阴离子聚合体系PPT课件

合集下载

高分子科学-第6章 阴阳离子聚合详解

高分子科学-第6章 阴阳离子聚合详解

(iii)有机金属化合物:
ቤተ መጻሕፍቲ ባይዱ
有机金属化合物是最常用的阴离子聚合引发剂。多为 碱金属的有机金属化合物(如丁基锂),Ca和Ba的有机金 属化合物也具引发活性,但不常用。
BuLi + H2C CH X
Bu CH2 CH Li+ X
有机金属化合物的活性与其金属的电负性有关,金属的电 负性越小,活性越高。 活性次序: RK>RNa>Rli>RMg>RAl (iv)格氏试剂: 烷基镁由于其C-Mg键极性弱,不能直接引发阴离子聚合, 但制成格氏试剂后使C-Mg键的极性增大,可以引发活性较大 的单体聚合。
3
离子聚合的特点

单体选择性高;


聚合条件苛刻;
聚合速率快,需在低温下进行;

反应介质对聚合有很大影响。
聚合机理和动力学研究不够成熟
一些重要的聚合物,如丁基橡胶、异戊橡胶、聚甲 醛、聚氯醚等只能通过离子聚合得到。
4
离子聚合的应用:
理论上,有较强的控制大分子链结构的能力, 通过离子聚合可获得“活性聚合物”,可以有目 的的分子设计,合成具有预想结构和性能的聚合 物;

以KNH2 -液氨体系为例:
自由阴离子方式引 发聚合反应
形成单阴离子
14
(ii)醇盐、酚盐:
醇(酚)盐一般先让金属与醇(酚)反应制得醇(酚) 盐,然后再加入聚合体系引发聚合反应。如:
2 Na + 2 CH3OH → 2 CH3ONa + H2
CH3O-Na+ + H2C CH X H3CO CH2 CH Na+ X
第六章
离子聚合
1
6.1 引言

阴离子聚合

阴离子聚合

CH2 CH
CH2 CH CH CH2
CH2 C CH CH2 CH3
苯乙烯
丁二烯
异戊二烯
5
二、阴离子聚合的机理和动力学
1.阴离子聚合的引发体系 阴离子聚合的引发剂是电子给体(亲核试剂),
属碱类物质(碱金属,有机金属化合物以及三级胺 等)。根据引发机理可分为电子转移引发和阴离子 引发两类。
6
(1)碱金属 Li、Na、K等碱金属原子最外层近一个价电子,
2
一、阴离子聚合的单体
烯类、羰基化合物、三元含氧杂环和含氮杂环 都有可能进行阴离子聚合,本节主要讨论烯烃的阴 离子聚合。
原则上讲,带有π—π共轭体系的单体都能进 行阴离子聚合。如果同时具有吸电子基,则更易进 行阴离子聚合。吸电子基减少双键上电子云密度, 有利于阴离子进攻,并使形成的碳阴离子的电子云 密度分散而稳定。
12
(3)其他 ROH,H2O ,R3P, R3N等中性亲核试剂中都
含有未共用电子对,能引发很活泼的单体阴离子聚 合,如硝基乙烯、偏二腈乙烯、α—氰基丙烯酸酯 等等。
CN CH2 C C O CH3
O
α—氰基丙烯酸甲酯
13
(4) 阴离子聚合引发剂与单体的匹配 阴离子聚合的单体和引发剂都具有很强的选择
31
7. 丁基锂的缔合现象和定向聚合作用 丁基锂是目前应用最广的阴离子聚合引发剂。
实践中发现若溶剂体系选择不当,丁基锂的引发活 性很低,这可能是由于丁基锂的缔合作用引起。
丁基锂在特定条件下对聚合产物具有定向作用。 (1)丁基锂的缔合现象
丁基锂在非极性溶剂如苯、甲苯、己烷中存在缔 合现象,缔合度2 ~6不等。缔合分子无引发活性。
在增长反应中,单体的加成方向受离子对的限 制,产物的立构规整性较自由基聚合强,但尚不能 控制。

离子聚合和配位聚合课件

离子聚合和配位聚合课件
高功能性聚合物
通过离子聚合和配位聚合的方法, 合成出具有特殊功能性的聚合物, 如导电聚合物、荧光聚合物等。
绿色合成路径的研究
无毒引发剂
研究无毒、环保的引发剂, 替代传统的有毒引发剂, 降低对环境的污染。
高效催化剂
研究高效、环保的催化剂, 替代传统的有毒催化剂, 降低对环境的污染。
循环利用
研究聚合物的循环利用技 术,实现聚合物的环保处 理和再利用,降低对环境 的污染。
配位聚合可以通过选择不同的 催化剂和聚合条件,实现对聚 合物分子链结构和性能的精细 调控。
配位聚合可以应用于合成高性 能纤维、功能性膜材料、液晶 材料等领域,具有广泛的应用 前景。
03
离子聚合与配位聚合的 比
聚合方式的比 较
离子聚合
通过正负离子之间的相互作用形 成聚合物链,聚合过程中无金属 催化剂参与。
配位聚合的实际应用
高性能聚合物制备
配位聚合可以合成高性能聚合物,如聚酰胺、聚酯等,用于制造 纤维、塑料和复合材料等。
高分子功能材料
通过配位聚合可以制备具有特殊功能的高分子材料,如导电聚合物、 光敏聚合物等,用于传感器、光电转换器件等领域。
高分子药物
配位聚合可以合成具有特定结构和药理性能的高分子药物,用于治 疗癌症、心血管等疾病。
配位聚合
通过过渡金属催化剂与配体形成 活性中心,再与单体进行配位反 应形成聚合物链。
聚合产物的比较
离子聚合
聚合物分子量分布较窄,但可能存在 支链和交联结构。
配位聚合
聚合物分子量分布较宽,但聚合物结 构规整,结晶度高。
应用领域的比较
离子聚合
主要用于合成橡胶、热塑性弹性体等材料。
配位聚合
广泛应用于合成纤维、塑料、涂料等领域。

高分子化学-9(阴离子聚合-1)

高分子化学-9(阴离子聚合-1)
阴离子聚合应选用非质子性溶剂,烷烃,芳香烃(苯), 醚类(四氢呋喃)等。卤代烷,酯,酮等不常用,易与 碳阴离子反应。
溶剂的极性用介电常数表示,数值越大,极性也越大, 阴离子聚合反应的速率常数也越大。
溶剂的溶剂化能力也影响聚合反应速度,溶剂化能力大, 有利于形成松散离子对或自由离子,反应速度快。
苯乙烯阴离子聚合时,溶剂的介电常数的影响 溶剂 苯
n-C4H9Li:将Li分散在己烷或庚烷中与正丁基氯反应得到。
在极性溶剂中以单分子形式存在,活性高,聚合速度快; 非极性溶剂,缔合状态。 不同烷基金属化合物的引发活性: RNa>RLi>RMgX
五、单体的活性及其与引发剂的匹配-单体的活性
烯类单体:吸电子强的取代基使单体的活性增加,更易 于亲核试剂的进攻,从而生成稳定性较高的阴离子。 单体的活性:-NO2> -CN> -COOR> -C6H5≈-CH2=CH2
低温(-50º C - -70º C)用极性大的醚有利于正常增长
N Al N
N Z N
Z:CH3
CH2Cl2, <30º C引发MMA, MA进行活性聚合
八、活的聚合反应动力学
1. 聚合反应速率 Rp=-d[M]/dt= kp [M-] [M]
[M-]:活阴离子增长中心总浓度 即引发剂的浓度
-d[M]/[M]= kp [M-] dt Ln[M]0/[M]= kp [M-] t 2. 聚合度 平均聚合度=单体分子数/高分子链数
[ M ]o [ M ] Xn [ M ]/ n
[M ]: t时单体的浓度; n :每一大分子所带有的活性端基数
如引发剂全部转为活的阴离子末端
[ M ]o [ M ] Xn [I ]

阴离子聚合反应课件

阴离子聚合反应课件

功能性聚合物的制备
1 2 3
功能高分子
阴离子聚合反应可以用于制备功能性高分子材料 ,如导电聚合物、荧光聚合物、吸附分离聚合物 等。
导电聚合物
通过阴离子聚合反应可以合成聚苯胺、聚吡咯等 导电聚合物,这些材料在电子器件、传感器等领 域具有广泛的应用。
荧光聚合物
利用阴离子聚合反应可以合成荧光聚合物,这些 材料在生物成像、荧光探针等领域具有潜在的应 用价值。
反应机理
引发阶段
01
阴离子聚合反应通常由活性阴离子引发,这些阴离子可以由相
应的阳离子引发剂产生。
增长阶段
02
增长链以负离子形式存在,与单体进行加成反应,不断延长增
长链。
终止阶段
03
当增长链上的活性中心被消去或被其他因素钝化时,聚合反应
终止。
02
CATALOGUE
阴离子聚合反应的影响因素
引发剂
引发剂种类
02
03
04
混合单体和引发剂
按照规定的比例混合单体和引 发剂,确保混合均匀。
加热和搅拌
将混合物加热至规定温度,并 保持适当的搅拌速度以促进反
应进行。
聚合反应监测
通过定时取样和分析,监测聚 合反应的进程和产物性能。
终止反应
当聚合反应达到预定程度时, 加入终止剂终止反应。
安全注意事项与防护措施
防爆措施
特点
阴离子聚合反应具有高活性、高 选择性、高聚合度等优点,广泛 应用于合成高分子材料、功能性 高分子材料等领域。
历史与发展
历史
阴离子聚合反应最早可追溯到20世纪50年代,随着科技的不 断进步,人们对阴离子聚合反应的机理和应用研究越来越深 入。
发展

第一二章活性自由基聚合阴离子聚合详解演示文稿

第一二章活性自由基聚合阴离子聚合详解演示文稿
第三十九页,共92页。
举例:
第四十页,共92页。
可逆加成-断裂链转移可控自由基聚合
1998年,Rizzardo在第37届国际高分子会议上作了“Tailored Polymers by
Free
Radical processes”提出了RAFT.
RAFT (Reversible Addition-Fragmentation Transfer)聚合:在AIBN等引
(1)反应机理
与光引发iniferter有本质不同 光引发iniferter:C-S键的光降解产生一个高活性的碳自由基与一个低 活性的硫自由基,高活性的碳自由基引发单体聚合,增长的活性链与 低活性的硫自由基反应而终止。
N,N-二乙基二硫代氨基
甲酸苄酯(BDC)
RAFT与TEMPO均源于经典引发剂的热分解。 RAFT关键是自由基向链转移剂分子中C=S的可逆加成,断裂S-R形
活性聚合的基本概念 引发反应速度远远大于增长反应速度, 而且不存在
链转移和链终止的聚合反应称为活性聚合。
第五页,共92页。
活性聚合的特征
➢定义:不存在链转移和链终止的聚合称为活性聚合。 ➢特征:
(1)聚合产物的数均聚合度等于消耗掉的单体浓度与引 发剂的初始浓度之比
Xn = [M]0×Conversion / [I]0
控自由基聚合。
第三十七页,共92页。
.
第三十八页,共92页。
TEMPO体系 •温度高,速度慢,达到高转化率所需时间较长。 •主要用于苯乙烯类单体的活性聚合,对MMA等极性单 体不适用。
在该体系中加入少量酸性物质,可加速反应的聚合速率。
近年来发现一系列酰化试剂如乙酰丙酮、乙酸酐丙二酸乙二酯等可改善苯乙烯聚合速率。

《配位阴离子聚合》课件

《配位阴离子聚合》课件
加工成型
将干燥后的聚合物进行加工成型,如熔融、纺丝、压延等,以获得所 需形状和性能的制品。
05
配位阴离子聚合的发展趋势
与挑战
新催化剂的开发与应用
总结词
新催化剂是推动配位阴离子聚合发展的关键因素,具有高效、环保、可调可控等优点。
详细描述
随着科技的不断进步,科研人员正在不断探索和开发新型的配位阴离子聚合催化剂。这 些新催化剂通常具有更高的活性和选择性,能够更好地调控聚合过程和聚合物结构。同 时,新催化剂的应用范围也在不断扩大,为制备高性能聚合物材料提供了更多可能性。
常用的金属催化剂包括钛、锆、钴和镍等过渡金属化合物,这些化合物通常与配体 结合形成络合物,以提高催化剂的活性和选择性。
金属催化剂的活性取决于其电子性质和络合物的稳定性,而选择性则与催化剂的结 构和聚合条件有关。
配体
配体在配位阴离子聚合中起到传递电 子的作用,它们能够与金属催化剂结 合,形成具有特定立体构型的络合物 。
聚合机理
01
配位阴离子聚合中,单体首先与金属催化剂形成活性络合物,
然后通过链增长和链转移等步骤实现聚合。
聚合动力学
02
研究聚合过程中单体浓度、催化剂浓度等因素对聚合速率的影
响,有助于了解聚合行为和优化聚合条件。
分子量控制
03
通过选择合适的催化剂和聚合条件,可以实现对聚合物分子量
的精确控制。
单体与催化剂的匹配性
高性能聚合物材料的制备
总结词
通过配位阴离子聚合技术,可以制备高性能的聚合物材料,满足各种应用需求。
详细描述
配位阴离子聚合具有高度可控的聚合过程和聚合物结构,因此可以制备出高性能 的聚合物材料。这些聚合物材料在力学性能、热稳定性、电性能等方面表现出优 异的性能,广泛应用于汽车、航空航天、电子、医疗等领域。

阴离子聚合要点课件

阴离子聚合要点课件

05
阴离子聚合的应用与实例
高分子合成中的应用
合成橡胶
阴离子聚合可用于合成橡胶,如 丁基橡胶、异戊橡胶等,具有高
弹性、耐油、耐老化等特性。
合成纤维
通过阴离子聚合可以制备高性能纤 维,如聚酯纤维、聚酰胺纤维等, 具有高强度、高模量等特点。
合成粘合剂
阴离子聚合可以合成各种粘合剂, 如聚氨酯、环氧树脂等,具有粘附 力强、耐久性好等特点。
如丙烯、异丁烯等,由于 它们具有不饱和碳-碳双键 ,能够进行阴离子聚合。
共轭烯烃单体
如苯乙烯、丁二烯等,这 些单体在阴离子聚合条件 下可以生成高分子量聚合 物。
环状单体
如环己烯、环戊烯等,这 些单体在阴离子聚合条件 下可以生成环状聚合物。
阴离子聚合的引发剂
烷基锂引发剂
如正丁基锂、苯基锂等, 是常用的阴离子聚合引发 剂。
03
在使用引发剂时,应遵循安全操作规程,避免与空 气和水接触,以免发生危险。
04
阴离子聚合的影响因素
温度的影响
温度对阴离子聚合速率有显著影响。 随着温度的升高,聚合速率通常会增 加,因为高温可以促进活性种的生成 和链增长。
然而,过高的温度可能导致聚合体系 不稳定,引发链转移反应和链断裂, 从而降低聚合物分子量和分子量分布 。
结合形成增长链。
阴离子聚合的机理具有高度的可逆性, 这使得聚合反应可以在较低的温度下进 行,同时也有利于控制聚合产物的分子
量和分子量分布。
阴离子聚合的活性中心可以通过不同的 引发剂来控制,例如有机金属化合物、
碱金属和碱金属化合物等。
阴离子聚合的动力学
阴离子聚合的动力学主要受聚合温度、单体浓度、引发剂浓度等 因素的影响。在聚合过程中,聚合速率随着单体浓度的增加而增 加,但同时也受到引发剂浓度的限制。

高分子化学-阴离子聚合

高分子化学-阴离子聚合

丁基锂的定向作用 一般认为其机理可能为:
单体与sp3构型的Li+配位,形成六元环过渡态, 将异戊二烯的构象“锁定”为顺式构象:
非极性溶剂,增长链端主要是顺式; 极性溶剂,增长链端主要是反式。
丁基锂的定向作用
非极性溶剂中,对于异戊二烯, 2C上的甲基阻碍了链端 上2C-3C单键的旋转,同时单体以S-顺式为主;对于丁 二烯, 2C-3C单键可自由旋转,单体以S-反式为主。 极性溶剂中,链端配位结合较弱,甚至极性分子代替了 单体的配位,致使链端2C-3C键可自由旋转,反式1,4和 顺式1,4聚合随机进行,甚至发生1,2和3,4聚合。

阴离子聚合速率总比自由基聚合快很多:104~107倍
尽管:从kp值比较,两者相近 但是:因阴离子聚合无终止,活性中心浓度高 [M-] 10-3 ~ 10-2 mol / L [M•] 10-9 ~ 10-7 mol / L [M-] > [M•] 104 ~ 107 倍

聚合度 在下列条件下: 引发剂全部瞬时转变成活性中心(瞬时离解) 搅拌良好,单体分布均匀,所有链增长同时开始 无链转移和链终止反应 解聚可忽略
Xw Xn 1 1 1 2 Xn ( X n 1) Xn
阴离子活性聚合得到的产物的分子量分布很窄,接近单分散。 St在THF中聚合,分子量分布指数= 1. 06 ~ 1. 12,可用作分子 量及其分布测定的标准样品。 仍存在一定分散性,原因:
传质:反应过程中很难使引发剂分子与单体完全混合均匀, 即每个活性中心与单体混合的机会总是有些差别。
溶剂和反离子对聚丁二烯微观结构的影响
溶剂和反离子对聚丁二烯微观结构的影响
σ-烯丙基:多1,4-加成,非极性溶剂。 π-烯丙基:多1,2-加成,极性溶剂。

第2章离子聚合阴离子聚合

第2章离子聚合阴离子聚合
由于阴离子聚合反应活性中心具有与活泼氢(质子) 反应的强烈倾向,因此凡是含有活泼氢的物质如醇、 酸、水等均能够使活性阴离子链发生转移反应而终止 。向质子性物质转移终止,例如:
12
生成活性低于原来使用的引发剂(如LiBu)的醇锂 或氢氧化锂,起阻聚剂的作用而使反应停止。
因此,对于理想的阴离子聚合体系如果不外加链终止剂 或链转移剂,一般不存在链转移反应与链终止反应。
阻聚剂种类
自由基聚合:氧、DPPH、苯醌 阳离子聚合:极性物质水、醇,碱性物质,苯醌 阴离子聚合:极性物质水、醇,酸性物质,CO2
20
. CH2 CH- Na + 苯乙烯自由
基-阴离子
dimerize Na + -CH radical couple
CH2
CH2
CH - Na +
双阴离子 活性中心
5
(2) 电子间接转移引发
碱金属将电子转移给中间体,形成自由基-阴离子,再将
活性中心转移给单体,例如:萘钠在四氢呋喃(THF)
中引发苯乙烯(St)
聚合机理
自由基聚合:多为双基终止 双基偶合 Rp [I] 1/2
双基歧化
离子聚合:具有相同电荷,不能双基终止 阳:向单体、反离子、链转移剂终止
无自加速现象 Rp [C]
阴:往往无终止,活性聚合物,添加其它试剂终止
19
机理特征:
自由基聚合:慢引发、快增长、速终止、可转移 阳离子聚合:快引发、快增长、易转移、难终止 阴离子聚合:快引发、慢增长、无终止
2个苯乙烯自由基-阴离子 再偶合成苯乙烯双阴离子
萘和钠在THF溶剂中反应生成萘钠;萘钠在极性
溶剂中是均相体系,碱金属的利用率高。
6
2. 有机金属化合物引发

第五章 阴离子聚合

第五章 阴离子聚合

O Ph C Ph
Na+ + H2C CH X
O Ph C Ph +
H2C CH Na+
X
O 2 Ph C Ph Na+
Na+ O O Na+ Ph2C CPh2
阴离子聚合反应
5.4 聚合反应机理
5.4.1 链引发
(1)阴离子加成引发
根据引发阴离子与抗衡阳离子的离解程度不同,可 有两种情况:
(i)自由离子:如在极性溶剂中,引发剂主要以自由 离子的形式存在,引发反应为引发阴离子与单体的简单 加成:
阴离子聚合反应
5.5.4 聚合度分布 阴离子活性聚合得到的产物的分子量分布很窄,接近单分
散。 如St在THF中聚合,分子量分布指数= 1. 06 ~ 1. 12,可用
作分子量及其分布测定的标准样品
仍存在一定分散性,原因: 反应过程中很难使引发剂分子与单体完全混合均匀,即每个 活性中心与单体混合的机会总是有些差别; 不可能将体系中的杂质完全清除干净
如碱金属、碱金属与不饱和或芳香化合物的复合物。
(i)碱金属:如金属钠引发丁二烯聚合
Na + CH2=CH-CH=CH2 2 Na+ - CH2CH=CHCH2
Na+ - CH2CH=CHCH2 引发聚合
Na+ -CH2CH=CHCH2CH2CH=CHCH2-+Na
双阴离子活性种
电子直接向单体转移引发
CH3 CH2 C CH2
O C H3C
OCH 3 O
CH3 C CO2CH3 CH2
OCH 3
H2 C
CH3
O
C C
CH2 C
CO2CH3

阴离子聚合ppt

阴离子聚合ppt
4.3 阴离子聚合
B A + CH2 CH CN
B CH2 CH A nCH2 CH CN CN
B[ CH2 CH ]nCH2 CH A
CN
CN
B A 为阴离子聚合的引发剂,其中B 为引发剂的活性中心
B CH2 CHA CN
活性单体是阴离子聚 合的增长活性中心。
B[ CH2 CH ]nCH2 CHA 阴离子活性增长链

阴离子聚合的一个重要特点是在适当条件下:

没有空气、醇、酸等极性物质时,不发生链终止反应,而形成活性
聚合物。

原因:

⑴ 阴离子活性增长链中心离子具有相同电荷,相同电荷的排斥作
用,不像自由基聚合那样可以双基终止。

⑵ 阴离子聚合中,阴离子活性增长链的反离子常为金属阳离子,
中心离子为碳负离子二者之间离解度大,不能发生中心离子和反离子的
这到C种离4H链子9增对[ C长中H反间2应向是一C单 端H体 增]插 长nC入 。H2 CH Li
1
2
阴离子聚合
NaCH CH2 CH2 CHNa + 2nCH2 CH
双 反
阴N离aC子H活

性C中H心2的[ C链H增
长CH2
]n[
CH2
CH ]nCH2
CHNa
3
4
4.3 阴离子聚合

⒊ 链终止反应和链转移反应
CH2 CHLi + mCH2 CH CH CH2
CH2 CH CH2 CH CH CH2 Li
SB-二嵌段共聚物
4.3 阴离子聚合
Li C CH2 CH2 C Li + 2CH2 CH CH CH2

高分子化学5.1阴离子聚合5.1.1 课件

高分子化学5.1阴离子聚合5.1.1 课件
逐步加成聚合
连锁聚合
按活性中心
自由基聚合 离子聚合
阴离子、阳离子和配位聚合
背景导论
高分子化学 第五章 离子与配位聚合
什么是阴离子聚合?
阴离子聚合是以带负电荷的离子或离子对为活性中心的 一类连锁聚合反应。
反应通式:
:阴离子活性种; :反离子,一般为金属离子(Metallic Ion)。 M :聚合单体

CN
高分子化学 第五章 离子与配位聚合
阴离子链终止
(1)向质子性物质转移终止(单基终止)
~ CH2 _ CH -.....Li+ + CH3OH CN
~ CH2_ CH2 + CH3OLi CN
~ CH2 _ CH -.....Li+ + HOH CN
~ CH2_ CH2 + LiOH CN 变成烷基
高分子化学 第五章 离子与配位聚合
Anionic polymerization
阴离子聚合
徐州工程学院
主讲:董黎明
2015年 4月3日
导入
自由基聚合的特征?
聚 合
按单体和聚合物的 组成结构变化分类





按聚合机理分类
高分子化学 第五章 离子与配位聚合
加聚反应
缩聚反应
开环聚合 …….
逐步聚合
缩聚反应
高分子化学 第五章 离子与配位聚合
5.1.3 阴离子聚合机理
也包括链引发、链增长和链终止三个基元反应 ◆ 取代基的极性即e 值大小是决定单体参加阴离子聚合
反应活性的决定因素 ◆ 取代基的共轭程度即Q值的大小却是决定单体参加自
由基聚合反应活性的决定因素 例如, Q值大的共轭单体苯乙烯属于活泼的自由基 性聚合单体,但是在阴离子聚合反应中却不活泼。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)干法脱气
含20%的嵌段共聚物胶液,首先进入以蒸气夹套加热,并在 装有搅拌装置的卧式浓缩器中,浓缩至聚合物含量约26%, 然后进入双辊脱气箱。该箱分为上下两室,当共聚物胶液落 到热辊上后.即均匀地分布在整个辊上,从而在脱气箱上室 中初步脱除溶剂,而在下室的工作辊上彻底脱气。
(2)湿法脱气 来自聚合段的胶液,加入热水进行凝聚。 凝聚胶粒经振动筛除去水份, 挤压脱水机和挤压膨胀机等机械干燥装置脱水干燥。 干燥后的胶粒经振动提升机提升到包装机,称重包 SDS)热塑性弹性体简介 热塑性弹性体是指“在常温产显示橡胶的弹性,高温下又能 够塑化成型的材料”。
10.3.2线型SBS的生产工艺路线
用阴离子嵌段共聚来制备加有以下几种方法. 1.采用单官能团引发剂的三步加料法
三步加料法虽然能够制备质量较好的SBS,但由于单 体分批加入步骤较多,引入有害杂质的机会也较多。
10.3.5 星型SBS的生产
2.原料、配方及生产工艺
工艺流程
将环己烷、苯乙烯、丁二烯分别用有机锂溶液滴定,合 格后的苯乙烯和环己烷先送入聚合釜中,
待苯乙烯反应完毕后再加入丁二烯与环已烷,制成二嵌 段活性种,
合成的两嵌段聚合物通过强化混合器与偶联剂混合进入 偶联釜.
制成的星型多臂SBS或线型三嵌段物送去脱气干燥后处 理。
为什么说阴离子型聚合结合成高分子工业和分子设计提供了 一种合成控制分子结构的最为精巧有效的方法?
10.2 阴离子聚合体系
用来进行阴离子型聚合的单体, 主要可以分为三种类型: (1)带有氰基、硝基和羧基类吸电子取代基的乙烯基类单体。 (2)具有共轭双键的二烯烃类,如苯乙烯、丁二烯、异戊二 烯。 (3)环状杂原子化合物. 其负电荷能够离域至电负性大于碳的原子上,如环硫化合物、 环院、环酰胺、环硅、硅氧烷环状化合物等。
2.采用双官能团引发剂的两段加料法
双官能团引发剂的两段加料法特点
一个特点是它适用于单方向嵌段聚合的体系、即B 嵌段可以引发A共聚,而A嵌段不能引发B。
另一个特点是第二段加入苯乙烯单体时,生成部分 BS的二嵌段共聚物。随选用溶剂的种类不同,链 段链的微观结构也不同。
10.3.3线型SBS的生产工艺
由溶剂和单体带来的水、氧、二氧化碳、醇、酸、醛、酮等 杂质的允许含量必须降至最低限度。一般含量只有万分之几, 甚至十万分之几。
3.聚合温度和反应时间
聚合温度对于阴离子聚合体系有重要的影响。 升高温度可以加快聚合速度.却对活性聚合物的稳定不利, 得不到单分散性的高聚物。
丁二烯的转化率与温度和时间的关系如图11.7所示。
阴离子活性聚合反应的特点:
(1)合成聚合物的平均分子量可以从简单的化学计量来控制;
(2)适当调节引发与增长反应的动力学,可制得非常窄的分子 量分布分布)的聚合物;
(3)通过把不同的单体依次加入到活性聚合物链中,可以合成 真正的嵌段共聚物;
(4)用适当的试剂进行选择性的终止,可以合成具有功能端基 的聚合物。
第十章 阴离子型聚合
10.1 概述 10.2 阴离子聚合体系 10.3 丁苯嵌段共聚物SBS
10.1 概述
阴离子聚合的性质: 1、在不同的溶剂中,阴离子增长活性中心可以以不同性 质的活性种存在, 2、同一聚合体系中,可能有多种不同类型的活性中心同 时增长;这对于聚合反应的速度、聚合物的分子量和其微 观结构都具有极大的影响. 3、在许多阴离子型反应体系中,不存在自发的终止反应。
6.橡胶的造粒和包装
橡胶由脱气箱的料斗进入螺杆挤压机,并用螺杆输送机送至 装有造粒机的另一螺杆挤压机。在喷头出口温度150一l80℃ 下制成粒度为5mmx 5mmx 5mm的颗粒。 空气除去胶粒表面的水份,然后包装入库。
10.3.4 SBS的生产控制因素
1.引发剂 s—丁基锂和n—丁基锂
2.杂质含量
在丁二烯加入以前,将聚合釜的温度降至35℃,并控制丁二烯 的加料速度以确保釜温不超过60℃。此段聚合温度一般维持在 50—70℃的范围。
当丁二烯转化率达到90%以上时,将剩下的另一半量的苯乙烯 加入。为了促使单体全部转化,聚合釜的温度可以提高至70— 80℃,并维持1h.
5.SBS的脱气
SBS的脱气段实际上只需脱除溶剂。 SBS的脱气可采用SBS胶液的干法脱气和湿法脱气两种方式:
1.原料规格 三步法制SBS的主要原料有苯乙烯、丁二烯、环己烷、已烷、 异戊烷、加氢汽油及引发剂丁基锂等。助剂有分散剂、稳定剂 及微量杂质去除剂等。
主要原料规格为:
2.制取SBS的典型配方及工艺条件
3.三步加料法制取SBS的工艺过程 三步法制备SBS包括四个重要工序, 原材料精制、 三嵌段物的制备、 SBS的脱气 及橡胶的造粒包装 其流程如图11,3。
如图11.8为压力<0.98MPa和相应的聚合温度条件下,丁二 烯和苯乙烯单体转化率—反应时间关系由两组曲线组成。
4.溶剂和极性添加剂
有机Li在非极性溶剂中缔合
当n增大时,引发效率低。 极性溶剂能够破坏缔合离子对,由于有相当的自由阴离子存 在,聚合速度极快。 溶剂和极性溶剂对SBS嵌段链微观结构的影响较大。 —般极性溶剂只作为添加剂,少量地加入烃类溶剂中,加 快聚合反应的进行。
(1)原料的精制
生产SBS的难点是对杂质敏感,对原料质量要求高。
在三步加料法生产SBS时,经过纯化处理后的溶剂、单体 苯乙烯和丁二烯,须用有机锂溶液滴定。
(2)引发剂的配制 配制过程可示意如下:
4.三嵌段物的合成
聚合反应在非极性溶剂中于惰性气体保护下分三段进行。
先向聚合釜内加入总量的1/2的苯乙烯,然后加入引发剂溶液。 第一段苯乙烯聚合,在40—50℃下进行,维持反应0.5—1小 时,使单体苯乙烯全部转化为聚合物。
写在最后
成功的基础在于好的学习习惯
The foundation of success lies in good habits
36
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End 演讲人:XXXXXX 时 间:XX年XX月XX日
相关文档
最新文档