数学建模 组合优化模型

合集下载

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。

在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。

本讲将介绍一些简单的优化模型。

一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。

其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。

线性规划模型指的是目标函数和约束条件都是线性的情况。

通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。

二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。

非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。

对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。

这些方法通过迭代的方式逐步靠近最优解。

三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。

整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。

整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。

针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。

四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。

动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。

动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。

五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。

模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

数学建模 - 第一章 组合优化模型与计算复杂性

数学建模 - 第一章 组合优化模型与计算复杂性

概念的一种表达形式 . 可以建立完全不同的模型,分别反映该系统的不同
侧面;出于相同的研究目的,对于同一个对象系 模型不是研究对象本身,而是对研究对象的一种 统,也可能建立不同的模型,反映不同的研究角 抽象,它反映现实中对象系统的主要特征,但它又高 度、考察因素和价值取向 . 于现实,因而具有同类问题的共性 .
16
第一章
组合优化模型与计算复杂性
2、按模型的解的特征分类 解析模型与数值模型 3、按模型所用的数学方法分类 初等模型、微分方程模型、差分方程模型、优
化模型等
4、按模型研究的实际范畴分类
人口模型、生态系统模型 、交通流模型、经济
模型、 基因模型等 5、按对实际问题了解的程度分类 白箱模型、灰箱模型、黑箱模型
的本质属性,而且要舍弃事物的物质和能量方面的具
体内容,只考虑其数量关系和空间形式,同时还要把 这些数量关系和空间形式作进一步的抽象,加以形式 化和符号化,以便能够进行逻辑推理和数值运算 . 这种高度的抽象性,实质是对事物认识上的高度 概括和深化,对同类问题包含更多的经验和理解 .
13
§1 组合优化模型与算法 2、高度的精确性 数学方法的高度精确性表现在三个方面: 一是表达各种因素、变量和它们之间的关系相当 明确、清楚;二是逻辑推演和运算规则十分严密;三
s.t. x1 x4 x5 x6 x7 67 某商场根据客流量统计得出一周中每天所需要的
(线度)必须是偶数条 . 见图可知,与四个顶点相连的边都是奇数条,因 这是利用数学模型分析和解决问题的一个成功范例 的第一篇论文 而不可能存在通过每条边一次且仅一次的画法,即一
这是关于图论
笔画不存在 .
故七桥问题不可能有解 .
12

数学建模四大模型总结

数学建模四大模型总结

数学建模四大模型总结1优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。

1.5 组合优化经典问题l 多维背包问题(MKP)背包问题:个物品,对物品,体积为,背包容量为。

如何将尽可能多的物品装入背包。

多维背包问题:个物品,对物品,价值为,体积为,背包容量为。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于难问题。

l 二维指派问题(QAP)工作指派问题:个工作可以由个工人分别完成。

工人完成工作的时间为。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):台机器要布置在个地方,机器与之间的物流量为,位置与之间的距离为,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

l 旅行商问题(TSP)旅行商问题:有个城市,城市与之间的距离为,找一条经过个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

l 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP问题是VRP问题的特例。

l 车间作业调度问题(JSP)车间调度问题:存在个工作和台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

天然肠衣搭配问题的数学建模

天然肠衣搭配问题的数学建模

天然肠衣搭配问题是一个组合优化问题,通常涉及到在满足一系列约束条件下,选择合适的肠衣以最大化某种目标函数。

下面我将提供一个简单的数学模型,以帮助您理解这个问题。

假设我们有n种不同的天然肠衣,每种肠衣都有不同的长度和特性。

我们的目标是选择一定数量的肠衣,使得它们的总长度最大,同时满足以下约束条件:
每种肠衣的数量不能超过其最大供应量。

选择的肠衣必须满足特定的品质要求。

选择的肠衣的总成本不超过预算限制。

数学模型如下:
目标函数:最大化所有选择的肠衣的总长度。

约束条件:
每种肠衣的数量不超过其最大供应量。

选择的肠衣必须满足品质要求。

选择的肠衣的总成本不超过预算限制。

我们可以用线性规划或整数规划等优化方法来解决这个问题。

这些方法可以帮助我们在满足约束条件下,找到最优的肠衣搭配方案,使得目标函数达到最大或最小值。

需要注意的是,天然肠衣搭配问题可能涉及到更多的因素和复杂的约束条件,需要根据具体情况进行适当的调整和扩展。

数学建模 四大模型总结

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

组合约束优化模型

组合约束优化模型

组合约束优化模型组合约束优化模型是一种常用的数学建模工具,用于解决在给定约束条件下,如何选择最佳的组合方案的问题。

这种模型可以应用于各种实际场景中,比如资源分配、生产计划、物流调度等等。

在组合约束优化模型中,首先需要明确问题的目标和约束条件。

目标是指我们希望通过优化模型来达到的最终效果,可以是最大化某个指标或者最小化某个成本。

约束条件则是对问题的限制,比如资源的限制、时间的限制等等。

接下来,我们需要定义决策变量。

决策变量是我们需要在模型中进行选择的变量,可以是某个产品的生产数量、某个资源的分配方案等等。

通过对决策变量的选择,我们可以得到不同的组合方案。

在确定了目标、约束条件和决策变量之后,我们可以建立数学模型。

数学模型是将实际问题转化为数学表达式的过程,通过对模型的求解,可以得到最佳的组合方案。

在建立数学模型时,我们需要考虑目标函数和约束条件的表达方式。

目标函数是我们希望优化的指标,在模型中通常表示为一个数学表达式,可以是某个变量的线性组合或者非线性函数。

约束条件则是限制决策变量的取值范围的条件,可以是等式约束或者不等式约束。

在建立数学模型时,我们还需要考虑问题的特点和限制。

比如,如果问题具有多个目标,我们可以使用多目标优化方法来求解;如果问题存在不确定性,我们可以使用鲁棒优化方法来求解。

在求解组合约束优化模型时,通常使用优化算法进行求解。

常用的优化算法包括线性规划、整数规划、动态规划、遗传算法等等。

这些算法可以根据问题的特点和要求进行选择,以获得最佳的求解效果。

在实际应用中,组合约束优化模型可以解决各种复杂的问题。

比如,在生产计划中,我们可以利用组合约束优化模型来确定最佳的生产方案,以最大化利润或者最小化成本;在物流调度中,我们可以利用组合约束优化模型来确定最佳的运输路线,以最小化运输时间或者成本。

组合约束优化模型是一种强大的数学建模工具,可以帮助我们在给定约束条件下选择最佳的组合方案。

通过合理的模型设计和优化算法选择,我们可以解决各种实际问题,提高效率和效果。

数学建模中的模型优化与参数校准

数学建模中的模型优化与参数校准

数学建模中的模型优化与参数校准数学建模是解决实际问题的一个重要手段,通过对实际问题进行抽象和建模,可以利用数学方法求解问题并得到结果。

模型的优化和参数校准是数学建模过程中的两个重要的环节,本文将对这两个环节进行详细的探讨。

一、模型优化模型优化是指对已有的模型进行改进,使其更加适合于解决实际问题。

在实际应用中,我们往往会发现原有的模型存在一些缺陷,或者不能满足我们的需求,这时就需要对模型进行优化。

模型优化的方法很多,常用的方法包括参数调整、模型结构调整、数据采集等。

其中,参数调整是最常用的方法之一。

在建立模型时,我们往往需要确定一些参数,这些参数对模型的性能有着重要的影响。

如果模型的参数选择不合适,那么模型的预测结果可能会偏差较大。

因此,在实际应用中,我们需要对模型的参数进行调整,以获得更好的预测效果。

模型参数的调整通常有两种方法,一种是手动调节,另一种是自动调节。

手动调节的方式需要根据实际经验和知识对参数进行调整,这种方法虽然简单,但存在人为主观性较强的问题。

自动调节的方式则通过计算机算法自动调整模型参数,可以较好地解决人为主观性较强的问题,并且可以快速找到最优的参数组合,提高模型的预测精度。

另外,模型结构调整也是模型优化的一个重要方法。

模型的结构可以根据实际问题进行调整,例如,可以增加一些变量来改进模型的预测效果。

此外,数据采集也是模型优化的一个重要环节,通过增加更多的数据可以提高模型的预测精度,但同时也需要保证数据的质量和可靠性。

二、参数校准参数校准是指对模型中的参数进行调整,使得模型更加符合实际情况。

在实际应用中,我们往往需要将模型对实际问题进行预测,而模型中的参数是根据历史数据确定的,这些参数未必完全适用于实际问题。

因此,我们需要对模型中的参数进行校准,以获得更准确的预测结果。

参数校准通常需要依赖于实验数据,通过实验数据对模型中的参数进行调整,以获得更符合实际情况的模型。

参数校准的方法很多,常用的方法包括随机搜索、改进的遗传算法、模拟退火算法等。

数学建模在金融投资组合优化中的应用

数学建模在金融投资组合优化中的应用

数学建模在金融投资组合优化中的应用随着金融市场的发展和技术的进步,投资组合优化成为了金融领域中的一个重要课题。

投资组合优化的目标是通过科学的方法选择最佳的投资组合,使得在给定的风险水平下,获得最大的收益。

在这个过程中,数学建模扮演着至关重要的角色,通过建立适当的数学模型,帮助投资者做出理性的投资决策。

本文将介绍数学建模在金融投资组合优化中的应用,并探讨其优势和局限性。

一、投资组合优化的基本原理投资组合优化的基本原理是寻找一种投资策略,用有限的资金配置在不同的金融资产上,通过合理的权衡投资回报和风险,实现最优的效果。

在进行投资组合优化过程中,需考虑以下几个主要因素:1. 收益率:投资组合中的每个资产都有不同的收益率,从历史数据中可以估计出未来的收益率。

投资组合优化的目标之一就是最大化投资组合的收益率。

2. 风险:投资组合中的风险通常通过资产的方差或标准差来衡量。

投资组合优化的另一个目标就是在给定的风险水平下,最小化投资组合的风险。

3. 相关性:不同资产之间的相关性是投资组合优化中需要考虑的一个关键因素。

相关性高的资产可以降低投资组合的风险,而相关性低的资产可以提高投资组合的收益率。

基于上述原理,我们可以利用数学建模的方法来解决投资组合优化问题,进而实现有效的资产配置。

二、数学建模方法在投资组合优化中的应用数学建模方法可以帮助投资者更准确地评估和优化投资组合。

下面介绍几种常用的数学建模方法及其在投资组合优化中的应用。

1. 线性规划模型线性规划模型是一种常见的数学建模方法,可以用来解决投资组合优化问题。

该模型将投资组合优化问题转化为一个线性方程组,通过求解线性方程组得出最优解。

线性规划模型能够高效地解决小规模的投资组合问题。

2. 随机规划模型随机规划模型考虑了资产收益率和风险的不确定性,通过引入随机变量来描述不确定性。

该模型可以通过蒙特卡洛模拟等方法,对不同的投资策略进行随机性的评估和优化。

3. 整数规划模型整数规划模型用于解决一些约束条件比较复杂的投资组合优化问题。

投资组合优化的数学模型与算法

投资组合优化的数学模型与算法

投资组合优化的数学模型与算法第一章:概述投资组合优化是指在投资市场中,选择一系列资产组合,在满足规定约束条件的前提下,最大化投资回报或最小化风险的过程。

这个问题可以被看作一个数学优化问题,需要通过数学建模和算法求解来获得最优解。

本文将介绍投资组合优化的数学模型和算法,涵盖了传统的均值方差模型和更先进的风险预测模型。

第二章:均值方差模型均值方差模型是投资组合优化中最经典的模型。

该模型假设所有资产的收益率服从正态分布,且各资产之间的收益率无相关性。

在这个模型中,资产权重的计算公式如下:minimize: w'Σwsubject to: w'μ=r , w≥0, ∑wi=1其中,w是资产权重的向量,μ是资产收益率的向量,Σ是资产收益率协方差矩阵,r是投资者的预期回报率。

针对这个问题,可以使用基于拉格朗日乘数法的二次规划算法进行求解。

另外,可以使用更加高效的理论,如广义矩阵不等式和半定规划等方法,来求解该问题。

这些方法可以显著提高算法的效率。

第三章:风险预测模型均值方差模型并不考虑资产收益率的非正态性和相关性。

在现实世界中,资产的收益率可能呈现出长尾分布或偏态分布,且资产之间的收益率可能存在相关性。

因此,一些研究者提出了基于如GARCH模型或Copula函数等风险预测模型的投资组合优化方法。

这些模型的公式比较复杂,不再列出。

在实际应用中,通常需要使用极大似然法或贝叶斯方法等来对参数进行估计。

然后,可以使用理论或数值方法来求解最优投资组合。

第四章:多目标优化模型投资组合优化往往需要同时考虑回报和风险这两个目标。

除此之外,不同的投资者还可能有其他的目标,如资金流动性、大宗交易风险等等。

这就涉及到了多目标优化问题。

常见的多目标优化方法包括权重法、约束法和优先级法等等。

这些方法往往需要根据不同的目标制定不同的优化目标函数和约束条件。

一些最优化算法,如NSGA-Ⅱ和Pareto-SC等,可以有效地求解这类问题。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

第一章组合优化模型与计算复杂性

第一章组合优化模型与计算复杂性

第一章组合优化模型与计算复杂性组合优化模型与计算复杂性是组合优化问题研究中的两个重要方面。

组合优化问题是在给定一组约束条件下,寻找一个最优解或者接近最优解的问题。

计算复杂性则是研究问题的解决算法所需的计算资源的量度。

在组合优化模型中,问题的目标是通过选择一组决策变量来优化一些指标,这些决策变量可以是0-1变量、整数变量或连续变量。

在实际应用中,组合优化问题的范围非常广泛,包括如旅行商问题、背包问题、任务分配问题等。

组合优化问题可以通过数学建模来描述,一般采用线性规划、整数规划、动态规划等方法求解。

线性规划是求解线性问题的一种数学优化方法,能够高效地求解问题,但只适用于决策变量是连续变量的情况。

整数规划则是在线性规划的基础上,要求决策变量为整数,通过将线性规划问题的决策变量约束为整数,可以求解一些特定的问题。

动态规划是一种将问题分解为子问题并进行递归求解的方法,适用于求解具有重叠子问题性质的问题。

然而,随着问题规模的增大,求解组合优化问题可能变得非常困难,甚至变得不可行。

此时,计算复杂性的概念就显得尤为重要。

计算复杂性是指解决一个问题所需的计算资源的量度,通常以时间复杂性和空间复杂性来衡量。

时间复杂性是指解决问题所需的计算时间,而空间复杂性则是指解决问题所需的计算空间。

在计算复杂性的研究中,通常使用渐进符号来表示算法的复杂性。

常见的渐进符号有大O符号、大Ω符号和大Θ符号。

其中,大O符号表示最坏情况下算法的上界,大Ω符号表示最好情况下算法的下界,大Θ符号表示算法的上界和下界相同。

对于组合优化问题,如果一个问题的求解时间复杂性是多项式时间复杂性,即可以在多项式时间内求解,那么这个问题被称为是“可解的”。

相反,如果一个问题的求解时间复杂性是指数时间复杂性,即无法在多项式时间内求解,那么这个问题被称为是“不可解的”。

组合优化问题的计算复杂性是一个非常重要的研究方向,由于组合优化问题的高计算复杂性,很多问题在实际中很难找到有效的求解方法。

数学建模之优化模型

数学建模之优化模型
自底向上求解
从最小规模的子问题开始,逐步求解更大规模的子问 题,最终得到原问题的最优解。
自顶向下求解
从原问题开始,将其分解为子问题,通过迭代求解子 问题,最终得到原问题的最优解。
状态转移方程
通过状态转移方程描述子问题之间的关系,从而求解 子问题和原问题。
动态规划模型的应用实例
最短路径问题
如Floyd-Warshall算法,通过动 态规划求解所有节点对之间的最 短路径。
遗传算法
03
模拟生物进化过程的自然选择和遗传机制,通过种群迭代优化
,找到最优解。
整数规划模型的应用实例
生产计划问题
通过整数规划模型优化生产计划,提高生产效 率、降低成本。
投资组合优化
通过整数规划模型优化投资组合,实现风险和 收益的平衡。
资源分配问题
通过整数规划模型优化资源分配,提高资源利用效率。
THANKS
需要进行调整和改进。
02
CATALOGUE
线性规划模型
线性规划模型的定义与特点
线性规划模型是数学优化模型的 一种,主要用于解决具有线性约 束和线性目标函数的优化问题。
线性规划模型的特点是目标函数 和约束条件都是线性函数,形式
简单且易于处理。
线性规划模型广泛应用于生产计 划、资源分配、投资决策等领域
背包问题
如0-1背包问题、完全背包问题和 多重背包问题等,通过动态规划 求解在给定容量的限制下使得总 价值最大的物品组合。
排班问题
如工作调度问题,通过动态规划 求解满足工作需求和工人技能要 求的最优排班方案。
05
CATALOGUE
整数规划模型
整数规划模型的定义与特点
定义
整数规划是一种特殊的线性规划,要求决策变量取整数值。

数学建模之优化模型

数学建模之优化模型

数学建模之优化模型在我们的日常生活和工作中,优化问题无处不在。

从如何规划一条最短的送货路线,到如何安排生产以最小化成本并最大化利润,从如何分配资源以满足不同的需求,到如何设计一个系统以达到最佳的性能,这些都涉及到优化的概念。

而数学建模中的优化模型,就是帮助我们解决这些复杂问题的有力工具。

优化模型,简单来说,就是在一定的约束条件下,寻求一个最优的解决方案。

这个最优解可以是最大值,比如利润的最大化;也可以是最小值,比如成本的最小化;或者是满足特定目标的最佳组合。

为了更好地理解优化模型,让我们先来看一个简单的例子。

假设你有一家小工厂,生产两种产品 A 和 B。

生产一个 A 产品需要 2 小时的加工时间和 1 个单位的原材料,生产一个 B 产品需要 3 小时的加工时间和 2 个单位的原材料。

每天你的工厂有 10 小时的加工时间和 8 个单位的原材料可用。

A 产品每个能带来 5 元的利润,B 产品每个能带来 8 元的利润。

那么,为了使每天的利润最大化,你应该分别生产多少个A 产品和 B 产品呢?这就是一个典型的优化问题。

我们可以用数学语言来描述它。

设生产 A 产品的数量为 x,生产 B 产品的数量为 y。

那么我们的目标就是最大化利润函数 P = 5x + 8y。

同时,我们有加工时间的约束条件 2x +3y ≤ 10,原材料的约束条件 x +2y ≤ 8,以及 x 和 y 都必须是非负整数的约束条件。

接下来,我们就可以使用各种优化方法来求解这个模型。

常见的优化方法有线性规划、整数规划、非线性规划、动态规划等等。

对于上面这个简单的例子,我们可以使用线性规划的方法来求解。

线性规划是一种用于求解线性目标函数在线性约束条件下的最优解的方法。

通过将约束条件转化为等式,并引入松弛变量,我们可以将问题转化为一个标准的线性规划形式。

然后,使用单纯形法或者图解法等方法,就可以求出最优解。

在这个例子中,通过求解线性规划问题,我们可以得到最优的生产方案是生产 2 个 A 产品和 2 个 B 产品,此时的最大利润为 26 元。

数学建模中的模型评价与优化

数学建模中的模型评价与优化

数学建模中的模型评价与优化在数学建模中,模型评价和优化是不可或缺的步骤。

模型评价旨在评估所构建数学模型的准确性和可靠性,而模型优化则旨在找到最优解或使模型的性能达到最佳状态。

本文将探讨数学建模中的模型评价和优化的重要性以及常用的方法和技巧。

1. 模型评价模型评价是数学建模过程中的关键一步。

它的目的是衡量模型的准确性和可靠性,以确定该模型是否能够有效地解决现实问题。

以下是一些常用的模型评价方法:1.1 准确性评估准确性评估是评价模型预测结果与实际观测值之间的吻合程度。

常见的准确性评估指标包括均方根误差(RMSE)、平均绝对误差(MAE)和决定系数(R-squared)。

通过计算这些指标,可以评估模型在不同数据集上的预测能力。

1.2 稳定性评估稳定性评估是评价模型对输入数据的变化的敏感程度。

模型应该对于轻微的数据扰动不敏感,以确保其可靠性和鲁棒性。

可以使用灵敏度分析、蒙特卡洛模拟等方法来评估模型的稳定性。

1.3 可解释性评估可解释性评估是评价模型的可解释性和可理解性。

模型应该能够提供直观的解释和解释其预测结果的原因。

一些方法,如局部敏感度分析和决策树,可以帮助评估模型的可解释性。

2. 模型优化模型优化旨在找到最优解或使模型的性能达到最佳状态。

模型优化常用的方法包括以下几种:2.1 参数优化参数优化是通过调整模型中的参数来最小化或最大化某个指标。

常见的参数优化方法包括梯度下降法、遗传算法和模拟退火算法等。

通过寻找最优参数组合,可以使模型的性能得到提升。

2.2 约束优化约束优化是在考虑某些限制条件下,寻找使目标函数达到最优的变量值。

常见的约束优化方法包括线性规划、整数规划和非线性规划等。

约束优化可以用于解决实际问题中的资源分配、路径规划等问题。

2.3 多目标优化多目标优化是在存在多个相互竞争的目标的情况下,寻找一组最优解。

常见的多目标优化方法包括多目标遗传算法和多目标粒子群优化等。

多目标优化可以用于解决实际问题中的多目标决策和多目标规划等。

基于数学建模的经济金融优化模型

基于数学建模的经济金融优化模型

基于数学建模的经济金融优化模型数学建模在经济金融领域中扮演着重要的角色,它可以帮助我们分析和解决经济金融问题。

数学建模技术通过建立模型,利用数学方法和工具对经济金融系统进行优化,从而实现经济效益的最大化。

投资组合优化模型是一种经典的优化模型,它通过建立数学模型来帮助投资者决策。

该模型的目标是在给定的投资资产类别和约束条件下,确定最佳的投资组合。

模型中的数学方法包括线性规划、非线性规划和动态规划等。

投资组合优化模型主要考虑的因素包括预期收益、风险、流动性以及市场和行业的因素等。

通过建立数学模型,可以帮助投资者找到最优的投资组合,从而获得最大的收益。

风险管理模型是在金融市场中应用广泛的一个数学模型。

金融市场存在着各种风险,如市场风险、信用风险、操作风险等。

风险管理模型的目标是通过建立数学模型,对金融市场中的风险进行分析和管理。

常用的数学方法包括概率统计、时间序列分析、蒙特卡洛模拟等。

风险管理模型可以帮助金融机构和投资者评估和控制风险,从而保证金融市场的稳定和可持续发展。

除了投资组合优化模型和风险管理模型,基于数学建模的经济金融优化模型还有很多其他应用领域,如货币政策制定、期权定价、资产定价等。

这些模型利用数学方法来分析和解决经济金融问题,对实际经济活动具有指导意义和决策支持作用。

总之,基于数学建模的经济金融优化模型在经济金融领域起到了重要的作用。

它通过建立数学模型,运用数学方法和工具来分析和解决经济金融问题,从而实现经济效益的最大化。

这些优化模型在投资管理、风险管理、货币政策制定等方面发挥了重要的作用,对经济金融的发展具有指导意义和决策支持作用。

初中数学建模30种经典模型

初中数学建模30种经典模型

初中数学建模30种经典模型初中数学建模是培养学生综合运用数学知识解决实际问题的一种教学方法和手段。

以下是初中数学建模中的30种经典模型,并对每种模型进行简要介绍:1.线性规划模型:通过建立线性目标函数和线性约束条件,优化解决线性规划问题。

2.排队论模型:研究排队系统中的等待时间、服务能力等问题,以优化系统效率。

3.图论模型:利用图的概念和算法解决实际问题,如最短路径、网络流等。

4.组合数学模型:应用组合数学的方法解决实际问题,如排列组合、集合等。

5.概率模型:利用概率理论分析和预测事件发生的可能性和规律。

6.统计模型:收集、整理和分析数据,通过统计方法得出结论和推断。

7.几何模型:运用几何知识解决实际问题,如图形的面积、体积等。

8.算术平均模型:利用算术平均数来描述和分析数据的集中趋势。

9.加权平均模型:利用加权平均数考虑不同数据的重要性来得出综合结论。

10.正态分布模型:应用正态分布来描述和分析数据的分布情况。

11.投影模型:通过投影的方法解决几何体在平面上的投影问题。

12.比例模型:利用比例关系解决实际问题,如物体的放大缩小比例等。

13.数据拟合模型:根据已知数据点,通过曲线或函数拟合来推测未知数据点。

14.最优化模型:寻找最大值或最小值,优化某种指标或目标函数。

15.路径分析模型:研究在网络或图中找到最优路径的问题。

16.树状图模型:通过树状图的结构来描述和解决问题,如决策树等。

17.随机模型:基于随机事件和概率进行建模和分析。

18.多项式拟合模型:利用多项式函数对数据进行拟合和预测。

19.逻辑回归模型:通过逻辑回归分析,预测和分类离散型数据。

20.回归分析模型:分析自变量和因变量之间的关系,并进行预测和推断。

21.梯度下降模型:通过梯度下降算法来求解最优解的问题。

22.贪心算法模型:基于贪心策略解决最优化问题,每次选择当前最优解。

23.线性回归模型:通过线性关系对数据进行建模和预测。

24.模拟模型:通过构建模拟实验来模拟和分析实际情况。

数学建模优化模型

数学建模优化模型

数学建模优化模型数学建模是一种将实际问题抽象为数学模型,并通过数学方法求解的过程。

优化模型是数学建模中的一种重要类别,主要用于解决如何最大化或最小化目标函数的问题。

优化问题在日常生活和工业生产中非常常见,例如最佳路径规划、资源分配、流程优化等。

通过数学建模和优化模型,可以帮助我们在有限的时间、空间和资源下,找到最优的解决方案。

1.确定问题:首先,我们需要准确地确定问题,包括目标函数和约束条件。

目标函数是我们要最大化或最小化的指标,约束条件是问题的限制条件。

2.建立数学模型:根据实际问题的特点,我们选择合适的数学模型来描述问题。

常见的数学模型包括线性规划、整数规划、非线性规划等。

3.设计算法:根据数学模型,我们设计相应的算法来求解问题。

常见的优化算法包括单纯形法、分支定界法、遗传算法等。

4.求解模型:使用所选的算法,对数学模型进行求解。

这个过程涉及到数值计算和计算机程序的编写。

5.模型验证:对求解结果进行验证,确保结果符合实际问题的要求。

这可以通过计算误差、灵敏度分析等方法来实现。

6.结果分析和优化:对求解结果进行分析,比较不同算法的效果,并进行优化改进。

这可以帮助我们更好地理解问题,并提供更好的解决方案。

除了以上基本步骤外,数学建模优化模型还需要注意以下几个问题:1.模型的准确性:数学模型必须准确地反映实际问题的本质。

因此,我们需要对实际问题进行充分的了解,并进行有效的数据收集和分析。

2.算法的选择:不同的优化问题可能需要不同的优化算法。

因此,我们需要根据具体问题的特点选择合适的算法。

3.算法的效率和鲁棒性:在实际求解过程中,算法的效率和鲁棒性也是非常重要的。

我们需要选择高效的算法,并对算法进行充分的测试和验证。

数学建模优化模型在实践中具有广泛的应用,可以用于解决很多实际问题。

例如,在物流领域中,我们可以利用优化模型来确定最佳路线、最佳车辆配送方案等,以最大化效率和减少成本。

在制造业领域中,我们可以使用优化模型来优化生产流程、资源调度等,以提高生产效率和降低生产成本。

优化模型

优化模型
12
MIN 66.8x11+75.6x12+87x13+58.6x14 +… … +67.4x51+71 x52+83.8x53+62.4x54 SUBJECT TO x11+x12+x13+x14 <=1 …… x41+x42+x43+x44 <=1 x11+x21+x31+x41+x51 =1 …… x14+x24+x34+x44+x54 =1 END INT 20
最优化模型
主讲人
张兴永
1
最优化模型
在数学建模竞赛中,经常会遇到有关最优化问题, 下面介绍几个简单的最优化模型。 最优化模型是在解决实际问题中应用最广泛的模 型之一,它涉及面广、内容丰富,且随着计算机的发 展,解决问题的范围越来越宽。一般地,人们做的任 何一件事情,小的如日常生活、学习工作等,大的如 工农业生产,国防建设及科学研究等,为了达到预先 设想的目的,都要做计划,选择好的方案,进行优化 处理。最优化模型主要有线性规划模型、整数规划模 型、非线性规划模型、动态规划模型等。
这样把多目标规划变成一个目标的线性规划,下 面给出三个单目标优化模型:
24
1、在实际投资中,投资者承受风险的程度不一样, 若给定风险一个界限a,使最大的一个风险qixi/M≤a, 可找到相应的投资方案。 模型1 固定风险水平,优化收益 目标函数:Q=max (ri pi ) xi i 0 约束条件: q x ≤a
9
问题二 混合泳接力队的选拔
5名候选人的百米成绩
蝶泳 仰泳 蛙泳 自由泳 甲 1’06”8 1’15”6 1’27” 58”6 乙 57”2 1’06” 1’06”4 53” 丙 1’18” 1’07”8 1’24”6 59”4 丁 1’10” 1’14”2 1’09”6 57”2 戊 1’07”4 1’11” 1’23”8 1’02”4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

cij 表示从发点i 到收点 j 的单位产品运输费用;
xij 表示从发点i 分配给收点 j 的产品数量。
min
c
i, j
ij ij
x
m x ij a i , (i 1,2,...,m ) j 1 n s.t. x ij b j , ( j 1,2,...,n) i 1 x ij 0
山东财经大学
优化问题建模
马建华
Scilab实现
用Scilab语言求解以上算例所示网络的最小费用流 Scilab语句:
clear tail=[1 1 2 2 3]; head=[2 3 3 4 4]; g=make_graph('g',1,4,tail,head); cost=[1 3 1 3 1]; max_cap=[2 1 2 4 2];
运筹学课件
山东财经大学
优化问题建模 求如图所示运输问题的最优解
网络分析
1
马建华
35
2
1
算例
8 6
-45 2 -20
3
9
9 9 12 13 7 14
50
3
-30 -30
9 16 5
4
40
山东财经大学
优化问题建模
马建华
模型
min 8 x11 6 x12 9 x13 9 x14 9 x 21 12x 22 13x 23 7 x 24 14x31 9 x32 16x33 5 x34 x11 x12 x13 x14 35 x x x x 50 22 23 24 21 x31 x32 x33 x34 40 x11 x 21 x31 45 s.t. x12 x 22 x32 20 x13 x 23 x33 30 x14 x 24 x34 30 x 0, i 1,2,3, j 1,2,3,4 ij
( s, t )
可行流:满足守恒方程的流,简称为 流 问 题 : 求 一 个 可 行 流 x * ( xij* ) , 使 得 v x x 达到最大值。
j * sj j * jt
山东财经大学
优化问题建模
马建华
数学规划模型
max
( s , j ) A
x sj
x sj x it 0 ( i ,t ) A ( s , j )A s.t. x sj x it 0; i s, t ( i ,i ) A (i , j )A 0 x c ; (i, j ) A ij ij
(i, j ) A 的费用。 则流 x ( x ij ) 的费用为 wij xij
i, j
2,3 s 1,2
a 2,1 b
4,2
c 3,1 d
1,3
1,2
t
3,2
5,2
山东财经大学
优化问题建模
马建华
问题: * * v 求一个可行流 x ( xij ) ,使其流值为得
,并且费用达到最小。
W ( e ) max W ( e )
e C ( e )
其中
C (e ) T e
为一个唯一的回路。
山东财经大学
优化问题建模
马建华
算法步骤
第 1 步 开始把边按权的大小由小到大排列起来,即 a1 , a 2 ,..., a m ,i 0 , j 1 。 第 2 步 若 | S | i n 1 ,则停。这时G[ S ] T 即为所求;否则, 转向第 3 步。 第 3 步 若 G [ S {a j }] 不构成回路, 则置 e a ,S S {ei 1 } , i i 1 , j j 1 ,转向第 2 步;否则,置 j j 1 ,转向第 2 步。 置

山东财经大学
优化问题建模
马建华
组合优化问题


有限个可行方案中选择最优方案 最优解一定存在 可行方案的个数非常多,枚举法不可行,往往是 NP-hard问题
山东财经大学
优化问题建模
马建华
组合优化问题


组合计数问题 最小费用最大流问题 最短路问题 网络设计问题 最优匹配问题 装箱问题 旅游售货员问题 车辆路径问题
山东财经大学
优化问题建模
马建华
算例
求解下图所示有向网络中自点 1 到点 6 的最大流。 其中每条弧上的数表示其容量。
5 1 3
2 2 4 4
3 7
3 1 5
2 6
6
2
山东财经大学
优化问题建模
马建华
迭代过程
5,2
1 2 2 4
3,2
7
3
1 5
2,2
6,2 6
3,2
4
2,2
-∞ 1
+1,3 2 3 2 1 4 4 +1,1
1 +2,1 3 7 1 5
2,2 6,2 6
2,2
山东财经大学
优化问题建模
马建华
山东财经大学
优化问题建模
马建华
结果
山东财经大学
优化问题建模
马建华
最小费用流问题
cij 给定有向网络 G ( N , A, C ,W ) ,其中
表示 弧 (i, j ) A 的 容 量 ,wij 表 示 单 位 流 通 过 弧
马建华
结果
flag = 1. phi = ! 2. c = 11. 1. 1. 1. 2. !
山东财经大学
优化问题建模
马建华
运输问题
运出地 (n个) 可 运 a2 出 量 a
3
运入地 (m个)
a1
b1
cij , i 1,2,..,n, j 1,2,...,m
b2
b3
b4
需 运 入 量
an
bm
山东财经大学
优化问题建模
马建华

g('edge_cost')=cost; g('edge_max_cap')=max_cap; demd=[-3,0,0,3]; g('node_demand')=demd; [c,phi,flag] = min_lcost_flow2(g)
山东财经大学
优化问题建模
山东财经大学
优化问题建模
马建华
算法步骤
第 1 步 (开始 )令x ( xij ) 是任意可行流,可能是零流,给 s 一个永久标号 ( , ) 。 第 2 步 (找增广路 ) (2.1) 如果所有标号都已经被检查,转到第 4 步。 i ,并做如下检查,对每 (2.2) 找一个标号但未检查的点 j 一个弧 (i , j ) ,如果 xij cij 且 未 j ( i , ( j )) 标号,则给 一个标号 ,其中 ( j ) min{ cij xij , (i )} ;对 每一个弧 且 未标号,则给 一个标号 ( i , ( j )) ,其中 ( j ) min{ x ji , (i )} 。 (2.3) 如果t 已被标号,转到第 3 步;否则,转到 (2.1)。
wij wij ui v j , i 1,2,...,m; j 1,2,...,n
若所有的 wij 均非负,则计算结束,这时得到的 {xij } 和 {ui , v j } 分别为 原始规划和对偶规划的最优解;否则,转第 4 步。 第 4 步 (调整原始可行解) 令 wst min {wij | wij 0} i, j 即选择 xst 进入基。对应于网络中,即在支撑树上加入弧 (s, t ) ,从而得 到一个回路。并选择其流量 xst ,使这个回路上的流量通过加 或减 以达到去掉一条弧的目的,从而得到一个新的被改进的原始可行解 {xij } ,转第 2 步。
( j, i)
, 如 果 xij 0
j
j
山东财经大学
优化问题建模
马建华
第 3 步 (增广)由点t 开始, 试用指示标号构造一个增 广路,指示标号的正负则表示通过增加还是减少弧流量 s 来增大流值。抹去 点以外的所有标号,转到第 2 步。 第 4 步 (构造最小割)这时现行流是最大的,若把所 T S ,所有未标号点的集合记为 有标号点的集合记为 , 便得到最小容量割(S , T ) ,计算完成。
山东财经大学
优化问题建模
马建华
优化问题建模
优化问题概述 数学规划模型 组合优化模型 优化算法介绍 评价方法

山东财经大学
优化问题建模
马建华
优化问题建模
组合优化问题概述 网络优化设计 流量安排问题 路线选择问题

山东财经大学
优化问题建模
马建华
组合优化问题概述
组合优化问题 常见的组合优化问题 组合优化问题建模步骤
单位运量的运输费用
山东财经大学
优化问题建模
马建华
运输方案

确定每个运出地向个运入地运输货物的数量, 要求满足: 1、运出货物总量不得超过可运货物总量; 2、运入货物总量不得低于需运货物总量; 3、运输总费用最小
山东财经大学
优化问题建模
马建华
线性规划模型
ai 表示发点i 可供应的产品数量(i 1, 2,..., m ) ; b j 表示收点 j 所需的产品数量( j 1, 2,..., n ) ;
2,3 a s
2
4,2
2
c 3,1 d
1,3
2
2,3 a t s
2
4,2
2
c
1,3
3
2,1 b
1,2 5,2
相关文档
最新文档