初中数学人教版 一元一次方程 人教版
人教版初中数学公式
人教版初中数学公式
以下是人教版初中数学公式的常见内容:
1. 一元一次方程:对于方程ax + b = 0,其中a≠0,则x = -b/a。
2. 一元二次方程:对于方程ax^2 + bx + c = 0,其中
a≠0,则x = (-b ± √(b^2 - 4ac)) / 2a。
3. 平方差公式:(a + b)(a - b) = a^2 - b^2。
4. 完全平方公式:(a + b)^2 = a^2 + 2ab + b^2。
5. 三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等。
6. 直角三角形:勾股定理a^2 + b^2 = c^2,其中a、b 代表直角边的长度,c代表斜边的长度。
7. 同角三角函数:正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)等的关系。
8. 面积公式:矩形的面积A = 长× 宽,三角形的面积A = (底边× 高) / 2,圆的面积A = πr^2等。
以上只是人教版初中数学公式的一部分,实际上还有很多其他内容。
初中数学教学课件:3.1.1 一元一次方程(人教版七年级上)
(2)一台计算机已使用了1 700 小时,预计每月再使用 150小时,经过多少月这台计算机的使用时间达到规定的检 修时间2 450 小时? 解:设x月后这台计算机的使用时间达到2 450 小时, 那么在x月里这台计算机使用了150x 小时, 根据题意列方程得:1 700+150x=2 450.
(3)某校女生占全体学生数的52%,比男生多80人,这个学 校有多少学生? 解:设这个学校的学生数为x人,那么女生数为52%x人,
实际问题
一元一次方程
一元一次方程的定义:只含有一个未知数(元),未知 数的次数都是1,这样的方程叫做一元一次方程.
一元一次方程的一般形式:ax+b=0(a≠0) 一元一次方程需满足的条件:①一个未知数;②未 知数的次数是1;③未知数的系数不为0.
判断下面的方程是不是一元一次方程.
(1) 23 x 7 (2) 2a b 3
第三章 一元一次方程
3.1 从算式到方程
3.1.1 一元一次方程
1.了解什么是方程、一元一次方程、方程的解. 2.体会字母表示数的好处、画示意图有利于分析问题、找 相等关系是列方程的重要一步、从算式到方程(从算式到 代数)是数学的一大进步. 3.会将实际问题抽象为数学问题,通过列方程解决问题.
你知道什么 叫方程吗?
解:设沿跑道跑x周,由题意得:400x=3 000.
3.甲种铅笔每支0.3元,乙种铅笔每支0.6元,用9元钱买了两 种铅笔共20支,两种铅笔各买了多少支?
解:设甲种铅笔买了x支,由题意得: 0.3x+0.6×(20-x)=9. 4.一个梯形的下底比上底多2 cm,高是5 cm,面积是40 cm2, 求上底. 解:设上底x cm,由题意得:5×(x+x+2)÷2=40. 5.小雨、小思的年龄和是25,小雨年龄的2倍比小思的年龄 大8岁,小雨、小思的年龄各是几岁? 解:设小雨的年龄x岁,由题意得:2x=(25-x)+8.
2024年人教版七年级上册教学设计 第五章 一元一次方程第五章 一元一次方程
一、单元学习主题本单元是“数与代数”领域“方程与不等式”主题中的“一元一次方程”.二、单元学习内容分析1.课标分析《标准2022》指出初中阶段数与代数是数学知识体系的基础之一,是学生认知数量关系、探索数学规律、建立数学模型的基石,可以帮助学生从数量的角度清晰准确地认识、理解和表达现实世界.数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.方程与不等式的教学应当让学生经历对现实问题中量的分析,借助用字母表达的未知数,建立两个量之间关系的过程,知道方程或不等式是现实问题中含有未知数的等量关系或不等关系的数学表达,引导学生关注既含有已知数,又含有未知数的方程,感悟用字母表示数的意义,体会算术与代数的差异.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律;经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第五章“一元一次方程”,本章包括三个小节:5.1方程;5.2解一元一次方程;5.3实际问题与一元一次方程.“方程与不等式”是义务教育阶段数学课程中数与代数领域的一个重要内容,它揭示了数学中最基本的数量关系(相等关系和不等关系),是一类应用广泛的数学工具.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推动了整个代数学的发展;从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是所有代数方程的基础;从应用数学的角度看,方程是一个既方便又强大的数学工具,它能够有效地刻画现实世界中的数量关系,将实际问题转化为数学模型加以解决.本单元主要内容包括:一元一次方程及其相关概念、一元一次方程的解法和利用一元一次方程解决实际问题.其中,以方程为工具分析问题、解决问题,即根据问题中的相等关系建立方程模型是本单元的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于本单元的主线.对一元一次方程的有关概念和解法的讨论,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本单元前两节中占重要地位.解方程中蕴含的“化归思想”和列方程中蕴含的“数学建模思想”,是本单元中包含的主要数学思想,对于它们的体悟与内化,不仅对学生今后研究问题、解决问题以及终身的发展非常有益,而且也是深入贯彻实施《标准2022》的素养理念的渠道,与提高学生自身的数学素养有非常密切且直接的关系,更是促进学生思考、激发学生思维探究、教会学生学习方法、挖掘学生的学习潜力、有效提高初中数学教学质量和学生学业质量的重要保障.三、单元学情分析本单元内容是人教版教材数学七年级上册第五章一元一次方程,从学生的认知基础上看,学生在前面学段中已经学过有关于简单方程的内容,对方程有了初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,同时通过对整式的学习,学生能够进行合并同类项,去括号等整式的加减运算,即对方程的认识已经历了入门阶段,又具备了一定的基础.这些基本的、朴素的认识为进一步学习方程奠定了基础.本单元的内容是在前面对方程学习的基础之上的进一步发展,是更系统、更深入、更复杂的讨论,更强调数学思想、数学模型的渗透,结合七年级学生的思维习惯,他们虽然已经具备了一定的学习能力,但仍处于感性认识向理性认识过渡的时期,抽象思维能力还有待提高,因此教学中对问题情境的选取要符合学生的认知水平,在学生的最近发展区创设情境,给他们创造自主学习、合作探究的机会,让学生在主动参与中体验到探索成功的喜悦,在经历数学知识的形成过程中逐步体会、感悟和理解这些数学内容的内涵.四、单元学习目标1.经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,通过了解一元一次方程及其相关概念,完成从算式数学到方程式数学的进步,从而发展学生的抽象能力,培养学生的模型意识.2.掌握等式的性质,能利用它们探究一元一次方程的解法,进一步夯实学生的理论基础,培养学生的应用意识.3.了解解方程的基本目标,理解并掌握解一元一次方程的一般步骤和解法,培养学生的运算能力,进一步体会解法中蕴含的化归思想.4.能够通过“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的相等关系”来体会数学建模的思想,培养学生的模型观念.5.通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的基本过程,感受数学的应用价值,提高学生分析问题、解决问题的能力.五、单元学习内容及学习方法概览六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版《一元一次方程》课件初中数学_人教版4
12-x=2.
20x=2.
答:应用10m³木材做桌面,2m³木材做桌腿,恰好配成
这种桌子200套.
初中数学
初中数学
二.例题讲解
例1
解关于x的方程
3x+a 2
=1-
2x-b 3
,其中a,b是有理数.
分析:此方程是关于x的方程,解此方程即将此方程
向x=m的形式转化.
解: 去分母,得 3(3x+a)=6-2(2x-b) .
(2)桌面数=桌面所用木材体积×20 桌腿数=桌腿所用木材体积×400;
(3)桌面所用木材体积+ 桌腿所用木材体积=12.
分析: (1)桌面数:桌腿数=1:4; (2)桌面数= 桌面所用木材体积×20, 桌腿数= 桌腿所用木材体积×400; (3)桌面所用木材体积+ 桌腿所用木材体积=12.
桌面数、 桌腿数、 桌面所用木材体积、 桌腿所用木材体积
例3 我们规定:若关于x的一元一次方程ax=b的解为b+a, 则称该方程为“和解方程”. 例如:方程2x=-4的解为x=-2,而-2=-4+2,则方程2x=-4为 “和解方程”. 请根据上述规定解答下列问题: 已知关于x的一元一次方程3x=m是“和解方程”,求m的值. 分析:先求一元一次方程的解,再由“和解方程”
例1 解关于x的方程
=1-
,其中a,b是有理数.
合并同类项,得 5x=12. 分析: (1)桌面数:桌腿数=1:4;
例3 我们规定:若关于x的一元一次方程ax=b的解为b+a,则称该方程为“和解方程”.
分配律的逆用
系数化为1,得
x=
12. 5
化归思想
等式的性质2
初中数学
解一元一次方程课件(共20张PPT)人教版初中数学七年级上册
x=20
(四)例题规范,巩固新知
1.解方程:2x- 5 x=6-8 2
解:合并同类项,得- 1 x=-2 2
系数化为1,得 x=4
(三)例题规范,巩固新知
2.解方程:7x-2.5x+3x-1.5x=-154-6 3. 解:合并同类项,得 6x= 78.
系数化为1,得 x= 13.
(四)基础训练,学以致用
还有不同的设法吗? 还可以列怎样的方程?
方法二:
方法三:
设去年购买计算机x台. 设今年购买计算机x台.
x +x+2x=140 2
x + x +x=140 42
(三)合作探究,归纳方法
如何将此方程转化为x=a(a为常数)的形式?
x+2x+4x=140
合并同类项
7 x=140
系数化为1
等式性质2 理论依据?
1. 什么是同类项?
2.计算:(1)3x-x (2)10x+0.5x (3)7xy-3xy+8ab-2xy-5ab
3.等式的基本性质有哪些?
二.新授
(一)介绍数学史,创设情境
约公元820年,中亚细亚数学家阿尔-花 拉子米写了一本代数书,重点论述怎样 解方程.这本书的拉丁文译本取名为 《对消与还原》.“对消”与“还原”是 什么意思呢?
1.解下列方程:
(1)5 x-2 x=9 (2)x + 3x =7
22 (3)-3 x+0.5 x=10
(4)7x-4.5x=2.5 3-5
例2 有一列数,按一定规律排列成1,-3,9,-27
81,-243,…。其中某三个相邻数的和-1701,这
三个数各是多少?
解:设所求三个数分别是x,-3x,9x. 由三个数的和是-1701,得
初中数学人教版七年级上册《一元一次方程》课件
方程的解
使方程左右两边相等的未知数的值叫方程的解.
求方程解的过程叫做解方程.
x =1是下列哪个方程的解( B )
A. 1-x=2
C.
+1
2
=−2
B.2x-1=4-3x
D. x-4=5x-2
2
若 x=2是关于 x的方程 − 2 = +
3的解,则2019
−
1
右边=80,左边=右边,所以x=2000是此方程的解.
判断一个数值是不是方程的解的步骤:
1. 将数值代入方程左边进行计算.
2. 将数值代入方程右边进行计算.
3. 若左边=右边,则是方程的解,反之,则不是.
方程的解与解方程的关系
(1) 方程的解与解方程是两个不同的概念,方程的解是一个具体
的数值,而解方程是求方程的解的过程;
x=1000和 x=2000中哪一个是方程 0.52x-(1-0.52)x=80的解?
解:当x=1000时,
方程左边=0.52×1000-(1-0.52)×1000=520-480=40,
右边=80,左边≠右边,所以x=1000不是此方程的解.
当x=2000时,
方程左边= 0.52×2000-(1-0.52)×2000=1040960=80,
人教版 七年级数学上
3.1.1
一元一次方程
只含有一个未知数
一元一次方程
未知数的次数都是1
等号两边都是整式
掌握一元一次方程的解的概念,学会判断某个数值是不
是一元一次方程的解.
对于方程4x=24,容易知道 x = 6可以使等式成立, 对于方程
170+15x =245,你知道 x 等于什么时,等式成立吗?我们来试一
最新人教版初中七年级数学上册《一元一次方程》教案
3.1 从算式到方程3.1.1 一元一次方程1.通过现实生活中的例子,体会方程的意义,领悟一元一次方程的概念,并会进行简单的辨别;(重点)2.初步学会找实际问题中的等量关系,设出未知数,列出方程.(重点,难点)一、情境导入问题:一辆客车和一辆卡车同时从A 地出发沿同一公路同一方向行驶,客车的行驶速度是70km/h ,卡车的行驶速度是60km/h ,客车比卡车早1h 经过B 地,A ,B 两地间的路程是多少?1.若用算术方法解决应怎样列算式?2.如果设A ,B 两地相距x km ,那么客车从A 地到B 地的行驶时间为________,货车从A 地到B 地的行驶时间为________.3.客车与货车行驶时间的关系是____________.4.根据上述关系,可列方程为____________.5.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?二、合作探究探究点一:方程的概念判断下列各式是不是方程;若不是,请说明理由.(1)4×5=3×7-1; (2)2x +5y =3;(3)9-4x >0; (4)x -32=13; (5)2x +3. 解析:根据方程的定义对各小题进行逐一分析即可.解:(1)不是,因为不含有未知数;(2)是方程;(3)不是,因为不是等式;(4)是方程;(5)不是,因为不是等式.方法总结:本题考查的是方程的概念,方程是含有未知数的等式,在这一概念中要抓住方程定义的两个要点①等式;②含有未知数.探究点二:一元一次方程的概念 【类型一】 一元一次方程的辨别下列方程中是一元一次方程的有( )A .x +3=y +2B .1-3(1-2x )=-2(5-3x )C .x -1=1xD.y3-2=2y -7 解析:A.含有两个未知数,不是一元一次方程,错误;B.化简后含有未知数项可以消去,不是方程,错误;C.分母中含有字母,不是一元一次方程,错误;D.符合一元一次方程的定义,正确.故选D.方法总结:判断一元一次方程需满足三个条件:(1)只含有一个未知数;(2)未知数的次数是1;(3)是整式方程.【类型二】 利用一元一次方程的概念求字母次数的值方程(m +1)x |m |+1=0是关于x 的一元一次方程,则( )A .m =±1B .m =1C .m =-1D .m ≠-1解析:由一元一次方程的概念,一元一次方程必须满足未知数的次数为1且系数不等于0,所以⎩⎪⎨⎪⎧|m |=1m +1≠0, 解得m =1.故选B.方法总结:解决此类问题要明确:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1且系数不为0,则这个方程是一元一次方程.据此可求方程中相关字母的值.探究点三:方程的解下列方程中,解为x =2的方程是( )A .3x -2=3B .-x +6=2xC .4-2(x -1)=1 D.12x +1=0 解析:A.当x =2时,左边=3×2-2=4≠右边,错误;B.当x =2时,左边=-2+6=4,右边=2×2=4,左边=右边,即x =2是该方程的解,正确;C.当x =2时,左边=4-2×(2-1)=2≠右边,错误;D.当x =2时,左边=12×2+1=2≠右边,错误.故选B. 方法总结:检验一个数是否是方程的解,就是要看它能不能使方程的左、右两边相等. 探究点四:列方程某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6·1”儿童节举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元.若设铅笔卖出x 支,则依题意可列得的一元一次方程为( )A .1.2×0.8x +2×0.9(60+x )=87B .1.2×0.8x +2×0.9(60-x )=87C .2×0.9x +1.2×0.8(60+x )=87D .2×0.9x +1.2×0.8(60-x )=87解析:设铅笔卖出x 支,根据“铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,卖得金额87元”,得出等量关系:x 支铅笔的售价+(60-x )支圆珠笔的售价=87,据此列出方程为1.2×0.8x +2×0.9(60-x )=87.故选B.方法总结:解题的关键是正确理解题意,设出未知数,找到题目当中的等量关系,列方程.三、板书设计1.方程的定义2.一元一次方程:只含有一个未知数(元),未知数的次数都是1的整式方程叫做一元一次方程.3.列方程解决实际问题的步骤:①设未知数(用字母)②找等量关系(表示出相关的量)③列出方程本课首先用实际问题引入课题,然后运用算术的方法给出解答.在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论.通过本节的教学让学生体会到从算式到方程是数学的进步,渗透化未知为已知的重要数学思想.使学生体会到数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决;从而激发学生学习数学的热情.作者留言:非常感谢!您浏览到此文档。
人教版初中数学一元一次方程知识点总结及典型例题解答
第三章一元一次方程
3.1从算式到方程
3.1.1一元一次方程
①方程:含有未知数的等式如:2X=6
②一元一次方程:只含有一个未知数,而且未知数的次数是1的方程。
如3X-4=2X
③方程的解:使方程中等号左右两边相等的未知数的值
④求方程解的过程叫做解方程。
⑤分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
3.1.2等式的性质
①等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a-c=b-c、a+c=b+c
②等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a=b,那么ac=bc
如果a=b(c≠0),那么a÷c=b÷c
3.2解一元一次方程(—)合并同类项与移项
①把等式一边的某项变号后移到另一边,叫做移项。
3.3解一元一次方程(二)去括号与去分母
①一般步骤:
1.去分母
2.去括号
3.移项
4. 合并同类项
5.系数化为一
3.4实际问题与一元一次方程
①利用方程不仅能求具体数值,而且可以进行推理判断。
人教版初中数学新教材七年级上册第三章“一元一次方程”
人教版初中数学新教材七年级上册第三章“一元一次方程〞介绍〔2022修订〕方程是(全日制义务教育数学课程标准〔修订稿〕)中“数与代数〞领域的重要内容之一,一元一次方程是最简单、最根本的方程.继第—章“有理数〞和第二章“整式及其加减〞之后,本章对一元一次方程进行研究,主要内容包含一元一次方程的有关概念、解法和应用,化归思想和模型思想隐含于知识之中.通过学习本章,学生的代数运算能力和数学建模能力将得到进一步开展.本章共安排四个小节和两个选学内容一、教科书内容和课程学习目标〔一〕本章知识结构框图1.利用一元一次方程解决问题的根本过程2.本章知识安排的前后顺序〔二〕教科书内容人们对方程的研究有悠久的历史,方程是重要的数学根本概念,它随着实践需要而产生,并且具有极其广泛的应用.从数学学科本身看,方程是代数学的核心内容,正是对于它的研究推进了整个代数学的开展.从代数中关于方程的分类看,一元一次方程是最简单的代数方程,也是全部代数方程的根底.本章主要内容包含:一元一次方程及其相关概念,一元一次方程的解法,利用一元一次方程分析与解决实际问题.其中,以方程为工具分析问题、解决问题,即依据问题中的等量关系建立方程模型是全章的重点之一,同时也是主要难点.分析实际问题中的数量关系并用一元一次方程表示其中的相等关系,是始终贯穿于全章的主线.对一元一次方程的有关概念和解法的商量,是在建立和运用方程这种数学模型的大背景之下进行的,它们在本章前三节中占重要地位.解方程中蕴涵的“化归思想〞和列方程中蕴涵的“数学建模思想〞,是本章中包含的主要数学思想.商量一元一次方程的解法时,会直接应用有理数的运算,还会应用“合并同类项〞“去括号〞等整式加减运算的法则,即第—、二章的内容是关于一元一次方程解法的根底知识.全章共包含四节:3.1从算式到方程3.1.1一元一次方程在小学阶段,用算术方法解应用题是数学课中的重要内容,此外对于方程也有过对一些最简单问题的商量.本小节先通过一个具体的行程问题,引导学生尝试如何用算术方法解决它,然后再逐渐引导学生通过列出含未知数的式子表示有关的量,并进一步依据问题中的相等关系列出含未知数的等式——方程.这样安排目的不仅在于突出方程的根本特征,引出方程的定义,而且要使学生认识到方程是比算术式子更有力的数学工具,字母(未知数)可以列入方程并参与运算,从而给解决问题带来更大的便利,从算术方法到代数方法是数学的进步.算式表示的是用算术方法进行计算的程序,算式中只能含有已知数而不能含有未知数,这是列算式使用问题中的数量关系时必须遵守的规则.列方程依据问题中的数量关系,特别是相等关系,它打破了列算式时只能使用已知数的限制,方程中可以依据需要含有相关的已知数和未知数,未知数在被解出之前以字母形式进入表示相等关系的式子,是代数方法对于算术方法的新改革.正因有了如此的新突破,所以一般地说列方程要比列算式考虑起来更直接、更自然,因而有更多优越性.本小节中引出了方程、一元一次方程、方程的解以及解方程等根本概念,并且对于“分析实际问题中的数量关系,设未知数,利用相等列出方程〞的过程进行了归纳.这对后续内容的展开具有重要的根底作用.3.1.2等式的性质方程是含未知数的等式,为合适初中学生学习,降低学习难度,本章不涉及关于方程的同解理论,而以相对说来比拟简单理解的等式的性质作为解方程的主要依据.本小节通过观察、归纳引出等式的两条性质,并直接利用它们商量一些较简单的一元一次方程的解法.这将为后面的3.2节和3.3节进一步商量较复杂的一元一次方程的解法打算理论依据.本节最后安排的“阅读与思考:‘方程'史话〞,简要地回忆了中外古人研究方程过程中的几个重要事件,通俗地介绍了与方程相关的数学史料,这有助于传播数学文化、扩大知识面和增加学习兴趣.3.2解一元一次方程〔一〕——合并同类项与移项本节的重点在于商量解方程中的“合并同类项〞和“移项〞两个根本做法,这样就已经可解类型的一元一次方程.本节中对于“合并同类项〞和“移项〞的商量,分别以问题1和问题2为出发点.以较为简单的实际问题作商量方程解法的背景,一方面可使学生感觉到要商量的解法X于实际问题的需要,另一方面可使依据实际问题列方程贯穿于全章,将列方程的教学过程拉长.从而到达由简单到复杂地逐渐提高学生列方程的能力的教学效果.本节首先提及在数学史上对解方程颇有影响的一部著作,即生活在约780〜850年间的阿拉伯数学家阿尔一花拉子米所著的(对消与复原)一书,提问“对消〞与“复原〞是什么意思,以此作为后面内容的引子.这也具有介绍数学史,传播数学文化的作用.本节在问题1和问题2之后,各安排了两道例题,其中前一例题是单纯解方程,其作用为稳固对相应解法的理解和掌握;后一例题是简单的实际问题,其作用有两个,一是稳固对相应解法的理解和掌握,二是逐渐引导学生理解和掌握如何列方程.解方程和列方程是利用方程分析和解决实际问题的根本过程中不可或缺的两个环节.本节最后安排的“实验与探究:无限循环小数化分数〞,是对一个纯数学问题的商量.它展示了研究数的问题时方程的应用,这有助于加强知识之间的联系和增加学习兴趣,也有益于以后进一步研究实数.3.3解一元一次方程〔二〕——去括号与去分母本节的重点在于商量解方程中的“去括号〞和“去分母〞两个根本做法,至此就可以解各种类型的一元一次方程,并归纳出一元一次方程解法的一般步骤.本节中对于“去括号〞和“去分母〞的商量,分别以问题1和问题2为出发点,即从一道“用电问题〞,引出解方程中的“去括号〞问题;又从古代埃及的纸莎草文书中的一道题,引出带有分母的一元一次方程,进而商量用去分母的方法解这类方程.以较为简单的实际问题作商量方程解法的背景,这连续了3.2节的做法,其目的如前面所述.本节通过古埃及数学问题为商量“去分母〞的引子,反映出人们对数学研究有悠久的历史,数学文化源远流长,这也可以增加相关内容的趣味性.同3.2节的结构一样,本节在问题1和问题2之后,各安排了两道例题,其一是单纯解方程,其二是简单的实际问题,它们对理解和掌握“去括号〞和“去括号〞解方程,对理解和掌握依据实际问题中的相等关系列方程,有重要的示范作用.本节归纳了解一元一次方程的一般步骤,至此这类方程的一般解法已得到完整的商量.3.4实际问题与一元一次方程本节的第—局部,在此前已经商量过由实际问题列出一元一次方程以及解一元一次方程的一般步骤的根底上,又安排了例1〔“成龙配套〞问题〕和例2〔工程问题〕,并在其后以框图形式归纳了用一元一次方程解决实际问题的根本过程,这是一个重要的小结.本节的第二局部,进一步以“探究〞的形式商量如何用一元一次方程解决实际问题.要探究的三个问题〔“销售中的盈亏〞“球赛积分表问题〞“计费问题〞〕要比前几节的问题复杂些,问题情境与实际情况更接近,呈现形式也有别于一般数学习题.本节的重点是建立实际问题的方程模型.通过探究活动,可以进一步体验一元一次方程与实际的紧密联系,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力.由于本节问题的背景和表达都比拟贴近实际,其中的有些数量关系比拟隐蔽,所以在探究过程中正确地列出方程是主要的难点.突破难点的关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系.〔三〕本章学习目标1.经历“把实际问题抽象为数学方程〞的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步.2.掌握等式的性质,能利用它们探究一元一次方程的解法,了解它们是解方程的依据.3.明确解方程的根本目标〔使方程逐渐转化为x=a的形式〕在此目标引导下研究方程的解法;熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想.4.能够找出实际问题中的已知数和未知数,会从数学运算角度分析它们之间的关系;会依据问题所求及题中条件设未知数,会列出方程表示问题中的相等关系,并利用方程求未知数,会结合题意进行检验.5.通过探究用一元一次方程解决实际问题,进一步体会利用一元一次方程解决问题的根本过程〔见上图〕和建立数学模型的思想,在解决问题的过程中感受数学的应用价值,提高分析问题、解决问题的能力.二、编写时考虑的几个问题1.突出列方程,结合解决实际问题商量解方程列方程是本章的重点之一,也是难点.为突出重点,分散难点,使学生能有较多时机接触列方程,本章把对实际问题的商量作为贯穿于全章前后的一条主线.对一元一次方程解法的商量始终是结合解决实际问题进行的,即先列出方程,然后商量如何解方程,这是本章的一个特点.教科书先结合两个实际问题的求解过程分别商量了“合并同类项〞和“移项〞,并进一步通过一些例题对这两种解方程的变形手段进行综合练习和加强.此后教科书又在对另两个实际问题的商量中引出解方程中的“去括号〞和“去分母〞,并进一步通过一些例题和练习题援助学生掌握它们.在此根底上,教科书归纳总结出解一元一次方程的目标和一般步骤,引导学生提高对一元一次方程解法的认识.我们认为这样处理解方程的教学符合人们对方程的认识过程,表达了方程的各种解法源于实际问题的需要,并且可以加强这章内容与实际的联系,有助于解决局部学生总感觉列方程难、学习列方程的时间过短等问题.2.通过加强探究性,培养分析解决问题的能力、创新精神和实践意识本章的中心任务是,使学生经历建立一元一次方程模型并应用它解决实际问题的过程,体会方程的作用,掌握运用方程解决问题的方法,提高分析问题、解决问题的能力,增强创新精神和应用数学的意识.由于实际问题的类型多样,在某些问题中数量关系不十清楚显,使得建立方程模型表示问题中的相等关系成为教学中的难点.为切实提高利用方程解决实际问题的能力,本章在内容选择上注意加强探究性.例如,第3.4节特别安排了“实际问题和一元一次方程〞的内容,选择了三个具有肯定综合性的问题〔“探究1销售中的盈亏〞“探究2球赛积分表问题〞“探究3计费问题〞〕,设置了假设干探究点,引导学生利用方程为工具进行具有肯定深度的思考,使全章所强调的以方程为工具把实际问题模型化的思想提到新的高度.这些内容包含:利用方程比拟估算与X 计算〔探究1〕,利用方程进行推理、推断、检验〔探究2中已渗透了反证法的思想〕,利用方程寻觅关键数值,对不同方案进行定量化比照与选择〔探究3〕,安排这些探究问题的目的在于:一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,使分析问题和解决问题的能力、创新精神和实践意识在更高层次上等到提高.3.重视数学思想方法和数学文化的渗透本章不仅重视数学与实际的联系、列方程和解方程的方法,而且重视数学知识中蕴涵的建模和化归等数学思想方法的渗透.,本章所涉及的数学思想方法主要包含两个:一个是由实际问题抽象为方程模型这一过程中蕴涵的符号化模型化的思想;另一个是解方程的过程中蕴涵的化归思想.虽然考虑到学生的理解能力等原因,教科书没有过多出现“数学模型〞一词,但是本章以框图形式对“利用一元一次方程解决问题的根本过程〞进行了归纳,意在渗透建模思想.为表达化归思想在解方程中具有指导作用,本章中商量一元一次方程的各个步骤时,都注意说明解方程的目的即最终使方程变形为x=a〔已知数〕的形式,各种步骤都是为此而实施的,即在保持方程的左右两边的相等关系的前提之下,逐渐使方程变形,从而使“未知〞逐渐转化为“已知〞.本套教科书的特色之一是,使教科书成为反映科学进步、介绍先进文化的镜子.重视数学的科学价值,同时关注其文化内涵.通过教科书这面镜子的反射,结合教学内容生动生动地介绍古今数学的开展,深刻浅出地反映数学的作用〔工具作用和人文教育作用〕,使学生逐渐地认识数学的科学价值和人文价值,提高科学文化素养.本章对于数学文化予以很大关注,从数字到字母,从算式到方程,从算术到代数......这些数学史上的重大进步以及有关方程的名著(复原与对消)、埃及纸莎草文书中的问题等在教科书中都有所反映.编者期望学生通过学习本章不仅在数学知识和能力方面得到提高,而且能够感受到数学文化的熏陶.七年级上册第三章“一元一次方程〞介绍〔二〕〔2022修订〕课程教材研究所田载今三、对教学的几个建议1.关注在前面学段的根底上开展,做好从算术到代数的过渡本章第3.1节从一个实际问题〔行程问题〕开始商量,在引出方程后提出“从算式到方程是数学的进步〞.算式与方程表现了算术与代数解决问题的两种不同方法.用算术方法解实际问题是小学阶段中学生已经学习过的内容,它对于提高分析问题中数量关系的能力具有打根底的作用.算式表示一个计算过程,用算术方法解实际问题时,算式受到“其中只含已知数而不能有未知数〞的限制;而代数中设未知数或列方程时首先需要用式子表示问题中有关的量,这些式子实际上也是算式,只是其中可能含有字母〔未知数〕.方程是依据问题中的相等关系列出的等式,其中既含有已知数,又含有未知数,这是代数方程与算术算式的区别之一.由于方程中可以用未知数与已知数一起表示相关的量,并且未知数可以与其他数一样地参与运算,所以方程的应用更为方便.这正是用字母表示数带来的好处.方程的出现使代数方法超越了古老的算术方法.从课程标准看,在前面学段中已经有关于简单方程的内容,学生已经对方程有初步的认识,会用方程表示简单情境中的数量关系,会解简单的方程,即对于方程的认识已经历了入门阶段,具备了肯定的根底,这些根本的、朴素的认识为进一步学习方程奠定了根底.本章的内容是在前面的学习根底上的进一步开展,即对一元一次方程作更系统、更深刻的商量,所涉及的实际问题要比以前学习的问题复杂些,更强调模型化思想的渗透;对方程解法的商量要更系统、更注重算理,更强调创设未知向已知转化的条件以及解法中程序化的思想.了解以上的联系与区别,有助于在本章教学中注意到应在哪些地方使学生得到新的提高.2.关注方程与实际问题的联系,表达数学建模思想我们生活在一个丰富多彩的世界,其中存在大量问题涉及数量关系的分析这为学习“一元一次方程〞提供了大量的现实素材.在本章教科书中,实际问题情境贯穿于始终,对方程解法的商量也是在解决实际问题的过程中进行的,“列方程〞在本章中占有突出地位,全章教科书按照商量实际问题的线索而展开.在本章的教学和学习中,要充分注意方程的现实背景,通过大量丰富的实际问题,反映出方程来自实际又效劳于实际,加强对于方程是解决现实问题的一种重要数学模型的认识.鉴于本章的学习对象是七年级学生,教科书的表达力求通俗易懂,在正文中防止过多直接使用“数学模型〞等词,而是通过具体例子反复强调方程在解决实际问题中的工具作用,实际上这就是在渗透建立数学模型的思想.设未知数、列方程是本章中用数学模型表示和解决实际问题的关键步骤,而正确地理解问题情境,分析其中的相等关系是设未知数、列方程的根底.在本章的教学和学习中,可以从多角度进行思考,借助图形、表格、式子等进行分析,寻觅等量关系,检验方程的合理性.教师还可以结合实际情况选择更贴近学生生活的各种问题,引导学生用一元一次方程分析和解决它们.本章第3.2节和3.3节中,与解方程相比,列方程居于次要位置,实际问题中的数量关系较简单,商量它们可以使学生对列方程有初步认识.第3.4节的例1和例2是数量关系稍复杂的实际问题,商量它们可以使学生对列方程有进一步认识,了解列方程的一般思路.这表达了本章在列方程上由浅入深的整体安排,教学中应注意体会教材前后的联系与变化.利用一元一次方程解决问题的根本过程〔见前面的图〕,在本章中反复出现并且逐渐细化,这有助于从整体上认识一元一次方程与实际问题的关系,请注意在教学中不断加强对它的认识.3.抓住方程的主线,复习并加深对相关预备知识的认识从数学学科内部来看,整式及其加减运算是一元一次方程的预备知识;而从应用的角度来看,一元一次方程要比整式用得更普遍、更直接.通过本章学习,不仅可以复习有理数运算和合并同类项、去括号等整式加减运算的内容,而且可以进一步体会看似抽象的整式运算在解决实际问题中的用处,从而加深对相关内容的认识.在本章的教学中,期望能够时刻关注教学重点,注意抓住方程这条主线,突出围绕一元一次方程的商量,注重解方程的根本功训练,结合方程的解法复习已学整式的知识,援助学生认识数、式与方程间的联系.4.关注培养学习的主动性和探究性课程改革的目的之一是促进学习方法的转变,加强学习的主动性和探究性.本章内容涉及大量的实际问题,丰富多彩的问题情境和解决实际问题的愉快更简单激起学生对数学的兴趣.在本章的教学中,应注意引导学生从身边的问题研究起,主动搜集寻觅“现实的、有意义的、富有挑战性的〞学习材料,并更多地进行数学活动和相互交流,在主动学习、探究学习的过程中获得知识,培养能力,体会数学思想方法.在本章的教科书中,安排了许多可提供学生主动进行探究的内容,其中既涉及列方程又涉及解方程,例如3.4节“实际问题与一元一次方程〞中的探究1~3就是为提高分析和解决问题的能力而安排的探究性内容,本章的“数学活动〞及“拓广探究〞栏目下的习题等也设置了很多探究性问题,例如商量月历中的数字排列规律及由此产生的计算规律等有趣的问题.采纳什么方法进行这些内容的教学是需要关注的问题.具体教学方法可能会因时因地因人而易,但是各种方法都应注意鼓舞学生积极探究.当学生在探究过程中遇到困难时,教师应启发诱导,设计必要的铺垫,让学生在经过自己的努力来克服困难的过程中体验如何进行探究活动,而不要替代他们思考,不要过早给出答案.应鼓舞探究多种不同的分析问题和解决问题的方法,使探究过程生动起来,在这样的气氛中可以更好地激发学生积极思维,得到更大收获.5.关注数学思想方法的教学和学习前面已经说过,本章所涉及的数学思想方法主要包含两个:一个是由实际问题抽象为方程模型这一过程中蕴涵的模型化〔包含符号化〕的思想;另一个是解方程的过程中蕴涵的化归思想.在本章的教学和学习中,不能仅仅着眼于个别题目的具体解题过程,而应关注对以上思想方法的渗透和领会,从整体上认识问题的本质.数学思想方法是通过数学知识的载体来表达的,对于它们的认识需要一个较长的过程,既需要教科书的渗透反映,也需要教师的点拨,最终还需要学生自身的感受和理解.数学思想方法对一个人的影响往往要大于具体的数学知识例如对解方程的本质有比拟透彻的认识,就简单主动地探究具体方程的解法,这远比死记硬背方程的解法步骤的效果要好.因此,我们需要关注数学思想方法的教学和学习,期望教师在如何深刻浅出地进行这方面的教学上不断探究.6.关注根底知识和根本技能,适当加强练习稳固本章内容包含一元一次方程的概念、解法和应用.一元一次方程是最根本的代数方程,对它的理解和掌握对于后续学习〔其他的方程以及不等式、函数等〕具有重要的根底作用.因此,教学和学习中应注意打好根底.由于本章教科书是以分析解决实际问题为线索展开的,方程解法的商量安排于分析解决问题的过程之中,但在前面几节解方程是重点.如缺少对教材设计意图的理解,可能会对它们有所无视,而掌握方程解法是必须完成的教学目标,所以在教学和学习中应注意对根底知识和根本技能进行归纳整理,使得它。
人教版初中数学《一元一次方程》说课稿(经典说课)
《一元一次方程》说课稿尊敬的各位老师,大家好!我是X号考生。
对于本节课我将从教材分析、学情分析、教学目标及教学过程等多个方面进行阐述。
首先谈谈我对教材的理解一、说教材《一元一次方程》是人教版七年级上册第三章第一节的内容,在此之前,学生已在小学学习了用算术方法解应用题及简易方程,本节课通过一个具体的行程问题,首先让学生尝试用算术的方法解决,然后再逐步引导学生依据相等关系列出含未知数的等式——方程。
这样安排突出方程的根本特征,引出方程的定义,突出方程在解应用题的优越性。
同时,本节课内容也是进一步学习一元一次方程解法及应用的基础,又为今后学习一次函数、一元二次方程等知识作铺垫。
为了更好的因材施教,在课程教学之前分析学情很有必要二、说学情本节课的授课对象是七年级的学生,该年级段的学生具有活泼、好动的特点,对新的知识内容好奇心较强易于接受。
但是,这个时期的学生认识问题不能全面周到,所以在教学中我会注意引导和启发学生,并有意识的去培养他们的数学表达能力和归纳能力。
根据对教材的结构和内容分析,结合着学生的认知结构及其心理特征,我制定了以下三维教学目标三、说教学目标1.知识与技能目标:掌握一元一次方程的概念及解的概念,懂得判断所给方程是否为一元一次方程。
会根据数量关系或简单问题情境列一元一次方程。
2.过程与方法目标:通过根据问题寻找相等关系、根据相等关系列出方程的过程,提高学生获取信息、分析问题、处理问题的能力。
3.情感态度与价值观目标:经历和体验列方程解决实际问题的过程,进一步体会从算式到方程是数学的进步,感受数学与生活的密切联系,促进数学的应用意识,激发学习数学的激情。
基于以上分析,本节课的重点难点就显而易见了,重点是XX,难点是XX四、说教学重难点重点:一元一次方程的概念,根据等量关系正确列出方程。
难点:准确把握一元一次方程的概念在教学过程中运用合理、有效的教学手段有利于突出重点、突破难点并实现预设的教学目标,根据这一理念我谈谈我采用的教学方法五、说教学方法本节课利用多媒体教学平台,在概念教学设计中,注意遵循人们认识事物的规律,从具体到抽象,从特殊到一般,由浅入深。
人教版数学七年级上册《从算式到方程》一元一次方程4
人教版数学七年级上册
生动有趣的课程,搭配各个互动环节助理您教学成功
感谢所有辛勤付出的人民教师
• 32x+45y • 12x+15y=40 • 75>20 • 19x+45=64 • x+y-7z=18 • X+y<12
定义:含有未知数的等式称为方程
Hale Waihona Puke 解:设正方形的边长是X 4X=24
1700+150x=2450
解:设这个学校有x名学生,则女生人数是 0.52x,男生人数是(1-0.52)x
0.52x-(1-0.52)x=80
4X=24 400x=3000 1700+150x=2450
X=1000与x=2000中那个是方程 0.52x-(1-0.52)x=80的解
• 通过复习方程的定义,了解什么是一元一次方 程,了解了解方程的概念以及什么是方程的解
• 通过对一元一次方程的认识,学习如何列一元 一次方程,即分析实际问题中的数量关系,利 用其中的相等关系列出方程
解:设沿跑道跑x周,可以跑3000m 400x=3000
• 4x=24 400x=3000
相同点:1.只有一个未知数 2.未知数的次数都为1
练习1.一台计算机已经使用1700小时,预计 每月平均使用150小时,经过多少个月这台 计算机的使用时间达到2450小时?
解:设经过x个月这台计算机的使用时间达 到2450小时
初中数学人教版七年级上册《第三章解一元一次方程(二)—去括号与去分母》教学课件
根据火车的速度不变列方程,得
去分母,得 2(500+x)=3(500-x).
解方程,得 x=100.
答:火车的长度为100 m.
500+
30
=
500−
20
,
解一元一次方程的一般步骤如下:
1. 去分母
根据:等式的性质2.
具体做法:方程两边同时乘各分母的最小公倍数.
注意事项:
(1) 不要漏乘不含分母的项;
系数化为1,得 =
11
5
.
2
(
3
− 1).
−3
解方程:
0.15
−
+4
0.2
解:原方程可化为
=
6−0.1
.
0.3
20−60
3
− (5 + 20) =
去分母,得 20x-60-3(5x+20) =60-x.
去括号,得 20x-60-15x-60=60-x.
移项,得 20x-15x+x=60 +60 + 60,
把 x=4 代入上述方程,可得 a=-1,所以原方程为
去分母,得 2(2x-1)+10=5(x-1).
去括号,得 4x-2+10=5x-5.
移项、合并同类项,得 -x=-13.
系数化为1,得 x=13.
2−1
5
+1=
−1
2
,
解一元一次方程的一般步骤:
去分母
去括号
移项
合并同类项
系数化为1
ሶ
我们知道,无限循环小数都可以转化为分数.例如,将0. 3转化为分数时,
3. 移项
根据:等式的性质1.
人教版初中数学新教材七年级上册第三章“一元一次方程”介绍XX修订
人教版初中数学新教材七年级上册第三章“一元一次方程”介绍(XX修订)备课资料七年级上册第三章“一元一次方程”介绍(一)(XX修订)课程教材研究所田载今方程是《全日制义务教育数学课程标准(修订稿)》中“数与代数”领域的重要内容之一,一元一次方程是最简单、最大体的方程.继第一章“有理数”和第二章“整式及其加减”以后,本章对一元一次方程进行研究,要紧内容包括一元一次方程的有关概念、解法和应用,化归思想和模型思想隐含于知识当中. 通过学习本章,学生的代数运算能力和数学建模能力将取得进一步进展. 本章共安排四个末节和两个选学内容,教学时刻大约需要19课时,具体安排如下(仅供参考):3.1从算式到方程约4课时3.2一元一次方程的讨论(一)——归并同类项与移项约4课时3.3一元一次方程的讨论(二)——去括号与去分母约4课时3.4实际问题和一元一次方程约5课时数学活动小结约2课时备课资料七年级上册第三章“一元一次方程”介绍(一)(XX修订)课程教材研究所田载今方程是《全日制义务教育数学课程标准(修订稿)》中“数与代数”领域的重要内容之一,一元一次方程是最简单、最大体的方程.继第一章“有理数”和第二章“整式及其加减”以后,本章对一元一次方程进行研究,要紧内容包括一元一次方程的有关概念、解法和应用,化归思想和模型思想隐含于知识当中. 通过学习本章,学生的代数运算能力和数学建模能力将取得进一步进展. 本章共安排四个末节和两个选学内容,教学时刻大约需要19课时,具体安排如下(仅供参考):3.1从算式到方程约4课时3.2一元一次方程的讨论(一)——归并同类项与移项约4课时3.3一元一次方程的讨论(二)——去括号与去分母约4课时3.4实际问题和一元一次方程约5课时数学活动小结约2课时备课资料七年级上册第三章“一元一次方程”介绍(一)(XX修订)课程教材研究所田载今方程是《全日制义务教育数学课程标准(修订稿)》中“数与代数”领域的重要内容之一,一元一次方程是最简单、最大体的方程.继第一章“有理数”和第二章“整式及其加减”以后,本章对一元一次方程进行研究,要紧内容包括一元一次方程的有关概念、解法和应用,化归思想和模型思想隐含于知识当中. 通过学习本章,学生的代数运算能力和数学建模能力将取得进一步进展. 本章共安排四个末节和两个选学内容,教学时刻大约需要19课时,具体安排如下(仅供参考):3.1从算式到方程约4课时3.2一元一次方程的讨论(一)——归并同类项与移项约4课时3.3一元一次方程的讨论(二)——去括号与去分母约4课时3.4实际问题和一元一次方程约5课时数学活动小结约2课时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练一练(根据下列问题中的条件列出方程)
40cm
x周 100cm
小颖种了一株树苗,开始时树苗高为40厘米,栽种后 每周升高约15厘米,大约几周后树苗长高到1米?
如果设x周后树苗升高到1米,那么可 以得到方程:_4_0_+15χ=100_ ____。
想一想,议一议
这些方程之间有
什么共同的特点
x10.110.4
4 5、一元一次方程2x-3=5的解是( A )
A、4
B、5
C、6
D、7
智力闯关,谁是英雄
第一关 xk1210是一元一次方程,则k=__2_____ 第二关: x|k| 2 10是一元一次方程,则k=_1_或___-_1
第三关 : (k1)x|k| 210 是一元一次方程,则k=_-1_:
(1) 5x=0
(2)1+3x
(3)y²=4+y
(4)x+y=5
(5) 3m+2=1–m
1
(7) x
1
0
(6)3x+y=3x-5
小试身手
3、方程(a+6)x2 +3x-8=7是关于x的一元一次方
程,则a= __-_6__。
4、列方程:某数χ
的相反数比它的
3
大1,
求某数。
4
3
解:-χ = χ +1
儒家的最高境界是“拿得起”,佛家的最高境界是“放得下”,道家的最高境界是“想得开”;所以说,儒释道的最高境界,就是这三句话、九个字。中国历史上还曾有过其他一些“人生境界”说,其中三个最著名的,正好可以与儒释道这三大最高境界对照参悟。 跟儒家学拿得起。儒家是追求入世、讲究做事的,要求奋发进取、勇于担当、意志坚定。概括为三个字,就是“拿得起”。什么是“拿得起”?且看这个“儒”字——左边一个“人”,右边一个“需”,合起来就是“人之所需”。人活世上,有各种精神或生存的需要,满足这些需要就需要去获取。去拿,并且拿到了、拿对了,就是拿得起。
第四关:(k2)x2kx 2 10是一元一次方程,则k =_-_2__
在一卷公元前1600年左右遗留下来的古
埃及草卷中, 记载着一些数学问题.其中
一个翻译过来就是“啊哈,它的全部,它
的七分之一, 其和等于19”.你能求出问
题中的“它”吗?请你能根据题意列出
方程.
设 :“它”为x,列出方程:
如何才能想得开?哲学大师冯友兰曾提出“人生四重境界”说,其中最高那层境界正是道家境界,所以正是路径所在。 一是自然境界。有些人做事,可能只是顺着他的本能或者社会的风俗习惯,而对所做的事并不明白或者不太明白。这种“自然”并非道家那个自然,而是指混沌、盲目、原始,那些人云亦云、随波逐流的人就是这种人。
二是功利境界。有些人,会为了利己而主动去思考和做事,虽然未必不道德,却必定是功利的,而且很容易走向自私自利、损人利己。 三是道德境界。有的人,已经超越了自身,而开始考虑利人,譬如为了道义、公益、众生福祉而去做事。他们的眼界已经超越自身而投向了世间,胸中气象和站立高度已经抵达精神层次。 四是天地境界。当一个人的视野放到了整个天地宇宙,目光投向了万物根本,他就抵达了天人合一。这时他就已经不需要动脑子了,因为天地宇宙就是他的脑子,已经事事洞明,就像电脑连接到了互联网。这种境界,正是道家境界。这四重境界,境界越高就越想得开。想开到什么程度,则决定于人的视野放到多大,眼界拔到多高。人处平地,到处都会遮眼阻路;人登顶峰,世间便能一览通途。这就是想得开的秘密——眼界大了,心就宽了;站得高了,事就小了。想不开,往往都是画地为牢、作茧自缚。
第二重境界是“衣带渐宽终不悔,为伊消得人憔悴”。事情是需要去做才能成的,成越大的事业,需要越大的努力和付出,甚至要经受越大的磨难和困苦。这个世间,从来都是“艰难困苦,玉汝于成”;所以无论如何,都要“天行健,君子”。这说的是历经磨难而逐渐成熟、成长,最终豁然贯通、水到渠成。这其中蕴含一个重要道理,就是苏东坡所说的“厚积而薄发”。只有厚积才能薄发,人要做的,就是不断厚积,等待薄发。这就是拿得起的完整路径,也是事业成功的完整过程。 跟佛家学放得下 。佛家是追求出世、讲究清净的,要求能看到《金刚经》所言的“一切有为法,如梦幻泡影”,做到《心经》所言的“照见五蕴皆空”。概括为三个字,就是“放得下”。 什么是“放得下”?且看这个“佛”字——左边一个“人”,右边一个“弗”,弗的意思是“不”,合起来就是“不人”和“人不”。不人就是无人,也就是放下自我,摆脱私心的困缚;人不就是懂得拒绝,也就是放下欲望,超脱对外物的追逐。这两点能做到,就是放得下。
当你已经承受不住外界所带来的种种压力时,母亲为你顶起一片天空,抵挡所有风雨;当你心无慰籍时,她开导你、教育你,教导你“退一步海阔天空”的哲理;当你遇到困难与挫折或因情绪不好而对她大发脾气时,她默默承受但仍坚强地开导;当你因学习而疲劳、心烦时,她会送上一杯热茶,不需任何语言,一切感情均化为泪水落于掌心,一切尽在不言中…… 当你遇到危险时,她不顾一切地救助你,即使失去生命也毫无怨言;当你感到伤痛绝望时,她比你更加痛心悲伤,却必须要坚强地劝慰你,让你安心;当你欢心愉悦时,她会陪你一起分享心中的喜悦,但是却绝对不会多霸占一点,让你的心变得空虚无物……
解:设这群羊有x只, 可列出方程:
x+x+
1x 2
+ 1x
4
+1=100
自主探索~~~
上有20头、
思
下有52足,
维
问鸡兔各有
拓
多少?
宽
自从那一天,我衣着脚,挑着行李,沿着崎岖曲折的田埂,离开故乡,走向了城市;从此,我便漂泊在喧嚣和浮躁的钢筋水泥丛林中,穿行于 中国文化三大支柱的儒释道,其内容相当丰富。以浩如海洋来比喻,都不之为过! 近日,我在“儒风大家”上,看到一篇文章,仅用---三句话、九个字。说出了儒释道,其实并不高高在上,而是与我们的人生和日常生活密切相关!
一
•方程两边2都是整式
元
0.8x72
•只含有一个未知数
一 次
•未知2 数x 的(x 指 数3 是)一6 3 次 4方4
程
6=2x-2
X=4
40+15χ=100 X=4
0.8x72X=90
使方程左 右两边相 等的未知 数的值叫 做方程的 解
小试身手
1.下列各式中,哪些是一元一次方程?
探究新知
请大家观察左
1+2=1 4+x=7 0.7x=1400 2x-2=6
象这种边用的等这号些“式=子”来,表示 相等关看系看的它式们子有,什叫么等式。
共同的特征?
象这样含有未知数的等式 叫做方程。
判断方程的两个关键要素:
①有未知数 ②是等式
判断下列各式是不是方程,是的打“√”,不是的打 “x”。
怎样才能拿得起?王国维《人间词话》中曾提出,古今之成大事业者,须经过三重境界。这三重境界体现的正是儒家精神,所以正是路径所在。 第一重境界是“昨夜西风凋碧树,独上高楼,望尽天涯路”。登上高楼,远眺天际,正是踌(chóu)躇(chú)满志,志存高远,高瞻远瞩,一腔抱负。人生,志向决定方向,格局决定高度;小溪只能入湖,大河则能入海。所以做事,要先立心中志向;成事,要先拓胸中格局。
(1) -2+5=3 (3) m=0 (5) χ+y=8 (7) 2a +b
(x)
(√ ) ( √) ( x)
(2) 3χ-1=7 (4) χ﹥ 3 (6) 2χ2-5χ+1=0 (8)x=4
( √) ( x)
( )√ (√ )
请看一例
如果设射击队获 得的金牌数为x
6=2x-2
2004年夏季奥运会上, 我国获得32枚金牌。 其 中 跳跳水 队 获 得 6 枚 金 牌 , 比比射 击击队 获 得金牌数的的2倍2倍少2少枚2。 射枚击 队 获 得 多 少 枚 金牌?
1
x+7
x
=19
百羊问题:
我国明代数学家程大为曾提出过这样一个有趣
问题。有一个人赶着一群羊在前面走,另一个人 牵着一头羊跟在后面。后面的人问赶羊的人说: “你这群羊有一百只吗?”赶羊的人回答:“我 如果再得这么一群羊,再得这么一群羊的一半, 又再得这群羊的四分之一,把你牵的羊也给我, 我恰好有一百只。”请问这群羊有多少头?
练一练(根据下列问题中的条件列出方程)
奥运冠军朱启南
设第9枪的成绩为x环,可列
x10.110.4
出方程: 2
。
在雅典奥运会男 子10米气步枪决 赛中最后两枪的 平均成绩为10.4
环,其中第10枪
(最后一枪)的成绩
为10.1环,问第9枪
的成绩是多少环?
练一练(根据下列问题中的条件列出方程)
国庆期间,“天一广场”搞促销 活动,小颖的姐姐买了一件衣 服,按8折销售的售价为72元, 问这件衣服的原价是多少元?
设这件衣服的原价为x元,
可列出方程 0.8x72。
练一练(根据下列问题中的条件列出方程)
2008年北京奥运会 的足球分赛场---秦 皇岛市奥体中心体
育场,其足球场的
周长为344米,长和 宽之差为36米,这 个足球场的长与宽
分别是多少米?