数学分析课本(华师大三版)-习题及答案20+22

合集下载

数学分析课本(华师大三版)-习题及答案第四章

数学分析课本(华师大三版)-习题及答案第四章

篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________ 6.若f(x)有原函数xlnx,则?xf(x)dx?_______________ 7.?ln(sinx)sin2?32xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________9.设?xf(x)dx?arcsinx?C,则?dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan2x,则f(x)?_______________18.?f?(x)1f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f(x)连续,那么?xf(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________. 26 若(?f(x)dx)lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dxC,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()A.ln(1?e)?CB.2ln(1?e)?x?CC.x?2ln(1?e)?CD.ln(e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)A.I1?I2?xB.I1?I2?xC.I2I1D.I2?I1 4.当n1时,?xnlnxdx?() nn?1A.xn(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1C.1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C7.?(cosx2?sinx2)dx?()A.2(sinx?cosx)?C B.2(cosxx222?sin2)?CC.sinx?cosxxx22?C D.cos2?sin2?C8.?x?sinx1?cosxdx?()A.xcotxxxx2?CB.xtan2?CC.x2cotx?CD.2tan2?C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()A.e?x?cosxB.?e?x?sinxC.?e?x?cosxD.e?x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。

数学分析课本(华师大三)-习题及答案第一章

数学分析课本(华师大三)-习题及答案第一章

第一章 实数集与函数一、填空题1. 已知函数)(x f 的定义域为[]4,0,则函数)1()1()(-++=x f x f x g 的定义域为_________。

2. 设x e x f =)(,[]21)(x x g f -=,则=)(x g _______3.函数 2112++-=x xy 的定义域是 ; 4.函数 x x y 1arctan 3+-= 的定义域是 ; 5.设 ⎩⎨⎧<+≥++=1 x , 2x 1 x , 14)(3x x x f ,则 )4(+x f = ; 6.函数 2tan 32sin2x x y += 的周期是 ; 7.把函数 32arcsin ln x y = 分解为简单函数 ;8.函数 1 x , 1≥-=x y 的反函数是 ; 9.函数 1+=x e y 的反函数是 ;10.设 , cos (x), )(2)(x a e x f a x +==-ϕ则 =)]([x f ϕ ;11.212arccosxx y +=的定义域是 ,值域是 ; 12.假设xx f -=11)(,则=)]([x f f ,=)]}([{x f f f ; 13.假设31)1(22++=+x x x x f ,则=)(x f ; 14.设⎪⎩⎪⎨⎧<≤<≤<≤-=31 1-10 201 2)(x x x x x f x ,则)(x f 的定义域是 ,=)0(f ,)1(f = ; 15.函数xy ln 1=的定义域是 ; 16.设)(x f y =的定义域是]1,0[,则)(2x f 的定义域是 ;17.设函数, 1)(, ln 1)(+=+=x x g x x f 则=)]([x g f ; 18.设⎩⎨⎧<≤+<<-=20102 sin )(2x x x x x f ,则=)2(πf ;19.函数11+-=x x y 的反函数是 ; 20.函数x y ln 1+=的反函数是 ;二、选择填空1.点0x 的)0(>δδ邻域是区间〔 〕.)(A ], [00δδ+-x x )(B (δδ+-00, x x ])(C [δδ+-00, x x ) )(D 〔δδ+-00, x x 〕2.函数)1lg(1-=x y 的定义域是〔 〕. )(A ) , 1(∞+ )(B ) , 1()1 , 0(∞+)(C ) , 2()2 , 0(∞+ )(D ) , (22) , 1(∞+3.设3)(, ln )(+==x x g x x f ,则)]([x g f 的定义域是〔 〕.)(A ) , 3(∞+- )(B [∞+- , 3) )(C 3) , (-∞ )(D 3] , (-∞4.函数1)1ln(-+=x x y 的定义域是〔 〕.)(A }1|{->x x )(B }1|{>x x )(C }1|{-≥x x )(D }1|{≥x x5.函数⎪⎩⎪⎨⎧<<-≤-=43 93 9)(22x x x x x f 的定义域是〔 〕. )(A )4 , 3[- )(B )4 , 3(- )(C 4] , 4[- )(D 4) , 4(-6.函数216ln 1x xx y -+-=的定义域是〔 〕. )(A 1) , 0( )(B 4) , (11) , 0( )(C 4) , 0( )(D 4] , (11) , 0(7.假设2)1()1(xx x f +=,则=)(x f 〔 〕. )(A 2)1(+x x )(B 2)1(xx + )(C 2)1(x + )(D 2)1(x - 8.⎩⎨⎧≥<=1x 01x sin )(x x f ,则=-)4(πf 〔 〕)(A 0 )(B 1 )(C 22 )(D 22- 9.如果)1,0( log ,2≠>==a a x u u y a ,则将y 表示成x 的函数是〔 〕)(A 2log x a )(B x a 2log )(C x a log 2 )(D x a 2log三、计算题1.试在数轴上表示出下面不等式的解:(1) x(x 2-1)>0; (2) |x-1|<|x-3|; (3)23x 12x 1x -<---;2.设a 与b 为已知实数,试用不等式符号(不用绝对值符号)表示以下不等式的解:(1) |x-a|<|x-b|; (2) |x-a|<x-b; (3) |x 2-a|<b.3.用区间表示以下不等式的解:(1) |1-x|-x ≥0; (2) |x+x1|≤6; (3) (x-a)(x-b)(x-c)>0,(a 、b 、c 为常数且a<b<c); (4)sinx ≥22. 4.确定以下初等函数的存在域:(1) y=sin(sinx); (2) y=lg(lgx);(3) y=arcsin ⎪⎭⎫ ⎝⎛10x lg; (4) y=lg ⎪⎭⎫ ⎝⎛10x arcsin . 5. 设函数 ⎩⎨⎧>≤+=0.x ,20,x x,2f(x)x 求 (1) f(-3),f(0),f(1); (2) f(△x)-f(0),f(-△x)-f(0) (△x>0).6. 设函数f(x)=x11+,求f(x+2),f(2x),f(x 2),f(f(x)),f(f(x)1) 7.试问以下复合函数是由那些些初等函数复合而成:(1) y=(1+x)20; (2) y=(arcsinx 2)2; (3) y=lg(1+2x 1+); (4) y=x sin 22 8.求以下函数的周期:(1) f(x)=cos 2x; (2) f(x)=2tg(3x); (3) f(x)=cos2x +2sin 3x . 9. 设函数f(x)=x1x 1+-,求: f(0),f(-x),f(x+1),f(x+1)f(x 1),f(x)1,f(x 2),f(f(x)). 10. 已知f (x1)=x+2x 1+,求f(x).四、证明题1. 证明: 对任何x ∈R,有(1)|x-1|+|x-2|≥1; (2)|x-1|+|x-2|+|x-3|≥2.2.设a 、b 、c 为三个任意的实数,证明:|c b ||c a b a |2222-≤+-+你能说明此不等式的几何意义吗?3. 设x>0,b>0且a ≠b,证明x b x a ++介于1与ba 之间. 4.求以下数集的上、下确界,并依定义加以验证.(1) S={x|x 2<2};(2) S={x|x=n!,n 为自然数};(3) S={x|x 为(0,1)内的无理数}; (4) S={x|x=1-n21,n=1,2,…}. 5. S 为非空有下界数集.证明: infS=ξ∈S 的充要条件是ξ=minS.6.设S 是非空数集,定义S={x|-x ∈S },证明:(1)infS —=-supS; (2) supS —=infS.7.设A 、B 皆为非空有界数集,定义数集A+B={z|z=x+y,x ∈A,y ∈B}.证明:(1)sup(A+B)=supA+supB; (2) inf(A+B)=infA+infB.8. 证明: f(x)=2x 1x +是R 上的有界函数. 9. 证明以下函数在指定区间上的单调性:(1) y=3x-1在(-∞,+∞)内严格递增;(2) y=sinx 在⎥⎦⎤⎢⎣⎡-2,2ππ上严格递增; (3) y=cocx 在[0,π]上严格递减.10. 证明: 设f(x)为严格单调函数,假设f(x 1)=f(x 2),则x 1=x 2.11. 设f(x)为定义在[-a,a]上的任一函数,证明:(1)F(x)=f(x)+f(-x),x ∈[-a,a]为偶函数;(2)G(x)=f(x)-f(-x) x ∈[-a,a]为奇函数.(3)f 可表示为某个奇函数与某个偶函数之和12. 设f(x)、g(x)为定义在D 上的有界函数,且f(x)≤g(x),x ∈D,证明:(1) g(x)sup f(x)sup D x D x ∈∈≤; (2) g(x)inf f(x)inf Dx D x ∈∈≤.13. 设f 为定义在D 上的有界函数,证明:(1) f(x)inf -{-f(x)}sup D x D x ∈∈=; (2) f(x)sup -{-f(x)}inf Dx D x ∈∈=14. 证明:函数f(x)=tgx 在⎪⎭⎫ ⎝⎛-2,2ππ内可无界函数,但在⎪⎭⎫ ⎝⎛-2,2ππ内任一闭区间[a,b]上有界 15. 证明: f(x)=x+sinx 在(-∞,+∞)内是严格递增函数16. 设a,b 为实数,证明: (1) max{a,b}=21(a+b+|a-b|); (2) min{a,b}=21(a+b-|a-b|).。

数学分析课本(华师大三版)-习题及答案第六章

数学分析课本(华师大三版)-习题及答案第六章

第六章 微分中值定理与其应用一、填空题1.若0,0>>b a 均为常数,则=⎪⎪⎭⎫ ⎝⎛+→x x x x b a 302lim ________. 2.若21sin cos 1lim 0=-+→x x b x a x ,则=a ______,=b ______. 3.曲线x e y=在0=x 点处的曲率半径=R _________. 4.设2442-+=xx y ,则曲线在拐点处的切线方程为___________. 5.=-+→x ex xx 10)1(lim ___________. 6.设)4)(1()(2--=x x x x f ,则0)(='x f 有_________个根,它们分别位于________区间;7.函数x x x f ln )(=在[]2,1上满足拉格朗日定理条件的__________=ξ;8.函数3)(x x f =与21)(x x g +=在区间[]2,0上满足柯西定理条件的_____=ξ; 9.函数x y sin =在[]2,0上满足拉格朗日中值定理条件的____=ξ;10.函数2)(xe xf x=的单调减区间是__________; 11.函数x x y 33-=的极大值点是______,极大值是_______.12.设x xe x f =)(,则函数)()(x f n 在=x _______处取得极小值_________.13.已知bx ax x x f ++=23)(,在1=x 处取得极小值2-,则=a _______,=b _____.14.曲线22)3(-=x k y 在拐点处的法线通过原点,则=k ________.15.设)2,1()1()( =-⨯=n x n x f n ,n M 是)(x f 在[]1,0上的最大值,则=∞→n n M lim ___________.16.设)(x f 在0x 可导,则0)(0='x f 是)(x f 在点0x 处取得极值的______条件;17.函数x bx x a x f ++=2ln )(在1=x 与2=x 取得极值,则______,==b a ;18. 函数3223)(x x x f -=的极小值是_________; 19.函数xx x f ln )(=的单调增区间为__________; 20. 函数x x x f cos 2)(+=在⎥⎦⎤⎢⎣⎡2,0π上的最大值为______,最小值为_____; 21. 设点)2,1(是曲线b a x y +-=3)(的拐点,则___________,==b a ;22. 曲线x e y =的下凹区间为_______,曲线的拐点为________;23. 曲线323x x y -=的上凹区间为________;24. 曲线)1ln(2x y +=的拐点为__________;25.曲线x y ln =在点______处曲率半径最小.26.曲线)1ln(x e x y +=的渐近线为__________.二.选择填空1.曲线2)5(35+-=x y 的特点是< >.A.有极值点5=x ,但无拐点B.有拐点)2,5(,但无极值点C.5=x 是极值点,)2,5(是拐点D.既无极值点,又无拐点2.奇函数)(x f 在闭区间[]1,1-上可导,且M x f ≤)(',则< >. A.M x f ≥)( B.M x f >)( C.M x f ≤)( D.M x f <)(3.已知方程)0(122>=+y y y x 确定y 为x 的函数,则< >.A.)(x y 有极小值,但无极大值B.)(x y 有极大值,但无极小值C.)(x y 即有极大值又有极小值D.无极值4.若)(x f 在区间),[+∞a 上二阶可导,且0)(>=A x f ,,0)('<a f 0)(<''x f )(a x >,则方程0)(=x f 在()+∞,a 内< >A.没有实根B.有两个实根C.有无穷多个实根D.有且仅有一个实根 5.已知)(x f 在0=x 处某邻域内连续,2cos 1)(lim0=-→xx f x ,则在0=x 处)(x f < >.A.不可导B.可导且2)0('=fC.取得极大值D.取得极小值6.设函数)(x f 在区间[)+∞,1内二阶可导,且满足条件0)1()1(='=f f ,1>x 时0)(<''x f ,则xx f x g )()(=在[)+∞,1内< > A .必存在一点ε,使0)(=εfB .必存在一点ε,使0)(='εfC .单调减少 D. 单调增加7.设)(x f 有二阶连续导数,且0)0(='f ,1)(lim 0=''→xx f x ,则< > A .)0(f 是)(x f 的极大值 B.)0(f 是)(x f 的极小值C .())0(,0f 是曲线)(x f y=的拐点 D .)0(f 不是)(x f 的极值,())0(,0f 也不是曲线)(x f y =的拐点8.若)(x f 和)(x g 在0x x =处都取得极小值,则函数)()()(x g x f x F +=在0x x =处< >A .必取得极小值 B.必取得极大值C.不可能取得极值D.是否取得极值不确定9.设)(x y y =由方程03223=+-by y ax x 确定,且1)1(=y ,1=x 是驻点,则< >A.3==b aB.25,23==b aC.21,23==b a D.3,2-=-=b a 10.曲线22)3()1(--=x x y 的拐点的个数为< >A.0B.1C.2D.311.)(),(x g x f 是大于0的可导函数,且0)(')()()('<-x g x f x g x f ,则当b x a <<时有< >A .)()()()(x g b f b g x f > B.)()()()(x g a f a g x f >C.)()()()(b g b f x g x f >D.)()()()(a g a f x g x f >12.曲线()()211arctan 212+-++=x x x x e y x 的渐近线有< > A .1条 B.2条 C.3条 D.4条13.q x x x f ++=2)(3的O 点的个数为< >A .1 B.2 C.3 D.个数与q 有关14.曲线⎪⎪⎩⎪⎪⎨⎧+==111t b t x 则曲线< > A .只有垂直渐近线 B.只有水平渐近线C .无渐近线 D.有一条水平渐近线和一条垂直渐近线15.设)(x f y =为0sin =-'+''x ey y 的解,且0)(0='x f ,则)(x f 有< > A .0x 的某个邻域内单调增加B .0x 的某个邻域内单调减少C .0x 处取得极小值D .0x 处取得极大值16. 罗尔定理中的三个条件;)(x f 在],[b a 上连续,在),(b a 内可导,且)()(b f a f =是)(x f 在),(b a 内至少存在一点ξ,使得0)(='ξf 成立的< >.)(A 必要条件 )(B 充分条件 )(C 充要条件 )(D 既非充分也非必要17. 下列函数在],1[e 上满足拉格朗日中值定理条件的是< >.)(A );ln(ln x )(B x ln ; )(C xln 1; )(D )2ln(x -; 18. 若)(x f 在开区间),(b a 内可导,且21,x x 是),(b a 内任意两点,则至少存在一点ξ使得下式成立< >.)(A )()()()(2112ξf x x x f x f '-=-),(b a ∈ξ;19. 设)(x f y =是),(b a 内的可导函数,x x x ∆+,是),(b a 内的任意两点,则< > .)(B 在x x x ∆+,之间恰有一个ξ,使得x f y ∆'=∆)(ξ)(C 在x x x ∆+,之间至少存在一点ξ,使得x f y ∆'=∆)(ξ)(D 对于x 与x x ∆+之间的任一点ξ,均有x f y ∆'=∆)(ξ20.若)(x f 在开区间),(b a 内可导,且对),(b a 内任意两点21,x x 恒有21212)()()(x x x f x f -≤-,则必有< >.)(C x x f =)()(D c x f =)( <常数>21. 已知函数)4)(3)(2)(1()(----=x x x x x f ,则方程)(x f '0=有< >.)(A 分别位于区间)4,3(),3,2(),2,1(内的三个根;)(B 四个根,它们分别为4,3,2,14321====x x x x ;)(C 四个根,分别位于);4,3(),3,2(),2,1(),1,0()(D 分别位于区间)4,1(),3,1(),2,1(内的三个根;22. 若)(x f 为可导函数,ξ为开区间),(b a 内一定点,而且有0)()(,0)(≥'->x f x f ξξ,则在闭区间],[b a 上必总有< >.23. 若032<-b a ,则方程0)(23=+++=c bx ax x x f < >. )(A 无实根 )(B 有唯一实根 )(C 有三个实根 )(D 有重实根24. 若)(x f 在区间],[+∞a 上二次可微,且,0)(,0)(<'>=a f A a f 0)(≤''a f <a x >>,则方程0)(=x f 在],[+∞a 上< >.)(A 没有实根 )(B 有重实根 )(C 有无穷多实根 )(D 有且仅有一个实根25. 设)()(lim 0x g x f x x →为未定型,则)()(lim 0x g x f x x ''→存在是)()(lim 0x g x f x x →也存在的< >. )(A 必要条件 )(B 充分条件 )(C 充要条件 )(D 既非充分也非必要条件26. 指出曲线23x x y -=的渐近线< >. )(A 没有水平渐近线,也没有斜渐近线;)(B 3=x 为垂直渐近线,无水平渐近线;)(C 既有垂直渐近线,又有水平渐近线;)(D 只有水平渐近线.27 曲线)2)(1(1arctan 212+-++=x x x x e y x 的渐近线有< >. )(A 1条 ; )(B 2条 ; )(C 3条 ; )(D 4条 ;28. 函数x x a x f 2cos 21cos )(-=在3π=x 取得极值,则=a 〔 〕. )(A 0 ; )(B 21 ; )(C 1 ; )(D2 . 29. 下列曲线集邮水平渐近线,又有垂直渐近线的是〔 〕.)(A xx x x f +=32sin )( ; )(B 13)(2-+=x x x f ; )(C )3ln()(xe xf -= ; )(D 2)(x xe x f -=. 30. x x x -→111lim =〔 〕.)(A 1 ; )(B 1-e ; )(C e ; )(D ∞ .三、计算题1. 试讨论下列函数在指定区间内是否存在一点ξ使得f ′<ξ>=0:〔1〕f<x>=⎪⎩⎪⎨⎧=≤<0;x 0,,π1x ,0x 1xsin〔2〕f<x>=|x|, —|≤x ≤|.2. 求下列不定式极根: <1>x sin 1e lim x 0-→x ; <2> x cos 2sinx -1lim 6x x →; <3> 1-cosx x -x)1n(1lim 0+→x ; <4> sinx-x x -tgx lim 0→x ; <5> 5sec 6-tgx lim 2+→x x x ; <6> )11x 1(lim 0--→x x e ; <7> sinx 0)tgx (lim +→x ; <8> x -111lim x x →; <9> x 12)1(lim x x ++∞→; <10> x x x ln sin lim 0+→; <11> )sin 1x 1(lim 220xx -→; <12> 210)x tgx (lim x x →.3.求下列不定式极限: <1>2sin 1)1cos(ln lim 1x x x π--→; <2>x 2arctgx)ln (πlim x -+∞→; <3> x x x sin 0lim +→ <4> x tg x x tgx 24)(lim → <5> xx x x x 1)1ln(lim 2)1(0-++→ <6> )1(lim 0xctgx x -→; <7> x e x xx -+→10)1(lim ; <8> x x ln 1)arctgx 2(lim -+∞→π.4. 求下列函数在提定点处带拉格朗日型余项的泰勒公式:<1> f<x>=x 3+4x 2+5,在x=1处; <2> f<x>=,11x+在x=0处; <3> f<x>=cosx 的马克林公式.5. 求下列函数带皮亚诺型余项的马克劳林公式:〔1〕f<x>=arctgx 到含x 5的项;〔2〕f<x>=tgx 到含x 5的项.6.求下列极限: <1>⎥⎦⎤⎢⎣⎡+-+-∞→→)11ln(lim )2(;)1(sin lim 230x x x x x x x e x x x ; <3>ctgx)x1(x 1lim 0x -→. 7. 估计下列近似公式的绝对误差: <1>21||,6sin 3≤-≈x x x x 当; <2>,82112x x x -+≈+当x ∈[0,1]. 8. 计算: <1>数e 准确到10-9;<2>lg11准确到10-5.1. 确定下列函数的单调区间:<1> f<x>=3x-x 3; <2> f<x>=2x 2-lnx; <3> f<x>=22x x -; <4> f<x>=x x 12-. 9. 求下列函数的极值.<1> f<x>=2x 3-x 4; <2> f<x>=212x x +; <3>f<x>=x nx)(|2; <4> f<x>=arctgx-21ln<1+x 2>. 10. 求下列函数在给定区间上的最大值与最小值:<1> y=x 5-5x 4+5x 3+1,[-1,2];<2> y=2tgx-tg 2x, [0,2π]; <3> y=x lnx, <0,+∞>.11. 把长为1的线段截为两段, 问怎样截法能使以这两段线为边所组成的矩形的面积为最大?12. 一个无盖的圆柱形容器, 当给定体积为V 时, 要使容器的表面积为最小, 问底的半径与容器的高的比例应该怎样?13. 设用某仪器进行测量时,读得n 次实验数据为a 1,a 2,…, a n .问以怎样的数值x 表达所要测量的真值,才能使它与这n 个数之差的平方和为最小?14. 求下列函数的极值:<1> f<x>=|x<x 2-1>|; <2> f<x>=1)1(242+-+x x x x ;<3> f<x>=<x-1>2<x+1>3. 15. 设f<x>=alnx+bx 2+x 在x 1=1,x 2=2处都取得极值;试定出a 与b 的值;并问这时f 在x 1与x 2是取得极大值还是极小值?16. 求正数a,使它与其倒数之和为最小.17. 要把货物从运河边上A 城运往与运河相距为BC=a 千米的B 城<见图7-1>.轮船运费的单价是α元/千米.火车运费的单价是β元/千米<β>α>,试求运河边上的一点M,修建铁路MB,使总运费最省.18. 确定下列函数的凸性区间与拐点:<1> y=2x 3-3x 2-36x+25; <2> y=x+x 1; <3> y=x 2+x1; <4> y=ln<x 2+1>; 19. 问a 和b 为何值时,点<1,3>为曲线y=ax 3+bx 3的拐点?四、证明题1. 证明:〔1〕方程x 3—3x+c=0〔这里C 为常数〕在区间[0,1]内不可能有两个不同的实根;〔2〕方程x n +px+q=0<n 为自然数,p,q 为实数>当n 为偶数时至多有两个实根;当n 为奇数时至多有三个实根.2. 证明:〔1〕若函数f 在[a,b]上可导,且f '<x>≥m,则f<b>≥f<a>+m<b-a>;<2>若函数f 在[a,b]上可导,且|f '<x>|≤M,则|f<b>-f<a>|≤M<b-a>;〔3〕对任意实数x 1,x 2,都有|sinx 1-sinx 2|≤|x 1-x 2|.3. 应用拉格朗日中值定理证明下列不等式:〔1〕aa b a b n b a b -<<-1,其中0<a<b; 〔2〕21h h +<arctgh<h,其中h>0. 4. 设函数f 在[a,b]上可导.证明:存在ξ∈〔a,b 〕,使得2ξ[f<b>-f<a>]=<b 2-a 2>f '<ξ>.5. 设函数在点a 具有连续的二阶导数.证明:)('')(2)()(20lim a f ha f h a f h a f h --++→. 6. 试讨论函数f<x>=x 2,g<x>=x 3在闭区间[-1,1]上能否应用柯西中值定理得到相应的结论,为什么?7. 设0<α<β<2π,试证明存在θ∈<a,b>,使得 ctg aa =--cos cos sin sin ββθ. 8. 设h>0,函数f 在[a-h,a+h]上可导.证明:〔1〕)(f')(f'hh)f(a h)f(a h a h a θθ--+=--+,θ∈〔0,1〕; 〔2〕)('f )('f h h)f(a f(a)h)f(a h a h a θθ--+=-+-+,θ∈〔0,1〕. 9. 以S<x>记由〔a,f<a>〕,<b,f<b>>,<x,f<x>>三点组成的三角形面积,试对S<x>应用罗尔中值定理证明拉格朗日中值定理.10. 若函数f, g 和h 在[a,b]上连续,在〔a,b 〕内可导,证明存在实数ξ∈<a,b>,使得)(h' )(g' )(f'h(b) g(b) f(b)h(a)g(a) f(a)ξξ ξ=0.再从这个结果导出拉格朗日中值定理和柯西中值定理.11. 设f 为[a,b]上二阶可导函数,且f<a>=f<b>=0,并存在一点c ∈〔a,b 〕使得f<c>>0.证明至少存在一点ξ∈<a,b>,使得f ''<ξ><0.12. 证明达布定理:若f 在[a,b]上可导,且f '<a>≠f '<b>,k 为介于f '<a>与f '<b>之间的任一实数,则至少存在一点ξ∈<a,b>,使得f '<ξ>=k.13. 设函数f 在〔a,b 〕内可导,且f '单调.证明f '在〔a,b 〕内连续.14. 证明:设f 为n 阶可导函数,若方程f 〔x 〕=0有n+1个相异实根,则方程f <n><x>=0至少有一个实根.15. 设p<x>为多项式,α为p<x>=0的r 重实根.证明:α必定是p '<x>=0的r-1重实根.16. 证明:〔1〕设f 在〔a,+∞〕上可导,若f(x)lim +∞→x 和(x)f'lim +∞→x 都存在,则(x)f'lim +∞→x =0;<2>设f 在<a,+∞>上n 阶可导.若f(x)lim +∞→x 和(x)f lim k+∞→x 都存在,则 (x)f lim k +∞→x =0,<k=1,2,…,n>.17. 设函数f 在点a 的某个邻域内具有连续的二阶导数,试应用罗比塔法则证明:18. 对函数f 在区间[0,x]上应用拉格朗日中值定理有f<x>-f<0>=f '<θx>x,θ∈<0,1>. 试证对下列函数都有21lim 0=→θx ; <1> f<x>=ln<1+x>; <2> f<x>=e x .19. 设f<0>=0,f '在原点的某邻域内连续,且f '<0>=0.证明:1lim f(x)0=+→x x .20. 证明定理6.5中0g(x)lim 0,f(x)lim x x ==+∞→+∞→情形时的罗比塔法则:若<i> 0)(lim ,0fx lim ==+∞→+∞→x x x <ii> 存在M 0>0,使得f 与g 在<M0,+∞>内可导,且g '<x>≠0; <iii> A (x )g'(x )f'lim (x )g'(x )f'lim x x ==+∞→+∞→<A 为实数,也可为±∞或∞>,则 21. 证明:2x 3e x f(x)-=为有界函数.22. 应用函数的单调性证明下列不等式. <1> tgx>x-)3π(0,x ,3x 3∈; <2> )2π(0,x x,sinx π2x ∈<<; <3> 0x ,x )2(1x x x )n(1|2πx 22>+-<+<- 23. 设⎪⎩⎪⎨⎧=≠=0x 0,0, x ,x 1sin x f(x )24. <1> 证明:x=0是函数f 的极小值点;<2>说明在f 的极小值点x=0处是否满足极值的第一充分条件或第二充分条件.24. 证明:设f<x>在<a,b>内可导,f<x>在x=b 连续,则当f '<x>≥0<a<x<b>时,对一切x ∈<a,b>有f<x>≤f<b>,当f '<x>≤0<a<x<b>时,对一切x ∈<a,b>有f<x>≥f<b>.25. 证明:若函数f 在点x 0处有f '+<x 0><0<>0>,f '_<x 0>>0<<0>,则x 0为f 的极大<小>值点.26. 证明:若函数f,g 在区间[a,b]上可导,且f '<x>>g '<x>, f<a>=g<a>,则在(]b a ,内有f<x>>g<x>.27. 证明:,sinx x x tgx >⎪⎭⎫ ⎝⎛∈2π0,x . 28. 证明:<1> 若f 为凸函数,λ为非负实数,则λf 为凸函数;<2> 若f 、g 均为凸函数,则f+g 为凸函数;<3>若f 为区间I 上凸函数,g 为J ⊃f<I>上凸的递增函数,则gof 为I 上凸函数.29. 设f 为区间I 上严格凸函数.证明:若X 0∈I 为f 的极小值点,同x 0为f 在I 上唯一的极小值点.30. 应用凸函数概念证明如下不等式:<1>对任意实数a,b,有)e (e 21e b a 2ba +≤+; <2>对任何非负实数a,b, 有 2arctg ⎪⎭⎫ ⎝⎛+2b a ≥arctga+arctgb. 31. 证明:若f.g 均为区间I 上凸函数,则F<x>=max{f<x>,g<x>}也是I 上凸函数.32. 证明:<1>f 为区间I 上凸函数的充要条件是对I 上任意三点x 1<x 2<x 3,恒有)f(xx 1)f(xx 1)f(xx 1Δ332211=≥0. <2>f 为严格凸函数的充要条件是对任意x 1<x 2<x 3,△>0.33. 应用詹禁不等式证明:<1> 设a i >0<i=1,2,…n>,有n a a a a a a a 1a 1a 1nn 21n n 21n21+++≤≤+++ . <2>设a i ,b i >0<I=1,2,…,n>,有81)b (p 1)a (b a m 1i q i n1i p n 1i i i ∑∑∑===≤, 其中P>0,q>0,q1p 1+=1. 五、考研复习题1. 证明:若f<x>在有限开区间<a,b>内可导,且f(x)lim a x +→f(x)lim b x -→=,则至少存在一点ξ∈a,b>,使f '<ξ>=0.2. 证明:若x>0,则<1>)(211x x x x θ+=-+,其中21)(41≤≤x θ; <2>21)(lim ,41)(lim 0==+∞→→x x x x θθ. 3. 设函数f 在[a,b]上连续,在<a,b>内可导,且ab>0.证明存在ξ∈<a,b>,使得)(f )(f f(b)f(a)b a b a 1ξξξ'-=-. 4. 设f 在[a,b]上三阶可导,证明存在ξ∈<a,b>,使得)(f a)(b 121(b)]f (a)f a)[(b 21f(a)f(b)3ξ'''--'+'-+=. 5. 对f<x>=ln<1+x>应用拉格朗日中值定理,证明:对x>0有11)1ln(10<-+<xx . 6. 证明:若函数f 在区间[a,b]上恒有f ''<x>>0,则对<a,b>内任意两点x 1,x 2,都有⎪⎭⎫ ⎝⎛+≥+2x x f 2)f(x )f(x 2121, 其中等号仅在x 1=x 2时才成立.7. 证明:第6题中对<a,b>内任意n 个点x 1,x 2…,x n 也成立⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡≥∑∑--n x f )f(x n 1n 1k k n1k k , 其中等号也仅在x 1=x 2=…=x n 时才成立.8. 应用第7题的结果证明:对任意n 个正数x 1,x 2,…,x n 恒成立n n 21x x x nxn x2x1⋯≥+⋯++, 即算术平均值不小于几何平均值.9. 设a 1,a 2,…,a n 为n 个正实数,且证明:〔i 〕n n 21x a a a (x)limf =∞→〔ii 〕{}x n 21x a a ,a max f(x)lim =∞→ 10. 求下列极限:〔1〕x)ln(1121x )x (1lim -→--;〔2〕2x 0x x x )ln(1x e lim +-→;〔3〕sinx 1sinx lim 20x x →.11. 证明:若函数f 在点a 二阶可导,且f ''<a>≠0,则对拉格朗日公式f<a+h>-f<a>=f '<a+θh>h,0<θ<1 中的θ有21θlim 0h =→ 12. 设h>0,函数f 在U<a,h>内具有n+2阶连续导数,且f <n+2><a>≠0,f 在U<a,h>内的泰勒公式为f<a+h>=f<a>+f '<a>h+…++n (n)h n!(a)f 1)1()!1()(++++n n h n h a f θ,0<θ<1. 证明:2n 1θlim 0h +=→. 13. 设函数f 在[a,b]上二阶可导,0(b)f (a)f ='='.证明存在一点ξ∈<a,b>,使得14. 设a,b>0,证明方程x 3+ax+b=0不存在正根.15.设k>0,试问k 为何值时,方程arctgx-kx=0存在正根.16. 证明:对任一多项式p<x>来说,一定存在点x 1与x 2,使p<x>在<x 1,+∞>与<-∞,x 2>上分别为严格单调.17. 证明:当x ∈[0,1]时有不等式121-p ≤X p +<1+x>p ≤1<其中实数p>1>.18. 讨论函数 f<x>=⎪⎩⎪⎨⎧=≠+0,x 0,0,x ,x 1sin x 2x 2 <1>在x=0点是否可导?<2>在x=0的任何邻域内函数是否单调?19. 设函数f 在[0,a]上具有二阶导数,且|f ''<x>|≤M,f 在<0,a>内取得最大值.证明:|f '<0>|+|f '<a>|≤Ma.20. 设f 在[)+∞,0上可微,且0≤f '<x>≤f<x>,f<0>=0.证明:在[)+∞,0上f<x>≡0.21. 设f<x>满足f ''<x>+f '<x>g<x>-f<x>=0,其中g<x>为任一函数.证明:若f<x 0>=f<x 1>=0<x 0<x 1>,则f 在[x 0,x 1]上恒等于0.22. 证明:f 为I 上凸函数的充要条件是对任何x 1,x 2∈I,函数ϕ<λ>=f<λx 1+<1-λ>x 2>为[0,1]上的凸函数.。

数学分析 上册 第三版 华东师范大学数学系 编

数学分析 上册  第三版 华东师范大学数学系 编

数学分析上册第三版华东师范大学数学系编部分习题参考解答P.4习题1.设a 为有理数,x 为无理数,证明:(1)a +x 是无理数;(2)当0≠a 时,ax 是无理数。

证明(1)(反证)假设a +x 是有理数,则由有理数对减法的封闭性,知x =a +x –a 是有理数。

这与题设“x 为无理数”矛盾,故a +x 是无理数。

(2)假设ax 是有理数,于是aaxx =是有理数,这与题设“x 为无理数”矛盾,故ax 是无理数。

3.设R b a ∈,,证明:若对任何正数ε有ε<-||b a ,则a =b 。

证明由题设,对任何正数ε有0||+<-εb a ,再由教材P.3例2,可得0||≤-b a ,于是0||=-b a ,从而a =b 。

另证(反证)假设0||>-b a ,由实数的稠密性,存在r 使得0||>>-r b a 。

这与题设“对任何正数ε有ε<-||b a ”矛盾,于是0||=-b a ,从而a =b 。

5.证明:对任何R x ∈有(1)1|2||1|≥-+-x x ;(2)2|3||2||1|≥-+-+-x x x 证明(1)|2||1||)2()1(|1-+-≤-+-=x x x x (2)因为|2||1||1||)3(2||3|2-+-≤-=--≤--x x x x x ,所以2|3||2||1|≥-+-+-x x x 6.设+∈R c b a ,,证明||||2222c b c a b a -≤+-+证明建立坐标系如图,在三角形OAC 中,OA的长度是22b a +,OC 的长度是22c a +,AC 的长度为||c b -。

因为三角形两边的差大于第三边,所以有cb ),(b a A ),(c a C y||||2222c b c a b a -≤+-+7.设b a b x ≠>>,0,0,证明x b x a ++介于1与ba之间。

证明因为1||1-=-<+-=-++b ab b a x b b a x b x a ,1||)()(-=-<+-=-++bab b a x b b x a b b a x b x a 所以x b x a ++介于1与ba之间。

数学分析课本(华师大三版)-习题及答案Part-II

数学分析课本(华师大三版)-习题及答案Part-II

x = x(t ) x + y + 2t (1 − t ) = 1 is determined by . Find the y y = y (t ) te + 2 x − y = 2
equations of the tangent line and the normal line of the curve at t = 0 . 3. Suppose
Part II
Differentials with one-variable
x = 3t 2 + 2t + 3 . y e sin t − y + 1 = 0
1. Suppose the function y = y ( x ) is determined by the equation system Find the differentials dy |t = 0 and dy 2 |t = 0 . 2. Suppose that the curve
1 (1 + ) x − e x (2) lim ; x →0 x
1
sin x x2 (3) lim( ) . x →0 x
1
lim
x →0
x 2e 2 + 2 cos x − 2 . tgx − sin x
f ( x) x →0
x 6. Suppose that f (0) = 0 , and suppose f ' (0) exists. Find the limit lim +
d2y 1 y . ln( x 2 + y 2 ) = arc tg . Find the second differential 2 x dx 2

数学分析课本(华师大三版)-习题及答案Part-I

数学分析课本(华师大三版)-习题及答案Part-I

a1 = b1 = 1 > 0, an + bn 2 = (an −1 + bn −1 2) 2 . Find the limit lim
n →∞
an . b pn . n →∞ q n
28. Assume p1 > 0, q1 > 0, pn +1 = pn + 3qn , qn +1 = pn + qn . Find the limit lim 29. Assume x1 = a, x2 = b, xn +1 =
41. Prove that (1) (2)
f ( x) = 3 x is uniformly continuous on [0, +∞) ; g ( x) = e x cos 1 is not uniformly continuous on [0,1] . x
42. Suppose that f
is defined on [ a, +∞) . And | f ( x ) − f ( y ) |≤ k | x − y | (k > 0) holds
an =a; n →∞ n
an 1 1 ∈ [a − , a + ] (n = 1, 2L) . n n n
f ∈ C (−∞, +∞) and that | f ( x) − f ( y ) |≤ k | x − y | (0 < k < 1) holds for any
x, y ∈ (−∞, +∞) . Prove that f has the unique fixed point on (−∞, +∞) .
34. Let f ∈ C[ a, b] . And for arbitrary x ∈ [ a, b] , there exists y ∈ [ a, b] such that

《数学分析》(华师大版)课本上习题

《数学分析》(华师大版)课本上习题

《数学分析》(华师大版)课本上习题第二十二章曲线积分与曲面积分P.361 第一型曲线积分与第一型曲面积分1. 计算下列第一型曲线积分:(1))1,0(),0,1(),0,0(,)(B A O L ds y x L是以其中?+为顶点的三角形;(2)+Lds y x2122)(,其中L 是以原点为中心,R 为半径的右半圆周;(3)?L xyds ,其中L 为椭圆12222=+by a x 在第一象限中的部分;(4)Lds y ,其中L 为单位圆122=+y x ;(5)ds z y x L)(222++,其中L 为螺旋线)20(,sin ,cos π≤≤===t bt z t a y t a x 的一段;(6)?Lxyzds ,其中L 为曲线)10(21,232,22≤≤===t t z t y t x 的一段;(7)+Lds z y 222,其中L 是2222a z y x =++与y x =相交的圆周.2. 求曲线)0,10(21,,2>≤≤===a t at z at y a x 的质量.设其线密度为.2az =ρ 3. 求摆线??≤≤-=-=)0()cos 1()sin (πt t a y t t a x 的重心,设其质量分布是均匀的.4. 计算下列第一类型曲面积分:(1)++SdS z y x )(,其中S 是上半圆面0,2222≥=++z a z y x ;(2)+SdS y x )(22,其中S 为立体122≤≤+z y x 的边界曲面;(3),??+S yx dS 22其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分;(4)SxyzdS ,其中S 为平面1=++z y x 在第一卦限中的部分;5. 若曲线以极坐标))((21θθθθρρ≤≤=表示,试给出计算Lds y x f ),(的公式,并用此公式计算下列曲线积分:(1)?+Ly x ds e22,其中L 为曲线)4(πθρ≤≤=a 的一段;(2)?Lxds ,其中L 为对数螺线)0(>=k ae k θρ在圆a r =内的部分.6. 设有一质量分布不均匀的半圆弧)0(sin ,cos πθθθ≤≤==r y r x ,其线密度θρa =(a 为常数),求它对原点)0,0(处质量为m 的质点的引力.7. 证明:若函数f 在光滑曲线],[),(),(:βα∈==t t y y t x x L 上连续,则存在点L y x ∈),(00,使得L y x f dS y x f L=?),(),(00,其中L ?为L 的长.8. 计算dS z S2,其中S 为圆锥表面的一部分:≤≤≤≤??===,20,0:;cos sin sin sin cos :π?θθ?θa r D r z r y r x S这里θ为常数).20(πθ≤≤P.371 第二型曲线积分1. 计算第二型曲线积分:(1)-L ydx xdy ,其中L 为本节例2中的三种情形.(2)?+-Ldy dx y a )2(,其中L 为摆线)20)(cos 1(),sin (π≤≤-=-=t t a y t t a x 沿t 增加方向的一段;(3)++-L y x ydy xdx 22,其中L 为圆周222a y x =+,依逆时针方向;(4)?+Lxdy ydx sin ,其中L 为)0(sin π≤≤=x x y 与x 轴所围的闭曲线,依顺时针方向;(5)++Lzdz ydy xdx ,其中L :从(1,1,1)到(2,3,4)的直线段.2. 设质点受力作用,力的反方向指向原点,大小与质点离原点的距离成正比.若质点由)0,(a 沿椭圆移动到),0(b ,求力所作的功。

数学分析课本(华师大三版)-习题及答案第十章

数学分析课本(华师大三版)-习题及答案第十章

第十章 定积分的应用一、填空题1. 求曲线8,2222=+=y x x y 所围成图形面积A (上半平面部分),则A = 2. 曲线x x e y e y -==,及1=x 所围面积A = 3. 曲线θθcos 1,cos 3+==r r 所围面积A = 4. 曲线)0(>=λλθae r 从0=θ到αθ=一段弧长S = 5. 曲线 ⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x 从0=t 到π=t 一段弧长S =6. 均匀摆线)0(cos 1sin π≤≤⎩⎨⎧-=-=t ty tt x ,弧长4=S ,则其重心坐标是7. 曲线0,0),0(==≤=y x x e y x 所围图形绕Ox 轴旋转所得旋转体的体积为 ;而绕Oy 轴旋转所得旋转体的体积为 8. 抛物线)(a x x y -=与直线x y =所围图形的面积为9. 在抛物线24x y =上有一点P ,已知该点的法线与抛物线所围成的弓形面积为最小,则P 点的坐标是10.设有一内壁形状为抛物面22y x z +=的容器,原来盛有)(83cm π的水,后来又入注)(643cm π的水,设此时水面比原来提高了hcm ,则h = 11.由曲线,2,1=+=x xx y 及2=y 所围图形的面积S = 曲线x x x y 223++-=与x 轴所围成的图形的面积A = 二、选择填空题1. 曲线)0(ln ,ln b a a y x y <<==与y 轴所围成图形的面积为A ,则A =( ) (A )⎰ba xdx ln ln ln (B )⎰ba e ex dx e(C )⎰baydy e ln ln (D )⎰ba e exdx ln2.曲线x y xy ==,1,2=x 所围成的图形面积为A ,则A =( )(A )dx x x )1(21-⎰(B )dx xx )1(21-⎰(C )⎰⎰-+-2121)2()12(dy y dy y(D )⎰⎰-+-2121)2()12(dx x dx x3.曲线x e y =下方与该曲线过原点的切线左方及y 轴右方所围成的图形面积A =( ) (A )dx ex e x )(10-⎰ (B )dy y y y e)ln (ln 1-⎰(C )dx xe e exx )(1⎰- (D )dy y y y )ln (ln 1-⎰4.曲线)0(cos 2>=a a r θ所围图形面积A =( )(A )()θθπd a 220cos 221⎰ (B )θθππd a ⎰-2cos 221 (C )()θθπd a 220cos 221⎰(D )()θθπd a 220cos 2212⎰ 5.曲线πθπθθ=-==,,ae r 所围图形面积A =( )(A )⎰πθθ02221d e a (B )⎰πθθ20222d e a (C )⎰-ππθθd ea 22 (D )⎰-ππθθd e a 2226.曲线θθ2cos ,sin 22==r r 所围图形面积A =( )(A )()()⎰⎰+-222121212cos 2sin 2θθθθd d(B )()()⎰⎰+462602cos sin 2πππθθθθd d(C )()()⎰⎰+46262cos 21sin 221πππθθθθd d(D )()()⎰⎰+462602cos sin 22πππθθθθd d7.曲线()21ln xy -=上210≤≤x 一段弧长S =( )(A )dx x ⎰⎪⎭⎫⎝⎛-+212111 (B )⎰-+2102211dx x x (C )dx x x ⎰⎪⎭⎫ ⎝⎛--+2102121 (D )dx x ⎰-+21022])1[ln(1 8.摆线)0()cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 一拱与x 轴所围图形绕x 轴旋转,所得旋转体的体积=V ( )(A )()⎰-ππ2022cos 1dt t a (B )())]sin ([cos 12202t t a d t a a--⎰ππ(C )()⎰--ππ2022)]sin ([cos 1t t a d t a (D )()⎰-adt t a ππ2022cos 19.星形线⎪⎩⎪⎨⎧==ta y ta x 33sin cos 的全长S =( )(A )⎰-⋅202)sin (cos 3sec 4πdt t t a t(B )⎰-⋅022)sin (cos 3sec 4πdt t t a t(C )⎰-⋅π02)sin (cos 3sec 2dt t t a t(D )⎰-⋅02)sin (cos 3sec 2πdt t t a t10.心形线)cos 1(4θ+=r 与直线2,0πθθ==围成图形绕极轴旋转的旋转体体积=V ( )(A )⎰+202)cos 1(16πθθπd(B )⎰+2022sin )cos 1(16πθθθπd(C )⎰++2022]cos )cos 1(4[sin )cos 1(16πθθθθπd(D )⎰++0222]cos )cos 1(4[sin )cos 1(16πθθθθπd11.两个半径为a 的直交圆柱体所围的体积为V =( )(A )⎰-adx x a 022)(4(B )⎰-adx x a 022)(8(C )⎰-adx x a 022)(16 (D )⎰-adx x a 022)(212.矩形闸门宽a 米,高h 米,垂直放在水中,上沿与水面齐,则闸门压力p =( ) (A )⎰hahdh 0 (B )⎰aahdh 0(C )⎰hahdh 021(D )⎰h ahdh 0213.横截面为S ,深为h 的水池装满水,把水全部抽到高为H 的水塔上,所作功=W ( )(A )⎰-+hdy y h H S 0)( (B )⎰-+Hdy y h H S 0)((C )⎰-hdy y H S 0)( (D )⎰+-+Hh dy y h H S 0)(14.半径为a 的半球形容器,每秒灌水b ,水深)0(a h h <<,则水面上升速度是( )(A )⎰h dy y dh d 02π (B )⎰--h dy a y a dh d 022])([π (C )⎰hdy y dh db2π (D )⎰-hdy y ay dh d b2)2(15.设)(),(x g x f 在区间[]b a ,上连续,且m x g x f <<)()((m 为常数),则曲线b x a x x f y x g y ====,),(),(所围平面图形绕直线m y =旋转而成的旋转体体积为( ) (A )⎰-+-badx x g x f x g x f m )]()()][()(2[π(B )⎰---badx x g x f x g x f m )]()()][()(2[π(C )⎰-+-badx x g x f x g x f m )]()()][()([π(D )⎰---badx x g x f x g x f m )]()()][()([π三、计算题1.求抛物线2x y =与2x 2y -=所围图形的面积。

数学分析课本(华师大三版)

数学分析课本(华师大三版)

数学分析课本(华师大三版)篇一:数学分析课本(华师大三版)-习题及答案第八章第八章不定积分一. 填空题x1.若f?(e)?1?x,则f(x)?___________2.设f(x)的一个原函数为xe,则?xf?(x)dx?_____________ 3.若e?xx是f(x)的一个原函数,则?xf(x)dx?________________4.若f(x)?1,则f(x)?____________ 5.?max(x,x)dx?___________________6.若f(x)有原函数xlnx,则?xf??(x)dx?_______________ 7.?ln(sinx)sin2?3??2xdx?________________8.若?dx(1?2cosx)2?Asinx1?2cosx?B?dx1?2cosx,则A?__________,B?__________ 9.设?xf(x)dx?arcsinx?C,则? dxx(4?x)lnx?1x2dxf(x)?_________10.??_________________11.?dx?_________________12.?13.?14.??a?sin(lnx)?cos(lnx)nx?________________?f(x)?xf?(x)?dxdx1?ex?________________?_____________15.?16.?xex2(1?x)dx?_____________________4sinx?3cosxsinx?2cosxdx?______________217.已知f?(2?cosx)?sinx?tan 2x,则f(x)?_______________ 18.?f?(x)1??f(x)?2dx?______________19. 若?f(x)dx?F(x)?C,而u??(x),则?f(u)du?___________. 20设函数f(x)的二阶导数f??(x)连续,那么?xf??(x)dx?__________. 21设f(x)的原函数是sinxx,则?xf?(x)dx?__________.11222已知曲线y?f(x)上任一点的切线斜率为3x2?3x?6,且x??1时,y?则f(x)?__________;f(x)的极小值是__________.1?x2是极大值,23已知一个函数的导数为f(x)?,并且当x?1时,这个函数值等于32?,则这个函数为F(x)?__________. 24 设f?(sin2x)?cosx(x?1),则f(x)?__________.225 若f(x)为连续函数,且f?(x)?f(x),则?f(x)dx?__________.26 若(?f(x)dx)??lnx,则f(x)?__________. 27 已知e28?x2是f(x)的一个原函数,则?f(tanx)secxdx?__________.22?f()dx?__________. 2xx1?x29 设f(x)dx??C,则f(x)?__________.1?x?1?30 在积分曲线族?二、选择填空题 1.设I?1xxdx中,过(1,1)点的积分曲线是y?__________.?xe?1e?1xx,则I?()(1?e)?C (1?e)?x?C ?2ln(1?e)?C (e?1)?C2.设f(x)是连续的偶函数,则期原函数F(x)一定是() A.偶函数B.奇函数C.非奇非偶函数 D.有一个是奇函数xxx3.设I1??1?xdx,I2??du,则存在函数u?u(x),使()x(1?xex)u(1?u)?I2?x ?I2?x ??I1 ?I1 4.当n??1时,?xn lnxdx?() nn?1n(lnx?1n)?C B.xn?1(lnx?1n?1)?Cn?1?1xn?1xn(lnx?1n?1)?CD.n?1lnx?C 7.?(cosx2 ?sinx2)dx?() (sinx?cos x)?C (cos xx222?sin 2)?C?cosxxx22?C?sin2?C8.?x?sinx1?cosxdx?()??2cotx??C9.若f(x)的导函数是e?x?cosx,则f(x)的一个原函数为()?x?cosxB.?e?x?sinxC.?e?x??x?sinx10.若f(x)是以l为周期的连续函数,则其原函数()。

数学分析课本(华师大三版)-习题及答案第三章

数学分析课本(华师大三版)-习题及答案第三章

数学分析课本(华师大三版)-习题及答案第三章第三章函数极限一、填空题 1.若[]2)(1ln lim20=+→x x f x ,则=→20)(lim xx f x _________ 2.=--+-→xxe e x x x x x 340sin 21sin lim _______________ 3.设xx x x f ??+-=11)(,则=+∞→)1(lim x f x ____________4.已知??>-=<+=2,12,02,1)(x x x x x x f ,1)(+=x e x g ,[]=→)(lim 0x g f x ________5.()x x x x ln cos arctan lim -+∞→=_________________6.[]=→xx x tan )sin(sin sin lim0_____________ 7.________24tan lim =+∞→n n x π8.________ln 1ln ln lim 2=??+→x x x x 9.)1ln(lim 2cos 0x x e e xx x x +-→=__________10.=?+-∞→x xx x x cos 1sin 21lim22_________ 11.=-→x x x x tan 11lim 20_________12.310)(1lim e x x fx xx =++→,则+→20)(1lim x x f x =_______ 13.()=+++→) 1ln(cos 11cossin 3lim20x x x x x x ___________ 二、选择填空1.=-→ttt cos 1lim( )A.0B.1C.2D.不存在2.函数xx x f 1cos 1)(=,在0=x 点的任何邻域内都是( ) A.有界的 B.无界的 C.单增 D.单减 3.已知()25lim 2=++-+∞→c yx ax x ,则必有( )A.20,25-==b a B. 25==b a C.0,25=-=b a D.2,1==b a4.设nn n x n x f ??-+=+∞→2lim )1(,则=)(x f ( )A.1-x eB.2+x eC.1+x eD.xe-5.若22lim 222=--++→x x bax x x ,则必有( ) A.8,2==b a B.5,2==b a C. 8,0-==b a D. 8,2-==b a6.0)(6sin lim30=+→x x xf x x ,则=+→20)(6lim xx f x ( ) A. 0 B.6 C.36 D.∞7.设对任意x 点有)()()(x g x p x ≤≤?,且[]0)()(lim =-∞→x x g x ?,则=∞→)(lim x f x ( )A.存在且一定为0B.存在且一定不为0C.一定不存在D.不一定存在 8.当0→x 时,变量x x1sin 12是( ) A.无穷小 B.无穷大C.有界,但不是无穷小D.无界的,但不是无穷大9.=-+?+∞→π21sin 1])1(1[lim n n n n( )A.πe B.π1e C.1 D.π2e10.=--→xx x xx x tan )(arctan 1lim 220( )A.0B.1C.21 D.21-11.x x x g dt t x f xsin )(,tan )(sin 02-==,则当0→x 时,)(x f 是)(x g 的( )A.高阶无穷小B.低阶无穷小C.同阶非等价无穷小D.等价无穷小三、计算题1.求下列极限:(1))x x cos x (sin 2lim 22x --π→; (2)1x x 21x lim 220x ---→;(3)1x x 21x lim 221x ---→; (4)3230x x 2x ) x 31()1x (lim +-+-→; (5)1x 1x lim m n 1x --→,(n ,m 为自然数);(6)2x 3x 21lim4x --+→;(7))0a (,xax a lim 20x >-+→;(8)xx cos x limx -∞→; (9)4x xsin x lim 2x -∞→ ;(10).)1x 5()5x 8()6x 3(lim 902070x --+∞→ 2.设,0a ,b x b x b x b a x a x a x a )x (f 0n1n 1n 1n 0m 1m 1m 1m 0≠++++++++=---- 0b 0≠,m ≤n ,试求).x (f lim x ∞→ 3.求下列极限(其中n 为自然数): (1)20 x x 11x xlim+→; (2)20x x11x x lim ++→; (3)1x nx x x lim n 21x --+++→ ;(4)x1x 1limnx -+→;(5)→x 1lim 0x ; (6)[]x x 1lim x +∞→.4.求下列函数在0x =处的左右极限或极限。

数学分析课本(华师大三版)-习题及答案第二十二章

数学分析课本(华师大三版)-习题及答案第二十二章

第二十二章曲面积分一、证明题1.证明:由曲面S所包围的立体V的体积等于V=其中,,为曲面S的外法线方向余弦.2.若S为封闭曲面,L为任何固定方向,则=0其中n为曲面S的外法线方向.3. 证明公式=其中S是包围V的曲面,n为S的外法线方向.r=,r=(x,y,z).4.证明: 场A=,,是有势场并求其势函数.二、计算题1.计算下列第一型曲面积分:(1),其中S为上半球面=;(2),其中S为主体的边界曲面;(3),其中S为柱面被平面Z=0,Z=H所截取的P分;(4),其中S为平面在第一卦限中的部分.2.计算,其中S为圆锥表面的一部分.S:D:这里θ为常数(0<θ<).3.计算下列第二型曲面积分(1)++,其中S为x=y=z=0,x=y=z=a平成所围成的正方体并取处侧为正向;(2),其中S是以原点中心,边长为2的正方体表面并取外侧正向;(3),其中S是由平面x=y=z=0和x+y+z=1所围的四面体表面并取外侧为正向;(4),其中S是球面,=1的上半部分并取外侧为正向;(5),其中S是球面++=R2并取外侧为正向.4.设某流体的流速为V=(x,y,0),求单位时间内从球面x2+y2 +z2=4的内部流过球面的流量5.计算第二型曲面积分I=++其中S是平行分面体(,,)表面并取外侧,f(x),g(y),h(z)为S上的连续函数,6.设磁场强度为E(x,y,z),求从球内出发通过上半球面x2+y2 +z2=a2,z=0的磁通量,7.应用高斯公式计算下列曲面积分:(1),其中S为单位球面x2+y2+z2=1的外侧;(2),其中S是立方体x,y,z的表面取外侧;(3),其中S为锥面x2+y2 =z2与平面z=h所围的空间区域()的表面方向取外侧;(4),其中S是单位球面x2+y2+z2=1的外侧;(5),其中S为上半球面Z=的外侧.8.应用高斯公式计算三重积分其中v是由,,与所确定的空间区域.9.应用斯托克斯公式计算下列曲线积分(1)++,其中L为x+y+z=1与三坐标面的交线,它的走向使新围平面区域上侧在曲线的左侧;(2),其中为=1,x=y所交的椭圆的正向;(3)++,其中L是以A(a,0, 0),B(0,a,0),C(0,0,a)为顶点的三角形沿ABCA的方向.10.若L是平面++zcosr-p=0上的闭曲线,它所包围区域的面积为S,求其中L依正向进行.11.若r=,计算,,,(n=3)12.求u=+2xy-4y+2y-4z在点0(0,0,0),A(1, 1,1),B(―1,―1,―1)的梯度,并求梯度为零之点.13.计算下列向量场A的散度和旋度:(1)A=;(2)A=;(3)A=.14.流体流速A=求单位时间内穿过球面++=1(x>1,y>0,z>0)的流量.15.设流速A=(c为常数)求环流量(1)沿圆周=1,z=0;(2)沿圆周=1,z=0.三、考研复习题1.证明:若=++,S为包围区域V的同面的外例,则(1)=;(2)=+2.设S为光滑闭曲面,V为S所围的区域,在V上与S上函数u(x,y,z)二阶偏导连续,函数W(x,y,z)偏导连续,证明:(1)=;(2)=.3.设A=S为一封闭曲面,r=(x,y,z).证明当原点在曲面S外,上,内时分别有=0.2π,4π.4.证明公式:=。

数学分析课本(华师大三版)-习题及答案第七章

数学分析课本(华师大三版)-习题及答案第七章

第七章 实数的完备性一、练习题1. 设{(a n ,b n )}是一严格开区间套,即a 1<a 2<…<a n <…<b n …<b 2<b 1,且∞→n lim (b n -a n )=0.证明存在唯一一点ξ,有 a n <ξ<b n ,n=1,2…2. 试举例说明在有理数集内,所有完备性定理都不能成立.3. 试用区间套定理证明数列的单调有界定理.4. 试用确界原理证明区间套定理.5. 设H=⎭⎬⎫⎩⎨⎧=⎪⎭⎫ ⎝⎛+ 1,2,n |n 1,2n 1是一个无限开区间集,问:(1) H 能否覆盖(0,1)?(2) 能否从H 中先出有限个开区间覆盖⎪⎭⎫⎝⎛21,0? (3) 能否从H 中先出有限个开区间覆盖⎪⎭⎫ ⎝⎛1,1001? 6. 证明: 若x ∈[a,b],若x ∈(a,b)的聚点;反之,若x 为[a,b]的聚点,则x ∈[a,b].7. 证明:单调数列{x n }若存在聚点,则一定是唯一的,且是{x n }的确界.8. 试用致密性定理证明单调有界定理.9. 试用聚点定理证明区间套定理.10. 试用有限覆盖定理证明聚点定理.11. 试用聚点定理证明柯西收敛准则.12. 试用确界原理证明聚点定理13. 设f 为(-∞,+∞)上连续的周期函数,试证f 在(-∞,+∞)上有最大值与最小值.14. 证明:任何实系数奇次多项式方程至少有一个实根15. 设I 为有限区间.证明:若f 在I 上一致连续,则f 在I 上有界.16. 证明: 若f 在[)+∞a,上连续,+∞→x lim f(x)存在且有限,则f 在[)+∞a,上一致连续. 17. 设f 在(a,b)内连续,x 1,x 2,…x n ∈(a,b),证明存在ζ∈(a,b),使得f(ζ)=∑=n 1j j )f(x n 1.18. 试用覆盖定理证明根的存在性定理.19. 证明:在(a,b)上连续函数f 为一致连续的充要条件是f(a+0)、f(b-0)存在且有限.20. 求下列数列的上、下极限:(1){1+(-1)n }; (2)⎭⎬⎫⎩⎨⎧+-12n n1)(n ;(3){2n+1}; (4)⎭⎬⎫⎩⎨⎧+4n πsin 1n 2n; (5)⎭⎬⎫⎩⎨⎧+n π}sin n 1n2; (6)⎭⎬⎫⎩⎨⎧n |3n πcos | 21. 证明下列数列上、下极限的关系式: (1) ∞→n lim a n =-∞→n lim (-a n ), ∞→n lim a n =-∞→n lim (-a n ); (2) ∞→n lim a n +∞→n lim b n ≤∞→n lim (a n +b n );∞→n lim a n +∞→n lim b n ≥∞→n lim (a n +b n ) (3) ∞→n lim a n -∞→n lim b n ≤∞→n lim (a n -b n ),∞→n lim a n -∞→n lim b n ≥∞→n lim (a n -b n ); (4) 若a n ,b n >0,则∞→n lim a n ∞→n lim b n ≤∞→n lim a n b n ,∞→n lim a n ∞→n lim b n ≥∞→n lim a n b n ; (5) 若∞→n lim a n >0,则∞→n limn a 1=n n a lim 1∞→.22. 数列{x n }的上(下)确界就是该数列的上(下)极限,对吗?为什么?23. 证明:若{a n }为单调递增数列,则∞→n lim a n =∞→n lim a n 24. 证明:若an>0(n=1,2,…)且∞→n lim a n ·∞→n lim n a 1=1, 则数列 {a n }收敛.25. 证明: 若a n ≤b n (n=1,2,…),则∞→n lim a n ≤∞→n lim b n , ∞→n lim a n ≤∞→n lim b n . 26. 证明设{x n }为有界数列. (1)A 为{x n }上极限的充要条件是A =∞→n lim nk sup ≥{x k }; (2)A 为{x n }下极限的充要条件是A=∞→n lim nk inf ≥{x k }. 27. 证明:{x n }为有界数列的充要条件是{x n }的任一子列都存在它的收敛子列.28. 设f(x)在(a,b)内连续,且+→a x lim f(x)=-→b x lim f(x)=0.证明f(x)在(a,b)内有最大值或最小值.29. 证明: 设f(x)在[a,b]上连续,若{x n}⊂[a,b],且lim f(x n)=A,则必存在点x0∈[a,b],使得n→∞f(x0)=A.30. 设函数f和g都在区间I上一致连续.(1) 证明f+g在I上一致连续;(2) 若I为有限区间,证明f·g在I上一致连续;(3) 若I为无限区间,举例说明f·g在I上不一定一致连续.31. 证明:设函数f(x)定义在有限区间(a,b)上,若对于(a,b)内任一收敛数列{x n},极限lim f(x n)都n→∞存在,则f(x)在(a,b)上一致连续.32. 设函数f在[)a,上连续,且有渐近线,即有数b与c,使得+∞lim[f(x)-bx-c]=0,证明f在x+∞→[)a,上一致连续.+∞。

数学分析课本(华师大三版)-习题及答案第八章

数学分析课本(华师大三版)-习题及答案第八章

第八章 不定积分一. 填空题1.若x e f x+='1)(,则=)(x f ___________2.设)(x f 的一个原函数为xxe ,则='⎰dx x f x )(_____________ 3.若xe-是)(x f 的一个原函数,则⎰=dx x xf )(________________4.若[]1)(3='x f ,则=)(x f ____________ 5.⎰=dx x x ),max(2___________________6.若)(x f 有原函数x x ln ,则⎰=''dx x f x )(_______________ 7.⎰=dx xx 2sin)ln(sin ________________8.若⎰⎰+++=+xdx B xx A x dx cos 21cos 21sin )cos 21(2,则=A __________,=B __________9.设C x dx x xf +=⎰arcsin )(,则⎰=)(x f dx _________10.⎰=-)4(x x dx _________________11.⎰=-dx xx 21ln _________________12.[]=-⎰dx xx x a n)cos(ln )sin(ln ________________13.[]⎰='+dxx f x x f )()(________________14.⎰=+xedx 1_____________15.⎰=+dx x xex 2)1(_____________________16.=++⎰dx xx x x cos 2sin cos 3sin 4______________17.已知x x x f 22tansin )cos 2(+=+',则=)(x f _______________18.[]⎰=+'dx x f x f 2)(1)(______________19. 若⎰+=C x F dx x f )()(,而),(x u ϕ=则⎰=du u f )(___________. 20设函数)(x f 的二阶导数)(x f ''连续,那么⎰=''__________)(dx x f x . 21设)(x f 的原函数是xx sin ,则⎰='__________)(dx x f x .22已知曲线)(x f y =上任一点的切线斜率为6332--x x ,且1-=x 时,211=y 是极大值,则)(x f __________=;)(x f 的极小值是__________.23已知一个函数的导数为211)(xx f -=,并且当1=x 时,这个函数值等于π23,则这个函数为__________)(=x F . 24 设)1(cos )(sin22<='x x x f ,则)(x f __________=.25 若)(x f 为连续函数,且)()(x f x f =',则⎰=__________)(dx x f . 26 若⎰='x dx x f ln ))((,则)(x f __________=. 27 已知2xe -是)(xf 的一个原函数,则⎰=__________sec )(tan 2xdx x f .28⎰='__________)2(12dx x f x. 29 设C xxdx x f ++-=⎰11)(,则)(x f __________=.30 在积分曲线族⎰dx xx 1中,过(1,1)点的积分曲线是__________=y .二、选择填空题 1.设dx e e I xx⎰+-=11,则=I ( )A.C e x++)1ln( B.C x e x+-+)1ln(2 C.C e x x++-)1ln(2 D.C e x+-)1ln(2.设)(x f 是连续的偶函数,则期原函数)(x F 一定是( ) A.偶函数 B.奇函数 C.非奇非偶函数 D.有一个是奇函数3.设⎰⎰+=++=)1(,)1(121u u du I dx xe x x I x,则存在函数)(x u u =,使( )A.x I I +=21B.x I I -=21C.12I I -=D.12I I = 4.当1-≠n 时,⎰=xdx x nln ( ) A.C nx nxn+-)1(ln B.C n x n xn +----)11(ln 11C.C n x xn n ++-++)11(ln 111D.C x n xn +++ln 117.⎰=+dx x x )2sin2(cos ( )A.C x x +-)2cos2(sin 2 B.C x x +-)2sin2(cos2C.C xx +-2cos 2sin D.C x x +-2sin 2cos8.⎰=++dx xxx cos 1sin ( )A.C x x +2cotB.C x x +2tanC.C x x+cot 2 D.C x x +2tan 29.若)(x f 的导函数是x e xcos +-,则)(x f 的一个原函数为( )A.x excos -- B.x exsin +-- C.x e xcos --- D.x exsin +-10.若)(x f 是以l 为周期的连续函数,则其原函数( )。

数学分析课本(华师大三版)-习题及答案第十六章

数学分析课本(华师大三版)-习题及答案第十六章

第十六章 多元函数的极限与连续一、证明题1. 证明: 当且仅当存在各点互不相同的点列{p n }⊂E,p ≠p 0. ∞→n lim P n =P 0时P 0是E 的聚点. 2. 证明:闭域必是闭集,举例证明反之不真.3. 证明:点列{p n (x n ,y n )}收敛于p 0(x 0,y 0)的充要条件是∞→n lim x n =x 0和∞→n lim y n =y 0. 4. 证明: 开集与闭集具有对偶性——若E 为开集,则E c 为闭集;若E 为闭集,则E c 为开集.5. 证明:(1) 若F 1,F 2为闭集,则F 1∪f 2与F 1∩F 2都为闭集;(2) 若E 1,E 2为开集,则E 1∪E 2与E 1∩E 2都为开集;(3) 若F 为闭集,E 为开集,则F\F 为闭集,E\F 为开集.6. 试把闭区域套定理推广为闭集套定理,并证明之.7. 证明定理16.4(有限覆盖定理):8. 证明: 若1°y)f(x,lim (0,0)y)(x,→存在且等于A;2°当y 在b 的某邻域内时,存在有(y)y)f(x,lim a x ϕ=→,则A y)f(x,lim lim a x b y =→→.9. 试应用ε-δ定义证明: 0y x y x lim 222(0,0)y)(x,=+→. 10. 叙述并证明: 二元函数极限存在的唯一性定理,局部有界性定理与局部保号性定理.11. 叙述并证明二元连续函数的局部保号性.12.设f(x,y)=()()⎪⎩⎪⎨⎧=+>≠++0y x 0,0p 0y x ,y x x 2222p 22试讨论它在(0,0)点的连续性.13. 设f(x,y)定义于闭矩形域S=[a,b]×[c,d],若f 对y 在[c,d]上处处连续.对x 在[a,b]上(且关于y)为一致连续,证明f 在S 上处处连续.14. 证明:若D ⊂R 2是有界闭域,f 为D 上连续函数,则f(D)不仅有界(定理16.8)而且是闭区间.15. 若一元函数ϕ(x)在[a,b]上连续,令f(x,y)=ϕ(x),(x,y)∈D=[a,b]×(-∞,+∞),试讨论f 在D 上是否连续?是否一致连续?16. 设(x,y)=x y11-,(x,y)∈D=[)[)1,01,0⨯,证明f 在D 上不一致连续.17. 设f 在R 2上分别对每一自变量x 和y 是连续的,并且每当固定x 时f 对y 是单调的,证明f 是R 2上的二元连续函数.二、计算题1.判断下列平面点集,哪些是开集、闭集、有界集或区域?并分别指出它们的聚点与界点。

数学分析课本华师大三版习题及答案第三章

数学分析课本华师大三版习题及答案第三章

第三章 函数极限一、填空题 1.若[]2)(1ln lim20=+→x x f x ,则=→20)(lim xx f x _________ 2.=--+-→x xe e x x x x x 340sin 21sin lim _______________ 3.设xx x x f ⎪⎭⎫⎝⎛+-=11)(,则=+∞→)1(lim x f x ____________4.已知⎪⎩⎪⎨⎧>-=<+=2,12,02,1)(x x x x x x f ,1)(+=x e x g ,[]=→)(lim 0x g f x ________5.()x x x x ln cos arctan lim -+∞→=_________________6.[]=→xx x tan )sin(sin sin lim0_____________ 7.________24tan lim =⎪⎭⎫⎝⎛+∞→n n x π 8.________ln 1ln ln lim 2=⎪⎭⎫⎝⎛+→x x x x 9.)1ln(lim 2cos 0x x e e xx x x +-→=__________10.=⋅+-∞→x xx x x cos 1sin 21lim22_________ 11.=⎪⎭⎫⎝⎛-→x x x x tan 11lim 20_________12.310)(1lim e x x fx xx =⎥⎦⎤⎢⎣⎡++→,则⎥⎦⎤⎢⎣⎡+→20)(1lim x x f x =_______ 13.()=+++→)1ln(cos 11cossin 3lim20x x x x x x ___________ 二、选择填空1.=-→ttt cos 1lim( )A.0B.1C.2D.不存在2.函数xx x f 1cos 1)(=,在0=x 点的任何邻域内都是( ) A.有界的 B.无界的 C.单增 D.单减 3.已知()25lim 2=++-+∞→c yx ax x ,则必有( )A.20,25-==b a B. 25==b a C.0,25=-=b a D.2,1==b a4.设nn n x n x f ⎪⎭⎫⎝⎛-+=+∞→2lim )1(,则=)(x f ( )A.1-x eB.2+x eC.1+x eD.xe-5.若22lim 222=--++→x x bax x x ,则必有( )A.8,2==b aB.5,2==b aC. 8,0-==b aD. 8,2-==b a6.0)(6sin lim30=+→x x xf x x ,则=+→20)(6lim xx f x ( ) A. 0 B.6 C.36 D.∞7.设对任意x 点有)()()(x g x p x ≤≤ϕ,且[]0)()(lim =-∞→x x g x ϕ,则=∞→)(lim x f x ( )A.存在且一定为0B.存在且一定不为0C.一定不存在D.不一定存在 8.当0→x 时,变量x x1sin 12是( ) A.无穷小 B.无穷大C.有界,但不是无穷小D.无界的,但不是无穷大9.=-+⎪⎭⎫ ⎝⎛+∞→π21sin 1])1(1[lim n n n n( )A.πe B.π1e C.1 D.π2e10.=--→xx x xx x tan )(arctan 1lim 220( )A.0B.1C.21 D.21-11.x x x g dt t x f xsin )(,tan )(sin 02-==⎰,则当0→x 时,)(x f 是)(x g 的( )A.高阶无穷小B.低阶无穷小C.同阶非等价无穷小D.等价无穷小三、计算题1.求下列极限:(1))x x cos x (sin 2lim 22x --π→; (2)1x x 21x lim 220x ---→;(3)1x x 21x lim 221x ---→; (4)3230x x 2x )x 31()1x (lim +-+-→; (5)1x 1x lim m n 1x --→,(n ,m 为自然数);(6)2x 3x 21lim4x --+→;(7))0a (,xax a lim 20x >-+→;(8)xx cos x limx -∞→; (9)4x xsin x lim 2x -∞→ ;(10).)1x 5()5x 8()6x 3(lim 902070x --+∞→ 2.设,0a ,b x b x b x b a x a x a x a )x (f 0n1n 1n 1n 0m 1m 1m 1m 0≠++++++++=---- 0b 0≠,m ≤n ,试求).x (f lim x ∞→ 3.求下列极限(其中n 为自然数): (1)20x x 11x xlim+→; (2)20x x11x x lim ++→; (3)1x nx x x lim n 21x --+++→ ;(4)x1x 1limnx -+→;(5)⎥⎦⎤⎢⎣⎡→x 1lim 0x ; (6)[]x x 1lim x +∞→.4.求下列函数在0x =处的左右极限或极限。

数学分析课本(华师大三版) 习题及答案第四章

数学分析课本(华师大三版) 习题及答案第四章

数学分析课本(华师大三版)习题及答案第四章数学分析课本(华师大三版)-习题及答案第四章第四章功能的连续性一、填空题1x?0个xsinx?1.设置f(x)??kx?0,如果函数f(x)在定义字段中是连续的,则xsin11x0xk;2.函数f(x)??十、0 x?1的不连续性是;x?0?sinx3.函数f(x)?x的连续区间是;4.函数f(x)?1的连续区间是;x2?2倍?3x2?95.函数f(x)?信息系统的不连续性;x(x?3)6.函数f(x)?x?2的间断点是;(x1)(x4)1的连续区间为;(x?1)(x?2)7.函数f(x)??ex?e?x?x?0在x?0点连续,则k?;8.设置f(x)??十、十、0千?1.十、0 x?1.0 x?1的不连续性是;9.函数f(x)十、1.十、31? 十、3.10.函数f(x)??十、0斧头?文学士?B那么f(x)处处连续的充要条件是2x?0(a?b)x?xb12?x11.函数f(x)??ex?0,则limf(x)?,若f(x)无间断点,则a?;十、0 x?0 a?1.x2?十、1.什么时候12.如果f(x)??1?xa?时,函数f(x)连续十、1.A二。

填空1.设f(x)和?(x)在,内有定义,f(x)为连续函数,且f(x)?0,?(x)有间断点,则()A.f(x)?一定有一个转折点。

B(x) ??2.必须有一个转折点c.f??(x)?必有间断点d.(x) F(x)必须有一个断点2。

设置函数f(x)?xa?Ebx,在,??连续的内部和Xlim f(x)?那么常数A和B满足(A.A?0,B?0b.A?0,B?0C.A?0,B?0d.A?0,B?013.设f(x)?1?ex1,当x?0;f(x)??1,当x?0,则1.Exa有断点要去。

b、有一个跳跃断点。

C有无限间断d连续4。

函数f(x)?nlim1?十、1.x2na不存在间断点。

b存在间断点x??1c存在间断点x?0d存在间断点x?15.设置f(x)1x?0 XSin10?0 0x?0克(x)那么在x点?什么是0处不连续的函数?十、1x?0amax{f(x),g(x)}bmin{f(x),g(x)}cf(x)?g(x)df (x)?G(x)6。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 二十、二十二1.计算下列第一型曲线积分.(1) ,其中L 是的上半圆周. ()x y ds L +∫x y R 22+=2 (2) x y d L 22+∫s 2,其中L 是的右半圆周. x y R 22+= (3) e d x y L 22+∫s 2,其中L 是圆,直线x y a 22+=y x =以及x 轴在第一象限中所围成图形的边界. (4) xyds L ∫,其中L 是由所构成的矩形回路.x y x y ====004,,,2(5) ,其中: xds L∫ (a) L 是上从原点O 到点y x =2(,)00B (,)11间的一段弧.(b) L 是折线OAB 组成,A 的坐标为(,,B 的坐标为.)10(,)11(6),其中∫L ds y 2L 为曲线)cos 1()sin (t a y t t a x −=−=,,其中,0>a π20≤≤t .(7) ,其中L 是螺旋线弧段(x y z d L 222++∫)s cos sin ,,x a t y a t z bt ===)(π20,0≤≤>t a .(8) ,其中∫L yzds x 2L 为折线,这里依次为点(0,0,0),(0,0,2),(1,0,2),(1,3,2)ABCD D C B A ,,,2.计算下列第二型曲线积分.(1),其中∫−L ds y x )(22L 为在抛物线上从点(0,0)到点(2,4)的一段弧.2x y =(2) ,其中L 为xdy ydx L −∫① 沿直线从点(,到点(,;)00)12② 沿抛物线x y =24从点到点; (,)00(,)12③ 沿折线从点(,经点(,到点(,.)00)02)12(3) xydx L ∫,其中L 是由所构成的沿逆时针方向的矩形回路.x y x y ====004,,,2(4) x dy y dxx y L 225353−+∫,其中L 是沿星形线在第一象限中从点(,x R t y R t ==cos sin 33,)R 0到(,)0R 的弧段(R >0).(5) ,其中L 是从点到xdx ydy zdz L ++∫A (,,)111B (,,)234的直线段. (6) ,其中L 为曲线∫−+Lydz zdy dx x 2θθκθsin cos ,a z a y x ===,上对应θ从0到π的一段弧.3.设质点受力F 作用,力的方向指向原点,大小等于质点到原点的距离.(1) 计算当质点沿椭圆在第一象限中的弧段从(,到(,时,F 所作的功;x a t y b t ==cos sin ,)a 0)0b (2) 计算当质点沿椭圆逆时针方向运动一圈时,力F 所作的功.4.利用格林公式计算下列积分.(1) ()()x y dx x y dy L +++∫222,L 是沿逆时针方向,以为顶点的三角形. A B C (,)(,)(,)113125,, (2)()()x y dx x y dy L ++−∫,L 是方程x y +=1所围成的顺时针方向的闭路.(3) []e ydx y y x L (cos (sin )1−−−∫dy x ,L 是沿y =sin 上从点(,)π0到点的一段弧.(,)00(4) dy ye x x dx e y x xy x y x x x L )2sin ()sin 2cos (222−+−+∫,其中L 为正向星形线)0(323232>=+a a yx . (5) dy y x x y dx x y xy x L )3sin 21()cos 2(223+−+−∫,其中L 为在抛物线上由点(0,0)到22y x π=)1,2(π的一段弧. (6) ,其中dy y x dx y x L ∫+−−)sin ()(22L 为在圆周22x x y −=上由点(0,0)到点(1,1)的一段弧.5.验证下列曲线积分与路径无关,并求它们的值.(1) ,L 是从点经圆周上半部到点的弧段.()()12222++−∫xe dx x e y dy y y L O (,)00+−2)2(x 42=y A (,)40 (2),L 是从点到点的任意弧段. e ydx ydy x L (cos sin )−∫(,)00(,)a b (3) ydx xdy x −∫22112(,)(,)沿右半平面的任意路线.(4) ,L 是从点经抛物线到点的弧段.()(x y xdx ydy L22++∫)(,)00y x =2(,)11 (5) ∫++L y x xcdxydy 322)(,L 是从点到点的不经过原点的弧段.(,)11(,)22 6.求椭圆所围图形的面积.x a t y b t ==cos sin , 7.求下列微分方程的通解.(1) .()()x xy y dx x xy y dy 222222+−+−−=0 (2) [][]e e x y y dx e e x y dy x y x y ()()−+++−+=1100=.(3) .()()x xy dx x y y dy 43224465++− 8.下列各式是否为某函数的全微分,若是,求出原函数.(1) ; (2)x dx y dy 22+xdx ydy x y ++22. 9.求下列第一型曲面积分.(1),其中S 是球面:. zds S ∫∫x y z R 222++=2 (2)(243x y z d S ++∫∫)s ,其中S 是平面x y z 2341++=在第一卦限的部分. (3) ,其中S 是锥面(xy z d S 222++∫∫)s z x y =+22)介于之间的部分.z z ==01、 (4) ,其中S 是由曲面和平面所围立体的表面.∫∫+Sds y x )(22x y z 2220+−=z h h =>(0(5) ,其中S 是锥面(xy yz zx dsS ++∫∫)z x y =+22x 被柱面所截得的部分.x y a 222+=(6) ∫∫SxyzdS ,其中S 是由平面0,0,0===z y x 及1=++z y x 所围成的四面体的整个边界曲面.(7) ,其中S 为锥面∫∫++S ds zx yz xy )(z x y =+22x )0被柱面所截得的有限限部分.x y a 222+= 10.计算下列第二型曲面积分.(1) , 其中S 是三个坐标平面与平面所围成的正方体的表面的外侧.()()()x yz dydz y zx dzdx z xy dxdy S222−+−+−∫∫x a y a z a a ===>,,(0(2) ,其中S 是由平面 xydydz yzdzdx xzdxdy S++∫∫x y z ===00,,与平面x y z ++=1所围成的四面体表面的外侧.(3),其中S 是上半球面yzdzdx S ∫∫z a x y =−−222的下侧. (4) e x y dxdy z S 22+∫∫,其中S 是锥面z x y =+22与平面所围成立体边界曲面的外侧.z z ==12, 11.利用奥-高公式计算下列第二型曲面积分. (1) x dydz y dzdx z dxdy S333++∫∫,其中S 是球面:的外侧.x y z a a 22220++=>() (2) xdydz y dzdx z dxdy S 222++∫∫,其中S 是锥面与平面所围成的立体表面的外侧.x y z 22+=2)z h =(h >0 (3) ()()x y dxdy x y z dydz S−+−∫∫,其中S 为柱面及平面所围立体的表面外侧.x y 221+=z z ==0,1(4) ,其中S 为三个坐标平()()()x y z dxdy y z z dzdx S+++++−∫∫23212面与平面x y z ++=1所围成的四面体的外侧.(5)∫∫++S yzdxdy dzdx yxzdydz 24,其中为平面S 0,0,0===z y x ,所围成的立方体的表面外侧.1,1,1===z y x 12.利用斯托克斯公式计算下列第二型曲线积分. (1) x y dx dy dz L 23++∫,其中L 为坐标平面上圆周,并取逆时针方向. Oxy x y a 22+=2 (2) ()()()y z dx x z dy x y d L 222222+++++∫z ,其中L 是x y z ++=1与三个坐标平面的交线. (3) x yzdx x y dy x y d L 2221+++++∫()(z ),其中L 为曲面与曲面的交线,且从面对z 轴正向看去取顺时针方向.x y z 2225++=z x y =++221 13.验证下列的空间曲线积分与路径无关,并求它们的值.(1) . 22000xe dx z x e dy y zdz y y x y z −−+−−∫(cos )sin (,,)(,,) (2) . xdx y dy z dz +−∫23111234(,,,)(,,) 14.求下列各式的原函数.(1) yzdx xzdy xydz ++.(2) . ()()(x yz dx y xz dy z xy dz 222222−+−+−)15.计算,其中为圆周 ∫L ds x 2S ⎩⎨⎧=++>=++.0),0(2222z y x a a z y x 16. 若dy cx Y dy ax X +=+=,,且L 为包围坐标原点的简单的封闭曲线,计算∫+−=L YX YdX XdY I 2221π. 17.证明:若L 为封闭的曲线且l 为任意的方向,有∫=Lds l 0),cos(. 18.若半径为的球面上每点的密度等于该点到球的某一直径上距离的平方,求球面的质量.a 19.为了使线积分()F x y ydx xdy L (,)+∫与积分路径无关,可微函数F x y (,)应满足怎样的条件?20.设磁场强度为E x y z (,,),求从球内出发通过上半球面的磁通量.x y z a z 22220++=≥,。

相关文档
最新文档