点,DA=4,DB= ,DC= 则AB=________(直接写出答案)参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8、答案:略二、填空题 (共6题;共7分)9-1、10-1、11-1、12-1、13-1、14-1、三、综合题 (共10题;共84分)15-1、15-2、15-3、16-1、16-2、17-1、18-1、18-2、18-3、19-1、20-1、21-1、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
河北省衡水市七年级下学期期末数学试卷
河北省衡水市七年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题:在每小题给出的四个选项中,只有一项是符合要求的,请将 (共12题;共24分)1. (2分)如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是()A . ∠1=∠3B . ∠5=∠4C . ∠5+∠3=180°D . ∠4+∠2=180°2. (2分)(±4)2的算术平方根是()A . 16B . ±4C . 4D . -43. (2分) (2018九上·西峡期中) 如图,已知菱形OABC的顶点O(0,0),B(2,2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的顶点B的坐标为()A . (0,-2 )B . (2 ,0)C . (2,﹣2)D . (﹣2,﹣2)4. (2分) (2018八上·深圳期末) 若是方程组的解,则(a+b)(a-b)的值为()A .B .C . -16D . 165. (2分)不等式组的整数解共有()A . 1个B . 2个C . 3个D . 4个6. (2分) (2017八下·无锡期中) 下列说法正确的是()A . 为了了解某中学800名学生的视力情况,从中随机抽取了50名学生进行调查,在此次调查中,样本容量为50名学生的视力B . 若一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖C . 了解无锡市每天的流动人口数,采用抽查方式D . “掷一枚硬币,正面朝上”是必然事件7. (2分) (2018八上·宁波月考) 对于命题“若 a2>b2 ,则a>b”,下面四组关于 a,b 的值中,能说明这个命题是假命题的是()A . a=3,b=2B . a=﹣1,b=3C . a=﹣3,b=2D . a=3,b=﹣18. (2分)如图,AB⊥BC,∠ABD的度数比∠DBC的度数的2倍少15°,设∠ABD与∠DBC的度数别为x°、y°,根据题意,下列的方程组正确的是()A .B .C .D .9. (2分)(2016·兖州模拟) 某校随机抽取200名学生,对他们喜欢的图书类型进行问卷调查,统计结果如图.根据图中信息,估计该校2000名学生中喜欢文学类书籍的人数是()A . 800B . 600C . 400D . 20010. (2分)(2011·宿迁) 在平面直角坐标系中,点M(﹣2,3)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限11. (2分)不等式2x﹣3≥﹣1的解集是()A . x≥﹣B . x≤-C . x≥1D . x≤112. (2分)已知关于x,y的方程中的解互为相反数,则m的值为()A . 63B . 7C . ﹣63D . ﹣7二、填空题:请将答案直接填在题中横线上. (共6题;共6分)13. (1分) (2016八上·太原期末) 如图,△ABC中,D,E分别在边AB,AC上,DE∥BC.若∠A=60°,∠B=70°,则∠AED的度数为________.14. (1分) (2020八上·大丰期末) 如果有意义,那么x可以取的最小整数为________.15. (1分)以为解的一个二元一次方程是________16. (1分)不等式组的解集是x<a﹣2,则a的取值范围是________.17. (1分)为了考察我校八年级同学的视力情况,从八年级的30个班共2200名学生中,每班随机抽取了5名同学进行调查,在这个问题中,样本的容量是________.18. (1分)(2017·阳谷模拟) 已知,关于x的不等式组的整数解共有两个,那么a的取值范围是________.三、解答题:解答应写出文字说明、演算步骤或证明过程. (共7题;共55分)19. (15分)(2016·桂林) 如图,在四边形ABCD中,AB=6,BC=8,CD=24,AD=26,∠B=90°,以AD为直径作圆O,过点D作DE∥AB交圆O于点E(1)证明点C在圆O上;(2)求tan∠CDE的值;(3)求圆心O到弦ED的距离.20. (5分)解关于x,y的方程组时,甲正确地解出,乙因为把c抄错了,误解为,求a,b,c的值.21. (5分)如图,直线L1、L2分别与直线L3、L4相交,∠1=76°,∠2=104°,∠3=68°,求∠4的度数.22. (5分) (2017·银川模拟) 解不等式组:并把解集在数轴上表示出来.23. (5分) (2017八下·西华期中) 如果最简二次根式与是同类二次根式,那么要使式有意义,x的取值范围是什么?24. (5分) (2019九下·临洮期中) 我国民间流传着许多趣味算题,它们多以顺口溜的形式表达,其中《孙子算经》中记载了这样一个数学问题:一群老头去赶集,半路买了一堆梨,一人一个多一梨,一人两个少二梨,请问君子知道否,几个老头几个梨?25. (15分)为激励教师爱岗敬业,某市开展了“我最喜爱的老师”评选活动.某中学确定如下评选方案:由学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总得票数.如图是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).学生投票结果统计表候选教师王老师赵老师李老师陈老师得票数200300(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图;(2)王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,王老师与李老师得到的学生票数分别是多少?(3)在(1)(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是哪两位老师?为什么?参考答案一、选择题:在每小题给出的四个选项中,只有一项是符合要求的,请将 (共12题;共24分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题:请将答案直接填在题中横线上. (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题:解答应写出文字说明、演算步骤或证明过程. (共7题;共55分)19-1、19-2、19-3、20-1、21-1、22-1、23-1、24-1、25-1、25-2、25-3、。
《试卷3份集锦》衡水市某知名初中2020-2021年七年级下学期期末考试数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1,π,37-,3.5,0,3.02002 ) A .4个B .5个C .6个D .7个 【答案】A【解析】根据无理数的定义进行解答即可.π,37-,3.5,0,3.02002,π共有4个.故选:A .【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数,含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果,是解题的关键.2.ABC △的三边长分别为,,a b c ,下列条件:①A B C ∠=∠-∠;②()()2a b c b c =+-;③::3:4:5A B C ∠∠∠=;④::5:12:13a b c =其中能判断ABC △是直角三角形的个数有( ) A .1个B .2个C .3个D .4个 【答案】C【解析】判定直角三角形的方法有两个:一是有一个角是90︒的三角形是直角三角形;二是根据勾股逆定理判断,即三角形的三边满足222+=a b c ,其中边c 为斜边.【详解】解:由三角形内角和定理可知180A B C ︒∠+∠+∠=,①中A B C ∠=∠-∠,180B C B C ︒∴∠-∠+∠+∠=,2180B ︒∴∠=,90B ︒∴∠=,能判断ABC △是直角三角形,①正确, ③中318045345A ︒︒∠=⨯=++, 418060345B ︒︒∠=⨯=++,518075345C ︒︒∠=⨯=++,ABC △不是直角三角形,③错误;②中化简得222a b c =- 即222a c b += ,边b 是斜边,由勾股逆定理ABC △是直角三角形,②正确; ④中经计算满足222+=a b c ,其中边c 为斜边,由勾股逆定理ABC △是直角三角形,④正确,所以能判断ABC △是直角三角形的个数有3个.故答案为:C【点睛】本题考查了直角三角形的判定,主要从边和角两方面去考虑,即有一个角是直角或三边满足222+=a b c ,灵活运用直角三角形边角的特殊性质取判定直角三角形是解题的关键.3.下列调查中,调查方式选择合理的是( )A .了解灯泡的寿命,选择全面调查B .了解某品牌袋装食品添加剂情况,选择全面调查C .了解神舟飞船的设备零件的质量情况,选择抽样调查D .了解介休绵山旅游风景区全年游客流量,选择抽样调查【答案】D【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】A. 了解灯泡的寿命,有破坏性,易采用抽样调查,故不合理;B. 了解某品牌袋装食品添加剂情况,有破坏性,易采用抽样调查,故不合理;C. 了解神舟飞船的设备零件的质量情况,比较重要,应采用普查的方式,故不合理;D. 了解介休绵山旅游风景区全年游客流量,工作量比较大,易采用抽样调查,故合理;故选D.【点睛】本题考查了抽样调查和全面调查的选择,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.分式2x 4x 2-+的值为0,则 A .x=-2B .x=±2C .x=2D .x=0【答案】C【解析】根据分式的值为0,分子等于0,分母不等于0解答. 【详解】根据分式的值为0的条件,要使2x 40x 2-=+,则有2x 40x 20⎧-=⎨+≠⎩即x 2x 2x 2==-⎧⎨≠-⎩, 解得x 2=.故选C .【点睛】本题考查分式的值为0,分子等于0,分母不等于0,熟记概念是关键.5.下列分式中,与2x y x y ---的值相等的是() A .2x y y x+- B .2x y x y +- C .2x y x y -- D .2x y y x -+ 【答案】A【解析】根据分式的基本性质即可求出答案.【详解】解:原式=22x y x y x y y x++-=--, 故选:A .【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.6.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正东方向10m 走到达点5A ,…按如此规律走下去,当机器人走到点2019A 时,点2019A 在第( )象限A .一B .二C .三D .四【答案】A 【解析】判断出A 2019的位置即可解决问题.【详解】观察坐标可知下标为4的倍数时,点在第四象限,因为2019=4×504+3,所以A 2019在第一象限.【点睛】本题考查规律型:点的坐标位置,找到规律是解本题的关键.7.如图所示,下列图形都是由相同的玫瑰花按照一定的规律摆成的,按此规律摆下去,第n 个图形中有120朵玫瑰花,则n 的值为( )A .28B .29C .30D .31【答案】C【解析】分析:根据题目中的图形变化规律,可以求得第个图形中玫瑰花的数量,然后令玫瑰花的数量为120,即可求得相应的n的值,从而可以解答本题.详解:由图可得,第n个图形有玫瑰花:4n,令4n=120,得n=30,故选:C.点睛:本题考查图形的变化类,解答本题的关键是明确题意,找出题目中图形的变化规律.8.如图,已知EF⊥AB,CD⊥AB,下列说法:①EF∥CD;②∠B+∠BDG=180°;③若∠1=∠2,则∠1=∠BEF;④若∠ADG=∠B,则∠DGC+∠ACB=180°,其中说法正确的是()A.①②B.③④C.①②③D.①③④【答案】D【解析】根据EF⊥AB,CD⊥AB,则可知EF∥CD,①正确,②不正确;若∠1=∠2,由EF∥CD知∠2=∠BEF,则∠1=∠BEF,③正确;若∠ADG=∠B,则DG∥BC,故可推出∠DGC+∠ACB=180°,④正确.【详解】∵EF⊥AB,CD⊥AB,∴EF∥CD,①正确,②不正确;若∠1=∠2,由EF∥CD得∠2=∠BEF,故∠1=∠BEF,③正确;若∠ADG=∠B,则DG∥BC,∴∠DGC+∠ACB=180°,④正确.故①③④正确,选D.【点睛】此题主要考查平行线的性质与判定,解题的关键是熟知平行线之间的关系.9.计算(3a+ b)(3a- b)的结果为()A.9a2- b2B.b2- 9a2C.9a2- 6ab- b2D.9a2- 6ab+ b2【答案】A【解析】根据平方差公式进行分析解.【详解】(3a+b)(3a—b)=(3a)²-b²=9a²-b²故选:A【点睛】考核知识点:平方差公式.熟记公式是关键.10.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3,4,8 B.4,4,9 C.5,7,12 D.7,8,9【答案】D【解析】根据三角形的三边关系即可判断.【详解】A. ∵3+4<8,∴不能摆成三角形;B. 4+4<9,∴不能摆成三角形;C. 5+7=12,∴不能摆成三角形;D. 7+8>9,∴能摆成三角形;故选D.【点睛】此题主要考查三角形的构成条件,解题的关键是熟知三角形的三边关系.二、填空题题11.若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在第_____象限.【答案】二【解析】分析:根据x轴上点的纵坐标为0求出n,然后确定出点B的坐标,再根据各象限内点的坐标特征解答.详解:∵点A(﹣2,n)在x轴上,∴n=0,∴点B(n﹣1,n+1)为(﹣1,1),∴点B位于第二象限.故答案为二.点睛:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.一件衣服标价130元,若以9折降价出售,仍可获利17%,则这件衣服的进价是元.【答案】1【解析】此题的等量关系:实际售价=标价的九折=进价×(1+获利率),设未知数,列方程求解即可.解:设进价是x元,则(1+17%)x=130×0.9,解得x=1.则这件衬衣的进价是1元.故答案为113.如图,点O为直线AB上一点,OC⊥OD,如果∠1=35°,那么∠2的度数是______________;【答案】55°【解析】分析:由OC ⊥OD ,得到∠COD=90°,再根据∠1+∠2=90°,即可得出结论.详解:∵OC ⊥OD ,∴∠COD=90°,∴∠2=90°-∠1=90°-35°=55°.故答案为55°.点睛:本题主要考查角的运算,比较简单.14.如图,已知直线,,,则的度数是_________.【答案】【解析】利用平行的性质及平角公式求解即可. 【详解】, ∴∴=180°--=50° 故答案为:50°【点睛】本题考查平行的性质及平角公式,掌握两直线平行内错角相等及平角等于180°是解题的关键. 15.点()5,1P -到x 轴距离为______.【答案】1【解析】根据到x 轴的距离为纵坐标的绝对值,可由P 点的坐标求得到x 轴的距离为1.【详解】根据到x 轴的距离为纵坐标的绝对值,可由()5,1P -的纵坐标1,得到x 轴的距离为1. 故答案为:1【点睛】本题考核知识点:点到坐标轴的距离.解题关键点:由坐标得到点和坐标轴的距离.16.已知:(x+y )3=x 3+3x 2y+3xy 2+y 3,则(m ﹣n )3=_____.【答案】m 1﹣1m 2n+1mn 2﹣n 1.【解析】把m ﹣n 写成m+(﹣n),再根据已知的等式写出整理即可.【详解】解:(m ﹣n )1=[m+(﹣n)]1=m 1+1m 2(-n)+1m(-n)2+(-n)1=m 1﹣1m 2n+1mn 2﹣n 1.故答案为:m 1﹣1m 2n+1mn 2﹣n 1.【点睛】本题考查了对多项式乘法公式的理解和知识的迁移能力,正确理解公式中的字母表示的意义,把握公式的本质是解题的关键.17.若式子x 2+4x+m 2是一个含x 的完全平方式,则m =_____.【答案】±1【解析】根据完全平方公式得出m 1=11,求出即可.【详解】∵式子x 1+4x+m 1是一个含x 的完全平方式,∴x 1+4x+m 1=x 1+1×x×1+11,∴m 1=11,∴m =±1,故答案为:±1.【点睛】本题考查了完全平方公式,能熟记完全平方公式的特点是解此题的关键.三、解答题18.解下列方程(组): (1)30564x x --= (2)2 6.38.x y x y +=⎧⎨+=⎩①②【答案】 (1)30x =;(2)22x y =⎧⎨=⎩. 【解析】(1)根据解一元一次不等式的方法求解即可.(2)根据解二元一次方程的方法求解即可.【详解】(1)解:去分母,得23(30)60x x --=去括号、移项,得236090x x +=+.合并同类项,得5150x =.系数化为1,得30x =.经检验x=30.(2) x+2y=63x+y=8⎧⎨⎩①② 解:由②,得83y x =- ③把③代入①,得2(83)6x x +-=.2x =.将2x =带入③可得862y =-=.∴22x y =⎧⎨=⎩经检验x=2,y=2.【点睛】本题考察了一元一次方程的求解和一元二次方程的求解,学生们熟练掌握求解方法即可,但是需要认真的计算.19.在平面直角坐标系xOy 中,点A (1,1),B (3,2),将点A 向左平移两个单位,再向上平移4个单位得到点C .(1)写出点C 坐标;(2)求△ABC 的面积.【答案】(1)C (-1,1);(2)△ABC 的面积=1.【解析】试题分析:(1)根据坐标平移的特点即可由点A 的坐标得到点C 的坐标;(2)如图,在坐标系中根据所给坐标描出A 、B 、C 三点,结合三点坐标即可由图求出△ABC 的面积了. 试题解析:(1)∵点C 是由点A (1,1)向左平移2个单位,再向上平移4个单位得到的,∴点C 的坐标为(-1,1),(2)把A 、B 、C 三点描到坐标系中如下图所示,四边形DEFC 是长方形,∴S △ABC =S 长方形DEFC -S △ABE -S △BFC -S △ADC =4×4-12×2×1-12×3×4-12×2×4 =16-1-6-4=1.20.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上,过点C 作直线//l PQ ,点D 在点C 的左边.(1)若BD 平分∠ABC ,40BDC ︒∠=,则OCB ∠=_____°;(2)如图②,若AC BC ⊥,作∠CBA 的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠; (3)如图③,若∠ADC=∠DAC ,点B 在射线OQ 上运动,∠ACB 的平分线交DA 的延长线于点H.在点B 运动过程中.H ABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围.【答案】(1)10;(2)证明见解析;(3)不变,12【解析】(1)根据两直线平行,内错角相等得∠ABD=40BDC ︒∠=,由BD 平分∠ABC 得∠ABC=2∠ABD=80°,根据垂直即可得∠OCB 的度数;(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE ;(3)由∠ABC+∠ACB=2∠DAC ,∠H+∠HCA=∠DAC ,∠ACB=2∠HCA ,求出∠ABC=2∠H ,即可得答案.【详解】解:(1)∵直线//l PQ ,40BDC ︒∠=,∴∠ABD=40BDC ︒∠=,∵BD 平分∠ABC ,∴∠ABC=2∠ABD=80°,又∵直线MN ⊥直线PQ ,∴∠OCB=90°-∠ABC=10°;(2)∵AC BC ⊥,∴90BCF ︒∠=∴CFE CBF 90︒∠+∠=∵直线MN ⊥直线PQ∴BOC BE EB 90O O ︒∠=∠+∠=∵CEF EB O ∠=∠∴CFE CBF CEF BE O ∠+∠=∠+∠∵BF 是∠CBA 的平分线,∴CBF OBE ∠=∠∴CEF CFE ∠=∠ ;(3)不变∵直线//l PQ ,∴ADC PAD ∠=∠∵ADC DAC ∠=∠,∴CAP 2DAC ∠=∠∵ABC ACB CAP ∠+∠=∠∴ABC ACB 2DAC ∠+∠=∠∵H HCA DAC ∠+∠=∠∴ABC ACB 2H 2HCA ∠+∠=∠+∠∵CH 是∠ACB 的平分线∴ACB 2HCA ∠=∠∴ABC 2H ∠=∠ ∴12H ABC ∠=∠ . 【点睛】本题考查垂线,角平分线,平行线的性质,解题的关键是找准相等的角求解. 21.如图,AB ∥CD ,∠BMN 与∠DNM 的平分线相交于点G .(1)完成下面的证明:∵MG 平分∠BMN∴∠GMN=12∠BMN 同理∠GNM=12∠DNM . ∵AB ∥CD ,∴∠BMN+∠DNM=∴∠GMN+∠GNM=∵∠GMN+∠GNM+∠G=∴∠G=∴MG 与NG 的位置关系是(2)把上面的题设和结论,用文字语言概括为一个命题: .【答案】已知;角平分线的定义;已知;180°;90°;180°;90°;MG⊥NG. 【解析】试题分析:(1)根据平行线的性质进行填空即可;(2)根据,MG NG 的特点作出结论.试题解析:(1)∵MG 平分∠BMN(已知)12GMN BMN ∴∠=∠ (角平分线的定义), 同理1.2GNM DNM ∠=∠ ∵AB //CD(已知),180BMN DNM ∴∠+∠=, 90GMN GNM ∴∠+∠=,180GMN GNM G ∠+∠+∠=,90G ∴∠=, ∴MG 与NG 的位置关系是MG ⊥NG ;故答案为:已知;角平分线的定义;已知; 180;90;180;90;MG ⊥NG ;(2)两平行直线被第三条直线所截,同旁内角的角平分线互相垂直.22.分解因式:(1)2ax 2﹣2ay 2(2)a 3+2a 2(b+c )+a (b+c )2【答案】(1)1a (x+y )(x ﹣y );(1)a (a+b+c )1【解析】(1)直接提取公因式1a ,再利用平方差公式分解因式得出答案;(1)直接提取公因式a ,再利用完全平方公式分解因式得出答案.【详解】解:(1)1ax 1﹣1ay 1=1a (x 1﹣y 1)=1a(x+y)(x﹣y);(1)a3+1a1(b+c)+a(b+c)1=a[a1+1a(b+c)+(b+c)1]=a(a+b+c)1.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.23.解不等式组:2(3)423x xxx--⎧⎪-⎨<⎪⎩并求整数解.【答案】﹣1<x≤1,不等式组的整数解是0,1,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出答案.【详解】由①得x≤1,由②得x﹣1<3x,x>﹣1,∴不等式组的解集是﹣1<x≤1.∴不等式组的整数解是0,1,1.【点睛】此题考查解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.24.我们发现:111122=-⨯,1112323=-⨯,1113434=-⨯,……,(1)利用上述发现计算:112+⨯123⨯+134⨯+…+199100⨯.(2)现有咸度较低的盐水a克,其中含盐b克,若再往该盐水中加m克盐(加入的盐均能溶解),生活经验告诉我们盐水会更咸.①请你用两个代数式的大小关系来表达这一现象,并通过分式运算说明结论的正确性;②应用上述原理说明对于任意正整数n,算式1241⨯-+1461⨯-+1681⨯-+…+122(1)1n n⨯+-的值都小于12.【答案】(1)99100;(2)①见解析,②见解析.【解析】(1)根据所举例子,裂项相消即可;(2)①根据题意列出不等式即可,并利用作差法即可求出答案;②先根据①的结论变形,然后裂项相消即可.【详解】(1)原式=111111112233499100-+-+-+⋯+- =1-1100 =99100 (2)①由题意可知:b m b a m a+>+ ()()()()()b m b a b m b a m m a b a m a a a m a a m ++-+--==+++, ∵0<b <a 且m >0,∴()()m a b a a m -+>0, 即b m b a m a +>+; ②由①可知:1222(1)122(1)n n n n <⨯+-⨯+, ∴111124146168122(1)1n n ++++⨯-⨯-⨯-⨯+-<222244622(1)n n ++⋅⨯⨯⋅+ =111111244622(1)n n -+-+⋯+-+ =12(1)2n n <+. 【点睛】本题考查学生的阅读能力,分式的加减运算,解题的关键是正确理解题意给出的规律,本题属于基础题型. 25.在△ABC 和△DCE 中,CA=CB ,CD=CE ,∠CAB= ∠CED=α.(1)如图1,将AD 、EB 延长,延长线相交于点0.①求证:BE= AD;②用含α的式子表示∠AOB 的度数(直接写出结果);(2)如图2,当α=45°时,连接BD 、AE,作CM ⊥AE 于M 点,延长MC 与BD 交于点N.求证:N 是BD 的中点. 注:第(2)问的解答过程无需注明理由.【答案】(1)①见解析②∠BOA=2α(2)见解析【解析】(1)①根据等腰三角形的性质和三角形的内角和得到∠ACB=∠DCE,根据全等三角形的性质即可得到结论;②根据全等三角形的性质得到∠CAD=∠CBE=α+∠BAO,根据三角形的内角和即可得到结论;(2)如图2,作BP⊥MN的延长线上于点P,作DQ⊥MN于Q,根据全等三角形的性质得到MC=BP,同理CM=DQ,等量替换得到DQ=BP,根据全等三角形的性质即可得到结论.【详解】(1)①∵CA=CB,CD=CE,∠CAB=∠CED=α,∴∠ACB=180°-2α,∠DCE=180°-2α,∴∠ACB=∠DCE∴∠ACB-∠DCB=∠DCE-∠DCB∴∠ACD=∠BCE在△ACD和△BCE中AC BCACD BCE DC CE=⎧⎪∠=∠⎨⎪=⎩∴△ACD≌△BCE∴BE=AD;②∵△ACD≌△BCE∴∠CAD=∠CBE=α+∠BAO,∵∠ABE=∠BOA+∠BAO∴∠CBE+α=∠BOA+∠BAO∴∠BAO+α+α=∠BOA+∠BAO∴∠BOA=2α(2)如图2,作BP⊥MN的延长线上于点P,作DQ⊥MN于Q,∵∠BCP+∠BCA=∠CAM+∠AMC∴∠BCA=∠AMC∴∠BCP=∠CAM在△CBP和△ACM中AC BCBPC AMCBCP CAM=⎧⎪∠=∠⎨⎪∠=∠⎩∴△CBP≌△ACM(AAS)∴MC=BP.同理△CDQ≌△ECM∴CM=DQ∴DQ=BP在△BPN和△DQN中BP DQBNP DNQBPC DQN=⎧⎪∠=∠⎨⎪∠=∠⎩∴△BPN≌△DQN∴BN=ND,∴N是BD中点.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是根据题意作出辅助线进行求解.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角【答案】A【解析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义.2.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是()A.14B.34C.12D.38【答案】D【解析】根据几何概率的求法,可得:小球最终停在黑色区域的概率等于黑色区域的面积与总面积的比值.【详解】根据图示,∵黑色区域的面积等于6块方砖的面积,总面积等于16块方砖的面积,∴小球最终停留在黑色区域的概率是:63= 168.故选:D.【点睛】此题主要考查了几何概率问题,用到的知识点为:概率=黑色区域的面积与总面积之比.3.已知:在直角坐标系中,点A ,B 的坐标分别是(1,0),(0,3),将线段AB 平移,平移后点A 的对应点A ′的坐标是(2,﹣1),那么点B 的对应点B ′的坐标是( )A .(2,1)B .(2,3)C .(2,2)D .(1,2)【答案】D【解析】根据点A 、A′的坐标确定出平移规律,然后根据规律求解点B′的坐标即可.【详解】∵A (1,0)的对应点A ′的坐标为(2,﹣1),∴平移规律为横坐标加1,纵坐标减1,∵点B (0,3)的对应点为B′,∴B′的坐标为(1,2).故选D .【点睛】本题考查了坐标与图形变化−平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.4.9的平方根是( )A .3B .81C .3±D .81± 【答案】C【解析】根据平方根的定义进行求解即可.【详解】解:9的平方根是3±.故选:C.【点睛】本题考查平方根,一个正数有两个实平方根,它们互为相反数. 5.已知21x y =⎧⎨=⎩是方程ax-y=5的一个解,那么a 的值为( ). A .-2B .2C .3D .6【答案】C【解析】把x 与y 的值代入方程计算即可求出a 的值. 【详解】把21x y =⎧⎨=⎩代入方程得2a-1=5, 解得a=3故选C.【点睛】本题考查二元一次方程的解,熟练掌握计算法则是解题关键.6.如图,将ABC ∆沿射线AB 平移到DEF ∆的位置,则以下结论不正确的是( )A .C F ∠=∠B .//BC EF C .AD BE = D .AC DB =【答案】D 【解析】根据平移变换只改变图形的位置不改变图形的形状与大小可得AC DB ≠的长,从而得解.【详解】由题意根据平移的性质,可知AC DB ≠故选D【点睛】此题考查平移的性质,解题关键在于掌握平移的性质7.解方程组278ax by cx y +=⎧⎨-=⎩时,一学生把c 看错得22x y =-⎧⎨=⎩,已知方程组的正确解是32x y =⎧⎨=-⎩,则a ,b ,c 的值是( )A .a ,b 不能确定,c =﹣2B .a =4,b =5,c =﹣2C .a =4,b =7,c =﹣2D .a ,b ,c 都不能确定【答案】B 【解析】把22x y =-⎧⎨=⎩代入2ax by +=,把32x y =⎧⎨=-⎩代入278ax by cx y +=⎧⎨-=⎩,得出三元一次方程组即可进行求解. 【详解】把22x y =-⎧⎨=⎩代入2ax by +=,把32x y =⎧⎨=-⎩代入278ax by cx y +=⎧⎨-=⎩, 得2223223148a b a b c -+=⎧⎪-=⎨⎪+=⎩,解得a =4,b =5,c =﹣2故选B【点睛】此题主要考查二元一次方程组的解,解题的关键是把满足方程的解代入原方程进行求解.8.下列整式乘法运算中,正确的是( )A .(x -y)(y+ x)=x 2-y 2B .(a+3)2=a 2+9C .(a+b)(-a -b)=a 2-b 2D .(x -y)2=x 2-y 2【答案】A【解析】试题分析:利用完全平方公式及平方差公式判断即可得到结果:A 、(x-y )(y+x )=x 2-y 2,故选项正确;B 、(a+3)2=a 2+9+6a ,故选项错误;C 、(a+b )(-a-b )=-(a+b )2=-a 2-b 2-2ab ,故选项错误;D、(x-y)2=x2-2xy+y2,故选项错误.故选A.考点:1.完全平方公式;2.平方差公式.9.如图,AB,CD被EF所截,交点分别为E,D,则∠1与∠2是一对()A.同旁内角B.同位角C.内错角D.对顶角【答案】A【解析】由图形可知,∠1与∠2是直线AB、CD被直线EF所截得到的一对同旁内角.【详解】由图形可知,∠1与∠2是一对同旁内角.故选A.【点睛】本题考查了同位角、内错角、同旁内角以及对顶角的定义.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.10.解方程组时,由②-①得()A .B .C .D .【答案】B【解析】方程组中两方程相减得到结果,即可做出判断.【详解】解:解方程组时,由②-①得y-(-3y)=10-2,即4y=8,故选B.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题题11.在①x=1y=1⎧⎨-⎩,,②x=2y=3-⎧⎨-⎩,,③x=3y=0-⎧⎨⎩,中,①和②是方程2x3y=5-的解;__________是方程3x+y=9-的解;不解方程组,可写出方程组2x3y=53x+y=9-⎧⎨-⎩,的解为__________.【答案】(1)②和③;(2)②.【解析】分析:根据二元一次方程解的定义和二元一次方程组解的定义进行分析解答即可.详解:把①x=1y=-1⎧⎨⎩ ,②x=-2y=-3⎧⎨⎩ ,③x=-3y=0⎧⎨⎩ 分别代入方程39x y +=- 检验可得:②x=-2y=-3⎧⎨⎩ ,③x=-3y=0⎧⎨⎩是方程39x y +=-的解,∵①x=1y=-1⎧⎨⎩,②x=-2y=-3⎧⎨⎩ 也是方程235x y -=的解, ∴方程组23539x y x y -=⎧⎨+=-⎩的解是②. 故答案为:(1)②和③;(2)②.点睛:熟知“二元一次方程解的定义和二元一次方程组解的定义”是解答本题的关键.12.如图,已知直线//a b ,直线c 与a 、b 相交,2115∠=︒,那么1∠=________度.【答案】65【解析】利用平行线的性质及邻补角互补即可求出.【详解】如图:∵a ∥b ,∴∠1=∠3,∵∠2=115°,∴∠3=180°-115°=1°(邻补角定义),∴∠1=∠3=1°.故答案为:1.【点睛】本题应用的知识点为:“两直线平行,同位角相等”和邻补角定义.13.命题“两直线平行,同位角相等”的逆命题是.【答案】同位角相等,两直线平行【解析】逆命题是原命题的反命题,故本题中“两直线平行,同位角相等”的逆命题是同位角相等,两直线平行【点睛】本题属于对逆命题的基本知识的考查以及逆命题的反命题的考查和运用14.已知直线AB∥x轴,点A的坐标为(1,2),并且线段AB=3,则点B的坐标为________【答案】(4,2)或(﹣2,2).【解析】分析:AB∥x轴,说明A,B的纵坐标相等为2,再根据两点之间的距离公式求解即可.详解:∵AB∥x轴,点A坐标为(1,2),∴A,B的纵坐标相等为2,设点B的横坐标为x,则有AB=|x-1|=3,解得:x=4或-2,∴点B的坐标为(4,2)或(-2,2).故本题答案为:(4,2)或(-2,2).点睛:本题主要考查了平行于x轴的直线上的点的纵坐标都相等.注意所求的点的位置的两种情况,不要漏解.15.以方程组x y2x y1+=⎧-=⎨⎩的解为坐标的点(x、y)在平面坐标系中的位置在第______象限.【答案】一【解析】先求出方程组的解,再根据坐标的点(x,y)判定在平面直角坐标系中的位置是第一象限.【详解】解:解方程组21x yx y+=⎧⎨-=⎩,可得:3212xy⎧=⎪⎪⎨⎪=⎪⎩,∵31,22⎛⎫⎪⎝⎭在第一象限,∴(x,y)在平面直角坐标系中的位置是第一象限.故答案为:一【点睛】本题主要考查了解二元一次方程组及坐标中的象限,解题的关键是准确的求出方程组的解.16.观察下列等式:39×41=402-12,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,…请你把发现的规律用字母表示出来:m×n=________.【答案】2222m n n m +-⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭【解析】观察可以发现,4039412+=,141392-=;5048522+=,152482-=;6056642+=,464562-=∴m•n =(2m n +)1﹣(2n m -)1. 【详解】∵4039412+=,141392-=; ∴39×41=401﹣11=(39412+)1﹣(41392-)1; 同理5048522+=,152482-=;6056642+=,464562-= ∴48×51=501﹣11=(48522+)1﹣(52482-)1;56×64=601﹣41=(56642+)1﹣(64562-)1… ∴m•n =(2m n +)1﹣(2n m -)1. 故答案为(2m n +)1﹣(2n m -)1. 【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.17.﹣64_____.【答案】-2或-1【解析】解:∵-14的立方根是-4,∵4的平方根是±2,∵-4+2=-2,-4+(-2)=-1,∴-14-2或-1.故答案为:-2或-1.【点睛】本题考查立方根;平方根.三、解答题18.如图,已知∠1=∠2,DE ∥FH ,则CD ∥FG 吗?说明理由【答案】见解析【解析】根据平行线的性质与判定是互逆关系进行证明即可.【详解】CD ∥FG1=2ED FG∴∴∴∴∥∠EDF=∠HFD∠∠∠EDF-∠1=∠HFD-∠2∠CDF=∠GFDCD ∥FG【点睛】本题考查平行线的性质,解题关键在于熟练掌握平行线的性质与判定是互逆关系.19.已知:如图,和相交于点是上一点,是上一点,且.(1)试说明:; (2)若,求的度数. 【答案】(1),见解析;(2),见解析.【解析】(1)根据平行线的性质和已知得出∠A =∠C ,根据平行线的判定推出即可;(2)根据平行线的性质求出∠D ,根据二角形的外角性质推出即可.【详解】解:(1)(2),是的外角,.【点睛】本题考了平行线的性质和判定,三角形的内角和定理的应用,主要考查学生的推理能力和计算能力,难度适中.20.已知关于x ,y 的二元一次方程组1{24x y x y +=+=.(1)解该方程组;(2)若上述方程组的解是关于x ,y 的二元一次方程2ax by +=的一组解,求代数式64b a -的值. 【答案】 (1) 23x y =-⎧⎨=⎩;(2)4 【解析】(1)124x y x y +=⎧⎨+=⎩得22224x y x y +=⎧⎨+=⎩得出23x y =-⎧⎨=⎩; (2)-2a+3b=2则64b a -=421.某同学统计了家中10月份的长途电话清单,并按通话时间画出了如图所示的统计图(每组数据含左端点值,不含右端点值).(1)该同学家这个月一共打了多少次长途电话?(2)通话时间不足10分钟的有多少次?(3)哪个时间范围内的通话次数最多?哪个时间范围内的通话次数最少?【答案】(1)该同学家这个月一共打了77次长途电话;(2)通话时间不足10分钟的有43次; (3)1~5分钟范围内的通话次数最多,10~15分钟范围内的通话次数最少.【解析】(1)根据频数分布直方图提供的数据,将各组频数相加即可求解;(2)将第一组与第二组的频数相加即可得到通话时间不足10min 的次数;(3)由频数分布直方图可知,0~5min 的通话最多,10~15min 的通话最少.【详解】解:(1)25+18+8+10+16=77,答:该同学家这个月一共打了77次长途电话;(2)通话时间不足10分钟的有25+18=43次;(3)1~5分钟范围内的通话次数最多,10~15分钟范围内的通话次数最少.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.先化简,再求值:(x ﹣1)2﹣x (x+3),其中x =15. 【答案】51x +﹣,1.【解析】先算乘法,再合并同类项,最后将x 的值代入计算即可.【详解】解:原式=x 2﹣2x+1﹣x 2﹣3x=﹣5x+1,当x =15时,原式=﹣5×15+1=1. 【点睛】本题考查了整式的混合运算,熟练的掌握多项式的乘法和合并同类项的法则是解本题的关键.23.已知()2360m m x --+=是关于x 的一元一次方程.()1求m 的值;()2若3y m -=,求出y 的值;()3若数a 满足a m ≤,试化简:a m a m ++-.【答案】(1)3m =-;(2)0y =或6;(3)2m【解析】()1根据一元一次方程的意义和未知数系数不等于0求解;()2根据绝对值意义转化为两个方程求解;()3确定a 的范围,去绝对值合并.【详解】解:()121m -=,3m ∴=±,30m -≠,3m ∴≠,3m ∴=-;()23y m -=, 即33y +=,33y ∴+=或33y +=-,0y ∴=或6;()3a m ≤,即3a ≤,3a 3∴-≤≤,0a m ∴+≥,0a m -≤,a m a m a m a m ∴++-=+-+2m =.【点睛】考查一元一次方程意义和绝对值意义.确定绝对值内代数式符号是解答关键.24.先化简,再求值:22113122323x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中x=-1,y=23. 【答案】-3x+y 2,319【解析】根据整式的运算法则即可求出答案. 【详解】原式22123122323x x y x y =-+-+ =-3x+y 2 当x=-1,y=23时, 原式=-3×(-1)+49=31 9【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.25.为促进学生多样化发展,某校组织了课后服务活动,设置了体育类、艺术类,文学类及其它类社团(要求人人参与,每人只能选择一类)为了解学生喜爱哪类社团活动,学校做了一次抽样调查,根据收集到的数据,绘制成如下两幅不完整的条形统计图和扇形统计图(如图①、图②)如下,请根据国中所给的信息,解答下列问题:(1)此次共调查了多少人?(2)求艺术类在扇形统计图中所占的四心角的度数;(3)将条形统计图补充完整;(4)如果该校有学生2200人,那么在全校学生中,喜受文学类和其它类两个社团的学生共有多少人?【答案】(1)200人;(2)72°;(3)见解析;(4)880人.【解析】(1)根据体育类学生人数和所占的百分比,可以求得本次调查的总人数;(2)根据条形图中的数据可以求得艺术类所占的百分比,再乘以360°即可;(3)根据(1)中的结果和统计图中的数据可以求得文学类和其它类的学生数,从而可以将条形统计图补充完整;(4)先求出样本中喜受文学类和其它类两个社团的学生所占的百分比,再利用样本估计总体的思想,用样本百分比乘以2200即可.【详解】解:(1)80÷40%=200(人),即此次共调查了200人;(2)360°×40200=72°,即艺术类在扇形统计图中所占的圆心角的度数是72°;(3)选择文学类的学生有:200×30%=60(人),选择其他类的学生有:200﹣80﹣40﹣60=20(人),补全的条形统计图如右图所示;。
【3套打包】衡水市七年级下册数学期末考试试题(含答案)
最新七年级(下)数学期末考试题(含答案)人教版七年级下学期期末考试数学试题一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.4的平方根是(A)±16 (B)(C)(D)2.2019年4月29日中国北京世界园艺博览会开幕,会徽取名“长城之花”,如图1所示. 在下面右侧的四个图形中,能由图1经过平移得到的图形是3.在平面直角坐标系中,如果点P在第三象限,那么m的取值范围为(A)(B)(C)(D)4.如图,直线,相交于点,平分,OF⊥CD,若∠BOE=72°,则的度数为(A)72°(B)60°(C)54°(D)36°5.若a=,把实数a在数轴上对应的点的位置表示出来,可能正确的是(A)(B)(C)(D)6.下列条件:①∠AEC=∠C ,②∠C=∠BFD,③∠BEC+∠C=180°,其中能判断AB∥CD的是(A)①②③(B)①③(C)②③(D)①7.在参观北京世园会的过程中,小欣发现可以利用平面直角坐标系表示景点的地理位置,在正方形网格中,她以正东、正北方向为轴、轴的正方向建立平面直角坐标系,表示丝路驿站的点坐标为(0,0). 如果表示丝路花雨的点坐标为(7,-1),那么表示清杨洲的点坐标大约为(2,4);如果表示丝路花雨的点坐标为(14,-2),那么这时表示清杨洲的点坐标大约为(A)(4,8)(B)(5,9)(C)(9,3)(D)(1,2)8.我们规定:在平面直角坐标系xOy中,任意不重合的两点M(x1,y1),N(x2,y2)之间的折线距离为,例如图①中,点M(-2,3)与点N(1,-1)之间的折线距离为. 如图②,已知点P(3,-4),若点Q的坐标为(t,2),且,则t的值为(A)-1(B)5(C)5或-13(D)-1或7二、填空题(本题共16分,每小题2分)9.写出一个大于-3的负无理数.10.物体自由下落的高度h(单位:m)与下落时间t(单位:s)的关系是.在一次实验中,一个物体从490m高的建筑物上自由落下,到达地面需要的时间为s.11.若关于,的二元一次方程组的解也是二元一次方程的解,则= .12.如图,连接直线l外一点P与直线l上各点O,,,,…,其中PO⊥l,这些线段PO,,,,…中,最短的线段是 .第12题图13. 已知关于x的一元一次不等式的解集是,如图,数轴上的A,B,C,D四个点中,实数m对应的点可能是. 第13题图14.下列调查四项调查:①本市居民对“垃圾分类”有关内容的了解程度,②本市初中生对全国中小学生“安全教育日”2019年主题“关注安全、关爱生命”的了解情况,③选出本校跳高成绩最好的学生参加全区比赛,④本市初中学生每周课外阅读时间情况,其中最适合采用全面调查方式开展调查的的是 .15.小颖在我国数学名著《算法统宗》看到一道题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”她依据本题编写了一道新题目:“大、小和尚分一百个馒头,大和尚每人吃三个,小和尚三人吃一个,问大、小和尚各多少人?”写出一组能够按照新题目要求分完一百个馒头的和尚人数:大和尚人,小和尚人.16.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下:如图1,我们想要证明“如果直线AB,CD被直线所截EF,AB∥CD,那么∠EOB=∠EO'D.”如图2,假设∠EOB≠∠EO'D,过点O作直线A'B',使∠EOB'=∠EO'D,依据基本事实,可得A'B'∥CD.这样过点O就有两条直线AB,A’B’都平行于直线CD,这与基本事实矛盾,说明∠EOB≠∠EO'D的假设是不对的,于是有∠EOB=∠EO'D.请补充上述证明过程中的两条基本事实.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:..18.解不等式,并把它的解集在数轴上表示出来.19.解方程组:20.解不等式组并写出这个不等式组的所有整数解.21.完成下面的证明.已知:如图,AC⊥BD,EF⊥BD,∠A=∠1.求证:EF平分∠BED.证明:∵AC⊥BD,EF⊥BD,∴∠ACB=90°,∠EFB=90°.()∴∠ACB=∠EFB.∴.()∴∠A=∠2.(两直线平行,同位角相等)∠3=∠1.()又∵∠A=∠1,∴∠2=∠3.∴EF平分∠BED.22.如图,已知三角形ABD,AC是∠DAB的平分线,平移三角形ABC,使点C移动到点D,点B的对应点是E,点A的对应点是F.(1)在图中画出平移后的三角形FED;(2)若∠DAB =72º,EF与AD相交于点H,则∠FDA=º,∠DHF=º.23.在正方形网格中建立平面直角坐标系xOy,使得A,B两点的坐标分别为A(4,1),B(1,-2),过点B作BC⊥x轴于点C.(1)按照要求画出平面直角坐标系xOy,线段BC,写出点C的坐标;(2)直接写出以A,B,O为顶点的三角形的面积;(3)若线段CD是由线段AB平移得到的,点A的对应点是C,写出一种由线段AB得到线段CD的过程.24.阅读下列材料:时间利用调查以自然人为调查对象,通过连续记录被调查者一天24小时的活动,获得居民在工作学习、家务劳动、休闲娱乐等活动上花费的时间,为分析居民身心健康和生活质量等提供数据支撑.2008年,我国第一次开展了时间利用调查,相距十年后的2018年,开展了第二次时间利用调查.2018年5月,北京调查总队对全市1700户居民家庭开展了入户调查,下面是根据此次调查的结果对北京市居民时间利用的特点和变化进行的分析.一、北京市居民一天的时间分布情况北京市居民一天的时间分布情况统计图二、十年间北京市居民时间利用的变化北京市居民2008年上下班的交通时间为1小时29分钟,2018年依然为1小时29 分钟;2008年人均家庭劳务时间为2小时32分钟,2018年为2小时52分钟;2008年人均自由支配时间为4小时17分钟,2018年为4小时34分钟;2008年上网时间为25分钟,2018年上网时间是2008年的7.44倍.(说明:以上内容摘自北京市统计局官网)根据以上材料解答下列问题:(1)2018年采用的调查方式是;(2)图中m的值为;(3)①利用统计表,将2008年和2018年北京市居民上下班的交通时间、人均家庭劳务时间、人均自由支配时间和上网时间表示出来;②根据以上信息,说明十年间北京市居民时间利用变化最大的是,请你分析变化的原因是.25. 如图,∠A=90°,BD平分∠ABC,交AC于点D,DE⊥BC于点E,DF∥AB交BC于点F.(1)依题意补全图形;(2)设∠C=α,①∠ABD=(用含α的式子表示);②猜想∠BDF与∠DFC的数量关系,并证明.26. 某年级共有300名学生,为了解该年级学生在A,B两个体育项目上的达标情况,进行了抽样调查. 过程如下,请补充完整.收集数据从该年级随机抽取30名学生进行测试,测试成绩(百分制)如下:A项目78 867481757687497491 757981717481 866983最新七年级下学期期末考试数学试题(答案)一、选择题(本题共36分,每小题3分,请将答案填入下表中相应的空格内)1.平面直角坐标系内,点P(-3,-4)到y轴的距离是A.3B.4C.5D.-3或7解析考察点到y 轴的距离即是|x|=|-3|=3,故选A 2.下列说法不一定成立的是A.若a>b ,则a+c>b+cB.若2a>-2b ,则a>-bC.若a>b ,则ac 2>bc 2D.若a<b ,则a-2<b+1解析本题考察不等式运算,c=0时,ac 2=bc 2=0,故选C 3下列各选项的结果表示的数中,不是无理数的是A.如图,直径为单位1的圆从数轴上的原点沿着数轴无滑动地顺时针滚动一周到达点A ,点A 表示的数B.5的算术平方根C.9的立方根D.144解析本题考察什么是无理数,144=12,故选D4.若正多边形的一个内角是150°,则该正多边形的边数是 A.6 B.10 C.12 D.16解析正多边形的一个内角是150°,则一个外角为180°-150°=30°,正多边形的外角和为定值360°,所以360/30=12,故选C5.右图是北京市地铁部分线路示意图。
★试卷3套精选★衡水市2020届七年级下学期期末教学质量检测数学试题
七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知ADB ADC ∠=∠,添加条件后,可得ABD ACD ∆≅∆,则在下列条件中,不能添加的是( )A .BAD CAD ∠=∠B .BC ∠=∠ C .BD CD =D .AB AC =【答案】D 【解析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中D 、AB=AC 与∠ADB=∠ADC 、AD=AD 组成了SSA 是不能由此判定三角形全等的.【详解】A 、∵∠BAD=∠CAD ,∴BAD CAD AD AD ADB ADC ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ABD ≌△ACD (ASA );故此选项正确;B 、∵∠B=∠C ,∴ B C ADB ADC AD AD ===∠∠⎧⎪∠∠⎨⎪⎩,∴△ABD ≌△ACD (AAS );故此选项正确;C 、∵BD=CD ,∴BD CD ADB ADC AD AD ⎧⎪∠∠⎨⎪⎩===, ∴△ABD ≌△ACD (SAS );故此选项正确;D 、AB=AC 与∠ADB=∠ADC 、AD=AD 组成了SSA 不能由此判定三角形全等,故此选项错误. 故选D .【点睛】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,但SSA 无法证明三角形全等.2.如图是七年级二班参加社团活动人数的扇形统计图(每位同学只参加其中一个社团).根据统计图提供的信息,下列结论正确的是()A.参加摄影社的人数占总人数的12%B.参加篆刻社的扇形的圆心角度数是70︒C.参加种植社的同学比参加舞蹈社的多8人D.若参加书法社的人数是6人,则该班有50人【答案】D【解析】根据参加摄影社的人数所占度数除以360度可判断A;20%360=72⨯︒︒可判断B;根据题中信息无法得到参加种植社的同学比参加舞蹈社的多8人,故C错误;1-10%-30%-18%-10%-20%=12%,可判断D.【详解】根据参加摄影社的人数所占度数除以360度,可得其占总人数的10%,故A错误;20%360=72⨯︒︒,参加篆刻社的扇形的圆心角度数是72︒,故B错误;根据题中信息无法得到参加种植社的同学比参加舞蹈社的多8人,故C错误;1-10%-30%-18%-10%-20%=12%,若参加书法社的人数是6人,则该班人数为6=5012%,故D正确.【点睛】本题考查扇形统计图,解题的关键是读懂扇形统计图中的信息.3.下列调查中,适宜全面调查的是( )A.调查市场上某种食品的色素含量是否符合国家标准B.了解我国七年级学生的身高情况C.调查春节联欢晚会的收视率D.调查我校某班学生喜欢上数学课的情况【答案】D【解析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
衡水市数学七年级下学期期末考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共8题;共16分)
1. (2分)若代数式x+3的值为2,则x等于()
A . 1
B . -1
C . 5
D . -5
2. (2分) (2019七下·黄陂期末) 下列各组不是二元一次方程的解的是()
A .
B .
C .
D .
3. (2分)下列各组数不能组成三角形的是()
A . ,2,1
B . 5,7,12
C . 3,4,5
D . 0.7,2.4,2.5
4. (2分)(2017·海陵模拟) 如图是一个由几个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()
A . 主视图和俯视图
B . 俯视图
C . 俯视图和左视图
D . 主视图
5. (2分)下列说法正确的是()
A . 同位角相等
B . 过一点有且只有一条直线与已知直线平行
C . 过一点有且只有一条直线与已知直线垂直
D . 只用一种图形进行镶嵌,三角形、四边形、六边形都可以镶嵌
6. (2分)(2019·天水) 一把直尺和一块三角板 (含、角)如图所示摆放,直尺一边与三角板的两直角边分别交于点和点,另一边与三角板的两直角边分别交于点和点,且,那么的大小为()
A .
B .
C .
D .
7. (2分)如图已知△ABE≌△ACD, AB=AC, BE=CD,∠B=40°,∠AEC=120°则∠DAC的度数为()
A . 80°
B . 70°
C . 60°
D . 50°
8. (2分)如果点M(3a﹣9,1+a)是第二象限的点,则a的取值范围在数轴上表示正确的是()
A .
B .
C .
D .
二、填空题 (共16题;共78分)
9. (2分)若关于x、y的二元一次方程组的解满足x+y>1,则k的取值范围是________
10. (2分) (2020七下·广陵期中) 如图,在六边形,,则
________°.
11. (1分)(2020·安徽模拟) 已知△ABC中,,,,为△ABC的重心,那么 ________.
12. (1分)(2018·杭州模拟) 如图,矩形ABCD中,AD=10,AB=8,点E为边DC上一动点,连接AE,把△ADE 沿AE折叠,使点D落在点D′处,当△DD′C是直角三角形时,DE的长为________.
13. (2分) (2020七下·丽水期中) 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠2=58°,那么∠1的度数是________。
14. (1分)(2017·石家庄模拟) 如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A,C 分别落在点A′、C′处,并且点A′,C′,B在同一条直线上,则tan∠ABA′的值为________.
15. (5分) (2018七上·铁岭月考) 解方程:
(1);
(2)
16. (2分) (2019七下·南县期中) 解方程组:.
17. (15分) (2018九上·武昌期中) 如图,和关于点成中心对称.
(1)作出它们的对称中心,并简要说明作法;
(2)若,,,求的周长;
(3)连接,,试判断四边形的形状,并说明理由.
18. (5分) (2020八上·温州期末) 解不等式组:,并把它的解集在数轴上表示出来。
19. (5分)如图为一个正n边形的一部分,AB和DC延长后相交于点P,若∠BPC=120°,求n.
20. (11分)(2017·黑龙江模拟) 已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC 方向平移,使点E与点C重合,得△GFC.
(1)求证:BE=DG;
(2)已知tanB= ,AB=5,若四边形ABFG是菱形,求平行四边形ABCD的面积.
21. (10分)(2019·白山模拟) 周末,甲、乙两名大学生骑自行车去距学校6000米的净月潭公园.两人同时从学校出发,以a米/分的速度匀速行驶.出发4.5分钟时,甲同学发现忘记带学生证,以1.5a米/分的速度按原路返回学校,取完学生证(在学校取学生证所用时间忽略不计),继续以返回时的速度追赶乙.甲追上乙后,两人以相同的速度前往净月潭.乙骑自行车的速度始终不变.设甲、乙两名大学生距学校的路程为s(米),乙同学行驶的时间为t(分),s与t之间的函数图象如图所示.
(1)求a、b的值.
(2)求甲追上乙时,距学校的路程.
(3)当两人相距500米时,直接写出t的值是________.
22. (7分) (2019七下·十堰期末) 已知:如图(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.
老师要求学生在完成这道教材上的题目后,尝试对图形进行变式,继续做拓展探究,看看有什么新发现?
(1)小华首先完成了对这道题的证明,在证明过程中她用到了平行线的一条性质,小华用到的平行线性质可能是________.
(2)接下来,小华用《几何画板》对图形进行了变式,她先画了两条平行线AB,EF,然后在平行线间画了一点C,连接AC,EC后,用鼠标拖动点C,分别得到了图(2)(3)(4),小华发现图(3)正是上面题目的原型,于是她由上题的结论猜想到图(2)和(4)中的∠BAC,∠ACE与∠CEF之间也可能存在着某种数量关系.然后,她利用《几何画板》的度量与计算功能,找到了这三个角之间的数量关系.
请你在小华操作探究的基础上,继续完成下面的问题:
①猜想:图(2)中∠BAC,∠ACE与∠CEF之间的数量关系:________.
②补全图(4),并直接写出图中∠BAC,∠ACE与∠CEF之间的数量关系:________.
(3)小华继续探究:如图(5),若直线AB与直线EF不平行,点G,H分别在直线AB、直线EF上,点C在两直线外,连接CG,CH,GH,且GH同时平分∠BGC和∠FHC,请探索∠AGC,∠GCH与∠CHE之间的数量关系?并说明理由.
23. (2分) (2018七下·韶关期末) 某学校准备购买A、B两种型号篮球,询问了甲、乙两间学校了解这两款篮球的价格,下表是甲、乙两所学校购买A、B两种型号篮球的情况:
购买学校购买型号及数量(个)
购买支出款项(元)A B
甲38622
乙54402(1)求A、B两种型号的篮球的销售单价;
(2)若该学校准备用不多于1000元的金额购买这两种型号的篮球共20个,求A种型号的篮球最少能采购多少个?
24. (7分) (2016七上·德州期末) 如图,OA的方向是北偏东15°,OB的方向是西偏北50度.
(1)若∠AOC=∠AOB,则OC的方向是________;
(2) OD是OB的反向延长线,OD的方向是________;
(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是________;
(4)在(1)、(2)、(3)的条件下,∠COE=________.
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共16题;共78分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
15-2、
16-1、
17-1、
17-2、17-3、
18-1、
19-1、20-1、
20-2、21-1、
21-2、21-3、22-1、22-2、
22-3、23-1、
23-2、
24-1、
24-2、
24-3、
24-4、
第11 页共11 页。