整数和整除的意义

合集下载

数的整除

数的整除

一、整数与整除的意义 1、 零和正整数统称为自然数。

2、 正整数、零、负整数,统称为整数。

3、 整除:整数a 除以整数b (0b ),如果除得的商是整数而余数为零,我们就说a 能被b 整除;或者说b能整除a ,记作b ︱a 。

整除的条件:(1) 除数、被除数都是整数;(2) 被除数除以除数,商是整数而且余数为零。

除尽与整除联系与区别:(1) 联系:除尽与整除,都没有余数;除尽中包含整除。

(2) 区别:整除中被除数、除数和商都为整数,余数为零。

二、因数与倍数1、 整数a 能被整数b 整除,a 就叫做b 的倍数,b 就叫做a 的因数(也称约数),因数与倍数是相互依存的.。

2、 因数和倍数的特点:(1) 一个整数的因数有有限个。

一个整数最小的因数是l ,最大的因数是它本身。

(2) 一个整数的倍数有无限个。

最小的倍数是它本身,没有最大倍数。

3、 因数和倍数的性质:(1) 任何一个整数都是它本身的倍数,也是它本身的因数; (2) 1是任何一个整数的因数,任何整数都是1的倍数;(3) 0是任何一个不等于0的整数的倍数,任何一个不等于0的整数都是0的因数。

三、奇数与偶数整数与整除知识要点1、奇数和偶数的概念:能被2整除的整数叫做奇数;不能被2整除的整数叫做偶数。

2、运算性质:(1)奇数±奇数=偶数(加减法中奇数改变结果的奇偶性)(2)奇数±偶数=奇数(加减法中偶数不改变结果的奇偶性)(3)偶数±偶数=偶数(加减法中偶数不改变结果的奇偶性)(4)奇数个奇数的和或差(相加减)为奇数(5)偶数个奇数的和或差(相加减)为偶数(6)奇数×奇数=奇数(7)偶数×偶数=偶数(8)奇数×偶数=偶数(9)奇数×奇数×奇数×奇数×…×奇数×偶数=偶数(10) a+b与a-b同奇或同偶四、整数的可整除性特征:1、被2整除的数的特征:个位数字是0、2、4、6、8的整数。

01-第一章-数的整除-六年级(上)-知识点汇总-沪教版

01-第一章-数的整除-六年级(上)-知识点汇总-沪教版

第一章数的整除1.1 整数和整除的意义1、在数物体的时候,用来表示物体个数的数1,2,3,4,5,……,叫做整数2、在正整数1,2,3,4,5,……,的前面添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数3、零和正整数统称为自然数4、正整数、负整数和零统称为整数5、整数a除以整数b,如果除得的商正好是整数而没有余数,我们就说a能被b整除,或者说b能整除a1.2 因数和倍数1、如果整数a能被整数b整除,a就叫做b的倍数,b就叫做a的因数2、倍数和因数是相互依存的3、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身4、一个数的倍数的个数是无限的,其中最小的倍数是它本身1.3 能被2, 5整除的数1、个位数字是0,2,4,6,8的数都能被2整除2、整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数3、在正整数中(除1外),与奇数相邻的两个数是偶数4、在正整数中,与偶数相邻的两个数是奇数5、个位数字是0,5的数都能被5整除6、0是偶数1.4 素数、合数与分解素因数1、只含有因数1及本身的整数叫做素数或质数2、除了1及本身还有别的因数,这样的数叫做合数3、1既不是素数也不是合数4、奇数和偶数统称为正整数,素数、合数和1统称为正整数5、每个合数都可以写成几个素数相乘的形式,这几个素数都叫做这个合数的素因数6、把一个合数用素因数相乘的形式表示出来,叫做分解素因数7、分解素因数方法:树枝分解法、短除法1.5 公因数与最大公因数1、几个数公有的因数,叫做这几个数的公因数,其最大的一个叫做这几个数的最大公因数2、如果两个整数只有公因数1,那么称这两个数互素数3、把两个数公有的素因数连乘,所得的积就是这两个数的最大公因数4、如果两个数中,较小数是较大数的因数,那么这两个数的最大公因数较小的数5、如果两个数是互素数,那么这两个数的最大公因数是11.6 公倍数与最小公倍数1、几个数公有的倍数,叫做这几个数的公倍数2、几个数中最小的公因数,叫做这几个数的最小公倍数3、求两个数的最小公倍数,只要把它们所有的公有的素因数和他们各自独有的素因数连乘,所得的积就是他们的最小公倍数4、如果两个数中,较大数是较小数的倍数,那么这两个数的最小公倍数是较大的那个数如果两个数是互素数,那么这两个数的最小公倍数是两个数的乘积试试你的身手!一:填空题(每空1分,共22分)1.3.6÷2=1.8,(能,不能)说2整除2.8。

六级数学知识点:整数和整除的意义知识点

六级数学知识点:整数和整除的意义知识点

六年级数学知识点:整数和整除的意义知识点数学是一门基础学科,被誉为科学的皇后。

对于我们的广大小学生来说,数学水平的高低,直接影响到以后的学习,特地为大家整理了整数和整除的意义知识点,希望对大家有用!
1.在数物体的时候,用来表示物体个数的数1、2、3、4……,叫做正整数。

2.在正整数1、2、3、4……的前面添上“—”号,得到的数-1、-
2、-
3、-4……,叫做负整数。

3.0既不是正整数,也不是负整数
4.零和正整数统称为自然数。

5.正整数、零和负整数,统称为整数。

练习题
1、24和8,()是()的约数,()是()的倍数。

2、在1、2、
3、9、2
4、41和51中,奇数是(),偶数是(),质数是(),合数是(),()是奇数但不是质数,()是偶数但不是合数。

3、一个数的最小倍数是12,这个数有()个约数。

4、21的所有约数是(),21的全部质因数有()
5、一个合数的质因数是10以内所有的质数,这个合数是()。

精心整理,仅供学习参考。

沪教版六年级数学上册 第1章 整数和整除的意义(带答案)

沪教版六年级数学上册 第1章 整数和整除的意义(带答案)

教 师学 生 上课时间 学 科数学 年 级 预初 课题名称 整数和整除的意义 教学目标1、从数的类型认识整数及整数的分类、自然数的意义。

2、从整数的运算结果看、领会、理解整除的意义和条件 重点难点 整除的意义和整除的条件一、授课内容:如,一片草地的一半是21,一半的一半就是41。

即:零和正整数统称为自然数(natural :正整数、零、负整统称为整数(integer )12、 -7、 0、 0.4、 -23、 54、 91、 -8.75、 2016 正整数 负整数 整数 自然数5、若一个自然数为a (a >0),则与它相邻的两个自然数可以表示为 ;已知三个连续的自然数之和是54,则这三个数是 。

4、 知识总结与拓展:1、自然数的单位任何一个非0自然数都是由若干个“1”组成的,所以“1”是自然数的单位。

任意一个非0自然数n ,都是n 个1相加的结果。

由0开始,逐次进行“加1”运算,可以得到顺序排列(连续)的各个自然数。

自然数的个数是无限的,最小的自然数是“0”,没有最大的自然数。

2、整数整数; 正整数、零、负正整统称为整数。

正整数:非0自然数也叫正整数,即1,2,3,4,……负整数:小于0的整数叫负整数。

负整数的表示方法是在整数前面加上“–”(读作负)号。

最大的负整数是–1,没有最小的负整数,没有最大的整数。

3、零现在我们知道0是一个数,是最小的自然数。

那么,你们有谁知道零有哪些性质和作用?零的性质:1)0是一个自然数,并且是一个整数,且小于一切非0自然数。

2)0可以表示一个物体都没有,也可以表示确定的内容,例如:飞机零点起飞。

3)0是任意非0自然数的倍数(0除以任意非0自然数的结果为0)4)任何数与0相加,值不变。

5)任何数与0相乘,积等于0。

6)任何数减去0它的值不变。

7)相同的两个数相减,差等于0。

8)0不能作除数。

9)0是唯一的一个中性数,既不是正数也不是负数。

10)0被非0的数除商等于0。

整数与整除

整数与整除

【知识点1】1、整数和整除的意义整除:整数a除以整数b,如果除得的商是整数而余数为零,就说a能被b整除;或者说b能整除a。

注意整除的条件:(1)除数、被除数都是整数;(2)被除数除以除数,商是整数而且余数为零。

2、自然数和整数零和正整数统称为自然数.正整数.零和负整数统称为整数.3.除尽没有余数4.整除与除尽相同点:都没有余数;除尽中包含整除不同点:整除中,被除数、除数和商都是整数,余数为0;除尽中,被除数、除数和商不一定是整数,余数为0.【典型例题1】试证明“三个连续的正整数之和能被3整除”。

【基本习题限时训练1】1、下列算式中表示整除的算式是()(A)9÷18=0.5 (B)6÷2=3 (C)15÷4=3……3 (D)0.9÷0.3=32、下列各组数中,均为自然数的是()(A)1.1,1.2,1.3 (B)-1,-2,-3 (C)23,34,45(D)2,4,63、下列说法正确的是……………………………………………()(A)最小的整数是0 (B)最小的正整数是1(C)没有最大的负整数(D)最小的自然数是14、判断:(1)零是整数,但不是自然数;(2)-1是最大的负整数;(3)3248÷=,则4能被32整除;(4)整数中没有最大的数,也没有最小的数。

5、13、24、57、88四个数中能被2整除的数有哪几个?6、正整数36能被正整数a整除,写出所有符合条件的正整数a。

【拓展题1】1、三个连续自然数的和是306,求这三个自然数。

2、试证明:能被3整除的三位数各数位上数的和能被3整除。

一、填空题1.统称为自然数。

2.统称为整数。

3.用“能”或者“不能”填空,注意主动句与被动句的不同,并熟读语句。

(1)2 整除4 (2)2 整除5(3)5 被2整除(4)6 被2整4.把下列各数填在指定的圈内:2,125,-7,0.4,101,0,-1.6,-97,43,-1自然数 负整数 整数二、选择题 1. 6÷5=1.2,表示( )A.6能被5整除B.6能被5除尽C.6不能被5除尽D.5能整除62.和11相邻的整数是( )A.9、10B.10、12C.12、13D.都是3.下列四句话中,正确的是( )A.最小的整数是1B.整数一定比小数大C.4能被0.8整除D.负整数、0、正整数都是整数4.把下列各算式填入相应的方框里。

沪教版6年级数学1.1:整数和整除的意义(教案)

沪教版6年级数学1.1:整数和整除的意义(教案)

(1)整数:整数及其分类(正整数、负整数、自然数等);(2)整除的概念:整除及其判断方法;首先我们来复习回顾一下小学学过的有关整数的相关知识。

如下图所示,是某超市货架上摆放的商品,你能数出玉米和苹果的个数各是多少吗?从图中,我们不难看出,玉米的个数为7个,苹果的个数是4个。

在这里我们得到的数字7和4都属于整数,严格来讲它们应该叫作正整数。

那么什么是正整数呢?正整数:我们用来表示物体个数的1,2,3,4,5…叫做正整数。

生活中,我们都会用到正整数。

比如日历表中的日期都是用正整数表示的(如下图所示);月份、星期等也都是用正整数表示的。

有正整数就有负整数,那么什么是负整数呢?负整数:如果我们在正整数1,2,3,4,5…的前面添加符号“-”,得到的数-1,-2,-3,-4,-5…叫做负整数。

其中符号“-”叫做负号。

对比正整数和负整数,我们会发现它们是相互对应的,不同的只是符号。

负整数是在对应的正整数前面添加“-”得到的。

仔细观察,我们发现,正整数和负整数中都不包含零。

这说明,零既不是正整数,也不是负整数,它是一个特殊的整数。

零通常用来表示没有物体,比如我们说“教室有0个同学”,意思就是“教室每人”;零还可以表示描述事物中某种量的基准数,例如我们在计算温度时,都是将0摄氏度作为温度的基准点,其他温度都是相对于这个温度来说的。

零的意义:(1)表示没有物体;(2)表示计量过程中某种量的基准数;这样我们就把整数分成了三类数,分别是:正整数、负整数和零。

因此,我们把正整数、零、负整数统称为整数。

整数:正整数、零、负整数,统称为整数。

用图可以表示为:⎪⎩⎪⎨⎧负整数正整数整数0另外,数学中把零和正整数合在一起,统称为自然数。

自然数:零和正整数统称为自然数(为什么将它们称为自然数呢?是因为这些数是我们在数数时自然产生的,因此才叫做自然数)。

所以整数又可以用下图来表示:⎪⎩⎪⎨⎧⎭⎬⎫负整数自然数正整数整数0*注意:正整数和负整数是相互对应的,负整数是在正整数的前面加上“-”得到的。

6年级上学期数学讲义(华东师大版)

6年级上学期数学讲义(华东师大版)

课题1:数的整除1.整数和整除的意义●整数:正整数、零、负整数统称为整数。

●自然数:零和正整数统称为自然数。

[例1]是否有最小的自然数?是否有最大的整数?[解]最小的自然数是0,没有最大的整数。

●整除:整数a除以整数b(b≠0),如果除得的商是整数而余数为零,就说a能被b整除;或者说b能整除a。

注意整除的条件:(1)除数、被除数都是整数;(2)被除数除以除数,商是整数而且余数为零。

●除尽与整除的区别:除尽是指除数、被除数不一定是整数、得到的商不是无限小数。

[例2]填空:已知a能整除19,且a是正整数,那么a是_________。

[解]a能整除19,那么a是1和19。

2.因数和倍数●整数a能被整数b整除(b≠0),a就叫做b的倍数,b就叫做a的因数(也称为约数)。

●一个整数的因数中最小的因数是1,最大的因数是它本身。

[例3]填空:3694÷=中,_________是________的因数,________是________的倍数。

[解]3694÷=中,9是36的因数,36是9的倍数。

3.能被2,3,5整除的数●能被2整除的数叫做偶数,不能被2整除的数叫做奇数。

▲个位上是0、2、4、6、8的整数都能被2整除。

[例4]下列一组数中,哪些是偶数?哪些是奇数?91,23,78,10,11,351,66,245,0。

[解]偶数有:78,10,66,0;奇数有:91,23,11,351,245。

●个位是0或5的整数都能被5整除。

[例5]在下列一组数中找出既能被2整除,又能被5整除的数,指出这些数有什么特点?12,20,35,50,72,90,112,120,105,270。

[解]既能被2整除又能被5整除的数有:20、50、90、120、270。

这些数的特点是个位上的数是零。

●一个数的各位上的数的和能被3整除,这个数就能被3整除。

4. 素数、合数与分解素因数● 一个正整数,如果只有1和它本身两个因数,这样的数叫做素数,也叫质数;如果除了1和它本身以外,还有别的因数,这样的数叫做合数。

1.1整数和整除的意义

1.1整数和整除的意义
1.1 整数和整除的意义
一、引例:
小明家装修新房,客厅的地面是长6米、宽4.8米的 长方形,准备用整块的正方形地砖铺满客厅的地面,市 场上地砖有30×30、40×40、60×60、80×80(单位: 厘米×厘米)四种尺寸,小明家想选尺寸较大的地砖, 该选哪一种尺寸呢?
二、新授:
(一)整数:
整数和整除的意义:
三整一零
练习 2. 下列哪一个算式的被除数能被除数整除? √ 10÷3; 48÷8; 6÷4. 24÷6.√ 51÷17. √ 2.6÷1.3.
3. 下列说法对吗?为什么 (2)51能整除17 × (1)3能被6整除 × (3)2.5能被5整除 × (4)51能整除17 × (5)10能被100整除 × (6)10能整除20 √
零既不是正整数,又 不是负整数
自然数也叫做非负整数
2.自然数:
正整数 自然数 零
3.注意整除的条件:“三整一零”.
4.在下列各组数中,如果第一个数能被第二个数整除, 请在下面的( )内打“√”,不能整除的打“×”. 72和36(√ ); 20和5( √ ); 18和3( √ );
×
17和34( );
× ×
0.5和5(
0.2和4(
).
17和3(
×
19和38(
×
); ).
).
三、小结: 1.整数分类:
正整数 整数 零 负整数
自然数有时也叫 做非负整数!
练习:
1.从下列数中选择适当的数填入相应的圈内.
12,-7,0,0.4,-23,
12,91
3 4
,91,-8.75.
-7,-23
正整数
12,-7,0,-23,91

数的整除知识梳理

数的整除知识梳理

第一章数的整除一、知识整理1.1整数和整除整除的条件:1.除数、被除数都是整数。

2.被除数除以除数,商是整数,而且余数为零。

除尽的条件:1.除数、被除数不一定是整数。

2.被除数除以除数,商是整数或有限小数,而且余数为零。

☆整除是除尽的一种特殊情况。

1.2整数和整除的意义整数a能整除整数b,b叫做a的倍数。

a叫做b的因数。

☆倍数和因数是相互依存的。

1.3能被2、5整除的数1.4素数、合数与分解素因数正整数素数(2是唯一的偶素数)合数既不是素数也不是合数。

素数:除1与本身外没有其他因数的数。

合数:除1与本身外有其他因数的数。

分解素因数用短除法。

(用等式些写结论,分解的书写在最前。

)1.5公因数与最大公因数求两数的最大公因数:1.定义法2.分解素因数3.短除法a 和b 的最大公因数是c 的表示方法:(a ,b )=c☆若两数互素,那么它们的最大公因数就是1。

☆若两数是倍数关系,那么它们的最大公因数就是较小数。

1.6公倍数与最小公倍数求两数的最小公倍数:1.定义法2.分解素因数3.短除法a 和b 的最小公倍数是c 的表示方法:[a ,b]=c☆若两数互素,那么它们的最小公倍数就是两数的乘积。

☆若两数是倍数关系,那么它们的最大公因数就是较大数。

总结:一个整数正整数 零 负整数☆任何一个合数都可以分解质因数。

1.整除 “三整一零” 整除是除尽的一种特殊情况。

2.倍数,因数整数间的关系 3.互素(两两互素)4.公因数(最大) 最小公倍数5.公倍数(最小) =最大公因数×各自独有的因数奇数(2n 加1,n 为正整数) 偶数(2n ,n 为正整数)素数:只有1和它本身这两个因数 合数:除了1和它本身还有其它因数二、习题练习1.求下列各数的最大公因数和最小公倍数。

(1)56,108,72 (2)36,28,15三、拓展知识对于“每/每隔/每过”不同情况的区分:。

数的整除的概念和定义

数的整除的概念和定义

第一章数的整除第一节整数和整除‎教学目标:1、理解整除的‎定义和自然‎数的意义。

知道整除的‎要素,掌握整除的‎两种表述方‎法。

2、理解因数与‎倍数的意义‎,会求一个整‎数的因数和‎倍数。

3、概括出能被‎2,5整除的数‎的特征。

知识要点:1.1:整数和整除‎的意义1、零和正整数‎统称为自然‎数。

2、正整数、零、负整数,统称为整数‎。

3、整数a除以‎整数b,如果除得的‎商是整数而‎余数为零,我们就说a‎能被b整除‎;或者说b能‎整除a.注意整除的‎条件:1、除数、被除数都是‎整数;2、被除数除以‎除数,商是整数而‎且余数为零‎。

1.2:因数和倍数‎1、整数a能被‎整数b整除‎,a就叫做b‎的倍数,b就叫做a‎的因数(也称约数)。

2、一个整数的‎因数中最小‎的因数是1‎,最大的因数‎是它本身。

1.3:能被2、5整除的数‎1、个位上是0‎,2,4,6,8的整数都‎能被2整除‎。

2、能被2整除‎的整数叫做‎偶数,不能被2整‎除的整数叫‎做奇数。

3、各位上是0‎或者5的整‎数都能被5‎整除。

第二节分解素因数‎教学目标:1、理解素数、合数的意义‎。

2、能用求因素‎的方法或查‎素数表的方‎法判断一个‎正整数是否‎为素数。

3、熟记20以‎内的全部素‎数。

4、理解素因数‎和分解素因‎数的意义,掌握分解素‎因数的方法‎。

5、掌握最大公‎因数和最小‎公倍数的算‎理和方法。

知识要点:1.4:素数、合数与分解‎素因数1、一个正整数‎,如果只有1‎和它本身两‎个因素,这样的数叫‎做素数,也叫做质数‎;如果除了1‎和它的本身‎以外还有别‎的因素,这样的数叫‎做合数。

2、1既不是素‎数,也不是合数‎。

这样,正整数又可‎以分为1、素数和合数‎三类。

34、每个合数都‎可以写成几‎个素数相乘‎的形式,其中每个素‎数都是这个‎合数的因数‎,叫做这个合‎数的素因数‎。

把一个合数‎用素因素相‎乘的形式表‎示出来,叫做分解素‎因数。

5、一般我们用‎短除法分解‎素因数,步骤如下:①先用一个能‎整除这个合‎数的素数(通常从最小‎的开始)去除。

数的整除特征(一)

数的整除特征(一)

数的整除特征(一)(一)阅读思考1. 整除的意义:整数除以整数商是整数而没有余数,那么a就能被b整除。

记作b|a。

如果数a不能被数b整除,记作。

2. 数的整除特征:有时候,我们判断一个整数能不能被另一个整数整除,不需要通过除法演算来验证,而可以通过某些规律来判断,这些规律叫做“数的整除特征”。

下面就给同学们介绍一下:(1)个位是0,2,4,6,8的整数能被2整除。

例如:102,584,316976(2)个位是0或5的整数能被5整除。

例如:15,31560(3)各个数位上数字的和能被3或9整除的整数能被3或9整除。

例如:21能被3整除;36能被9整除。

能被9整除的数一定能被3整除。

(4)末尾两位数是4或25的倍数的整数,能被4或25整除。

例如:912能被4整除。

3175能被25整除;500既能被4整除又能被25整除。

(5)末尾三位数是8或125的倍数的整数,能被8或125整除。

例如:1008能被8整除。

1125能被125整除。

41000既能被8整除,又能被125整除。

(如果一个数既能被8整除,又能被125整除,这个数一定是整千数。

)(6)如果一个数奇数位上数字的和与偶数位上数字的和之差是11的倍数,那么这个数一定能被11整除。

例如:189354,奇数位上数字的和是,偶数位上数字的和是,它们的差是,因为0能被11整除,所以189354能被11整除。

(7)把一个数的末尾数字割去,从留下的数中减去所割去数字的2倍,这样继续下去,如果最后的结果是7的倍数,那么这个数就能被7整除。

例如:判断4158能不能被7整除。

4158割去末尾数字8399割去末尾数字921是7的倍数,所以4158能被7整除。

(8)把一个数的末尾数字割去,在留下的数上加上末尾数字的4倍,照这样做下去,如果最后的结果是13的倍数,这个数就能被13整除。

例如:判断10686能不能被13整除。

10686割去末尾数字61092割去末尾数字2117割去末尾数字739是13的倍数,所以10686能被13整除。

1.1整数和整除的意义

1.1整数和整除的意义

回顾与思考
正整数、自然数、小数、分数、负整数
用来表示物体个数的数称为正整数
特点: ① 有无数个 ②正整数中有最小值,为1,没有最大值 ③ 相邻两个正整数之间相差 1,即:a、a+1
阿拉伯数字?
公元3世纪,古印度的一位科学家巴格达发明了阿拉伯数字。 大约公元700年前后,阿拉伯人征服了印度地区,发现印度 数字和印度计数法既简单又方便,其优点远远超过了其他的方法, 所以阿拉伯的学者们和商人们学习了这些先进知识。 后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由 教皇热尔贝·奥里亚克传到欧洲然数(natural number)
特点: ① 有无数个
② 自然数中有最小值,为 0,没有最大值
③ 相邻两个自然数之间相差 1,即:a、a+1
负号的来源
• 1489年德国数学家魏德曼在他的著作中首先 使用了“ +”、“—”符号,但正式为大家 公认是从1514年荷兰数学家荷伊克开始。
(√ )
(×)
18和3 (√ )
19和38 0.2和4
(×)
(×)
17和3 (×)
区别“整除”与“除尽”的概念
被除数 除数

整除 都是整数,除数不为0
除尽 不一定是整数,除数不为0
余数
余数 为0 没有 余数
整除是除尽的一种特殊形式。
课堂练习
一、判断: 1、_2_.5_能被5整除。× 2、0既不是正整数,也不是负整数。√ 3、a÷b = 11,则b一定能整除a。× a、b范围不明确 4、最小的整数是1。× 正整数
a÷b=c、a=b×c,(a、b、c为正整数) 我们就说a能被b整除;或者说b能整除a。
回家作业
校本作业A册1.1

整数和整除的意义

整数和整除的意义

1.1 整数和整除的意义教学目标1、在“分类——归纳”的过程中,理解自然数与整数的意义.2、在“实验——猜想——归纳“的过程中,理解和掌握整除的概念.3、通过各种方式,激发学生的交流、对话的意识,积极探索的精神,培养学生抽象概括与观察物的能力.并从而树立学好数学的自信心。

重点、难点理解和掌握整除的概念。

一、 建立整数和自然数的概念:在数物体的时候,用来表示物体个数的数1、2、3、4……,叫做正整数。

在正整数1、2、3、4……的前面添上“—”号,得到的数-1、-2、-3、-4……,叫做负整数。

零和正整数统称为自然数。

正整数、零和负整数,统称为整数。

2、把下列各数填在适当的圈内:12、-6、0、1.23、76、2005、-19.6、9 正整数 自然数 整数归纳:整数a 除以整数b ,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。

2、判断下列哪一个算式的被除数能被除数整除10÷3 48÷8 6÷43、一展身手:(1) 有15位同学参加学校组织的夏令营活动,老师准备把她们平均分成若干小组,有几种分法能?有可能把他们平均分成4个小组吗?为什么?(2)一班同学分成四个小组糊纸盒,每组糊的个数同样多,小马虎统计时说:全班共糊纸盒342个,小马虎统计错了?为什么?1.2 因数和倍数教学设计因数和倍数是在整除基础上的进一步研究,因此在学生原有知识的基础上建立因数和倍数的概念,关键是使学生理解因数和倍数之间的相互依存关系,同时也是对整除概念的进一步巩固。

在教学设计中通过一些辨析题是学生更透彻的理解概念。

在求一个数的因数和倍数的过程中培养学生的观察和归纳问题的能力,在学生学和解决问题的同时培养良好的学习习惯。

教学目标1、理解和掌握因数和倍数的意义,了解因数和倍数相互依存的关系。

会根据因数和倍数的意义描述两个数之间的关系。

2、知道一个数的因数和倍数的求法.3.知道一个数的因数是有限个,一个数的倍数是无限个.4、渗透初步的辩证唯物主义思想教育。

2019-2020年六年级上册1.1《整数和整除的意义》word教案

2019-2020年六年级上册1.1《整数和整除的意义》word教案

2019-2020年六年级上册1.1《整数和整除的意义》word教案教学目标1. 知识目标:在“分类——归纳”的过程中,理解自然数与整数的意义。

2. 能力目标:在“实验——猜想——归纳“的过程中,理解和掌握整除的概念。

3. 情感目标:通过各种方式,激发学生的交流、对话的意识,积极探索的精神,培养学生抽象概括与观察物的能力。

并从而树立学好数学的自信心。

重点、难点理解和掌握整除的概念。

教学设计整数和整除的意义是六年级的第一节课,为此在教学设计中比较注重学生学习兴趣的培养和数学学习方法的体验。

对于整数和整除这两个比较抽象的概念从学生的实际生活和年龄特点出发,体现数学知识的形成是从具体到抽象的过程。

在理解概念的基础上,通过一些辨析题起到巩固知识的目的。

教学流程提出问题分类讨论组间交流总结归纳教学过程一、建立整数和自然数的概念:1. 请你在卡片上写上一个数字,然后把它贴在黑板上。

你能根据一定的依据把这些数来分一分类吗?并说明理由。

(小组讨论)(小组讨论、归纳、交流)归纳:在数物体的时候,用来表示物体个数的数1、2、3、4……,叫做正整数。

在正整数1、2、3、4……的前面添上“—”号,得到的数-1、-2、-3、-4……,叫做负整数。

零和正整数统称为自然数。

正整数、零和负整数,统称为整数。

2. 把下列各数填在适当的圈内:12、-6、0、1.23、76、2005、-19.6、9正整数 自然数 整数二、建立整除的概念:1. 你能在你的卡片上很快写出一个除法算式并贴上黑板吗?(学生写完后任意贴。

)2. 你能根据一定的依据把这些除法算式来分一分类吗?并说明理由。

(小组讨论)我们小组的分类:(根据需要填写)1. ____________________________________________________________2. ____________________________________________________________3. ____________________________________________________________ 分类的理由:1. ____________________________________________________________2. ____________________________________________________________3. ____________________________________________________________3. 请同学们仔细观察黑板上除法算式里的被除数、除数和商或结果,它们有什么不同的地方,每一组算式有什么特点?归纳:整数a 除以整数b ,如果除得的商正好是整数而没有余数,我们就说a 能被b 整除,或者说b 能整除a 。

沪教版数学六年级上册1.1《整数和整除的意义》教学设计

沪教版数学六年级上册1.1《整数和整除的意义》教学设计

沪教版数学六年级上册1.1《整数和整除的意义》教学设计一. 教材分析《整数和整除的意义》是沪教版数学六年级上册的第一课时内容,这部分内容是在学生已经掌握了整数的基本知识的基础上进行讲解的,主要让学生了解整除的概念,以及整除与除尽的区别。

教材通过具体的例子,让学生理解整除的意义,并能够运用整除的概念解决实际问题。

二. 学情分析六年级的学生已经具备了一定的数学基础,对于整数的概念已经有了初步的了解。

但是在学习整除的概念时,可能会对整除与除尽的区别产生混淆。

因此,在教学过程中,需要教师引导学生通过观察、思考、交流等方式,深刻理解整除的意义。

三. 教学目标1.让学生理解整除的概念,能够识别整除的算式。

2.让学生掌握整除与除尽的区别。

3.培养学生运用整除的概念解决实际问题的能力。

四. 教学重难点1.整除的概念。

2.整除与除尽的区别。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生通过观察、思考、交流等方式,理解整除的概念,掌握整除与除尽的区别。

六. 教学准备1.教材、教案。

2.课件、教学辅助材料。

3.计时器、黑板、粉笔。

七. 教学过程1.导入(5分钟)教师通过一个具体的问题,如“36除以6等于多少?”引发学生对整除的思考,进而引入整除的概念。

2.呈现(10分钟)教师通过PPT展示整除的定义,让学生理解整除的意义。

同时,通过对比除尽和整除,让学生掌握两者的区别。

3.操练(10分钟)教师给出一些整除的算式,让学生判断哪些是整除,哪些不是整除。

同时,让学生尝试运用整除的概念解决实际问题。

4.巩固(10分钟)教师通过一些练习题,让学生进一步巩固整除的概念,以及整除与除尽的区别。

5.拓展(10分钟)教师引导学生思考:除了整除,还有哪些除法运算?让学生了解除法运算的多样性。

6.小结(5分钟)教师引导学生总结本节课所学的内容,让学生明确整除的概念,以及整除与除尽的区别。

7.家庭作业(5分钟)教师布置一些有关整除的家庭作业,让学生进一步巩固所学知识。

整数和整除的意义

整数和整除的意义

第一讲整除和整除、因数和倍数、能被2、3、5整除的数以及分解素因数第一部分:整除和整除的意义1、六(1)班同学分成四个小组制作世博会中国馆模型,每组做的一样多,小沈统计后说:全班共做了42个模型,他的统计正确吗?2、在1到180之间找出所有36的倍数,并求出36的所有因数。

3、96名同学报名参加世博志愿者活动,需平均分成若干组,每组不少于4人,也不多于6人,应怎样分组?4、鲁迅纪念馆的小纪念册每本5元,大纪念册每本7元,王刚买了这两种纪念册共花142元,求两种纪念册最少买了多少本?5、2010年教师节正好是星期五,师生们可以利用下午的班会课好好庆祝一下节日,有同学问了,那明年呢?你能不能不翻日历就能知道明年的教师节是星期几?6、用1,2,3这三个数任意排列,可组成若干个三位数,在这些三位数中,能被11整除的数是多少?第二部分:因数和倍数1、李海区世博会参观,可以在同一个车站乘坐世博21路和869路,世博21路每4分钟发车一次,869路每6分钟发车一次,现在这两路车同时发车以后,至少再过多少分钟又同时发车?2、为庆祝国庆,六年级同学买来336支红花,252枝黄花,210枝粉花,用这些花可以扎成每束最多多少枝同样的花?在每束花中,红、黄、粉共有多少枝?3、小明想把一张长36厘米,宽24厘米的白纸折出一些尽可能大的正方形,最后没有多余,请问这些正方形的边长为多少?一共可以折出多少个正方形?4、五年级一班学生进行队列表演,每行12人或每行16人都正好整行,已知这个班的学生不到50人,你能算出这个班级的人数吗?5、今天是9月19号,正好是星期天,这是小明最高兴的一天,因为他和爸爸妈妈一起去公园玩了一天,小明想:下次什么时候才能和爸爸妈妈一起去玩呢?小明知道爸爸妈妈工作很忙,只有在休息的时候才能和他一起玩,爸爸工作4天休息1天;妈妈工作3天,休息1天;小明学习5天,休息2天(周一至周五学习,星期六、日休息),你能帮他算出来吗?(要说出是几月几号?星期几)第三部分:能被2、5、3整除的数1、某个七位数1993 能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数依次是多少?2、在1—199中,有多少个奇数?多少个偶数?其中奇数之和与偶数之和谁大?3、(!)不算出结果,判断数(524+42-429)是偶数还是奇数?(2)数(42 +30-147)能被2整除,那么,应该填什么数?(3)下面的连乘积是偶数还是奇数?1×3×5×7×9×11×13×14×154、1+2+3+4+…+999+1000+1001的和是奇数还是偶数?5、□△○□▽○…,则第2001个图形是什么形状?第四部分:素数、合数与分解素因数1、两个素数的和是40,求这两个素数的乘积最大值是多少2、自然数123 456 789是素数还是合数?3、把5、6、7、14、15这5个数分成两组,使每组数的乘积相等。

沪教版六年级上册数学知识点及练习题

沪教版六年级上册数学知识点及练习题

【导语】数学是研究数量、结构、变化、空间以及信息等概念的⼀门学科。

数学是⼈类对事物的抽象结构与模式进⾏严格描述的⼀种通⽤⼿段,可以应⽤于现实世界的任何问题,所有的数学对象本质上都是⼈为定义的。

以下是⽆忧考为⼤家精⼼整理的内容,欢迎⼤家阅读。

1.沪教版六年级上册数学知识点:整数 1.1整数和整除的意义 1.在数物体的时候,⽤来表⽰物体个数的数1,2,3,4,5,……,叫做整数 2.在正整数1,2,3,4,5,……,的前⾯添上“—”号,得到的数—1,—2,—3,—4,—5,……,叫做负整数 3.零和正整数统称为⾃然数 4.正整数、负整数和零统称为整数 5.整数a除以整数b,如果除得的商正好是整数⽽没有余数,我们就说a能被b整除,或者说b能整除a。

1.2因数和倍数 1.如果整数a能被整数b整除,a就叫做b倍数,b就叫做a的因数 2.倍数和因数是相互依存的 3.⼀个数的因数的个数是有限的,其中最⼩的因数是1,的因数是它本⾝ 4.⼀个数的倍数的个数是⽆限的,其中最⼩的倍数是它本⾝ 1.3能被2,5整除的数 1.个位数字是0,2,4,6,8的数都能被2整除 2.整数可以分成奇数和偶数,能被2整除的数叫做偶数,不能被2整除的数叫做奇数 3.在正整数中(除1外),与奇数相邻的两个数是偶数 4.在正整数中,与偶数相邻的两个数是奇数 5.个位数字是0,5的数都能被5整除 6.0是偶数 1.4素数、合数与分解素因数 1.只含有因数1及本⾝的整数叫做素数或质数 2.除了1及本⾝还有别的因数,这样的数叫做合数 3.1既不是素数也不是合数 4.奇数和偶数统称为正整数,素数、合数和1统称为正整数 5.每个合数都可以写成⼏个素数相乘的形式,这⼏个素数都叫做这个合数的素因数 6.把⼀个合数⽤素因数相乘的形式表⽰出来,叫做分解素因数。

7.通常⽤什么⽅法分解素因数:树枝分解法,短除法 1.5公因数与公因数 1.⼏个数公有的因数,叫做这⼏个数的公因数,其的⼀个叫做这⼏个数的公因数 2.如果两个整数只有公因数1,那么称这两个数互素数 3.把两个数公有的素因数连乘,所得的积就是这两个数的公因数 4.如果两个数中,较⼩数是较⼤数的因数,那么这两个数的公因数较⼩的数 5.如果两个数是互素数,那么这两个数的公因数是1 1.6公倍数与最⼩公倍数 1.⼏个数公有的倍数,叫做这⼏个数的公倍数 2.⼏个数中最⼩的公因数,叫做这⼏个数的最⼩公倍数 3.求两个数的最⼩公倍数,只要把它们所有的公有的素因数和他们各⾃独有的素因数连乘,所得的积就是他们的最⼩公倍数 4.如果两个数中,较⼤数是较⼩数的倍数,那么这两个数的最⼩公倍数是较⼤的那个数 5.如果两个数是互素数,那么这两个数的最⼩公倍数是;两个数的乘积2.沪教版六年级上册数学知识点:分数 2.1分数与除法 ⼀般地,两个正整数相除的商可⽤分数表⽰,即被除数÷除数=⽤字母表⽰为p÷q=(p、q为正整数) 2.2分数的基本性质 1.分数的分⼦和分母同时乘以⼀个不为零的整数,分数的值不变 2.分⼦分母只有公因数1的分数叫做最简分数 3.把⼀个分数化成同它相等,但分⼦、分母都⽐较⼩的分数,叫做约分 2.3分数的⽐较⼤⼩ 1.同分母分数的⼤⼩只需要⽐较分⼦的⼤⼩,分⼦⼤的⽐较⼤,分⼦⼩的⽐较⼩ 2.通分的⼀般步骤是: (1)求公分母——求分母的最⼩公倍数; (2)根据分数的基本性质,将每个分数化成分母相同的分数。

整数与整除的意义C

整数与整除的意义C

整数与整除的意义C
整除是数学的一个基本概念,它指的是一个数字被另一个数字除以另一个数字所得的结果是一个整数,而不是一个小数。

例如,十被二除,结果就是五,这就是整除,因为结果是一个整数。

整除和不整除在数学中的应用非常广泛。

其中一个最常见的数学应用是在解决分数除法问题时使用它,用整除可以帮助我们更容易地求解分数除法问题,例如,除以三分之一,在不使用整除时,很难解决这个问题,因为无论如何,最终结果都是一个分数。

但是,使用整除,我们只需要将分子和分母都除以三,就会得到一个整数,因此可以更容易地解决分数除法问题。

另外,在现代数学研究中,例如密码学,整除运算也有所应用。

在密码学中,整除运算可以用来检查一个数字是否可以被另一个数字整除。

另外,整除运算可以用来计算出模运算的结果,例如,一个数字与另一个数字相乘,然后再用第二个数字去除,结果就是模运算的结果。

此外,在日常生活的许多领域,整除也得到了广泛的应用。

例如,当两个人要分摊一笔费用时,可以用整除来更容易地计算出每个人需要付多少钱;或者,在公司中,若要分配一定的费用,可以用整除来确定每个部门应得的分配多少。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本课新概念 1、零和正整数统称为自然数。 2、正整数、零和负整数统称为整数。
“整除”的定义 “三整一零”
整数a除以整数b,如果除得的商是整数而余数为零,我 们就说a能被b整除;或者说b能整除a。
2021/2/21
20
家庭作业
• 1、练习册习题1.1 • 2、蓝皮书习题1.1
2021/2/21
21
谢谢!
除数不等于0
数,没有余数
其实,整除是除尽的一种特殊形式。
做一做
一、判断:
课堂练习
1、2.5能被5整除。
×
2、0既不是正整数,也不是负整数。 √
3、a÷b=11,则b一定能整除a。 × 4、最小的整数是1。 ×
二、填空: 算式3÷5=0.6,表示3能被5___除__尽___.
2021/2/21
18
试试看 例题解析
2021/2/21
22
谢谢!
2021/2/21
23
2021/2/21
6
学一学
负整数
在正整数前加上负号“—”,得到的数 叫做负整数。
如右图所示的温度 计上刻的温度,在零摄氏度以下的10 度我们就记为—10 度。
2021/2/21
7
学一学
整数
正整数,0,负整数统称为整数(integer)
正整数 零 负整数
自然数 负整数




2021/2/21
8
做做看
1、0能被任何不为0的整数整除吗?
2、m÷n=3,n一定能整除m?
1、√ 0个东西n个人分,每个人是0个。 2、X 三整一零,m和n都不知道是不是整数。
2021/2/21
19
本节小结
复习概念 1、我们经常要计算物体的个数,在数的时候,用来表示物体个 数的数1,2, 3,4,5,······叫做正整数。 2、在正整数1,2,3,4,5…,前面添上“-”得到-1,-2,-3,-4,-5…,叫作 负整数。 3、零既不是正整数,也不是负整数。
结论:没有最大的自然数。
2021/2/21
5
了解一下
来源
负号的
• 1489年德国数学家魏德曼在他的著作中首 先使用了“+”、“—”符号,但正式为大
家公认是从1514年荷兰数学家荷伊克开始。
• 中国是世界上最早认识和应用负数的国家, 负数最早记载于中国的《九章算术》(成 书于公元一世纪)中,比国外早一千多年。
可以分成2组吗? 4组呢?5组呢?
2021/2/21
11
下面几组运算有什么异同?
除 尽
除 不 尽
32 ÷2=16 32 ÷4=8
6÷0.2=30 5÷2=2.5
32÷5=6……2
32÷7=4……4
请你试着说说看:什么是“整除”?
2021/2/21
整 除 非 整 除
12
学一学
整除
整数a除以整数b,如果除得的商是 整数而余数为零,我们就说a能被b 整除;或者说b能整除a.
3
学一学 自然数
0和正整数统称为自然数。
1、自然数可以表示: (1)、物体的个数 ;5个人 (2)、序数;第5名 (3)、数量;5kg (4)、编码;5号
2、最小的自然数是?
最小的自然数是 0
2021/2/21
4
想一想
最大的自然数少?
9999 9999 9999 9999
这是小杰读做的最大的自然数,这是 最大的自然数吗? 不是的,因为9999 9999 9999 9999+1 就比它大。 对任何自然数n,n+1就比n大。
整数和整除的意义
2021/2/21
1
整数和整除的意义
2011年9月5号
2021/2/21
2
回顾与思考
数物体的时候,用来表示物体个数的1,2, 3,,5,…叫做正整数。
• 0的含义是什么? (1) 零可以表示没有物体。 (2) 可以表示计量过程中某种量的基准
数。 如:零摄氏度,归零,从零开始。
2021/2/21
这里是除不尽的,同样不可以 说除数整除被除数。
32÷5=6……2 32÷7=4……4
2021/2/21
14
注意整除的条件:
– 除数、被除数都是整数; – 被除数除以除数,商是整数而且余数为零。
被除数÷除数=商…余数
三整 余0
2021/2/21
15
练一练
在下列各组数中,如果第一个数能被第二个数 整除,请在( )内打“√”,不能整除的打“×”.
2021/2/21
9
练一练
判断对错
1、所有的自然数都是整数。 YES
2、所有的整数都是自然数。 NO 3、一个整数不是正整数就是负整数。 NO 4、非负整数就是自然数。 YES
2021/2/21
10
思考一下
分分组组啦啦! !
我们班32位同学准备在10月份出 去 秋游,想分成人数相等的几个小组
进行活动,可怎样分呢?
72和36 ( √)
18和3 (√ )
17和34 20和5 ( )× ( ) √
0.5和5 () ×
19和38 0.2和4 17和3 ( )× ( ) × ( ) ×
2021/2/21
16
区别“整除”与“除尽”的概念
被除数和除数

整除
都是整数, 除数不等于0
商是整数, 余数为0
除尽
不一定是整数, 商是整数或有限小
看看你会吗?
有多少个整数呢? 无数个 有多少个正整数呢? 无数个 有多少个负整数呢? 无数个 有多少个自然数呢? 无数个 最小和最大的自然数是多少? 0,不存在 最小和最大的正整数是多少? 1,不存在 最小和最大的负整数是多少? 不存在,-1 最小和最大的整数是多少? 不存在,不存在
你做对了吗?要继续努力哦!
abc (a、b、c都是整数,且b≠0)
a能被b整除,b能整除a.
被除数能被除数整除,除数能整除被除数。
2021/2/21
13
例子:
32能被2整除, 2能整除32。 32能被4整除, 4能整除32。
32 ÷2=16 32 ÷4=8
不能说6能被1.4整除,因为此时 6÷1.4=5 1.4不是整数。同样也不能说5.6能 被2.8整除,也不能说2.8整除5.6 5.6÷2.8=2
相关文档
最新文档