2008年辽宁省高考文科数学试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年(辽宁卷)数学(文科考生使用)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合{}31M x x =-<<,{}3N x x =-≤,则M N = ( ) A .∅
B .{}3x x -≥
C .{}1x x ≥
D .{}1x x <
2.若函数(1)()y x x a =+-为偶函数,则a =( ) A .2-
B .1-
C .1
D .2
3.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )
A .(k ∈
B . (k ∈
C .()k ∈--
+ ∞,∞
D .()k ∈--
+ ∞,∞
4.已知01a <<,log log a a x =+1log 52
a y =,log log a a
z =,
则( ) A .x y z >>
B .z y x >>
C .y x z >>
D .z x y >>
5.已知四边形A B C D 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =
,则顶点
D 的坐标为( )
A .722⎛⎫
⎪⎝


B .122⎛

-
⎪⎝

, C .(32), D .(13),
6.设P 为曲线C :2
23y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为
04π⎡⎤
⎢⎥
⎣⎦
,,则点P 横坐标的取值范围为( ) A .112⎡⎤--
⎢⎥⎣

, B .[]10-,
C .[]01,
D .112
⎡⎤
⎢⎥⎣⎦

7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡
片上的数字之和为奇数的概率为( ) A .
13
B .
12
C .
23
D .
34
8.将函数21x
y =+的图象按向量a 平移得到函数1
2x y +=的图象,则( )
A .(11)=--,a
B .(11)=-,a
C .(11)=,a
D .(11)=-,a
9.已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪
--⎨⎪-+⎩
≤,≤,≥,则2z x y =+的最大值为( )
A .4
B .2
C .1
D .4-
10.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种
11.已知双曲线22291(0)y m x m -=>的一个顶点到它的一条渐近线的距离为15
,则m =
( ) A .1
B .2
C .3
D .4
12.在正方体1111ABC D A B C D -中,E F ,分别为棱1A A ,1C C 的中点,则在空间中与三条直线11A D ,E F ,C D 都相交的直线( ) A .不存在
B .有且只有两条
C .有且只有三条
D .有无数条
第Ⅱ卷(非选择题共90分)
二、填空题:本大题共4小题,每小题4分,共16分. 13.函数21()x y e x +=-<<+∞∞的反函数是 .
14
.在体积为的球的表面上有A 、B ,C 三点,AB =1,BC
,A ,C 两点的球面距
离为3
π,则球心到平面ABC 的距离为_________.
15.6
321(1)x x x ⎛
⎫++ ⎪⎝
⎭展开式中的常数项为 .
16.设02x π⎛⎫
∈ ⎪⎝⎭
,,则函数2
2sin 1sin 2x y x +=的最小值为 .
三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.
17.(本小题满分12分) 在A B C △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3
C π=.
(Ⅰ)若A B C △
,求a b ,;
(Ⅱ)若sin 2sin B A =,求A B C △的面积. 18.(本小题满分12分)
某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量 2 3 4
频数
20 50 30
(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率; (Ⅱ)若以上述频率作为概率,且各周的销售量相互独立,求
(ⅰ)4周中该种商品至少有一周的销售量为4吨的概率; (ⅱ)该种商品4周的销售量总和至少为15吨的概率. 19.(本小题满分12分)
如图,在棱长为1的正方体A B C D A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥A D '.
(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,
并求出这个值; (Ⅲ)若12
b =
,求D E '与平面PQEF 所成角的正弦值.
20.(本小题满分12分)
在数列||n a ,||n b 是各项均为正数的等比数列,设()n n n
b c n a =
∈*
N .
(Ⅰ)数列||n c 是否为等比数列?证明你的结论;
(Ⅱ)设数列|ln |n a ,|ln |n b 的前n 项和分别为n S ,n T .若12a =,
21
n n
S n T n =
+,求数
列||n c 的前n 项和. 21.(本小题满分12分)
在平面直角坐标系xOy 中,点P
到两点(0-,
,(0的距离之和等于4,设点P 的轨
迹为C . (Ⅰ)写出C 的方程;
(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时O A ⊥O B ?此时A B 的值是多少?
22.(本小题满分14分)
设函数322
()31()f x ax bx a x a b =+-+∈R ,在1x x =,2x x =处取得极值,且
122x x -=.
(Ⅰ)若1a =,求b 的值,并求()f x 的单调区间; (Ⅱ)若0a >,求b 的取值范围.
A B
C
D
E F
P
Q H A ' B '
C '
D ' G
2008年(辽宁卷)数学文科参考答案和评分参考.
1.D 2.C 3.B 4.C 5.A 6.A 7.C 8.A
9.B 10.B
11.D
12.D . 13.1(ln 1)(0)2
y x x =
-> 14.
32
15.35
16
17.本小题主要考查三角形的边角关系等基础知识,考查综合计算能力.满分12分. 解:(Ⅰ)由余弦定理得,224a b ab +-=, 又因为A B C △
1sin 2
ab C =
4ab =.·
··························· 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,
解得2a =,2b =.······················································ 6分
(Ⅱ)由正弦定理,已知条件化为2b a =, ································································· 8分 联立方程组2242a b ab b a ⎧+-=⎨=⎩,,
解得3a =
3b =.
所以A B C △
的面积1sin 2
3
S ab C =
=
.·······························································12分
18.本小题主要考查频率、概率等基础知识,考查运用概率知识解决实际问题的能力.满分
12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ························· 4分 (Ⅱ)由题意知一周的销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3,故所求的概率为
(ⅰ)4
110.70.7599P =-=. ············································································· 8分
(ⅱ)334
240.50.30.30.0621P C =⨯⨯+=. ·······················································12分
19.本小题主要考查空间中的线面关系和面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力.满分12分.
解法一:
(Ⅰ)证明:在正方体中,AD A D ''⊥,AD AB '⊥, 又由已知可得
PF A D '∥,PH AD '∥,PQ AB ∥,
所以PH PF ⊥,PH PQ ⊥, 所以PH ⊥平面PQEF .
所以平面PQEF 和平面PQGH 互相垂直.·································································· 4分 (Ⅱ)证明:由(Ⅰ)知
PF PH '==,,又截面PQEF 和截面PQGH 都是矩形,且PQ =1,所以截面
PQEF 和截面PQGH 面积之和是
)P A P Q '+
⨯=
·
···································································· 8分 (Ⅲ)解:设A D '交P F 于点N ,连结E N , 因为AD '⊥平面PQEF ,
所以D E N '∠为D E '与平面PQEF 所成的角. 因为1
2
b =
,所以P Q E F ,,,分别为A A ',B B ',B C ,A D 的中点.
可知4
D N '=,32
D E '=.
所以4sin 32
2
D EN '=
=
∠. ················································································12分
解法二:
以D 为原点,射线DA ,DC ,DD ′分别为x ,y ,z 轴的正半轴建立如图的空间直角坐标系D -xyz .由已知得1D F b =-,故
(100)A ,,,(101)A ',,,(000)D ,,,(001)D ',,,
(10)P b ,,,(11)Q b ,,,(110)E b -,,, (100)F b -,,,(11)G b ,,,(01)H b ,,.
(Ⅰ)证明:在所建立的坐标系中,可得
(010)(0)PQ PF b b ==-- ,,,,,, (101)P H b b =--
,,,
(101)(101)AD A D ''=-=-- ,,,,,.
因为00A D P Q A D P F ''== ,
,所以AD '
是平面PQEF 的法向量. 因为00A D PQ A D PH ''== ,
,所以A D ' 是平面PQGH 的法向量. 因为0AD A D ''= ,所以A D AD ''⊥ ,
所以平面PQEF 和平面PQGH 互相垂直. ···································································· 4分
(Ⅱ)证明:因为(010)E F =- ,
,,所以EF PQ EF PQ ∥,=,又PF PQ ⊥
,所以PQEF
A B
C
D
E
F
P Q H
A '
B '
C '
D '
G
N
为矩形,同理PQGH 为矩形.
在所建立的坐标系中可求得)PH b =-
,PF =

所以PH PF +=
1PQ =

所以截面PQEF 和截面PQGH
············································· 8分
(Ⅲ)解:由(Ⅰ)知(101)AD '=-
,,是平面PQEF 的法向量.
由P 为A A '中点可知,Q E F ,,分别为B B ',B C ,A D 的中点.
所以1102E ⎛⎫ ⎪⎝⎭,,,1112D E ⎛⎫'=- ⎪⎝⎭ ,
,,因此D E '与平面PQEF 所成角的正弦值等于
|cos |2
AD D E ''<>=
,. ··························································································12分
20.本小题主要考查等差数列,等比数列,对数等基础知识,考查综合运用数学知识解决问题的能力.满分12分.
解:(Ⅰ)n c 是等比数列. ·························································································· 2分 证明:设n a 的公比为11(0)q q >,n b 的公比为22(0)q q >,则
1112111
0n n n n n n
n n n n c b a b a q
c a b b a q +++++=
==≠ ,故n c 为等比数列.·
·········································· 5分 (Ⅱ)数列ln n a 和ln n b 分别是公差为1ln q 和2ln q 的等差数列.
由条件得
11
12
(1)ln ln 22
(1)21
ln ln 2
n n n a q n n n n b q -+
=-++
,即
1112
2ln (1)ln 2ln (1)ln 21
a n q n
b n q n +-=
+-+. ···················································································· 7分
故对1n =,2,…,
2
12111211(2ln ln )(4ln ln 2ln ln )(2ln ln )0q q n a q b q n a q -+--++-=.
于是
121112112ln ln 04ln ln 2ln ln 02ln ln 0.
q q a q b q a q -=⎧⎪
--+=⎨⎪-=⎩


将12a =代入得14q =,216q =,18b =. ································································10分
从而有1
1
816424
n n
n n c --=
= .
所以数列n c 的前n 项和为 24444(41)
3
n
n
+++=
-
…. ·······································12分 21.本小题主要考查平面向量,椭圆的定义、标准方程及直线与椭圆位置关系等基础知识,考查综合运用解析几何知识解决问题的能力.满分12分. 解:
(Ⅰ)设P (x ,y ),由椭圆定义可知,点P 的轨迹C
是以(0(0-,,为焦点,长半
轴为2
的椭圆.它的短半轴1b =
=,
故曲线C 的方程为2
2
14
y
x +
=. ·
················································································· 4分 (Ⅱ)设1122()()A x y B x y ,,,,其坐标满足
2
214 1.y x y kx ⎧+
=⎪⎨
⎪=+⎩
, 消去y 并整理得22(4)230k x kx ++-=, 故12122
2
234
4
k x x x x k k +=-
=-
++,.······································································· 6分
OA OB ⊥
,即12120x x y y +=. 而2
121212()1y y k x x k x x =+++,
于是2
2
2
12122
2
2
2
3324114
4
4
4
k
k
k x x y y k k k k -++=--
-
+=
++++.
所以12
k =±时,12120x x y y +=,故OA OB ⊥
. ······················································· 8分
当12k =±时,12417
x x +=
,121217
x x =-

AB =
=
而22
212112()()4x x x x x x -=+-
23
2
2
4
43413417
17
17
⨯⨯=
+⨯
=

所以17
AB = ····································································································12分
22.本小题主要考查函数的导数,单调性、极值,最值等基础知识,考查综合利用导数研究函数的有关性质的能力.满分14分
解:22()323f x ax bx a '=+-.① ··············································································· 2分 (Ⅰ)当1a =时, 2()323f x x bx '=+-;
由题意知12x x ,为方程23230x bx +-=的两根,所以
123
x x -=
由122x x -=,得0b =. ··························································································· 4分 从而2()31f x x x =-+,2()333(1)(1)f x x x x '=-=+-.
当(11)x ∈-,时,()0f x '<;当(1)(1)x ∈--+ ∞,,∞时,()0f x '>.
故()f x 在(11)-,单调递减,在(1)--∞,,(1)+,∞单调递增.···································· 6分 (Ⅱ)由①式及题意知12x x ,为方程223230x bx a +-=的两根,
所以123x x a
-=

从而2
2
1229(1)x x b a a -=⇔=-,
由上式及题设知01a <≤. ························································································· 8分 考虑23()99g a a a =-,
2
2()1827273g a a a a a ⎛⎫
'=-=--
⎪⎝
⎭. ········································································10分 故()g a 在203⎛⎫ ⎪⎝

,单调递增,在213
⎛⎫ ⎪⎝⎭
,单调递减,从而()g a 在(]01,
的极大值为24
33g ⎛⎫= ⎪⎝⎭

又()g a 在(]01,
上只有一个极值,所以24
33
g ⎛⎫= ⎪⎝⎭为()g a 在(]01,
上的最大值,且最小值为(1)0g =.
所以2
403b ⎡⎤
∈⎢⎥⎣⎦,,即b 的取值范围为33⎡-⎢⎣⎦
. ·
··············································14分。

相关文档
最新文档