初一绝对值专项培优训练

合集下载

1.3绝对值培优训练 浙教版七年级数学上册

1.3绝对值培优训练 浙教版七年级数学上册

1.3绝对值1. -2的绝对值是( )A .2B .-2 C.12 D .-122. 下列各式中,不成立的是( )A .|-5|=5B .-|5|=-5C .|-5|=|5|D .-|-5|=53. -13的绝对值是( ) A .-3 B .3 C.13 D .-134. 若|a|=2,则a 的值是( )A .-2B .2 C.12D .±2 5. 如图,数轴的单位长度为1,如果A ,B 表示的数的绝对值相等,那么点A 表示的数是( )A .-4B .-2C .0D .26. 如果|a|=-a ,则a 是( )A .正数B .负数C .非负数D .非正数7. 若|a|=|b|,则a 与b 的关系是( )A .相等B .互为相反数C .相等或互为相反数D .无法判断8. 如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q二.填空题9.|−13| 的相反数________.10.已知|x|=3,|y|=5,且xy <0,则x ﹣y 的值等于________.11.绝对值不大于5的所有整数的积等于________.12.在数轴上,表示 −2020 的点与原点的距离是________.13.如图,已知四个有理数m 、n 、p 、q 在一条缺失了原点和刻度的数轴上对应的点分别为M 、N 、P 、Q , 且m + p = 0,则在m , n , p , q 四个有理数中,绝对值最小的一个是________.14.如图,数轴的单位长度为1.如果点B 、C 表示的数互为相反数,那么点A 表示的数的绝对值为________.15.若 a,b 互为相反数, c,d 互为倒数, m 的绝对值是5,则 2020(a +b)−cd +m 2 的值是________.16.若|a|=1,|b|=2,|c|=3,且a>b>c ,则a+b-c=________.三.解答题17.计算:(1)|-10|+|-5|; (2)|-6|÷|-3|;(3)|-6.5|-|-5.5|; (4)|-3|+|+5|-|-4|;(5)-(-6)÷|+(-2)|.18.计算:⎪⎪⎪⎪⎪⎪14-13+⎪⎪⎪⎪⎪⎪15-14+⎪⎪⎪⎪⎪⎪16-15+…+⎪⎪⎪⎪⎪⎪120-119.19.有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,其位置如图1-3-1所示.试化简|a|+|b |+|c |.图1-3-120.已知│a │=3,│b │=5,a 与b 异号,求│a -b │的值.21.如果a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是1,求式子:a +b x+x +cd 的值.22.(1)对于式子|a |+12,当a 等于什么值时,它的值最小?最小值是多少?(2)对于式子12-|a |,当a 等于什么值时,它的值最大?最大值是多少?1---8 ADCDB DCC9.解:由题意知,|−13|= 13,13的相反数是−13,故答案:−13.10.解:|x|=3,∴x=±3,∵|y|=5,∴y=±5,∵xy<0,∴x=3, y=-5或x=-3, y=5,∴x-y=8或-8.故答案为:8或-811.解:绝对值不大于5的所有整数为:-5、-4、-3、-2、-1、0、1、2、3、4、5,则这些数的积为0.故答案为:0.12.解:在数轴上,表示−2020的点与原点的距离就是-2020的绝对值,|−2020|=2020.故答案为:2020.13.解:∵m+p=0,∴m与p互为相反数,且线段MP中点为坐标原点,且易知原点最靠近点Q,根据绝对值的几何意义知:绝对值最小的数是q故答案为:q14.解:由数轴可知,BC=4,∵点B、C表示的数互为相反数,∴B点表示的数是-2,A在B的左侧2个单位,则点A表示的数为-4,它的绝对值为4故答案为:4.15.解:∵a,b互为相反数,c,d互为倒数,m的绝对值是5,∴a+b=0,cd=1,m=±5,2020(a+b)−cd+m2=2020×0−1+(±5)2=24,故答案为:24.16.解:由|a|=1,|b|=2,|c|=3,知a=±1,b=±2,c=±3,又因为a>b>c,故b=−2,c=−3,则①当a=1时,a+b−c=1+(−2)−(−3)=2;②当a=−1时,a+b−c=−1+(−2)−(−3)=0.故答案为:0或2.17.解:(1)|-10|+|-5|=10+5=15;(2)|-6|÷|-3|=6÷3=2;(3)|-6.5|-|-5.5|=6.5-5.5=1;(4)|-3|+|+5|-|-4|=3+5-4=4;(5)-(-6)÷|+(-2)|=6÷2=3.18.解:原式=⎝ ⎛⎭⎪⎫13-14+⎝ ⎛⎭⎪⎫14-15+⎝ ⎛⎭⎪⎫15-16+…+⎝ ⎛⎭⎪⎫119-120 =13-14+14-15+15-16+…+119-120=13-120=1760. 19.解:根据题意得: a >0,c >0,b <0,则|a |+|b |+|c |=a -b +c .20.解:由| a |=3,| b |=5,得a =±3,a =±5.则| a -b |=|3-5|=2,或| a -b |=|-3-5|=8.21解:由题意得a +b =0,cd =1,|x|=1.所以a +b x+x +cd , =x +1,由| x |=1,得x =±1.所以原式=1+1=2,或原式=-1+1=0.22解:(1)∵|a |≥0,∴|a |+12≥12,所以当a 等于0时,值最小,最小值是12;(2)∵|a |≥0,∴-|a |≤0,∴12-|a |≤12,∴当a 等于0时,值最大,最大值是12.。

绝对值培优类型题

绝对值培优类型题

绝对值培优类型题一、绝对值的代数意义绝对值表示一个数在数轴上所对应点到原点的距离。

用“|a|”来表示,读作“绝对值”。

二、绝对值的几何意义一个数的绝对值就是表示该数的点离开原点的距离。

三、绝对值的基本性质1. 当a为非负数时,|a|=a;当a为负数时,|a|=-a;当a=0时,|a|=0。

2. 绝对值总是非负的,即|a|≥0。

3. 若|a|=|b|,则a=b或a=-b。

4. 若几个非负数的和为0,则每个非负数都等于0。

四、绝对值的运算性质1. |a|=-|a|当且仅当a=0;|a|=|b|当且仅当a=b或a=-b。

2. 两个负数,绝对值大的反而小。

3. 正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。

4. |ab|=|a||b||ab|=|a||b|。

5. 互为相反数的两个数的绝对值相等。

6. 符号法则:正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0。

五、绝对值的取值范围一个数的绝对值越小,则该数越接近于0;反之,一个数的绝对值越大,则该数越远离于0。

六、绝对值在函数中的应用1. 一次函数:y=kx+b,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

其中b是y轴上的截距,可以表示该函数在y轴上的取值范围。

函数的图象是一条直线。

当直线在x轴上方时,y为正值;在x轴下方时,y为负值。

因此,一次函数的绝对值表示该函数在x轴上方的部分所对应的面积。

2. 二次函数:y=ax²+bx+c,函数的图象是一条抛物线。

当抛物线开口向上时,最低点为该函数的极小值点;当抛物线开口向下时,最高点为该函数的极大值点。

抛物线与x轴的交点表示该函数在x轴上的取值情况。

因此,二次函数的绝对值表示该函数在x轴上方的部分所对应的面积。

3. 分式函数:y=f(x)=x/m(x≠±√m),函数的图象是一条折线段。

由于分母不为零,因此该函数在x轴上方的部分所对应的面积即为该函数的正值范围。

初一七年级绝对值练习(含例题、基础、培优)

初一七年级绝对值练习(含例题、基础、培优)

初一七年级绝对值练习(含例题、基础、培优)例题部分一、根据题设条件例1 设化简的结果是()。

(A)(B)(C)(D)思路分析由可知可化去第一层绝对值符号,第二次绝对值符号待合并整理后再用同样方法化去.解∴应选(B).归纳点评只要知道绝对值将合内的代数式是正是负或是零,就能根据绝对值意义顺利去掉绝对值符号,这是解答这类问题的常规思路.二、借助数轴例2 实数a、b、c在数轴上的位置如图所示,则代数式的值等于().(A)(B)(C)(D)思路分析由数轴上容易看出,这就为去掉绝对值符号扫清了障碍.解原式∴应选(C).归纳点评这类题型是把已知条件标在数轴上,借助数轴提供的信息让人去观察,一定弄清:1.零点的左边都是负数,右边都是正数.2.右边点表示的数总大于左边点表示的数.3.离原点远的点的绝对值较大,牢记这几个要点就能从容自如地解决问题了.三、采用零点分段讨论法例3 化简思路分析本类型的题既没有条件限制,又没有数轴信息,要对各种情况分类讨论,可采用零点分段讨论法,本例的难点在于的正负不能确定,由于x是不断变化的,所以它们为正、为负、为零都有可能,应当对各种情况—一讨论.解令得零点:;令得零点:,把数轴上的数分为三个部分(如图)①当时,∴原式②当时,,∴原式③当时,,∴原式∴归纳点评虽然的正负不能确定,但在某个具体的区段内都是确定的,这正是零点分段讨论法的优点,采用此法的一般步骤是:1.求零点:分别令各绝对值符号内的代数式为零,求出零点(不一定是两个).2.分段:根据第一步求出的零点,将数轴上的点划分为若干个区段,使在各区段内每个绝对值符号内的部分的正负能够确定.3.在各区段内分别考察问题.4.将各区段内的情形综合起来,得到问题的答案.误区点拨千万不要想当然地把等都当成正数或无根据地增加一些附加条件,以免得出错误的结果.练习:请用文本例1介绍的方法解答l、2题1.已知a、b、c、d满足且,那么2.若,则有()。

初一数学《绝对值》专项练习(含答案)

初一数学《绝对值》专项练习(含答案)

绝对值姓名:__________班级:__________考号:__________一 、选择题1.已知|x|=0.19,|y|=0.99,且0<yx ,则x-y 的值为( ) A 、1.18或-1.18 B 、0.8或-1.18 C 、0.8或-0.8 D 、1.18或-0.82.已知:x <0<z ,xy >0,且|y|>|z|>|x|,那么|x+z|+|y+z|-|x-y|的值( )A 、是正数B 、是负数C 、是零D 、不能确定符号3.如果|-a|=-a ,则a 的取值范围是(A 、a >OB 、a ≥OC 、a ≤OD 、a <O4.如果a 的绝对值是2,那么a 是( )A 、2B 、-2C 、±2D 、21±5.已知a 、b 互为相反数,且|a-b|=6,则|b-1|的值为( )A 、2B 、2或3C 、4D 、2或46.若|x+y|=y-x ,则有( )A 、y >0,x <0B 、y <0,x >0C 、y <0,x <0D 、x=0,y ≥0或y=0,x ≤07.下列说法,不正确的是( )A .数轴上的数,右边的数总比左边的数大B .绝对值最小的有理数是0C .在数轴上,右边的数的绝对值比左边的数的绝对值大D .离原点越远的点,表示的数的绝对值越大8.给出下面说法,其中正确的有( )(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m ,则m <0;(4)若|a|>|b|,则a >b ,A 、(1)(2)(3)B 、(1)(2)(4)C 、(1)(3)(4)D 、(2)(3)(4)9.一个数与这个数的绝对值相等,那么这个数是( )A 、1,0B 、正数C 、非正数D 、非负数11.若1-=x x,则x 是( )A 、正数B 、负数C 、非负数D 、非正数12.若|a-3|=2,则a+3的值为( )A 、5B 、8C 、5或1D 、8或413.如果|x-1|=1-x ,那么( )A 、x <1B 、x >1C 、x ≤1D 、x ≥114.已知|x|=5,|y|=2,且xy >0,则x-y 的值等于( )A 、7或-7B 、7或3C 、3或-3D 、-7或-315.如图,下列各数中,数轴上点A 表示的可能是( )A .2的平方B .-3.4的绝对值C .-4.2的相反数D .512的倒数16.已知:a >0,b <0,|a|<|b|<1,那么以下判断正确的是() A 、1-b >-b >1+a >aD 、1-b >1+a >-b >aC 、1+a >1-b >a >-bB 、1+a >a >1-b >-b17.a <0,ab <0,计算|b-a+1|-|a-b-5|,结果为( )A 、6B 、-4C 、-2a+2b+6D 、2a-2b-618.在-(-2),-|-7|,3-+,23-,115⎛⎫-+⎪⎝⎭中,负数有()A.1个B.2个C.3个D.4个19.若a<0,则4a+7|a|等于()A、11aB、-11aC、-3aD、3a20.有理数a,b,c在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc<0 (2)|a-b|+|b-c|=|a-c| (3)(a-b)(b-c)(c-a)>0 (4)|a|<1-bc其中正确的命题有()A、4个B、3个C、2个D、1个21.下列说法正确的有()①有理数的绝对值一定比0大;②如果两个有理数的绝对值相等,那么这两个数相等;③互为相反数的两个数的绝对值相等;④没有最小的有理数,也没有绝对值最小的有理数;⑤所有的有理数都可以用数轴上的点来表示;⑥符号不同的两个数互为相反数.A、②④⑤⑥B、③⑤C、③④⑤D、③⑤⑥22.到数轴原点的距离是2的点表示的数是()A、±2B、2C、-2D、4二、填空题23.若220x x-+-=,则x的取值范围是24.23-的相反数的绝对值的倒数是25.已知a,b,c为三个有理数,它们在数轴上的对应位置如图所示,则|c-b|-|b-a|-|a-c|= _________26.若3230x y-++=,则yx的值是多少?27.若x<2,则|x-2|+|2+x|=________________28.当x __________时,|2-x|=x-229.在数轴上表示数a的点到原点的距离是13,那么a=30.计算:3π-= ,若23x-=,则x=31.已知|x|=2,|y|=3,且xy<0,则x+y的值为 _________同可能.当a、b、c都是正数时,M= ______;当a、b、c中有一个负数时,则M= ________;当a、b、c中有2个负数时,则M= ________;当a、b、c都是负数时,M=__________ .33.若x<-2,则|1-|1+x||=______;若|a|=-a,则|a-1|-|a-2|= ________34.如图,有理数x,y在数轴上的位置如图,化简:|y-x|-3|y+1|-|x|= ________35.绝对值不大于7且大于4的整数有个,是36.2的绝对值是.37.绝对值等于2的数有个,是38.已知00x z xy y z x <<>>>,,,那么x z y z x y +++--=39.的相反数是 ;倒数是 ;绝对值是 . 40.若|a|+a=0,|ab|=ab ,|c|-c=0,化简:|b|-|a+b|-|c-b|+|a-c|= ________41.如图所示,a 、b 是有理数,则式子|a|+|b|+|a+b|+|b-a|化简的结果为 __________43.已知a ,b ,c 的位置如图,化简:|a-b|+|b+c|+|c-a|= ______________三 、解答题44.已知a a =-,0b <,化简22442(2)24323a b a b a b b a +--+++-- 45.如果有理数a 、b 、c 在数轴上的位置如图所示,求11a b b a c c +------的值.46.如果3a b -+47.已知:①52a b ==,,且a b <;分别求a b ,的值48.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-49.已知x ,y ,z满足21441()02x y z -+-=,求()x z y -的值. 50.设,,a b c 为非零实数,且0a a +=,ab ab =,0c c -=.化简b a b c b a c -+--+-51.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--52.已知a a =-,0b <,化简22442(2)24323a ba b a b b a +--+++-- 53.()02b 1a 2=-++,分别求a ,b 的值54.数,a b 在数轴上对应的点如右图所示,化简a b b a b a a ++-+--绝对值答案解析一、选择题1.A2.C;由题意可知,x、y、z在数轴上的位置如图所示:所以|x+z|+|y+z|-|x-y|=x+z-(y+z)-(x-y)=03.C4.C5.D6.D;解:∵|x+y|=y-x,又当x+y≥0时,|x+y|=x+y,可得x=0,y≥0或者y=0,x≤0 又当x+y≤0时,|x+y|=-x-y,可得y=0,x≤0或x=0,y≥0 ∴x=0,y≥0或y=0,x≤0选D.7.C8.A9.D10.B11.B12.D13.C14.C15.B16.D17.A;根据已知条件先去掉绝对值即可求解.18.C19.C20.B21.B22.A二 、填空题23.2x ≤24.3227.4或-2x28.x ≥229.13a =±30.3π-,5x =或1-31.±132.当a 、b 、c 中都是正数时,M=1+1+1=3;当a 、b 、c 中有一个负数时,不妨设a 是负数,则M=-1+1+1=1;当a 、b 、c 中有2个负数时,不妨设a ,b 是负数,则M=-1-1+1=-1; 当a 、b 、c 都是负数时,M=-1-1-1=-3;故M 有4种不同结果.33.-2-x ,-134.2y+3;根据数轴图可知:x >0,y <-1,∴|y-x|=x-y ,|y+1|=-1-y ,|x|=x ;∴|y-x|-3|y+1|-|x|=x-y+3(1+y )-x=2y+3. 35.6个,5±、6±、7±237.2个,2±38.解:∵ 0x z <<,0xy > ∴0y <∵y z x >> ∴y z x ->>- ∴0x z +>,0y z +<,0x y ->∴原式=()()()0x z y z x y x z y z x y +-+--=+---+=;.40.∵|a|+a=0,|ab|=ab,|c|-c=0,∴a≤0,b≤0,c≥0,∴a+b≤0,c-b≥0,a-c≤0,∴原式=-b+a+b-c+b-a+c=b.故答案为b.41.3b-a42.【解析】根据绝对值的定义,对本题需去括号,那么牵涉到x的取值,因而分①当x<-1;②当-1≤x≤5;③当x>5这三种情况讨论该式的最小值.【答案】①当x<-1,|x+1|+|x-5|+4=-(x+1)+5-x+4=8-2x>10,②当-1≤x≤5,|x+1|+|x-5|+4=x+1+5-x+4=10,③当x>5,|x+1|+|x-5|+4=x+1+x-5+4=2x>10;所以|x+1|+|x-5|+4的最小值是10.故答案为:10.43.2a;由数轴可知a<c<0<b,所以a-b<0,b+c<0,c-a>0,则|a-b|+|b+c|+|c-a|=b-a-b-c+c-a=-2a.三、解答题44.解:∵a a=-∴0a≤∵0b<∴20a b+<,230a-<∴原式=22(2)42(2)24323a ba b a b b a-++-++++-=242222a b a b a b-+++++=42a b+45.解:如图所示,得0a b<<,01c<<∴0a b+<,10b-<,0a c-<,10c->∴原式=()(1)()(1)a b b a c c-++-+---=11a b b a c c--+-+--+=2-46.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3=.47.解:∵5a =,2b =∴5a =±,2b =±∵a b < ∴5a =-,2b =±48.∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=49.由题可知441020102x y y z z ⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y -1111()()22416=--⨯-=.50.解: ∵0a a +=、0c c -= ∴a a =-,c c =∵a 、b 、c 为非零实数,∴0a <,0c > ∵ab ab = ∴0ab > ∴0b <∴0a b +<,0c b ->,0a c -<∴原式=()()()()b a b c b a c -++----=b a b c b a c b -++-+-+=51.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2a b b a b a a a b b a b a b -++-+-+=--+-++=52.解:∵a a =- ∴0a ≤ ∵0b < ∴20a b +<,230a -<∴原式=22(2)42(2)24323a b a b a b b a -++-++++-=242222a b a b a b -+++++=42a b+ 53.()02,012≥-≥+b a 可得02,01=-=+b a ;所以2,1=-=b a54.解:如图,得0a <,0b >,0a b +<,0b a ->∴原式=()()2 -++-+-+=--+-++=a b b a b a a a b b a b a b。

七上绝对值培优专题

七上绝对值培优专题

七年级数学培优专题讲解绝对值培优一、 绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。

(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。

也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数二、 典型例题例1.已知a 、b 、c 在数轴上位置如图: 则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )A .-3aB . 2c -aC .2a -2bD . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号例3.已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个例5.已知|ab -2|与|a -1|互为相互数,试求下式的值:()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ .(2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________.说明:(Ⅰ)|a|≥0即|a|是一个非负数; (Ⅱ)|a|概念中蕴含分类讨论思想。

(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___.(4) 满足341>+++x x 的x 的取值范围为 ______ .(5)若1232008x x x x -+-+-++-的值为常数,试求x 的取值范围.例7.若24513a a a +-+-的值是一个定值,求a 的取值范围.例8.已知112x x ++-=,化简421x -+-.例9.若245134x x x +-+-+的值恒为常数,则x 应满足怎样的条件?此常数的值为多少?练习题 1.如果有理数a 、b 、c 在数轴上的位置如图所示,求a b a c b c ++--+的值. b -1 c 0 a 12.已知2x ≤,求32x x --+的最大值与最小值.3.若0abc <,求a b c a b c +-的值4.有理数a ,b ,c ,d 满足1abcdabcd =-,求abcda b c d+++的值.5.试求123...2005x x x x -+-+-++-的最小值6. 已知式子:431744+---+-x x x 的值恒为一个常数,求x 的取值范围。

绝对值专项培优训

绝对值专项培优训

绝对值培优训练一、选择题1.(2分)(2022秋•南通期末)已知a,b为有理数,ab≠0,且.当a,b取不同的值时,M的值等于()A.±5 B.0或±1 C.0或±5 D.±1或±52.(2分)(2022秋•南通期末)有理数a,b在数轴上的位置如图所示,则数a,b,﹣a,﹣b的大小关系为()A.﹣a<﹣b<b<a B.﹣a<b<a<﹣b C.﹣a<b<﹣b<a D.﹣a<﹣b<a<b3.(2分)(2022秋•黔江区期末)下列式子化简不正确的是()A.+(﹣6)=﹣6 B.﹣(﹣0.8)=0.8C.﹣|+0.3|=﹣0.3 D.4.(2分)(2022秋•江都区期末)已知a、b、c的大致位置如图所示:化简|a+c|﹣|a+b|的结果是()A.2a+b+c B.b﹣c C.c﹣b D.2a﹣b﹣c5.(2分)(2022秋•鲤城区校级月考)适合|3a+7|+|3a﹣5|=12的整数a的值有()A.4个B.5个C.7个D.9个6.(2分)(2022秋•城西区期中)若|a﹣2|+|b+3|=0,则(a+b)2016的值是()A.0 B.1 C.﹣1 D.20167.(2分)(2022秋•朝阳区校级期中)式子|x﹣1|+3取最小值时,x等于()A.1 B.2 C.3 D.08.(2分)(2022秋•黄埔区校级期中)设实数a、b、c满足a<b<c(ac<0),且|c|<|b|<|a|,则|x﹣a|+|x﹣b|+|x+c|的最小值是()A.B.|b| C.c﹣a D.﹣c﹣a9.(2分)(2022秋•宛城区校级月考)若m、n互为相反数,则在①m+n=0;②|m|=|n|;③m2=n2;④m3=n3;⑤mn=﹣n2中,必定成立的有()A.2个B.3个C.4个D.5个10.(2分)(2021秋•锡山区期末)两数a、b在数轴上对应点的位置如图所示,下列判断正确的是()A.a+b>0 B.a+b<0 C.a﹣b<0 D.|a|﹣|b|>0评卷人得分二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请将正确答案填写在横线上)11.(2分)(2022秋•晋江市期末)若abcd≠0,则=.12.(2分)(2021秋•绵竹市期末)代数式|x+1009|+|x+506|+|x﹣1012|的最小值是.13.(2分)(2022秋•黔西南州期中)已知|2x﹣4|+|3y﹣9|=0,则(x﹣y)2022=.14.(2分)(2021秋•呈贡区校级期末)已知实数a,b,c,则化简+++3×结果是.15.(2分)(2022秋•辉县市期中)若|a﹣|+|b+1|=0,则a+b=.16.(2分)(2020秋•饶平县校级期中)当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.17.(2分)(2016秋•龙泉驿区期末)如果x、y都是不为0的有理数,则代数式的最大值是.18.(2分)(2014秋•巴南区期末)已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|=.19.(2分)(2022•南京模拟)若不等式|x﹣2|+|x+3|+|x﹣1|+|x+1|≥a对一切数x都成立,则a的取值范围是.20.(2分)(2019秋•秦安县期中)式子|m﹣3|+6的值随着m的变化而变化,当m=时,|m﹣3|+6有最小值,最小值是.评卷人得分三、解答题(本大题共8小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(6分)(2023秋•南安市月考)把下列各数:2,0,﹣3,,在数轴上表示出来,并按从小到大的顺序用“<”连接起来.22.(6分)(2022秋•西安期末)【阅读】|5﹣2|表示5与2差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|可以看作|5﹣(﹣2)|,表示5与﹣2的差的绝对值,也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.【探索】(1)若|x﹣2|=5,则x=;(2)利用数轴,找出所有符合条件的整数x,使x所表示的点到2和﹣1所对应的点的距离之和为3.(3)由以上探索猜想,对于任意有理数x,|x﹣2|+|x+3|是否有最小值?如果有,写出最小值;如果没有,说明理由.23.(8分)(2022秋•泗阳县校级月考)有理数a,b,c在数轴上的位置如图所示.(1)用“<”连接:a,﹣a,b,﹣b,c,﹣c;(2)化简:|a﹣b|+|a+b|+|b﹣c|.24.(8分)(2022秋•郫都区校级期末)有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,c﹣a0.(2)化简:|b﹣c|+|a+b|﹣|c﹣a|.25.(8分)(2022秋•渠县校级期末)a、b、c三个数在数轴上位置如图所示,且|a|=|b| (1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.26.(8分)(2022秋•永兴县期末)对于有理数x,y,a,t,若|x﹣a|+|y﹣a|=t,则称x和y关于a的“美好关联数”为t,例如,|2﹣1|+|3﹣1|=3,则2和3关于1的“美好关联数”为3.(1)﹣3和5关于2的“美好关联数”为;(2)若x和2关于3的“美好关联数”为4,求x的值;(3)若x0和x1关于1的“美好关联数”为1,x1和x2关于2的“美好关联数”为1,x2和x3关于3的“美好关联数”为1,…,x40和x41关于41的“美好关联数”为1,….①x0+x1的最小值为;②x1+x2+x3+……+x40的最小值为.27.(8分)(2022秋•江阴市期中)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示3和2的两点之间的距离是;表示﹣2和1两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=2,那么x=;(3)若|a﹣3|=4,|b+2|=3,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣3与5之间,则|a+3|+|a﹣5|=.(5)当a=时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是.28.(8分)(2022秋•铁东区校级月考)结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣1的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|的值为;(3)利用数轴找出所有符合条件的整数点x,使得|x+2|+|x﹣5|=7,这些点表示的数的和是.(4)当a=时,|a+3|+|a﹣1|+|a﹣4|的值最小,最小值是.。

七年级上册数学绝对值专项训练

七年级上册数学绝对值专项训练

人教版七年级上册数学绝对值专项训练一、绝对值的概念1. 定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|。

2. 性质:-绝对值具有非负性,即|a|≥0。

-互为相反数的两个数的绝对值相等,即若a 与b 互为相反数,则|a| = |b|。

二、典型例题1. 求一个数的绝对值-例1:求|-5|的值。

解:|-5| = 5。

-例2:求|0|的值。

解:|0| = 0。

-例3:求|3.5|的值。

解:|3.5| = 3.5。

2. 已知一个数的绝对值求这个数-例4:已知|a| = 4,求a 的值。

解:因为|a| = 4,所以 a = 4 或 a = -4。

-例5:已知|b| = -2,求b 的值。

解:因为绝对值具有非负性,所以不存在一个数的绝对值为负数,此题无解。

3. 绝对值的化简-例6:化简|2 - 5|。

解:|2 - 5| = |-3| = 3。

-例7:化简|x - 3|(x<3)。

解:因为x<3,所以x - 3<0,那么|x - 3| = 3 - x。

4. 绝对值的运算-例8:计算|3| + |-2|。

解:|3| + |-2| = 3 + 2 = 5。

-例9:计算|5 - 3| - |2 - 4|。

解:|5 - 3| - |2 - 4| = |2| - |-2| = 2 - 2 = 0。

三、专项练习1. 填空题- |-8| = ____。

-若|x| = 6,则x = ____。

-绝对值等于3 的数是____。

- |0 - 5| = ____。

2. 选择题-下列说法正确的是()。

A. 绝对值等于它本身的数只有0B. 绝对值等于它本身的数是正数C. 绝对值等于它本身的数是非负数D. 绝对值等于它本身的数是负数-若|a| = -a,则a 一定是()。

A. 正数B. 负数C. 非正数D. 非负数3. 解答题-已知|a - 2| + |b + 3| = 0,求a、b 的值。

-化简|x - 1| + |x - 3|(1<x<3)。

七年级数学上绝对值专项练题

七年级数学上绝对值专项练题

七年级数学上绝对值专项练题一、绝对值专项练习题。

1. 求下列各数的绝对值:- 5- -3- 0- -(2)/(3)解析:- 根据绝对值的定义,正数的绝对值是它本身,所以|5| = 5。

- 负数的绝对值是它的相反数,所以| - 3|=3。

- 0的绝对值是0,即|0| = 0。

- |-(2)/(3)|=(2)/(3)。

2. 已知| a| = 3,求a的值。

解析:- 因为| a| = 3,根据绝对值的定义,绝对值等于3的数有两个,一个是3,另一个是-3,所以a = 3或a=-3。

3. 比较大小:| - 5|与4。

解析:- 先求出| - 5| = 5。

- 因为5>4,所以| - 5|>4。

4. 计算:| - 2|+|3|。

解析:- 先分别求出绝对值,| - 2| = 2,|3| = 3。

- 然后计算2 + 3=5。

5. 计算:| - 4|-| - 2|。

解析:- 先求绝对值,| - 4| = 4,| - 2| = 2。

- 再计算4-2 = 2。

6. 若| x - 1| = 0,求x的值。

解析:- 因为| x - 1| = 0,根据绝对值的性质,只有0的绝对值是0,所以x - 1 = 0,解得x = 1。

7. 已知| a|=| - 2|,求a的值。

解析:- 先求出| - 2| = 2。

- 因为| a| = 2,所以a = 2或a=-2。

8. 计算:| - 3|×| - 2|。

解析:- 先求绝对值,| - 3| = 3,| - 2| = 2。

- 然后计算3×2 = 6。

9. 计算:(| - 6|)/(|2|)。

解析:- 先求绝对值,| - 6| = 6,|2| = 2。

- 再计算(6)/(2)=3。

10. 若| a| = 5,| b| = 3,且a < b,求a、b的值。

解析:- 因为| a| = 5,所以a = 5或a=-5;因为| b| = 3,所以b = 3或b=-3。

专题03 绝对值的化简(专项培优训练)(学生版)

专题03 绝对值的化简(专项培优训练)(学生版)

专题03 绝对值的化简(专项培优训练)试卷满分:100分考试时间:120分钟试卷难度:0.48一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•涪城区模拟)若|a+2|=﹣a﹣2,则|a﹣1|﹣|2﹣a|=()A.3 B.﹣3 C.1 D.﹣12.(2分)(2022秋•惠山区校级期末)已知a、b、c的大致位置如图所示:化简|a+b|的结果是()A.﹣a﹣b B.a+b C.﹣a+b D.a﹣b3.(2分)(2023•邯郸三模)表示a是非负数的是()A.a>0 B.|a|≥0 C.a<0 D.a≥04.(2分)(2021秋•郸城县期末)式子|x﹣1|﹣3取最小值时,x等于()A.1 B.2 C.3 D.45.(2分)(2022秋•西安期中)下列结论成立的是()A.若|a|=a,则a>0 B.若|a|=|b|,则a=b或a=﹣bC.若|a|>a,则a≤0 D.若|a|>|b|,则a>b.6.(2分)(2022秋•九龙坡区校级期中)下列说法正确的有()①已知a,b,c是非零的有理数,且=﹣1时,则的值为1或﹣3;②已知a,b,c是有理数,且a+b+c=0,abc<0时,则的值为﹣1或3;③已知x≤4时,那么|x+3|﹣|x﹣4|的最大值为7,最小值为﹣7;④若|a|=|b|且|a﹣b|=,则式子的值为;⑤如果定义,当ab<0,a+b<0,|a|>|b|时,{a,b}的值为b﹣a.A.2个B.3个C.4个D.5个7.(2分)(2021秋•凉州区校级月考)若|m﹣3|+|n+2|=0,则m+2n的值为()A.﹣4 B.﹣1 C.0 D.48.(2分)(2020秋•龙马潭区期末)已知a是有理数,则下列结论正确的是()A.a≥0 B.|a|>0 C.﹣a<0 D.|a|≥09.(2分)(2021秋•汤阴县期中)已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.710.(2分)(2021秋•荔城区期末)若a<0,则2a+5|a|等于()A.3a B.﹣3a C.7a D.﹣7a二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023春•浦东新区期末)若|a﹣1|=1﹣a,则a的取值范围是.12.(2分)(2022秋•坪山区校级期末)已知a、b、c的位置如图所示,化简|a+b|﹣|c﹣a|+|b+c|=.13.(2分)(2022秋•泉州期末)单项式a是一个正数,且,那么的值为.(2分)(2022秋•余杭区校级期中)已知实数a,b,c,且a<b<0<c,则化简|a﹣b|﹣|c﹣a|=.14.15.(2分)(2022秋•东港区校级月考)已知|x﹣1|=3,|y|=2.则x﹣y的最大值是.16.(2分)(2021秋•东莞市期中)若|6﹣x|与|y+9|互为相反数,则x=,y=,(x+y)÷(x﹣y)=.17.(2分)(2022秋•鼓楼区校级月考)已知a,b为有理数,且|a+1|+|2013﹣b|=0,则a b=.18.(2分)(2020秋•晋江市校级期末)已知x为有理数,则|1﹣x|+|1﹣2x|+|1﹣3x|+……+|1﹣10x|的最小值为.(2022秋•海珠区校级期末)若a+b+c<0,abc>0,则的值为.(2分)19.20.(2分)(2020秋•饶平县校级期中)当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.三.解答题(共8小题,满分60分)21.(6分)(2022秋•子洲县校级月考)请根据图示的对话解答下列问题.(1)分别求出a和b的值.(2)已知|m﹣a|+|b+n|=0,求m﹣n的值.22.(8分)(2021秋•石峰区校级期中)阅读下列材料:|x|=,即当x<0时,1.当x>0时,用这个结论可以解决下面问题:(1)已知a>0,b<0时,求的值;(2)已知a,b,c是有理数,a+b+c=0,abc<0,求的值.23.(6分)(2022秋•祁阳县校级期中)若|a|=7,|b|=3,(1)若ab>0,求a+b的值.(2)若|a+b|=a+b,求a﹣b的值.24.(6分)(2022秋•越秀区校级期中)(1)化简:2|x﹣2|﹣|x+4|;(2)若2a+|4﹣5a|+|1﹣3a|的值是一个定值,求a的取值范围,并且求出定值.25.(6分)(2018秋•鲤城区期末)有理数a,b,c在数轴上的位置如图所示,试化简下式:|a﹣c|﹣|a﹣b|+|2a|.26.(10分)(2021秋•南昌县期中)分类讨论是一种重要的数学方法,如在化简|a|时,可以这样分类:当a>0时,|a|=a;当a=0时,|a|=0;当a<0时,|a|=﹣a.用这种方法解决下列问题:(1)当a=5时,求的值.(2)当a=﹣2时,求的值.(3)若有理数a不等于零,求的值.(4)若有理数a、b均不等于零,试求的值.27.(8分)(2016秋•景德镇期末)已知a+b+c=0,其中a>0,c<0且|a|<|c|,请根据绝对值的意义化简:(1)=,=;(2)请分析b的正负性,并求出++的值.28.(10分)(2020秋•城关区校级期中)阅读下列材料并解决有关问题:我们知道|x|=,现在我们可以用这个结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x ﹣2=0,分别求得x=﹣1,x=2(称﹣1,2分别叫做|x+1|与|x﹣2|的零点值.)在有理数范围内,零点值x=﹣1和x=2可将全体有理数分成不重复且不遗漏的如下3种情况:(1)当x<﹣1时,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;(2)当﹣1≤x≤2时,原式=x+1﹣(x﹣2)=3;(3)当x>2时,原式=x+1+x﹣2=2x﹣1.综上所述,原式=.通过以上阅读,请你解决以下问题:(1)分别求出|x+2|和|x﹣4|的零点值;(2)化简代数式|x+2|+|x﹣4|;(3)求方程:|x+2|+|x﹣4|=6的整数解;(4)|x+2|+|x﹣4|是否有最小值?如果有,请直接写出最小值;如果没有,请说明理由.。

专题三:绝对值(基础专题);人教版七年级上学期培优专题讲练(含答案)

专题三:绝对值(基础专题);人教版七年级上学期培优专题讲练(含答案)

专题三:绝对值(基础专题)一.选择题1.若a=﹣5,|a|=|b|,则b的值等于()2.下列判断正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=﹣bC.若a=b,则|a|=|b|D.若a=﹣b,则|a|=﹣|b|3.有下列结论:①|a|一定是正数;②只有两个数相等时,它们的绝对值才相等;③绝对值最小的数是0;④在数轴上表示﹣a的点一定在原点的左边;⑤有理数分为正有理数和负有理数;其中正确的结论的个数为()A.1个B.2个C.3个D.4个4.如图,四个有理数在数轴上的对应点分别为点M,P,N,Q,若点P,Q表示的有理数互为相反数,则图中表示绝对值最大的有理数的点是()A.点M B.点P C.点N D.点Q二.填空题5.若a>0,b<0,化简a+3b﹣|a|+|2b|得.6.绝对值不大于3的整数是______________.绝对值小于2015的所有整数之积为_____.7.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,则x+y+z=_____.三.解答题8.已知|x﹣4|+|y+2|=0,求x与y的值.9.已知|x﹣4|+|5﹣y|=0,求12(x+y)的值.10.若|a|=4,|b|=2,且a,b异号,求a与b的值.11.有理数a,b,c在数轴上的对应点如图所示.(1)在横线上填入“>”或“<”:a______0;b______0;c______0;|c|______|a|.(2)试在数轴上找出表示﹣a,﹣b,﹣c的点;(3)试用“<”将a,﹣a,b,﹣b,c,﹣c,0连接起来.12.已知数a ,b 表示的点在数轴上的位置如图所示.(1)在数轴上表示出a ,b 的相反数的位置,并将这四个数从小到大排列;(2)若数b 与其相反数相距16个单位长度,则b 表示的数是多少?(3)在(2)的条件下,若数a 与数b 的相反数表示的点相距4个单位长度,则a 表示的数是多少?【参考答案】1。

《1.2.4绝对值》培优专项练习 (原卷+解析) 2021-2022学年人教版数学七年级上册

《1.2.4绝对值》培优专项练习 (原卷+解析)  2021-2022学年人教版数学七年级上册

2021年人教版七年级数学上册《1.2.4绝对值》培优专项练习一.选择题(共12小题)1.若a+3=0,则a的绝对值是()A.3B.C.﹣D.﹣32.若|a|=|b|,则a,b的关系是()A.a=b B.a=﹣bC.a=0且b=0D.a+b=0或a﹣b=03.如果一个数的绝对值不大于2,则这个数一定不是()A.0B.﹣1C.﹣2D.﹣34.若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有()A.4个B.5个C.6个D.7个5.已知|x﹣2|+|x+y﹣5|+|y﹣1|=y﹣1.则x+y的值为()A.2B.3C.4D.56.已知|a|=5,则a等于()A.+5B.﹣5C.0D.+5或﹣57.若m为有理数,则m+|m|的结果必为()A.正数B.负数C.非正数D.非负数8.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.119.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)+G(2020)=90,则a的值为()A.11B.10C.9D.810.已知有理数a,b,c满足a<0<b<c,则代数式的最小值为()A.c B.C.D.11.若a=﹣2018,则式子|a2+2017a+1|+|a2+2019a﹣1|的值为()A.4034B.4036C.4037D.403812.若|abc|=abc,则=()A.1B.﹣1C.1或7D.﹣1或7二.填空题(共6小题)13.如果|x﹣3|=5,那么x=.14.化简|π﹣4|+|3﹣π|=.15.若abcd>0,则的值为.16.已知式子|x+1|+|x﹣2|+|y+3|+|y﹣4|=10,则x+y的最小值是.17.如果一个物体某个量的实际值为a,测量值为b,我们把|a﹣b|称为绝对误差,把称为相对误差.例如,某个零件的实际长度为10cm,测量得9.8cm,那么测量的绝对误差为0.2cm,相对误差为0.02.若某个零件测量所产生的绝对误差为0.3,相对误差为0.02,则该零件的测量值b是.18.若有理数x、y、z均不为0,设代数式的最大值为a,最小值为b,则a+b=.三.解答题(共9小题)19.已知A=,B=.(1)当m>0时,比较A﹣B与0的大小,并说明理由;(2)设y=+B,①当y=3时,求m的值;②若m为整数,求正整数y的值.20.a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a0,b0,c0.(2)用“>、<、=”填空:﹣a0,a﹣b0,c﹣a0.(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.21.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.22.已知有理数a、b、c在数轴上的位置,(1)a+b0;a+c0;b﹣c0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.23.已知y=|2x+6|+|x﹣1|+4|x+1|,求y的最小值.24.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求++的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则++=++=1+1+1=3;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则++=++=1+(﹣1)+(﹣1)=﹣1.综上所述,++值为3或﹣1.【探究拓展】请根据上面的解题思路解答下面的问题:(1)已知a,b是不为0的有理数,当|ab|=﹣ab时,则+的值是;(2)已知a,b,c是有理数,当abc<0时,求++的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求++的值.25.有理数:,﹣1,5,0,3.5,﹣2.(1)将上面各数在下图的数轴上表示出来,并把这些数用“<”连接.(2)请将以上各数填到相应的横线上;正有理数:;负有理数:.26.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b0,a+b0,a﹣c0,b﹣c0;(2)|b﹣1|+|a﹣1|=;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.27.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=.2021年人教版七年级数学上册《1.2.4绝对值》培优专项练习参考答案与试题解析一.选择题(共12小题)1.若a+3=0,则a的绝对值是()A.3B.C.﹣D.﹣3【分析】先求出a的值再计算a的绝对值.【解答】解:由a+3=0得a=﹣3,∴|﹣3|=3.故选:A.【点评】本题考查有理数计算,解题关键是熟练掌握绝对值化简方法.2.若|a|=|b|,则a,b的关系是()A.a=b B.a=﹣bC.a=0且b=0D.a+b=0或a﹣b=0【分析】根据绝对值性质选择.【解答】解:根据绝对值性质可知,若|a|=|b|,则a与b相等或相反,即a+b=0或a﹣b =0.故选:D.【点评】一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.3.如果一个数的绝对值不大于2,则这个数一定不是()A.0B.﹣1C.﹣2D.﹣3【分析】逐项分析,即可得到结论.【解答】解:A、|0|=0,这项不符合题意;B、|﹣1|=1,这项不符合题意;C、|﹣2|=2,这项不符合题意;D、|﹣3|=3大于2,这项符合题意.故选:D.【点评】本题考查了绝对值的意义,掌握性质是解题的关键.4.若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有()A.4个B.5个C.6个D.7个【分析】依据|x﹣2|+|x+4|=6,分类讨论即可得到所有整数x即可.【解答】解:①当x<﹣4时,|x﹣2|+|x+4|>6(不合题意);②当﹣4≤x≤2时,|x﹣2|+|x+4|=6,符合题意的所有整数x的值为﹣4,﹣3,﹣2,﹣1,0,1,2,③当x>2时,|x﹣2|+|x+4|>6(不合题意);综上所述,满足|x﹣2|+|x+4|=6的所有整数x的个数是7.故选:D.【点评】此题考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.5.已知|x﹣2|+|x+y﹣5|+|y﹣1|=y﹣1.则x+y的值为()A.2B.3C.4D.5【分析】因为绝对值是一个非负数,所以y﹣1>0根据非负数的性质列式求出x+y的值即可.【解答】解:|x﹣2|+|x+y﹣5|+|y﹣1|=y﹣1,|x﹣2|+|x+y﹣5|=0,由题意得,x﹣2=0,x+y﹣5=0,解得x=2,x+y=5.故选:D.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.已知|a|=5,则a等于()A.+5B.﹣5C.0D.+5或﹣5【分析】根据绝对值的性质解答.【解答】解:∵一个数的绝对值是5,∴这个数是5或﹣5.故选:D.【点评】本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.若m为有理数,则m+|m|的结果必为()A.正数B.负数C.非正数D.非负数【分析】分三种情况:m=0,m>0,m<0进行分析即可.【解答】解:当m=0时,|m|+m=0,当m>0时,|m|+m>0,当m<0时,|m|+m=0,则|m|+m≥0,故选:D.【点评】此题主要考查了绝对值,关键是掌握绝对值的性质:①当a是正有理数时,a 的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.把有理数a代入|a+4|﹣10得到a1,称为第一次操作,再将a1作为a的值代入得到a2,称为第二次操作,…,若a=23,经过第2020次操作后得到的是()A.﹣7B.﹣1C.5D.11【分析】先确定第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4|﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4|﹣10=﹣1;第5次操作,a5=|﹣1+4|﹣10=﹣7;第6次操作,a6=|﹣7+4|﹣10=﹣7;…,后面的计算结果没有变化,据此解答即可.【解答】解:第1次操作,a1=|23+4|﹣10=17;第2次操作,a2=|17+4|﹣10=11;第3次操作,a3=|11+4|﹣10=5;第4次操作,a4=|5+4|﹣10=﹣1;第5次操作,a5=|﹣1+4|﹣10=﹣7;第6次操作,a6=|﹣7+4|﹣10=﹣7;第7次操作,a7=|﹣7+4|﹣10=﹣7;…第2020次操作,a2020=|﹣7+4|﹣10=﹣7.故选:A.【点评】本题考查了绝对值和探索规律.解题的关键是先计算,再观察结果是按照什么规律变化的.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.9.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)+G(2020)=90,则a的值为()A.11B.10C.9D.8【分析】根据绝对值的意义,当x≥a时,|x﹣a|=x﹣a,则G(x)=0;当x<a时,|x ﹣a|=﹣x+a,则G(x)=a﹣x﹣x+a=2a﹣2x,设第n个数时,即x=n,G(x)开始为0,即x=a=n,所以G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n ﹣6+…+2n﹣2n+0+0+…+0=n2﹣n,然后解方程n2﹣n=90即可.【解答】解:当x≥a时,则|x﹣a|=x﹣a,∴G(x)=a﹣x+x﹣a=0;当x<a时,则|x﹣a|=﹣(x﹣a)=﹣x+a,∴G(x)=a﹣x﹣x+a=2a﹣2x,∵G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,∴设第n个数时,即x=n,G(x)开始为0,即x=a=n,∴G(n)=2n﹣2n=0,∴G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n﹣6+…+2n﹣2n+0+0+…+0=2n×n﹣2(1+2+3+…+n)=2n2﹣2×=n2﹣n,即n2﹣n=90,解得n1=10,n2=﹣9(舍去).故选:B.【点评】本题考查了绝对值:当a>0,|a|=a;当a=0,|a|=0;当a<0,|a|=﹣a.也考查了数字变化规律型问题的解决方法.10.已知有理数a,b,c满足a<0<b<c,则代数式的最小值为()A.c B.C.D.【分析】利用a、b、c的大小关系得到<<,由于=|x﹣|+|x﹣|+|x﹣|,根据绝对值的定义,代数式的值可表示为在数轴上,数x对应的点到三个数、、对应的点的距离之和,然后利用当x=时,数x对应的点到三个数、、对应的点的距离之和最小,从而得到代数的最小值.【解答】解:∵a<0<b<c,∴<<,∵=|x﹣|+|x﹣|+|x﹣|,∴表示为在数轴上,数x对应的点到三个数、、对应的点的距离之和,如图,当x=时,数x对应的点到三个数、、对应的点的距离之和最小,最小值为﹣=c,即代数式的最小值为c.故选:A.【点评】本题考查了绝对值:数轴上某个数与原点的距离叫做这个数的绝对值.也考查了数轴上两点间的距离.11.若a=﹣2018,则式子|a2+2017a+1|+|a2+2019a﹣1|的值为()A.4034B.4036C.4037D.4038【分析】依据a=﹣2018,代入代数式|a2+2017a+1|+|a2+2019a﹣1|,利用绝对值的性质即可得出结果.【解答】解:∵a=﹣2018,∴|a2+2017a+1|+|a2+2019a﹣1|=|20182﹣2017×2018+1|+|20182﹣2019×2018﹣1|=|2018×(2018﹣2017)+1|+|2018×(2018﹣2019)﹣1|=|2018+1|+|﹣2018﹣1|=2019+2019=4038,故选:D.【点评】本题主要考查了绝对值的性质,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.12.若|abc|=abc,则=()A.1B.﹣1C.1或7D.﹣1或7【分析】根据|abc|=abc,分两种情况①a、b、c均为正数,②a、b、c中一正两负,进行解答即可.【解答】解:因为a、b、c均不为0,由|abc|=abc可得,①a、b、c均为正数,则=7;②a、b、c中一正两负,则=﹣1,=﹣1,=1,所以=﹣1﹣1+1=﹣1,故选:D.【点评】本题考查绝对值的意义,理解绝对值的意义是正确解答的前提.二.填空题(共6小题)13.如果|x﹣3|=5,那么x=8或﹣2.【分析】根据绝对值的性质可得求出x﹣3=±5,从而求出x的值.【解答】解:∵|x﹣3|=5,∴x﹣3=±5,解得x=8或﹣2.故答案为:8或﹣2.【点评】本题考查了绝对值的性质,绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.解题的关键是牢记性质.14.化简|π﹣4|+|3﹣π|=1.【分析】因为π≈3.414,所以π﹣4<0,3﹣π<0,然后根据绝对值定义即可化简|π﹣4|+|3﹣π|.【解答】解:∵π≈3.414,∴π﹣4<0,3﹣π<0,∴|π﹣4|+|3﹣π|=4﹣π+π﹣3=1.故答案为1.【点评】本题主要考查了实数的绝对值的化简,解题关键是掌握绝对值的规律,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,比较简单.15.若abcd>0,则的值为5或﹣3或1.【分析】有三种可能:①a、b、c、d都是正数,此时=1+1+1+1+1=5;②a、b、c、d都是负数,此时=1﹣1﹣1﹣1﹣1﹣1+1=﹣3;③a、b、c、d中有两个正数,有两个负数此时,=1,由此即可解决.【解答】解:∵abcd>0,∴=1,∵abcd>0,∴有三种可能:①a、b、c、d都是正数,此时=+1+1+1+1=5.②a、b、c、d都是负数,此时=1﹣1﹣1﹣1﹣1+1=﹣3.③a、b、c、d中有两个正数,有两个负数,此时=1.综上所述,此时的值为5或﹣3或1.故答案为:5或﹣3或1.【点评】本题考查绝对值的应用,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.16.已知式子|x+1|+|x﹣2|+|y+3|+|y﹣4|=10,则x+y的最小值是﹣4.【分析】令+=a,+=b,根据绝对值的几何意义进行综合分析即可得到答案.【解答】解:令+=a,+=b,根据绝对值几何意义,a表示x到﹣1与2两点之间的距离之和;b表示y到﹣3与4两点之间的距离之和;∵当﹣1≤x≤2,﹣3≤y≤4时,正好有a+b=10,∴当x=﹣1,y=﹣3时,x+y的最小值为:﹣1+(﹣3)=﹣4.故答案为:﹣4.【点评】本题考查了绝对值的几何意义,理解并正确运用“即两个实数a、b表示的两个点之间的距离”是解题的关键.17.如果一个物体某个量的实际值为a,测量值为b,我们把|a﹣b|称为绝对误差,把称为相对误差.例如,某个零件的实际长度为10cm,测量得9.8cm,那么测量的绝对误差为0.2cm,相对误差为0.02.若某个零件测量所产生的绝对误差为0.3,相对误差为0.02,则该零件的测量值b是14.7或15.3.【分析】由绝对误差和相对误差的定义得出:=0.3,=0.02,再根据绝对值的化简法则及分式的除法运算法则计算即可.【解答】解:∵绝对误差为0.3,相对误差为0.02,∴=0.3,=0.02,∴a===15,∴=0.3,∴15﹣b=±0.3,解得:b=14.7或15.3;故答案为:14.7或15.3.【点评】本题考查了绝对值在分式化简计算中的应用,根据题意正确列式并明确绝对值和分式的化简法则是解题的关键.18.若有理数x、y、z均不为0,设代数式的最大值为a,最小值为b,则a+b=0.【分析】根据a>0时,;a<0时,,可知:当x、y、z都大于0时代数式的值最大;当x、y、z都小于0时,代数数值最小,求出a和b的值即可.【解答】解:当x、y、z均为正时,xyz>0,原式取得最大值a=2018+2019+2020+2021=8078;当x、y、z均为负时,xyz<0,原式取得最小值b=(﹣2018)+(﹣2019)+(﹣2020)+(﹣2021)=﹣8078,∴a+b=0.【点评】此题主要考查了绝对值,以及有理数的除法,关键是要知道:一个非0有理数与它的绝对值的商等于±1.三.解答题(共9小题)19.已知A=,B=.(1)当m>0时,比较A﹣B与0的大小,并说明理由;(2)设y=+B,①当y=3时,求m的值;②若m为整数,求正整数y的值.【分析】(1)先根据分式的加减运算求出A﹣B,再结合m>0及(m﹣1)2≥0即可得到答案;(2)①由题意可得到关于m的分式方程,解分式方程可求得m,一定要检验;②先根据代数式变形得到y=2+,再结合m为整数,y为正整数,即可得到答案.【解答】解:(1)当m>0时,A﹣B≥0.由题意,得:A﹣B=﹣==,∵m>0,∴m+1>0,∴2(m+1)>0,(m﹣1)2≥0,∴≥0,∴A﹣B≥0;(2)∵y=+B,∴y=+=,①∵y=3,∴=3,去分母,得:2m+4=3(m+1),去括号,得:2m+4=3m+3,移项,得:2m﹣3m=3﹣4,合并同类项,得:﹣m=﹣1,系数化为1,得:m=1,检验:当m=1时,m+1=2≠0,∴m=1是方程的解.∴m的值为1.②y===2+,∵m为整数,y为正整数,∴m+1=﹣2或1或2,即m=﹣3或0或1,当m=﹣3时,y=2+=2﹣1=1,当m=0时,y=2+=2+2=4,当m=1时,y=2+=2+1=3,综上所述,正整数y的值为1或3或4.【点评】本题综合考查了分式的化简,配方法在化简求值中的应用,分式方程的解法,题目计算难度较大,综合性较强.20.a、b、c在数轴上的位置如图,则:(1)用“>、<、=”填空:a<0,b<0,c>0.(2)用“>、<、=”填空:﹣a>0,a﹣b<0,c﹣a>0.(3)化简:|﹣a|﹣|a﹣b|+|c﹣a|.【分析】(1)根据数轴得出a<b<0<c,|a|>|c|>|b|,再判断大小即可;(2)根据数轴得出a<b<0<c,|a|>|c|>|b|,再判断大小即可;(3)根据数轴得出a<b<0<c,|a|>|c|>|b|,再去掉绝对值符号,求出即可.【解答】解:从数轴可知:a<b<0<c,|a|>|c|>|b|,(1)a<0,b<0,c>0,故答案为:<,<,>;(2)﹣a>0,a﹣b<0,c﹣a>0,故答案为:>,<,>;(3)|a|﹣|a﹣b|+|c﹣a|=﹣a+a﹣b+c﹣a=c﹣b﹣a.【点评】本题考查了数轴和有理数的大小比较,有理数的化简的应用,题目比较好,难度不大.21.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.【分析】(1)由题意得x=﹣5,y=x﹣(﹣7)=﹣5+7=2,再代入x﹣(﹣y)计算可得.(2)根据题意列出式子计算即可.【解答】解:(1)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.(2)由题意得:﹣|﹣|﹣(﹣)=.【点评】本题主要考查有理数的加法,解题的关键是根据题意列出算式并熟练掌握有理数的加减运算法则.22.已知有理数a、b、c在数轴上的位置,(1)a+b<0;a+c<0;b﹣c>0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.【分析】(1)根据数轴确定a,b,c的范围,即可解答;(2)根据绝对值的性质,即可解答.【解答】解:(1)由数轴可得:c<a<0<b,∴a+b<0,a+c<0,b﹣c>0,(2)∵a+b<0,a+c<0,b﹣c>0,∴|a+b|﹣|a+c|+|b﹣c|=﹣a﹣b+a+c+b﹣c=0.故答案为:(1)<;<;>;(2)原式=0.【点评】本题考查了数轴,解决本题的关键是根据数轴确定a,b,c的范围.23.已知y=|2x+6|+|x﹣1|+4|x+1|,求y的最小值.【分析】利用x的取值不同分别得出函数的最小值,进而得出答案.【解答】解:令2x+6=0,x﹣1=0,x+1=0,解得:x=﹣3,x=1,x=﹣1.当x<﹣3时,则y=﹣2x﹣6﹣x+1﹣4x﹣4=﹣7x﹣9,则没有最小值;当﹣3≤x≤﹣1时,则y=2x+6﹣x+1﹣4x﹣4=﹣3x+3,则最小值为6;当﹣1≤x<1时,则y=2x+6﹣x+1+4x+4=5x+11,则最小值为6;当x≥1时,则y=2x+6+x﹣1+4x+4=7x+9,则最小值为16;故y的最小值为6.【点评】此题主要考查了绝对值函数最值求法,利用分类讨论得出是解题关键.24.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答问题.【提出问题】三个有理数a,b,c满足abc>0,求++的值.【解决问题】解:由题意,得a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①a,b,c都是正数,即a>0,b>0,c>0时,则++=++=1+1+1=3;②当a,b,c中有一个为正数,另两个为负数时,不妨设a>0,b<0,c<0,则++=++=1+(﹣1)+(﹣1)=﹣1.综上所述,++值为3或﹣1.【探究拓展】请根据上面的解题思路解答下面的问题:(1)已知a,b是不为0的有理数,当|ab|=﹣ab时,则+的值是0;(2)已知a,b,c是有理数,当abc<0时,求++的值;(3)已知a,b,c是有理数,a+b+c=0,abc<0,求++的值.【分析】(1)仿照题目给出的思路和方法,解决(1)即可;(2)(3)根据已知等式,利用绝对值的代数意义判断出a,b,c中负数有2个,正数有1个,判断出abc的正负,原式利用绝对值的代数意义化简计算即可.【解答】解:(1)a,b是不为0的有理数,当|ab|=﹣ab时,a>0,b<0,或a<0,b >0,当a>0,b<0时,;当a<0,b>0时,.故答案为:0.(2)abc<0,∴a、b、c都是负数或其中一个为负数,另两个为正数,①当a、b、c都是负数,即a<0,b<0,c<0时,则:=﹣1﹣1﹣1=﹣3;②a、b、c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=﹣1+1+1=1(3)∵a,b,c为三个不为0的有理数,且a+b+c=0得,a+b=﹣c,c+a=﹣b,b+c=﹣a.a、b、c有一个为负数,另两个为正数时,设a<0,b>0,c>0,=1﹣1﹣1=﹣1.【点评】本题主要考查了绝对值的意义、分类讨论思想方法,能不重不漏的分类,会确定字母范围和字母的值是关键.25.有理数:,﹣1,5,0,3.5,﹣2.(1)将上面各数在下图的数轴上表示出来,并把这些数用“<”连接.(2)请将以上各数填到相应的横线上;正有理数:,5,3.5;负有理数:﹣1,﹣2.【分析】(1)将题中各点在数轴中表示出来,并比较大小;(2)根据正数大于0,负数小于0,0既不是正数也不是负数即可解题.【解答】解:(1)如图所示:把这些数用“<”连接为:﹣2<﹣1<0<<3.5<5.(2)正有理数:,5,3.5;负有理数:﹣1,﹣2.故答案为:,5,3.5;﹣1,﹣2.【点评】本题考查了数轴、有理数比较大小,数轴上的点表示的数右边的总比左边的大.26.有理数a,b,c在数轴上的位置如图所示,且表示数a的点、数b的点与原点的距离相等.(1)用“>”“<”或“=”填空:b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=a﹣b;(3)化简|a+b|+|a﹣c|﹣|b|+|b﹣c|.【分析】(1)根据数轴,判断出a,b,c的取值范围,进而求解;(2)根据绝对值的性质,去绝对值号,合并同类项即可;(3)根据绝对值的性质,去绝对值号,合并同类项即可.【解答】解:∵b<﹣1<c<0<1<a,|a|=|b|,∴(1)b<0,a+b=0,a﹣c>0,b﹣c<0;(2)|b﹣1|+|a﹣1|=﹣b+1+a﹣1=a﹣b;(3)|a+b|+|a﹣c|﹣|b|+|b﹣c|=0+(a﹣c)+b﹣(b﹣c)=0+a﹣c+b﹣b+c=a.故答案为:<,=,>,<;a﹣b.【点评】本题主要考查数轴、绝对值、整式的加减等知识的综合运用,解决此题的关键是能够根据数轴上的信息,判断出a,b,c等字母的取值范围,同时解决此题时也要注意绝对值性质的运用.27.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是3;表示﹣3和2两点之间的距离是5;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(2)如果|x+1|=3,那么x=2或﹣4;(3)若|a﹣3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B 两点间的最大距离是8,最小距离是2.(4)若数轴上表示数a的点位于﹣4与2之间,则|a+4|+|a﹣2|=6.【分析】(1)根据数轴,观察两点之间的距离即可解决;(2)根据绝对值可得:x+1=±3,即可解答;(3)根据绝对值分别求出a,b的值,再分别讨论,即可解答;(4)根据|a+4|+|a﹣2|表示数a的点到﹣4与2两点的距离的和即可求解.【解答】解:(1)数轴上表示4和1的两点之间的距离是:4﹣1=3;表示﹣3和2两点之间的距离是:2﹣(﹣3)=5,故答案为:3,5;(2)|x+1|=3,x+1=3或x+1=﹣3,x=2或x=﹣4.故答案为:2或﹣4;(3)∵|a﹣3|=2,|b+2|=1,∴a=5或1,b=﹣1或b=﹣3,当a=5,b=﹣3时,则A、B两点间的最大距离是8,当a=1,b=﹣1时,则A、B两点间的最小距离是2,则A、B两点间的最大距离是8,最小距离是2;故答案为:8,2;(4)若数轴上表示数a的点位于﹣4与2之间,|a+4|+|a﹣2|=(a+4)+(2﹣a)=6.故答案为:6.【点评】此题考查数轴上两点之间的距离的算法:数轴上两点之间的距离等于相应两数差的绝对值,应牢记且会灵活应用.。

人教版七年级数学上册 绝对值 专题培优卷(含答案)

人教版七年级数学上册 绝对值 专题培优卷(含答案)

七年级数学上册绝对值专题培优卷一、选择题:1.如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A.m+n<0 B.﹣m<﹣n C.|m|﹣|n|>0 D.2+m<2+n2.﹣2的绝对值是()A.2 B.﹣2 C.0.5 D.-0.53.若│x│=2,│y│=3,则│x+y│的值为( )A.5 B.-5 C.5或1 D.以上都不对4.若|x|=7,|y|=5,且x+y>0,那么x-y的值是()A.2或12 B.-2或12 C.2或-12 D.-2或-125.若数轴上的点A.B分别于有理数a、b对应,则下列关系正确的是( )A.a<b B.﹣a<b C.|a|<|b| D.﹣a>﹣b6.已知a,b是有理数,|ab|=-ab(ab≠0),|a+b|=|a|-b,用数轴上的点来表示a,b,可能成立的是( )A.B.C.D.7.给出下列判断:①若|m|,则m>0;②若m>n,则|m|>|n|;③若|m|>|n|,则m>n;④任意数m,则|m|是正数;⑤在数轴上,离原点越远,该点对应的数的绝对值越大,其中正确的结论的个数为()A.0 B.1 C.2 D.38.如图数轴的A.B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A.B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A.B之间C.介于B、C之间D.在C的右边9.已知ab≠0,则+的值不可能的是()A.0 B.1 C.2 D.﹣210.非零有理数a、b、c满足a+b+c=0,则所有可能的值为()A.0 B.1或-1 C.2或-2 D.0或-211.不相等的有理数a.b.c在数轴上,对应点分别为A、B、C.若∣a-b∣+∣b-c∣=∣a-c∣,那么点B在()A.A、C点右边B.A、C点左边C.A、C点之间D.以上均有可能12.当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3二、填空题:13.若|2x﹣1|=3,则x= .14.绝对值小于2的整数是.15.–3的绝对值是,倒数是,相反数是.16.已知|x|=5,|y|=2,且x+y<0,则x,y的值是.17.若(a﹣2)2+|b﹣3|=0,则a b= .18.若|x+y﹣7|+(3x+y﹣17)2=0,则x﹣2y= .19.实数a、b在数轴上的位置如图,则化简|a+2b|-|a-b|的结果为____________.三、解答题:20.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是a,最小的积是b,(1)求a,b的值;(2)若|x+a|+|y﹣b|=0,求(x﹣y)÷y的值21.已知|a﹣1|=9,|b+2|=6,且a+b<0,求a﹣b的值.22.已知A.B在数轴上分别表示a、b.①对照数轴填写下表:②若A.B两点间的距离记为d,试问d和a、b(a<b)有何数量关系?③写出数轴上到7和—7的距离之和为14的所有整数,并求这些整数的和。

石室中学七年级绝对值专题培优卷

石室中学七年级绝对值专题培优卷

七年级绝对值专题培优卷绝对值部分是初一数学的重点,也是难点,好多学生在这一部分卡了壳,从此对数学失去了学习兴趣,初中阶段主要考查学生对绝对值的基本理解和应用,去绝对值符号,分类讨论是难点。

去绝对值符号的几种常用方法:(1)利用定义法去掉绝对值符号(2)利用不等式的性质去掉绝对值符号(3)利用平方法去掉绝对值符号( 4 )利用零点分段法去掉绝对值符号( 5 )利用数形结合去掉绝对值符号1、对于形如︱a︱的一类问题只要根据绝对值的3个性质,判断出a的3种情况,便能快速去掉绝对值符号。

当a>0时,︱a︱=a (性质1,正数的绝对值是它本身) ;当a=0 时︱a︱=0 (性质2,0的绝对值是0) ;当 a<0 时;︱a︱=–a (性质3,负数的绝对值是它的相反数) 。

2、对于形如︱a+b︱的一类问题我们只要把a+b看作是一个整体,判断出a+b的3种情况,根据绝对值的3个性质,便能快速去掉绝对值符号,正确进行化简。

当a+b>0时,︱a+b︱=a +b(性质1,正数的绝对值是它本身) ;当a+b=0 时,︱a+b︱=0 (性质2,0的绝对值是0) ;当 a+b<0 时,︱a+b︱=–(a+b)=–a-b (性质3,负数的绝对值是它的相反数)3、对于形如︱a-b︱的一类问题同样,按上面的方法,我们仍然把a-b看作一个整体,判断出a-b 的3种情况,根据绝对值的3个性质,去掉绝对值符号。

但在去括号时最容易出现错误。

如何快速去掉绝对值符号,条件非常简单,只要你能判断出a与b的大小即可。

因为︱大-小︱=︱小-大︱=大-小,所以当a>b时,︱a-b︱=a-b,︱b-a︱=a-b.请记住口诀:无论是大减小,还是小减大,去掉绝对值,都是大减小。

七年级绝对值培优练习经典题26道,含答案

七年级绝对值培优练习经典题26道,含答案

七年级绝对值培优练习经典题26道,含答案
七年级绝对值培优练习经典题
下年是七年级的绝对值培优教材内容,前8道是例题,后面18道是练习,同学们可以下载打印作一下
例1考察绝对值的非负性,求出a,b的值代入计算即可
例2不懂可以关注亘晨数学的视频,有一个视频专门讲这类题的
例3根据a,b,c为整数,可以推出有两个数相等且有两个数是相邻自然数
例4考察绝对值的几何意义
例5去掉绝对值大部分项可以抵消
例6按照绝对值的定义去绝对值化简即可
例7可以用字母来代替动点
下面是18道培优练习
【培优例题】答案
1题:2917/2018;2题:-1,1;2,0,-1;3,-1;3题:2;4题:(1)3,5,-2,5;(2)7,(3)6,(4)9;5题:0;6题:1-2c+b;7题:(1)5,(2)2.5;8题:1990.
【培优练习答案】
1题:5,-5;3,-3;2题:10,-10;3题:1;4题:2;5题:-2,-8;6题:-1008;
7题:-1;8题:大于等于;9题:C;10题:0,2; 11题:4;12题:2;13题:(1)2,(2)25;14题:0;15题:4,0,-4;16题:(1)1,(2)3.5,-1.5,(3)4/15,2/23;17题:(1)3,3,4(2)|-1-x|, -3,1, -1小于等于x小于等于2; 18题:b+c。

绝对值提升训练

绝对值提升训练

【讲练课堂】2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.5绝对值【名师点睛】1.概念:数轴上某个数与原点的距离叫做这个数的绝对值.①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.3.绝对值的非负性:任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.【典例剖析】【例1】化简下列各数:(1)﹣(﹣5)(2)﹣(+7)(3)﹣[﹣(+23)](4)﹣[﹣(﹣a)](5)|﹣(+7)|(6)﹣|﹣8|(7)|﹣|+4 7 ||(8)﹣|﹣a|(a<0)【分析】(1)根据相反数定义求出即可;(2)根据相反数定义求出即可;(3)根据相反数定义求出即可;(4)根据相反数定义求出即可;(5)根据绝对值定义求出即可;(6)根据绝对值定义求出即可;(7)根据绝对值定义求出即可;(8)根据绝对值定义求出即可.【解析】(1)﹣(﹣5)=5;(2)﹣(+7)=﹣7;(3)﹣[﹣(+23)]=23;(4)﹣[﹣(﹣a)]=﹣a;(5)|﹣(+7)|=7;(6)﹣|﹣8|=﹣8;(7)|﹣|+47||=47;(8)﹣|﹣a|(a<0)=﹣(﹣a)=a.【点评】本题考查了绝对值,相反数的应用,注意:一个负数的绝对值等于它的相反数,一个正数的绝对值等于它本身,0的绝对值是0.【变式】化简:(1)﹣(﹣3);(2)﹣|﹣3.2|;(3)+(﹣0.5);(4)﹣|+13 |.【分析】(1)根据相反数的定义解决此题.(2)根据绝对值以及相反数的定义解决此题.(3)根据去括号法则解决此题.(4)根据绝对值以及相反数的定义解决此题.【解析】(1)﹣(﹣3)=3.(2)﹣|﹣3.2|=﹣3.2.(3)+(﹣0.5)=﹣0.5.(4)―|+13|=―13.【点评】本题主要考查绝对值以及相反数的定义,熟练掌握相反数的定义是解决本题的关键.【例2】已知a为整数(1)|a|能取最 小 (填“大”或“小”)值是 0 .此时a= 0 .(2)|a|+2能取最 小 (填“大”或“小”)值是 2 .此时a= 0 .(3)2﹣|a﹣1|能取最 大 (填“大”或“小”)值是 2 .此时a= 1 .(4)|a﹣1|+|a+2|能取最 小 (填“大”或“小”)值是 3 .此时a= ﹣2≤a≤1 .【分析】(1)由绝对值的性质即可得出答案;(2)由绝对值的性质即可得出答案;(3)由绝对值的性质即可得出答案;(4)由绝对值的性质即可得出答案.【解析】(1)|a|能取最小值是0.此时a=0.故答案为:小,0,0;(2)|a|+2能取最小值是2.此时a=0.故答案为:小,2,0;(3)2﹣|a﹣1|能取最大值是2.此时a=1.故答案为:大,2,1;(4)|a﹣1|+|a+2|能取最小值是3.此时﹣2≤a≤1;故答案为:小,3,﹣2≤a≤1.【点评】本题考查了绝对值的非负性质;熟练掌握绝对值的非负性质是解题的关键.【变式】.(1)如果|x|=2,则x= ±2 ;(2)如果x=﹣x,则x= 0 ;(3)如果|x|=x,求x的取值范围;(4)如果|x|=﹣x,求x的取值范围.【分析】(1)利用绝对值的定求解即可,(2)利用相反数的定义求解,(3)利用绝对值的性质求解即可,(4)利用绝对值的性质求解即可.【解析】(1)如果|x|=2,则x=±2;故答案为:±2.(2)如果x=﹣x,则x=0;故答案为:0.(3)如果|x|=x,则x≥0;(4)如果|x|=﹣x,则x≤0.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.【满分训练】一.选择题(共10小题)1.(2022•通辽)﹣3的绝对值是( )A.―13B.3C.13D.﹣3【分析】应用绝对值的计算方法进行计算即可得出答案.【解析】|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.(2022•聊城)实数a的绝对值是54,a的值是( )A.54B.―54C.±45D.±54【分析】根据绝对值的意义直接进行解析【解析】∵|a|=5 4,∴a=±5 4.故选:D.【点评】本题考查了绝对值的意义,即在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值.3.(2022•百色)﹣2023的绝对值等于( )A.﹣2023B.2023C.±2023D.2022【分析】利用绝对值的意义求解.【解析】因为负数的绝对值等于它的相反数;所以,﹣2023的绝对值等于2023.故选:B.【点评】本题考查绝对值的含义.即:正数的绝对值是它本身,负数的绝对值是它的相反数.4.(2022•绥化)化简|―12|,下列结果中,正确的是( )A.12B.―12C.2D.﹣2【分析】利用绝对值的意义解析即可.【解析】|―12|的绝对值是12,故选:A.【点评】本题主要考查了绝对值的意义,正确利用绝对值的意义是解题的关键.5.(2022•南充)下列计算结果为5的是( )A.﹣(+5)B.+(﹣5)C.﹣(﹣5)D.﹣|﹣5|【分析】根据相反数判断A,B,C选项;根据绝对值判断D选项.【解析】A选项,原式=﹣5,故该选项不符合题意;B选项,原式=﹣5,故该选项不符合题意;C选项,原式=5,故该选项符合题意;D选项,原式=﹣5,故该选项不符合题意;故选:C.【点评】本题考查了相反数,绝对值,掌握只有符号不同的两个数互为相反数是解题的关键.6.(2021秋•河东区期末)若ab≠0,那么|a|a+|b|b的取值不可能是( )A.﹣2B.0C.1D.2【分析】由ab≠0,可得:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;分别计算即可.【解析】∵ab≠0,∴有四种情况:①a>0,b>0,②a<0,b<0,③a>0,b<0,④a<0,b>0;①当a>0,b>0时,|| a +||b=1+1=2;②当a<0,b<0时,|| a +||b=―1﹣1=﹣2;③当a>0,b<0时,|| a +||b=1﹣1=0;④当a<0,b>0时,|| a +||b=―1+1=0;综上所述,||a+||b的值为:±2或0.故选:C.【点评】本题考查绝对值的定义,运用分类讨论思想和熟练掌握并正确运用绝对值的定义是正确解题的关键.7.(2021秋•泗洪县期末)在数轴上有A、B两点,点A在原点左侧,点B在原点右侧,点A对应整数a,点B对应整数b,若|a﹣b|=2022,当a取最大值时,b值是( )A.2023B.2021C.1011D.1【分析】先根据A、B的位置关系,判断出a、b的大小关系,化简|a﹣b;再根据a取最大值,求出a的值;最后求出b的值.【解析】∵点A在点B左侧,∴a﹣b<0,∴|a﹣b|=b﹣a=2022;a为负整数,取最大值时为﹣1,此时b﹣(﹣1)=2022,则b=2021;故选:B.【点评】考查绝对值的化简和数轴.解题的关键在于能够结合数轴判断a、b的大小关系,进而化简|a﹣b|.注意:最大的负整数是﹣1.8.(2021秋•霍邱县期中)若|a|=﹣a,则在下列选项中a不可能是( )A.﹣2B.―12C.0D.5【分析】根据||=―a,结合绝对值性质可知:a≤0,不可能是正数.【解析】∵||=―a,∴实数a是非正数,即a≤0,∴选项中的数a不可能是正数,故选:D.【点评】本题考查了绝对值定义和性质,熟练掌握并正确运用绝对值性质是解题关键.9.(2020秋•九龙坡区校级期末)已知﹣1≤x≤2,则化简代数式3|x﹣2|﹣|x+1|的结果是( )A.﹣4x+5B.4x+5C.4x﹣5D.﹣4x﹣5【分析】由于﹣1≤x≤2,根据不等式性质可得:x﹣2≤0,x+1≥0,再依据绝对值性质化简即可.【解析】∵﹣1≤x≤2,∴x﹣2≤0,x+1≥0,∴3|x﹣2|﹣|x+1|=3(2﹣x)﹣(x+1)=﹣4x+5;故选:A.【点评】本题考查了不等式性质,绝对值定义和性质,整数加减运算等,熟练掌握并运用绝对值性质化简是解题关键.10.(2020秋•长垣市月考)若x为整数,且满足|x﹣2|+|x+4|=6,则满足条件的x的值有( )A.4个B.5个C.6个D.7个【分析】依据|x﹣2|+|x+4|=6,分类讨论即可得到所有整数x即可.【解析】①当x<﹣4时,|x﹣2|+|x+4|>6(不合题意);②当﹣4≤x≤2时,|x﹣2|+|x+4|=6,符合题意的所有整数x的值为﹣4,﹣3,﹣2,﹣1,0,1,2,③当x>2时,|x﹣2|+|x+4|>6(不合题意);综上所述,满足|x﹣2|+|x+4|=6的所有整数x的个数是7.故选:D.【点评】此题考查绝对值的意义,熟练掌握绝对值的意义是解题的关键.二.填空题(共8小题)11.(2022•常德)|﹣6|= 6 .【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解析】﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.【点评】本题考查绝对值的化简求值,即|a|=a(a≥0)―a(a<0).12.(2022•泰州)若x=﹣3,则|x|的值为 3 .【分析】利用绝对值的代数意义计算即可求出值.【解析】∵x=﹣3,∴|x|=|﹣3|=3.故答案为:3.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.13.(2020秋•达孜区期末)绝对值不大于4的整数有 9 个.【分析】根据绝对值的性质解析即可.【解析】根据绝对值的概念可知,绝对值不大于4的整数有4,3,2,1,0,﹣1,﹣2,﹣3,﹣4,一共9个.【点评】解析此题的关键是熟知绝对值的性质,即一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.14.(2020秋•吴江区期中)若|x|=﹣(﹣8),则x= ±8 .【分析】根据绝对值的性质解析可得.【解析】∵|x|=﹣(﹣8),∴x=±8.故答案为:±8.【点评】本题主要考查绝对值,掌握绝对值的性质是解题的关键.15.(2020秋•兴化市月考)当a= ﹣2 时,式子10﹣|a+2|取得最大值.【分析】根据任何数的偶次方是非负数,即可求解.【解析】∵|a+2|≥0,且当a+2=0,即a=﹣2时,|a+2|=0,∴当a=﹣2时,代数式10﹣|a+2|取得最大值是10.故答案是:﹣2.【点评】此题主要考查了非负数的性质,解题的关键是明确初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).16.(2022春•东台市期中)|x﹣2|+9有最小值为 9 .【分析】根据绝对值的非负性即可得出答案.【解析】∵|x﹣2|≥0,∴|x﹣2|+9≥9,∴|x﹣2|+9有最小值为9.故答案为:9.【点评】本题考查了绝对值的非负性,掌握|a|≥0是解题的关键.17.(2021秋•玄武区校级月考)如果|a+2|+|b﹣1|=0,那么(a+b)2021的值是 ﹣1 .【分析】根据绝对值的非负数的性质分别求出a、b,代入计算即可.【解析】∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2021=(﹣1)2021=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.18.(2021秋•虎林市期末)|a+3|+|b﹣2|=0,则a+b= ﹣1 .【分析】根据绝对值非负数的性质列式求解即可得到a、b的值,然后再代入代数式进行计算即可求解.【解析】根据题意得,a+3=0,b﹣2=0,解得a=﹣3,b=2,∴a+b=﹣3+2=﹣1.故答案为:﹣1.【点评】本题考查了绝对值非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.三.解析题(共4小题)19.在有理数3,﹣1.5,﹣312,0,2.5,﹣4,﹣(+3.5),|―12|中,求出其中分数的相反数和绝对值.【分析】据只有符号不同的两个数互为相反数,可得一个数的相反数;根据绝对值实数轴上的点到原点的距离,可得一个数的绝对值;【解析】﹣1.5的相反数1.5,绝对值是1.5;﹣312的相反数是312,绝对值是312;2.5的相反数是﹣2.5,绝对值是2.5;﹣(+3.5)=﹣3.5相反数是3.5,绝对值是3.5;|―12|=12相反数是―12,绝对值是12.【点评】本题考查了绝对值,利用了绝对值得性质:正数的绝对等于它本身,负数的绝对值等于它的相反数.20.求下列各数的绝对值:(1)﹣38;(2)0.15;(3)a(a<0);(4)3b(b>0);(5)a﹣2(a<2);(6)a﹣b.【分析】根据绝对值的含义和求法,求出每个数的绝对值各是多少即可.【解析】(1)|﹣38|=38;(2)|+0.15|=0.15;(3)∵a<0,∴|a|=﹣a;(4)∵b>0,∴3b>0,∴|3b|=3b;(5)∵a<2,∴a﹣2<0,∴|a﹣2|=﹣(a﹣2)=2﹣a;(6)a﹣b≥0时,|a﹣b|=a﹣b;a﹣b<0时,|a﹣b|=b﹣a.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解析此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.21.(2020秋•江阴市校级月考)阅读下面的例题:我们知道|x|=2,则x=±2请你那么运用“类比”的数学思想尝试着解决下面两个问题.(1)|x+3|=2,则x= ﹣5或﹣1 ;(2)5﹣|x﹣4|=2,则x= 1或7 .【分析】(1)根据绝对值解析即可;(2)根据绝对值的非负性解析即可.【解析】(1)因为)|x+3|=2,则x=﹣5或﹣1;(2)因为5﹣|x﹣4|=2,可得:|x﹣4|=3,解得:x=1或7;故答案为:(1)﹣5或﹣1(2)1或7【点评】此题考查绝对值,关键是根据绝对值的非负性和概念解析.22.(2019秋•睢宁县期中)【观察与归纳】(1)观察下列各式的大小关系:|﹣2|+|3|>|﹣2+3||﹣8|+|3|>|﹣8+3||﹣2|+|﹣3|=|﹣2﹣3||0|+|﹣6|=|0﹣6|归纳:|a|+|b| ≥ |a+b|(用“>”或“<”或“=”或“≥”或“≤”填空)【理解与应用】(2)根据上题中得出的结论,若|m|+|n|=9,|m+n|=1,求m的值.【分析】(1)根据提供的关系式得到规律即可;(2)根据(1)中的结论分当m为正数,n为负数时和当m为负数,n为正数时两种情况分类讨论即可确定答案.【解析】(1)根据题意得:|a|+|b|≥|a+b|,故答案为:≥;(2)由上题结论可知,因为|m|+|n|=9,|m+n|=1,|m|+|n|≠|m+n|,所以m、n异号.当m为正数,n为负数时,m﹣n=9,则n=m﹣9,|m+m﹣9|=1,m=5或4;当m为负数,n为正数时,﹣m+n=9,则n=m+9,|m+m+9|=1,m=﹣4或﹣5;综上所述,m为±4或±5.【点评】本题考查了绝对值的知识,解题的关键是能够根据题意分类讨论解决问题,难度不大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝对值专题讲解及训练(培优)
【知识梳理】
1、什么叫绝对值?
在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值.例如+5的绝对值等于5,记作|+5|=5;-3的绝对值等于3,记作|-3|=3.
拓展:︱x -2︱表示的是点x 到点2的距离。

例:(1)|x|=5,求x 的值. (2)|x -3|=5,求x 的值.
2、绝对值的特点有哪些?
(1)一个正数的绝对值是它本身;例如,|4|=4 , |+7.1| = 7.1
(2)一个负数的绝对值是它的相反数;例如,|-2|=2,|-5.2|=5.2
(3)0的绝对值是0.
容易看出,两个互为相反数的数的绝对值相等.如|-5|=|+5|=5.
绝对值的性质:
① 对任何有理数a ,都有|a|≥0
②若|a|=0,则|a|=0,反之亦然
③若|a|=b ,则a=±b
④对任何有理数a,都有|a|=|-a|
何一个有理数的绝对值都是非负数,即|a ≥|0, (0)|0 (0) (0)a a a a a a >⎧⎪==⎨⎪-<⎩
|。

1、 判断题:
⑴ 、|-a|=|a|. (2)、-|0|=0.(3)、|-3|=-3.(4)、-(-5)›-|-5|.
(5)、如果a=4,那么|a|=4.(6)、如果|a|=4,那么a=4.
(7)、任何一个有理数的绝对值都是正数.(8)、绝对值小于3的整数有2, 1, 0.
(9)、-a 一定小于0.
(10)、如果|a|=|b|,那么a=b. (11)、绝对值等于本身的数是正数.
(12)、只有1的倒数等于它本身. (13)、若|-X|=5,则X=-5.
(14)、数轴上原点两旁的点所表示的两个数是互为相反数.
(15)、一个数的绝对值等于它的相反数,那么这个数一定是负数.
2、 填空题:
⑴ 、当a_____0时,-a ›0; 当a_____0时,-a ‹0;
⑵ 、当a_____0时,|a|›0; 当a_____0时,-a ›a;
⑶ 、当a_____0时,-a=a; 当a ‹0时,|a|=______;
⑷ 、绝对值小于4的整数有_____________________________;
⑸ 、如果m ‹n ‹0,那么|m|____|n|; 当k+3=0时,|k|=_____;
⑹ 、若a 、b 都是负数,且|a|›|b|,则a____b;
⑺ 、|m-2|=1,则m=_________;
⑻ 、若|x|=x,则x=________;
⑼ 、倒数和绝对值都等于它本身的数是__________;
⑽ 、有理数a 、b 在数轴上的位置如图所示,则|a|=___;|b|=____;
⑾ 、-2的相反数是_______,倒数是______,绝对值是_______;
⑿ 、绝对值小于10的整数有_____个,其中最小的一个是_____;
⒀ 、一个数的绝对值的相反数是-0.04,这个数是_______;
⒁ 、若a 、b 互为相反数,则|a|____|b|; 若|a|=|b|,则a 和b 的关系为__________. 例:(1) 若x x -=,则x 一定是( ) A. 负数 B. 负数或零 C. 零 D. 正数
(2)、已知a 为有理数,下列式子一定正确的是 ( )
A .︱a ︱=a
B .︱a ︱≥a
C .︱a ︱=-a
D . 2a >0
3、绝对值的应用――比较两个负数的大小
由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大.负数的绝对值越大,表示这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小. 例: (1) 比较87-和76-的大小. 【典例解析】
例1、绝对值小于π的整数有______________________
练习:求出绝对值大于3小于2
13的所有正整数的和 例2:(1)如果3a >,则3a -=__________,3a -=___________.
(2)如果在数轴上表示a 、b 两上实数点的位置,如下图所示,那么||||a b a b -++化简的结果等于( )
A.2a
B.2a -
C.0
D.2b
练习:已知a 、b 、c 在数轴上位置如图:
则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )
A .-3a
B . 2c -a
C .2a -2b
D . b
例3:(1)若1x x =,则x 是______(选填“正”或“负”)数;若1x x
=-,则x 是_____(选填“正”或“负”)数;
(2)已知3x =,4y =,且x y <,则x y +=________
练习:1、已知3a =,2b =,1c =且a b c <<,求a b c ++的值
2、若a +b >0,a ·b <0,且|a |<|b |,则( )
A .a >0,b <0
B .a >0,b >0
C .a <0,b >0
D .a <0,b <0 例4、已知2(3)|2|0a b -+-=,求b a 的值是( )A.2 B.3 C.9 D.6
练习:1、 已知023=++-b a ,求下列代数式的值。

(1)13-+b a (2)b a a ++22
2、若|1|a b ++与2(1)a b -+互为相反数,求321a b +-的值。

例5:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =︱a -b ︱。

利用数形结合结合思想回答下列问题:
① 数轴上表示2和6两点之间的距离是 ,数轴上表示-5和3两
点之间的距离是 。

② 数轴上表示2和6两点之间的距离表示为 。

③ 若x 表示一个有理数,且-4<x <2,则︱x -2︱+︱x +4︱的值是 。

④ 若x 表示一个有理数,且︱x -2︱+︱x +4︱>6,则有理数x 的取值范围是。

相关文档
最新文档