专题训练 二次根式化简求值有技巧(含答案)

合集下载

人教版八年级数学 竞赛专题:二次根式的化简与求值(含答案)

人教版八年级数学 竞赛专题:二次根式的化简与求值(含答案)

人教版八年级数学 竞赛专题:二次根式的化简与求值(含答案)【例1】 化简(1(ba b ab b -÷--(2(3(4解题思路:若一开始把分母有理化,则计算必定繁难,仔细观察每题中分子与分母的数字特点,通过分解、分析等方法寻找它们的联系,问题便迎刃而解.思想精髓:因式分解是针对多项式而言的,在整式,分母中应用非常广泛,但是因式分解的思想也广泛应用于解二次根式的问题中,恰当地作类似于因式分解的变形,可降低一些二次根式问题的难度.【例2】 比6大的最小整数是多少?解题思路:直接展开,计算较繁,可引入有理化因式辅助解题,即设x y ==想一想:设x =求432326218237515x x x x x x x --++-++的值.的根式为复合二次根式,常用配方,引入参数等方法来化简复合二次根式.【例3】 设实数x ,y 满足(1x y =,求x +y 的值.解题思路:从化简条件等式入手,而化简的基本方法是有理化.【例4】 (1的最小值.(2的最小值.解题思路:对于(1)的几何意义是直角边为a ,b 的直角三角形的斜边长,从构造几何图形入手,对于(2),设y =,设A (x ,0),B (4,5),C (2,3)相当于求AB +AC 的最小值,以下可用对称分析法解决.方法精髓:解决根式问题的基本思路是有理化,有理化的主要途径是乘方、配方、换元和乘有理化因式.【例5】 设2)m a =≤≤,求1098747m m mm m +++++-的值.解题思路:配方法是化简复合二次根式的常用方法,配方后再考虑用换元法求对应式子的值.能力训练A级1.若满足0<x<y=x,y)是_______2.2x-3,则x的取值范围是()A.x≤1B. x≥2C. 1≤x≤2D. x>03)A.1B C. D. 54、有下列三个命题甲:若α,β是不相等的无理数,则αβαβ+-是无理数;乙:若α,β是不相等的无理数,则αβαβ-+是无理数;丙:若α,β其中正确命题的个数是()A.0个B.1个C.2个D.3个5、化简:(1(2(3(4(56、设x =(1)(2)(3)(4)x x x x ++++的值.77x =,求x 的值.B 级1.已知3312________________x y x xy y ==++=则.2.已知42______1x x x ==++2x 那么.3.a =那么23331a a a++=_____.4. a ,b 为有理数,且满足等式14a +=++则a +b =( )A .2B . 4C . 6D . 85. 已知1,2a b c ===,那么a ,b ,c 的大小关系是( ).Aa b c << B . b <a <c C . c <b <c D . c <a <b6.=) A . 1a a -B .1a a - C . 1a a+ D . 不能确定 7. 若[a ]表示实数a 的整数部分,则等于( )A .1B .2C .3D . 48. 把(1)a - )A .B C. D .9、化简:(110099+(2(310、设01,x << 1≤<.12、已知a, b, c为有理数,证明:222a b ca b c++++为整数.参考答案例1 (1)⎤(2)+5.(3)3-;(4-++=-.例2 x+y=,xy=1,于是x2+y2=(x+y)2-2xy=22,x3+y3=(x+y)(x2-xy+y2)=,x6+y6=(x3+y3)2-2x3y3=10582 .∵01,从而0<6<1,故10 581<6<10 582.例 3 x=-y…①;同理,y=x…②.由①+②得2x=-2y,x+y=0.例4 (1)构造如图所示图形,P A PB.作A关于l的对称点A',连A'B交l于P,则A'B13为所求代数式的最小值.(2)设yA(x,0),B(4,5),C(2,3).作C关于x轴对称点C1,连结BC1交x轴于A点.A即为所求,过B作BD⊥CC1于D点,∴AC+AB=C1B=例 5 m=+=.∵1≤a≤2,∴01,∴-11≤0,∴m=2.设S=m10+m9+m8+…+m-47=210+29+28+…+2-47 ①,2S=211+210+29+…+22-94 ②,由②-①,得S=211-2-94+47=1 999.A级1.(17,833),(68,612),( 153,420) 2.B 3.C4.A 5.(1)()2x yx y+-(2)22-(4) 6.48提示:由已知得x2+5x=2,原式=(x2+5x+4)(x2+5x+6).7.由题设知x>0,(+)(-)=14x.∴-=2,∴2=7x+2,∴21x2-8x-48=0.其正根为x=127.B级1.642.9553.1提示:∵-1)a=2-1,即1a-1.4.B提示:由条件得a+3+a=3,b=1,∴a+b=4.5.B提示:a-b-11=0.同理c-a>0 6.B 7.B 8.D提示:注意隐含条件a-1<0.9.(1)910提示:考虑一般情形=-(2)原式=8153+=2+(3)210.构造如图所示边长为1的正方形ANMD,BCMN.设MP=x,则CPAP,AC,AM AC≤PC+P A<AM+MC,,则≤+<1+11.设y=-=,设A(4,5),B(2,3),C(x,0),易求AB的解析式为y=x+1,易证当C在直线AB上时,y有最大值,即当y=0,x=-1,∴C(-1,0),∴y=12b c+-=)22233ab bc b acb c-+--为有理数,则b2 -ac=0.又a2+b2+c2=(a+b+c)2-2(ab+bc+ac)=(a+b+c)2-2(ab+bc+b2)=()2cba++-2b(a+b+c)=(a+b+c)(a-b+c),∴原式=a-b+c为整数.。

专题训练 二次根式化简求值有技巧(含答案)

专题训练   二次根式化简求值有技巧(含答案)

专题练习(一)二次根式化简求值有技能(含答案)【1 】► 类型之一 应用二次根式的性质a2=|a|化简 对于a2的化简,不要盲目地写成a,而应先写成绝对值的情势,即|a|,然后再依据a 的符号进行化简.即a2=|a|=⎩⎨⎧a (a >0)0(a =0)-a (a <0).1.已知a =2-3,则a2-2a +1=( )A .1-3B.3-1 C .3-3D.3-32.当a <12且a ≠0时,化简:4a2-4a +12a2-a=________. 3.当a <-8时,化简:|(a +4)2-4|.4.已知三角形的双方长分离为3和5,第三边长为c,化简:c2-4c +4-14c2-4c +16. ► 类型之二 逆用二次根式乘除法轨则化简 5.当ab <0时,化简a2b 的成果是( ) A .-a bB .a -bC .-a -bD .a b6.化简:(1)(-5)2×(-3)2;(2)(-16)×(-49); (3) 2.25a2b;(4)-25-9;(5)9a34. ► 类型之三 应用隐含前提求值7.已知实数a 知足(2016-a )2+a -2017=a,求a -12016的值. 8.已知x +y =-10,xy =8,求x y +y x 的值. ► 类型之四 巧用乘法公式化简9.盘算:(1)(-4-15)(4-15);(2)(26+32)(32-26); (3)(23+6)(2-2);(4)(15+4)2016(15-4)2017.► 类型之五 巧用整体思惟进行盘算10.已知x =5-26,则x2-10x +1的值为( )A .-306B .-186-2C .0D .10611.已知x =12(11+7),y =12(11-7),求x2-xy +y2的值. 12.已知x >y 且x +y =6,xy =4,求x +yx -y 的值.► 类型之六 巧用倒数法比较大小13.设a =3-2,b =2-3,c =5-2,则a,b,c 的大小关系是( )A .a >b >cB .a >c >bC .c >b >aD .b >c >a_详解详析1.[解析]B a2-2a +1=|a -1|.因为a -1=(2-3)-1=1-3<0,所以|a -1|=-(1-3)=3-1.故选B.2.[答案] -1a[解析] 原式=(2a -1)2a (2a -1)=|2a -1|a (2a -1). 当a <12时,2a -1<0,所以|2a -1|=1-2a. 所以原式=1-2a a (2a -1)=-1a. 3.解:当a <-8时,a +4<-4<0,a +8<0,∴|a +4|=-(a +4),|a +8|=-(a +8).∴原式=|-(a +4)-4|=|-a -8|=|a +8|=-(a +8)=-a -8.4.[解析] 由三角形三边关系定理可得2<c <8,将这两个二次根式的被开方数分化因式,就可以应用二次根式的性质化简了.解:由三角形三边关系定理,得2<c <8.∴原式=(c -2)2-(12c -4)2=c -2-(4-12c)=32c -6. 5.[解析]A 由ab <0,可知a,b 异号且a ≠0,b ≠0.又因为a2≥0,且a2b ≥0,所以a <0,b>0.所以原式=-a b.[点评] 逆用二次根式的乘除法轨则进行化简时,症结是留意轨则成立的前提,还要留意二次根式的总体性质符号,即化简前后符号要一致.6.解:(1)原式=(-5)2×(-3)2=5×3=15.(2)原式=16×49=16×49=4×7=28.(3)原式= 2.25×a2·b =1.5a ·b =3a 2b. (4)原式=259=259=53. (5)原式=9a34=3a 2 a. 7.解:依题意可知a -2017≥0,即a ≥2017.所以原前提转化为a -2016+a -2017=a,即a -2017=2016.所以a =20162+2017. 所以a -12016=20162+20162016=2017. [点评] 解决此题的症结是从已知前提中发掘出隐含前提“a -2017≥0”,如许才干对(2016-a )2进行化简,从而求出a 的值.8.解:依题意可知x <0,y <0. 所以原式=x2xy +y2xy =-x xy +-y xy =-(x +y )xy . 因为x +y =-10,xy =8,所以原式=-(-10)8=522. [点评] 解决此题的症结是从已知前提中剖析出x,y 的正负性,如许才干对请求的式子进行化简和求值.假如盲目地化简代入,那么将会得出-522这个错误成果. 解答此题还有一个技能,那就是对x y +y x进行变形时,不要按通例化去分母中的根号,而是要依据已知前提的特色对它进行“通分”. 9.解:(1)原式=(-15)2-42=15-16=-1.(2)原式=(32)2-(26)2=18-24=-6. (3)原式=3(2+2)(2-2)=3(4-2)=2 3.(4)原式=(15+4)2016(15-4)2016(15-4)=[(15+4)(15-4)]2016(15-4)=15-4.[点评] 应用乘法公式化简时,要擅长发明公式,经由过程符号变形.地位变形.公因式变形.联合变形(添括号).指数变形等,变出乘法公式,就可以应用公式进行化简与盘算,事半功倍.10.[解析]C 原式=(x -5)2-24. 当x =5-26时,x -5=-26,∴原式=(-26)2-24=24-24=0.故选C.[点评] 解答此题时,先对请求的代数式进行配方,然后视x -5为一个整体代入求值,这比直接代入x 的值进行盘算要简略得多. 11.解:因为x +y =11,xy =14[(11)2-(7)2]=1, 所以x2-xy +y2=(x +y)2-3xy =(11)2-3=8.[点评] 这类问题平日视x +y,xy 为整体,而不是直接代入x,y 的值进行盘算.12.解:因为(x -y)2=(x +y)2-4xy =20,且x >y,所以x-y=20=25,所以原式=(x+y)2(x)2-(y)2=x+y+2xyx-y=6+425= 5.[点评] 此题需先整体求出x-y的值,然后再整体代入变形后的代数式盘算.13.[解析]A 因为(3-2)(3+2)=1,所以a=3-2=13+2.同理,b=12+3,c=15+2.当分子雷同时,分母大的分式的值反而小,所以a>b>c.故选A.[点评] 这里(3-2)(3+2)=1,即3-2与3+2互为倒数.是以,比较大小时,可把3-2转化为13+2,从而转化为分母大小的比较。

中考数学专题 二次根式的化简与求值_答案

中考数学专题  二次根式的化简与求值_答案

6
6
+y6=(x3+y3)2-2x3y3=10582 .∵0< 6 5 <1,从而 0< 6 5 <1,故 10 581< 6 5
<10 582. 例 4 x+ x2 1 =
1
= y2 1 -y…①;同理,y+ y2 1 =
1

y y2 1
x x2 1
x2 1 -x…②.由①+②得 2x=-2y,x+y=0. 例 5 (1)构造如图所示
≤ a 1 ≤1,∴-1≤ a 1 -1≤0,∴m=2.设 S=m10+m9+m8+…+m- 47=210+29+28+…+2-47 ①,2S=211+210+29+…+22-94 ②,由②-①, 得 S=211-2-94+47=1 999. A 级 1.1 2. 5 2 3.0 提示:令 1997 =a, 1999 =b, 2001 =c. 4. (17,833),

3
1
= 6 2;
6 3 3 2
6 3 3 2
5 3 3 2 2 3 3 3 2 3 3 2
(4)原式=
=3 3 2 .
5 2 3 1
例 3 x+y=2 6 ,xy=1,于是 x2+y2=(x+y)2-2xy=22,x3+y3=(x+y)(x2-xy+y2)=42 6 ,x6
1 1 x2 < 1 + 2 12 . 设 y = x2 8x 41 - x2 4x 13 =
x 42 52 - x 22 32 ,设 A(4,5),B(2,3),C(x,0),易求 AB
的解析式为 y=x+1,易证当 C 在直线 AB 上时,y 有最大值,即当 y=0,
x=-1,∴C(-1,0),∴y= 2 2 . 13. 3a b = 3a b
(68,612),( 153,420)

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1 二次根式的化简求值(压轴题专项讲练)(解析版)-八年级数学下册

专题16.1二次根式的化简求值整体思想:指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。

一、二次根式的定义形如(≥0)的式子叫做二次根式,叫做二次根号,叫做被开方数.二、二次根式有意义的条件1.二次根式中的被开方数是非负数;2.二次根式具有非负性:≥0.三、判断二次根式有意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数;2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.四、二次根式的性质性质1:2=(≥0),即一个非负数的算术平方根的平方等于它本身;性质2:2==(≥0)−(<0),即一个任意实数平方的算术平方根等于它本身的绝对值.五、同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.①同类二次根式类似于整式中的同类项;②几个同类二次根式在没有化简之前,被开方数完全可以互不相同;③判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.六、二次根式的加减法则二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.七、二次根式的乘除法则①二次根式的乘法法则:∙=∙o≥0,≥0);②积的算术平方根:∙=∙o≥0,≥0);≥0,>0);=≥0,>0).八、最简二次根式我们把满足①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.这两个条件的二次根式,叫做最简二次根式.九、分母有理化1.分母有理化是指把分母中的根号化去:分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式;2.两个含二次根式的代数式相乘时,它们的积不含二次根式,这样的两个代数式成互为有理化因式.一个二次根式的有理化因式不止一个.【典例1】阅读下列材料,然后回答问题.====3−1以上这种化简的步骤叫做分母有理化.②学习数学,最重要的是学习数学思想,其中一种数学思想叫做换元的思想,它可以简化我们的计算,比如我们熟悉的下面这个题:已知a+b=2,ab=-3,求2+2.我们可以把a+b和ab看成是一个整体,令x=a+b,y=ab,则2+2=(+p2−2B=2−2=4+6=10.这样,我们不用求出a,b,就可以得到最后的结果.(1(2)m是正整数,a b22+1823B+22=2019.求m.(3)已知15+2−26−2=1,求15+2+26−2的值.(1)由题目所给出的规律进行计算即可;(2)先求出+=2(2+1),B=1再由22+1823B+22=2019进行变形再求值即可;(3)先得到15+2⋅26−2=20,然后可得(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,最后由15+2≥0,26−2≥0,求出结果.解:(1)原式=2+++⋯+2=3−1+5−3+7−5+⋯+2019−20172=(2)∵a b∴+==2(2+1),B=1,∵22+1823B+22=2019,∴2(2+2)+1823=2019,∴2+2=98,∴4(2+1)2=100,∴2=±5−1,∵m是正整数,∴m=2.(3)由15+2−26−2=1得出(15+2−26−2)2=1,∴15+2⋅26−2=20,∵(15+2+26−2)2=(15+2−26−2)2+415+2⋅26−2=81,又∵15+2≥0,26−2≥0,∴15+2+26−2=9.1.(2023下·浙江·八年级阶段练习)已知=2−3,=2+3,则代数式2+2B+2+−−4的值为()A B.34C.3−1D【思路点拨】根据已知,得到+=2−3+2+3=22,−=2−3−2−3=−23,整体思想带入求值即可.【解题过程】解:∵=2−3,=2+3,∴+=2−3+2+3=22,−=2−3−2−3=−23,∴2+2B+2+−−4=+2+−−4=222−23−4=8−23−4=4−23=32−23+1=3−12=3−1.故选C.2.(2022下·广西钦州·八年级统考阶段练习)已知+1=7(0<<1),则−)【思路点拨】,故<,将−由0<<1,得0<<1【解题过程】解:∵0<<1,∴0<<1,∴<2=−2+1,+1=7(0<<1),∵(−∴(−∴=-5或−=5,∵<0,∴∴故选B.3.(2023·浙江宁波·校考一模)若2+2=1,则2−4+4+B−3+−3的值为()A.0B.1C.2D.3【思路点拨】先根据2+2=1得出−1≤≤1,−1≤≤1,根据2−4+4+B−3+−3要有意义,得出+ 1−3≥0,根据−3<0得出+1≤0,从而得出J−1,将J−1代入即可求出式子的值.【解题过程】解:∵2+2=1,∴−1≤≤1,−1≤≤1,∵2−4+4+B−3+−3要有意义,∴B−3+−3≥0,整理得:+1−3≥0,∵−3<0,∴+1≤0,∴J−1,∴2−4+4+B−3+−3=−22++1−3=−1−22+−1+1−3=3+0=3,故D正确.故选:D.4.(2023上·四川达州·八年级校考期中)已知xx6﹣22019x5﹣x4+x3﹣22020x2+2x﹣2020的值为()A.0B.1C.2019D.2020【思路点拨】对已知进行变形,再代入所求式子,反复代入即可.【解题过程】解:∵=2020−=2020+2019,∴6−220195−4+3−220202+2−2020,=5−22019−4+2−22020+2−2020,=52020+2019−22019−4+22020+2019−22020+2−2020,=52020−2019−4+22019−2020+2−2020,=42020−2019−1+22019−2020+2−2020,=2020+20192019−2020+2−2020=−+2−2020,=−2020,=2019,故选:C.5.(2023·安徽·校联考模拟预测)设a为3+5−3−5的小数部分,b为6+33−6−33的小数部分,则2b−1的值为()A.6+2−1B.6−2+1C.6−2−1 D.6+2+1【思路点拨】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【解题过程】解:3+5−3−5-=5+15-1=2∴a的小数部分为2-1,6+336−33−=3+33-3=6∴b的小数部分为6-2,∴2b−1=6+2-2-1=6-2+1,故选:B.6.(2022上·湖南益阳·八年级统考期末)设1=1+112+122,2=1+122+132,3=1+132+142,……,=1+ 12+1(r1)2.其中n为正整数,则1+2+3+⋅⋅⋅+2021的值是()A.202020192020B.202020202021C.202120202021D.202120212022【思路点拨】根据题意,先求出=1+1or1),然后把代数式进行化简,再进行计算,即可得到答案.【解题过程】解:∵n为正整数,∴=2+r1or1)=1+1or1);∴1+2+3+⋯+2021=(1+11×2)+(1+12×3)+(1+13×4)+…+(1+12021×2022)=2021+1﹣12+12−13+13−14+⋯+12021−12022=2021+1﹣12022=202120212022.故选:D.7.(2023上·上海金山·八年级校考期中)如果=5−2,则1=.【思路点拨】本题考查了二次根式的化简求值,熟练掌握二次根式的性质、完全平方公式是解题关键.先根据二次根式的分母有理化可得1,从而可得1−>0,再利用完全平方公式化简二次根式,代入计算即可得.【解题过程】解:∵=5−2,∴1=5−2=5−2=5+2,∴1−55−2∴1=1+=1+−=5+2+4=5+6.故答案为:5+6.8.(2022上·湖南长沙·七年级校联考阶段练习)已知==42−3B+42=.【思路点拨】先把和的值分母有理化得到==−=−12,B=1,再利用完全平方公式变形原式得到4(−p2+5B,然后利用整体代入的方法计算.【解题过程】解:∵==∴====∴−=−12,B=1,∴原式=4(−p2+5B=4×(−12)2+5×1=6.故答案为6.9.(2022下·浙江杭州·八年级校考期中)已知=2的值等于.【思路点拨】通过完全平方公式求出+1=2,把待求式的被开方数都用+1的代数式表示,然后再进行计算.【解题过程】=2,解:∵+∴=4,∴+1+2=4∴+12===10.(2023下·广东深圳·九年级深圳中学校考自主招生)已知x,y为正整数,+−7−7+ 7B=7,求+=.【思路点拨】将等式进行因式分解,得到++7B−7=0,求得B=7,即可求解.【解题过程】解:∵+−7−7+7B=7,∴+−7−7+7B−7=0,∴B+−7++7B−7=0,∴+B−7+7B−7=0,∴++7B−7=0,∵++7>0,∴B−7=0,∴B=7,又x,y为正整数,则s=1,7或7,1,从而+=8,故答案为:8.11.(2023下·黑龙江绥化·八年级校考阶段练习)设=3−2,则6+35+113+2+1=.【思路点拨】利用+22=2+4+4和=3−2,推得2+4+1=0,借助该式将多项式进行降幂化简,即可求解.【解题过程】解:∵=3−2,∴+22=3−2+22=3,又∵+22=2+4+4,即2+4+4=3,整理得2+4+1=0,6+35+113+2+1=42+4+1+35+113+2+1−45−4=−5−4+113+2+1=−32+4+1−4+113+2+1+44+3=34+123+2+1=322+4+1+2+1−32=−32+2+1=−32+4+1+2+1+12+3=14+4,将=3−2代入原式可得14×3−2+4=143−24.故答案为:143−24.12.(2022下·湖北武汉·九年级统考自主招生)已知=则代数式23−32−7+2022的值为.【思路点拨】将已知条件=2−3=−1,再将所求代数式变形为23−62+32−7+2022,由此即可求解.【解题过程】解:已知=∴2=3+5,即2−3=5,等式两边同时平方得,2−32=52,整理得,42−12+9=5,即42−12=−4,∴2−3=−1,∵23−32−7+2022=2o2−3p+32−7+20022把2−3=−1代入得,=2×−1+32−7+2022=32−2−7+2022=32−9+2022=3(2−3p+2022把2−3=−1代入得,=3×−1+2022=2019,故答案为:2019.13.(2022上·上海闵行·=3,=13.【思路点拨】首先对第一个式子的分子利用平方差公式分解,第二个式子利用完全平方公式分解,然后约分,合并同类二次根式即可化简,然后代入数值计算即可.【解题过程】解:原式=K=+++=2+2当=3,=13时,原式=23+=23+=14.(2023·北京·九年级专题练习)已知==,求2+2的值.【思路点拨】首先把x和y进行分母有理化,然后将其化简后的结果代入计算即可.【解题过程】解:∵==5−26,===5+26,∴原式=(5+2(5−26)=2620626206=26)(49206)6)(49206)6)(492026)(49206)=245−1006−986+240+245+1006+986+240=970.15.(2023下·山东威海·九年级校考期中)已知+=−8,B=12,求+【思路点拨】根据题意可判断a和b都是负数,然后二次根式的乘、除法公式和合并同类二次根式法则化简并求值即可.【解题过程】解:∵+=−8,B=12,∴a和b均为负数,2+2−2B=40=B+B=2B2B=2+2B=−−==2=−4012=−401212=−40×2312=−203316.(2023上·上海杨浦·七年级校考阶段练习)已知−2B−15=0【思路点拨】讨论:当>0,>0,利用因式分解的方法得到−5+3=0,解得=25,当I0,<0,则−−+5−−−3−=0,解得=9,然后把=25,=9化简求解.【解题过程】解:∵−2B−15=0要有意义,即B≥0,∴>0且>0或I0且<0,当>0且>0时,∵−2B−15=−5+3=0,∴−5=0或+3=0(舍去),解得:=25,把=25=25r5r225K10r=2;当I0且<0时,∵−2B−15=−−+5−−−3−=0,∴−r5−=0(舍去)或−−3−=0,解得:=9,把=9==9K3r29r6r=12.17.(2023上·四川成都·八年级成都市三原外国语学校校考阶段练习)已知==(2【思路点拨】(1)先将x、y进行分母有理化,再代入式子计算可得;(2)先将式子化简再代入x、y进行计算即可.【解题过程】(1)∵=10−3=10+3,=10−3,=∴+=210,−=6,∴2+2B+2=(+p2=(210)2=40.(2)∵=10+3,=10−3,∴1∴o−2)=−2o−2)−+1o+1)=1−1=1010=10−3−10−3=−6.18.(2023上·河北衡水·八年级校联考阶段练习)已知=2−3,=2+3.(1)求+和B的值;(2)求2+2−3B的值;(3)若的小数部分是,的整数部分是,求B−B的值.【思路点拨】本题考查了二次根式的混合运算、利用完全平方公式进行计算、无理数的估算,熟练掌握以上知识点并灵活运用是解此题的关键.(1)代入=2−3,=2+3即可求出+和B的值;(2)将原式变形为+2−5B,代入数值进行计算即可;(3)先估算出1<3<2,从而得出=2−3,=3,再代入进行计算即可得出答案.【解题过程】(1)解:∵=2−3,=2+3,∴+=2−3+2+3=4,B=2−32+3=4−3=1;(2)解:由(1)得:+=4,B=1,∴2+2−3B=+2−5B=42−5×1=11(3)解:∵1<3<4,∴1<3<4,即1<3<2,∴−2<−3<−1,∴0<2−3<1,∵的小数部分是,∴=2−3,∵3<2+3<4,的整数部分是,∴=3,∴B−B=2−32−3−32+3=4−43+3−6−33=1−73.19.(2023下·广东江门·八年级统考期中)有这样一类题目:将±2化简,如果你能找到两个数m、n,使2+2=且B =,±2将变成2+2±2B ,即变成(±p 2,从而使±2得以化简.(1)例如,∵5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2,∴5+26=(3+2)2=______,请完成填空.(2)仿照上面的例子,请化简4−23;(3)利用上面的方法,设=6+42,=3−5,求A +B 的值.【思路点拨】(1)根据二次根式的性质:2==o >0)0(=0)−o <0),即可得出相应结果.(2)根据(1)中“5+26=3+2+26=(3)2+(2)2+22×3=(3+2)2”,将代数式转化为完全平方公式的结构形式,再根据二次根式的性质化简求值,即可得出结果.(3)根据题意,首先把A 式和B 式分别转化为完全平方公式的结构形式,再根据二次根式的性质把A 式和B 式的结果分别算出,最后把A 式和B 式再代入A +B 中,求出A +B 的值.【解题过程】(1)∵5+26=2+3+26=22+32+2×2×3=2+32∴5+26=(3+2)2=3+2故答案为:3+2(2)∵4−23=3+1−23=32+1−23=3−12∴4−23=(3−1)2=3−1.(3)∵=6+42=4+2+42=42+22+2×4×2=(2+2)2∴=6+42=2+2∵=3−5=∴=3−5====∴把A 式和B 式的值代入A +B 中,得:+=2+2=2+2220.(2023下·广西钦州·八年级校考阶段练习)我们将+、−称为一对“对偶式”,因为+−=(p2−(p2=−,所以构造“和−====3+22.像这中的“”样,通过分子,分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化根据以上材料,理解并运用材料提供的方法,解答以下问题:“>”、“<”或“=”填空);(1(2)已知==,求K2rB2的值;+…+(3【思路点拨】(1)先分母有理化,然后根据作差法,比较大小即可求解;(2)先求得−s B的值,然后代入即可求解;(3)将每一项分母有理化,然后就根据二次根式的加减进行计算即可求解.【解题过程】(17−2=7−2===∵7>6,2>3−137−6+2−3>0,>故答案为:>.(2)∵==5+45+4=9+45,==5+2=5−45+4=9−45,∴+=9+45+9−45=18,−=9+45+−9+45=85,B=9+45945−80=1,∴K 2rB2+⋯+(3=3)2(53−35)35)(5−3979799⋯+2(99979799)(99979799)(9997−97=1−33+33−55+55−77+⋯+9797−9999=1−9999=1−。

《二次根式》专题练习(含答案)

《二次根式》专题练习(含答案)

初二数学专题练习《二次根式》一.选择题1.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥12.若1<x<2,则的值为() A.2x﹣4 B.﹣2 C.4﹣2x D.2 3.下列计算正确的是()A.=2B.=C.=x D.=x4.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b5.化简+﹣的结果为() A.0 B.2 C.﹣2 D.26.已知x<1,则化简的结果是() A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x 7.下列式子运算正确的是()A. B.C. D.8.若,则x3﹣3x2+3x的值等于()A. B. C. D.二.填空题9.要使代数式有意义,则x的取值范围是.10.在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为.11.计算:= .12.化简:= .13.计算:(+)= .14.观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:an= ;(2)a1+a2+a3+…+an= .15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= .16.已知:a<0,化简= .17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).三.解答题18.计算或化简:﹣(3+);19.计算:(3﹣)(3+)+(2﹣)20.先化简,再求值:,其中x=﹣3﹣(π﹣3)0.21.计算:(+)×.22.计算:×(﹣)+|﹣2|+()﹣3.23.计算:(+1)(﹣1)+﹣()0.24.如图,实数a、b在数轴上的位置,化简:.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.26.已知:a=,b=.求代数式的值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.28.化简求值:,其中.参考答案与解析一.选择题1.(2016•贵港)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥1【分析】被开方数是非负数,且分母不为零,由此得到:x﹣1>0,据此求得x的取值范围.【解答】解:依题意得:x﹣1>0,解得x>1.故选:C.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.注意:本题中的分母不能等于零.2.(2016•呼伦贝尔)若1<x<2,则的值为()A.2x﹣4 B.﹣2 C.4﹣2x D.2【分析】已知1<x<2,可判断x﹣3<0,x﹣1>0,根据绝对值,二次根式的性质解答.【解答】解:∵1<x<2,∴x﹣3<0,x﹣1>0,原式=|x﹣3|+=|x﹣3|+|x﹣1|=3﹣x+x﹣1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:=|a|.3.(2016•南充)下列计算正确的是()A.=2B.=C.=x D.=x【分析】直接利用二次根式的性质分别化简求出答案.【解答】解:A、=2,正确;B、=,故此选项错误;C、=﹣x,故此选项错误;D、=|x|,故此选项错误;故选:A.【点评】此题主要考查了二次根式的化简,正确掌握二次根式的性质是解题关键.4.(2016•潍坊)实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A.﹣2a+b B.2a﹣b C.﹣b D.b【分析】直接利用数轴上a,b的位置,进而得出a<0,a﹣b<0,再利用绝对值以及二次根式的性质化简得出答案.【解答】解:如图所示:a<0,a﹣b<0,则|a|+=﹣a﹣(a﹣b)=﹣2a+b.故选:A.【点评】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.5.(2016•营口)化简+﹣的结果为()A.0 B.2 C.﹣2D.2【分析】根据根式的开方,可化简二次根式,根据二次根式的加减,可得答案.【解答】解:+﹣=3+﹣2=2,故选:D.【点评】本题考查了二次根式的加减,先化简,再加减运算.6.已知x<1,则化简的结果是()A.x﹣1 B.x+1 C.﹣x﹣1 D.1﹣x【分析】先进行因式分解,x2﹣2x+1=(x﹣1)2,再根据二次根式的性质来解题即可.【解答】解:==|x﹣1|∵x<1,∴原式=﹣(x﹣1)=1﹣x,故选D.【点评】根据完全平方公式、绝对值的运算解答此题.7.下列式子运算正确的是()A.B.C. D.【分析】根据二次根式的性质化简二次根式:=|a|;根据二次根式分母有理化的方法“同乘分母的有理化因式”,进行分母有理化;二次根式的加减实质是合并同类二次根式.【解答】解:A、和不是同类二次根式,不能计算,故A错误;B、=2,故B错误;C、=,故C错误;D、=2﹣+2+=4,故D正确.故选:D.【点评】此题考查了根据二次根式的性质进行化简以及二次根式的加减乘除运算,能够熟练进行二次根式的分母有理化.8.若,则x3﹣3x2+3x的值等于()A.B.C.D.【分析】把x的值代入所求代数式求值即可.也可以由已知得(x﹣1)2=3,即x2﹣2x﹣2=0,则x3﹣3x2+3x=x(x2﹣2x﹣2)﹣(x2﹣2x﹣2)+3x﹣2=3x﹣2,代值即可.【解答】解:∵x3﹣3x2+3x=x(x2﹣3x+3),∴当时,原式=()[﹣3()+3]=3+1.故选C.【点评】代数式的三次方不好求,就先提取公因式,把它变成二次方后再代入化简合并求值.二.填空题9.(2016•贺州)要使代数式有意义,则x的取值范围是x≥﹣1且x≠0 .【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不等于0,列不等式组求解.【解答】解:根据题意,得,解得x≥﹣1且x≠0.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值范围后,应排除不在取值范围内的值.10.(2016•乐山)在数轴上表示实数a的点如图所示,化简+|a﹣2|的结果为 3 .【分析】直接利用二次根式的性质以及绝对值的性质分别化简求出答案.【解答】解:由数轴可得:a﹣5<0,a﹣2>0,则+|a﹣2|=5﹣a+a﹣2=3.故答案为:3.【点评】此题主要考查了二次根式的性质以及绝对值的性质,正确掌握掌握相关性质是解题关键.11.(2016•聊城)计算:= 12 .【分析】直接利用二次根式乘除运算法则化简求出答案.【解答】解:=3×÷=3=12.故答案为:12.【点评】此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.12.(2016•威海)化简:= .【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=3﹣2=.故答案为:.【点评】此题考查了二次根式的加减运算,属于基础题,解答本题的关键是掌握二次根式的化简及同类二次根式的合并.13.(2016•潍坊)计算:(+)= 12 .【分析】先把化简,再本括号内合并,然后进行二次根式的乘法运算.【解答】解:原式=•(+3)=×4=12.故答案为12.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.(2016•黄石)观察下列等式:第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,按上述规律,回答以下问题:(1)请写出第n个等式:an= =﹣;;(2)a1+a2+a3+…+an= ﹣1 .【分析】(1)根据题意可知,a1==﹣1,a2==﹣,a3==2﹣,a4==﹣2,…由此得出第n个等式:an==﹣;(2)将每一个等式化简即可求得答案.【解答】解:(1)∵第1个等式:a1==﹣1,第2个等式:a2==﹣,第3个等式:a3==2﹣,第4个等式:a4==﹣2,∴第n个等式:an==﹣;(2)a1+a2+a3+…+an=(﹣1)+(﹣)+(2﹣)+(﹣2)+…+(﹣)=﹣1.故答案为=﹣;﹣1.【点评】此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.15.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5 .【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.16.已知:a<0,化简= ﹣2 .【分析】根据二次根式的性质化简.【解答】解:∵原式=﹣=﹣又∵二次根式内的数为非负数∴a﹣=0∴a=1或﹣1∵a<0∴a=﹣1∴原式=0﹣2=﹣2.【点评】解决本题的关键是根据二次根式内的数为非负数得到a的值.17.设,,,…,.设,则S= (用含n的代数式表示,其中n为正整数).=1++===,求【分析】由Sn,得出一般规律.【解答】解:∵S=1++===,n∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.变形,得出一般规律,寻找抵消规律.【点评】本题考查了二次根式的化简求值.关键是由Sn三.解答题(共11小题)18.(2016•泰州)计算或化简:﹣(3+);【分析】先化成最简二次根式,再去括号、合并同类二次根式即可;【解答】解:(1)﹣(3+)=﹣(+)=﹣﹣=﹣;【点评】本题考查了二次根式的加减法以及分式的混合运算,正确化简是解题的关键.19.(2016•盐城)计算:(3﹣)(3+)+(2﹣)【分析】利用平方差公式和二次根式的乘法法则运算.【解答】解:原式=9﹣7+2﹣2=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(2016•锦州)先化简,再求值:,其中x=﹣3﹣(π﹣3)0.【分析】先根据分式混合运算的法则把原式进行化简,再把化简后x的值代入进行计算即可.【解答】解:,=÷,=×,=.x=﹣3﹣(π﹣3)0,=×4﹣﹣1,=2﹣﹣1,=﹣1.把x=﹣1代入得到:==.即=.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.21.计算:(+)×.【分析】首先应用乘法分配律,可得(+)×=×+×;然后根据二次根式的混合运算顺序,先计算乘法,再计算加法,求出算式(+)×的值是多少即可.【解答】解:(+)×=×+×=1+9=10【点评】此题主要考查了二次根式的混合运算,要熟练掌握,解答此题的关键是要明确:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式”,多个不同类的二次根式的和可以看作“多项式”.22.计算:×(﹣)+|﹣2|+()﹣3.【分析】根据二次根式的乘法法则和负整数整数幂的意义得到原式=﹣+2+8,然后化简后合并即可.【解答】解:原式=﹣+2+8=﹣3+2+8=8﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了负整数整数幂、23.计算:(+1)(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣1+2﹣1,然后进行加减运算.【解答】解:原式=3﹣1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.24.如图,实数a、b在数轴上的位置,化简:.【分析】本题综合性较强,不仅要结合图形,还需要熟悉算术平方根的定义.【解答】解:由数轴知,a<0,且b>0,∴a﹣b<0,∴,=|a|﹣|b|﹣[﹣(a﹣b)],=(﹣a)﹣b+a﹣b,=﹣2b.【点评】本小题主要考查利用数轴表示实数取值范围、二次根式的化简、代数式的恒等变形等基础知识,考查基本的代数运算能力.观察数轴确定a、b及a﹣b的符号是解答本题的关键,本题巧用数轴给出了每个数的符号,渗透了数形结合的思想,这也是中考时常考的知识点.本题考查算术平方根的化简,应先确定a、b及a﹣b的符号,再分别化简,最后计算.25.阅读材料,解答下列问题.例:当a>0时,如a=6则|a|=|6|=6,故此时a的绝对值是它本身;当a=0时,|a|=0,故此时a的绝对值是零;当a<0时,如a=﹣6则|a|=|﹣6|=﹣(﹣6),故此时a的绝对值是它的相反数.∴综合起来一个数的绝对值要分三种情况,即,这种分析方法渗透了数学的分类讨论思想.问:(1)请仿照例中的分类讨论的方法,分析二次根式的各种展开的情况;(2)猜想与|a|的大小关系.【分析】应用二次根式的化简,首先应注意被开方数的范围,再进行化简.【解答】解:(1)由题意可得=;(2)由(1)可得:=|a|.【点评】本题主要考查二次根式的化简方法与运用:①当a>0时,=a;②当a<0时,=﹣a;③当a=0时,=0.26.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.27.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:(一)==(二)===﹣1(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:====﹣1(四)(1)请用不同的方法化简.(2) 参照(三)式得= ;参照(四)式得= .(3)化简:+++…+.【分析】(1)中,通过观察,发现:分母有理化的两种方法:1、同乘分母的有理化因式;2、因式分解达到约分的目的;(2)中,注意找规律:分母的两个被开方数相差是2,分母有理化后,分母都是2,分子可以出现抵消的情况.【解答】解:(1)=,=;(2)原式=+…+=++…+=.【点评】学会分母有理化的两种方法.28.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.。

专题03:二次根式(简答题专练)(解析版)

专题03:二次根式(简答题专练)(解析版)

专题03:二次根式(简答题专练)一、解答题1.已知:211327m +=,234221m n --⨯=【答案】【分析】将已知的等式变形为同底数的式子,可得m 和n 的值,代入所求式子计算即可. 【解答】解:∵211327m +=, ∴21333m +=﹣, ∴213m +=-,解得:2m =-,∵234221m n --⨯=, 即23421m n -+-=∴2340m n -+-=,∴5n =,==. 【点评】本题考查了负整数指数、零指数幂的定义、幂的性质及二次根式的性质,解题的关键是掌握分数指数幂和负整数指数幂的运算法则.2.探究题:(1a 等于多少?(2)求222222,,,,,的值.对于任意非负实数2等于多少?【答案】(12=3=5=6=7=0=,对于任意实数a a =;(2)24=,29=,225=,236=,249=,20=,对于任意非负实数a , 2a =.【分析】(1)直接计算各式进而得出一般规律;(2)直接计算各式进而得出一般规律.【解答】(12=,3=,5=,6=,7=,=,对于任意实数a a;(2)24 =,29 =,225=,236=,249=,20 =,对于任意非负实数a,2a =.【点评】本题主要考查了二次根式的性质与化简,正确得出变化规律是解题关键.3.探究题:=_,=,=,=,=,20=,根据计算结果,回答:(1a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:①若2x<;= ;(3)若,,a b c【答案】3,0.5,6,34,13;(1a .当0a ≥时,a =;当0a ≤时,a =-.(2)①2x -,②3.14π-;(3)+-+--++-abc b c a b c a【分析】首先计算出探究题答案;(1a =;再根据绝对值的性质去掉绝对值符号可得当0a ≥时,a =;当0a ≤时, a =-;(2)①因为2x <,所以20x -<2x =-,再根据规律进行计算即可;②因为 3.14π<可得3.140π-< 3.14=-π,再根据规律进行计算即可; (3)根据三角形的三边关系定理可得000a b c b c a b c a +---+->,<,>,因此a b c b c a b c a =+-+--++-, 再根据绝对值的性质去掉绝对值符号合并同类项即可.3=,0.5=,6=,34=,13=, 200=; 故答案为:3,0.5,6,34,13;(1a .当0a ≥时, a =;当0a ≤时, a =-;(2)①因为2x <,2x =-;②因为 3.14π<,即3.140π-<,3.14=π-;(3)根据三角形的三边关系定理可得000a b c b c a b c a +---+->,<,>,()a b c c a b b c a =+-++-++-a b c =++. 【点评】a =.4.交警通常根据刹车后轮滑行的距离来测算车辆行驶的速度,所用的经验公式是v= 16 ,其中v 表示车速(单位:km/h ),d 表示刹车距离(单位:m ),f 表示摩擦系数,在一次交通事故中,测得d=20m ,f=1.44,而发生交通事故的路段限速为80km/h ,肇事汽车是否违规超速行驶?说明理由.,)【答案】超速行驶;理由见解析【分析】先把d=20m ,f=1.44,分别代入80km/h 比较即可解答.【解答】肇事汽车超速行驶.理由如下: 把d=20,f=1.44代入>80km/h , 所以肇事汽车超速行驶.考点:二次根式的应用.5.先化简,再求值:,其中a=17﹣,.【分析】先将所求式子化简,再分别将a 、b 的值整理代入求解即可.【解答】原式==)=)∵a =17﹣=32﹣2×3×()2=(3﹣)2,b =12+2×+)2=()2,∴原式【点评】本题主要考查二次根式的性质与运算法则、分式的运算法则以及平方差公式的应用.6.求值(1)已知1124x y ,==-的值;(2)已知x y ==,22343x xy y ++求的值.【答案】(1)2;(3)22.【解析】试题分析:(1)根据二次根式的分母有理化,先化简代数式,再代入求值即可;(2)先根据分母有理化化简x 、y ,然后利用配方法化简代数式,再代入求值即可.试题解析:(1)当1124x y ==,时,=()()()()()()y x y y x y x y x y x y x y +---+-+ =2y x y - =2(2)∵2121x y ==+-,, ∴x=21-,y=21+∴22343x xy y ++=22363x xy y ++-2xy=3(x+y )2-2xy=3(21-+21+)2-2(21-)(21+)=3×(22)2-2=3×8-2=227.实数a b 、在数轴上的位置如图所示:化简()222a b a b +--【答案】0【分析】根据数轴确定a 、b 的符号以及绝对值的大小,根据二次根式的性质化简计算即可.【解答】如图所示: 000a b a b ->,<,>()222a b a b +-()a b a b =---0=.【点评】本题主要考查了二次根式的性质与化简以及数轴的知识,掌握二次根式的性质、正确得出各项符号是解题的关键.8.阅读材料,解答下列问题:例:当0a >时,如5a =,则55a ==,故此时a 的绝对值是它本身;当0a =时,0a =,故此时a 的绝对值是0;当0a <时,如5a =-,则()555a =-=--=,故此时a 的绝对值是它的相反数.综上所述,一个数的绝对值要分三种情况,即:()()(),00,0,0a a a a a a ⎧>⎪==⎨⎪-<⎩,这种分析方法渗透了数学中的分类讨论思想.(1)请仿照例中的分类讨论,分析2a 的各种化简后的情况;(2)猜想2a 与a 的大小关系;(3)已知实数a b c 、、,在数轴上的位置如图所示,试化简:()22a a b c a b c --+-+-【答案】(1()()()20000a a a a a a ⎧>⎪==⎨⎪-<⎩;(22a a ;(3)22-+-b c a【分析】(1)根据二次根式的性质,可得答案;(2)根据二次函数的根式与绝对值的性质,可得答案;(3)根据二次根式的性质与绝对值的性质,可化简式子,根据整式的加减,可得答案. 【解答】(1)当0a >时,如5a =2255a ==2a a =;当0a =时,如 200a ==20a =;当0a <时,如5a =-, ()2255a =-=25a =,()()()20000a a a a a a ⎧>⎪==⎨⎪-<⎩;(22a a ;(3)由数轴上点的位置,得:0a b c <<<,0a b -<,0c a ->,0b c -<,()22a a b c a b c -+--()(()a b a c a c b =---+-+-)a b a c a c b =--++-+-22b c a =-+-.【点评】本题考查了二次根式的性质化简,熟练掌握二次根式的性质、绝对值的性质是解题关键.9.若,x y 是实数,且41143y x x =-+-+,求()3294253x x x x xy ⎛⎫+-+ ⎪⎝⎭. 【答案】1382- 【分析】根据二次根式的被开方数是非负数求得x =14,将其代入已知等式即可求得y 的值,原二次根式化简后,将x 、y 的值代入求值即可. 【解答】解:依题意得:410140x x -≥⎧⎨-≥⎩,解得:x =14,∴y =13 原式=225x x xy x x xy +--=3x x xy -=111134443-⨯=138-. 【点评】本题考查了二次根式有意义的条件.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.10.化简(1)2490,064a a b b>> (20.01810.25144⨯⨯ 【答案】(1)78a b ;(2)320. 【分析】(1)根据a b 、的符号以及二次根式的性质,可得答案;(2)根据二次根式的性质,可得答案.【解答】(1)∵0a >,0b >,==;(2=0.190.512⨯=⨯ 320=. 【点评】本题考查了利用二次根式的性质化简,熟练掌握二次根式的性质是解题关键.11.已知:y ,求的值.【答案】【分析】根据二次根式的定义得出x ﹣8≥0,8﹣x≥0,求出x ,代入求出y ,把所求代数式化简后代入求出即可.【解答】解:要使y 有意义,必须x ﹣8≥0,且8﹣x≥0,解得:x =8,把x =8代入得:y =0+0+9=9,∴13 【点评】本题考查了对二次根式有意义的条件,二次根式的化简,分母有理化等知识点的应用,解此题的关键是求出x 、y 的值,通过做此题培养了学生灵活运用性质进行求值的能力,题目比较典型.12.有这样一类题目:如果你能找到两个数m,n,使m2+n2=a,且,则a±,变成m2+n2+2mn=(m±n)2因为3±=1+2±=12+)2=()2,2|=±1.仿照上例化简下列各式:(1(2【答案】(1) +1;(2)【解析】试题分析:根据题目中的例题中的研究方法即可求解.试题解析:(1)原式=1,(2)原式=13.计算下列各题:)-);(2) (2;(3) 2;(4)(22017(2)2018-|-|-()0.【答案】+5;(3) 15+;(4)1.【解析】试题分析:这是一组二次根式的混合运算题,按照二次根式的相关运算法则计算即可.试题解析:(1)原式==(2)原式=55=;(3)原式=48315-+=+;(4)原式=2017[(2(21211+⨯+==.14.已知32x -≤≤,化简:. 【答案】34+x【分析】首先根据x 的范围确定3x +与2x -的符号,然后利用二次根式的性质,以及绝对值的性质即可化简.【解答】解:∵ 32x -≤≤, ∴3020x x +≥-≤,,∴=()()232x x =++-262x x =++-34x =+.【点评】本题考查了二次根式的性质与化简,正确理解二次根式的性质是关键.15.若实数a ,b ,c 满足. (1)求a ,b ,c ;(2)若满足上式的a ,c 为等腰三角形的两边,求这个等腰三角形的周长.【答案】(1),b=2, c=3;(26.【分析】(1)利用二次根式的性质进而得出c 的值,再利用绝对值以及二次根式的性质得出a ,b 的值; (2)利用等腰三角形的性质分析得出答案. 【解答】解:(1)由题意可得:c-3≥0,3-c≥0, 解得:c=3,∴,则,b=2;(2)当a 是腰长,c<3,不能构成三角形,舍去; 当c 是腰长,a 是底边时,任意两边之和大于第三边,能构成三角形,+6,+6.【点评】此题主要考查了二次根式有意义的条件以及等腰三角形的性质,正确得出c 的值是解题关键. 16.(1)已知xy2x 2-5xy +2y 2的值.(2)先化简,再求值:222222x y x yx xy y x xy x y ⎛⎫--÷⎪-+--⎝⎭,其中x=1,y=2-【答案】(1)42,(2)13+-【解析】分析:(1)由已知得,再把2x 2-5xy +2y 2化简,再代入即可. (2)先根据分式混合运算的法则把原式进行化简,再计算x 和y 的值并代入进行计算即可 详解:(1)xy∴∴22252x xy y -+=()2222x xy yxy -+-=()22x y xy --=(222+=402+ =42(2)原式=()()222x y xx y x x y y x y ⎡⎤---⋅⎢⎥--⎢⎥⎣⎦=1122x yx y x y y ⎛⎫--⋅⎪--⎝⎭=[()()()()22x y x y x y x y -----]·2x yy -=()()()2112y x y x y x y yx y y x --⋅==-----·当x =1,y =2时,原式= 点睛: 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17=,且x 为奇数,求(1+x )的值.【答案】【分析】由二次根式的非负性可确定x 的取值范围,再根据x 为奇数可确定x 的值,然后对原式先化简再代入求值.=, ∴6090x x >-≥⎧⎨-⎩解得,6≤x <9, ∵x 为奇数, ∴x=7,∴(1+x )=(1+x )=(1+x ).【点评】本题考查了二次函数的非负性及二次根式的化简求值.18.(1)设n 1;(2...+ 【答案】(1)111n n -+;(2)9910【分析】(1)根据完全平方公式,可得()22211111111n n n n ⎡⎤⎛⎫++=+- ⎪⎢⎥+⎝⎭+⎣⎦,根据开方运算,可得1111n n =+-+;(21111n n =+-+,可化简二次根式,根据分式的加减运算,可得答案. 【解答】(1)∵()()22211111112111n n n n n n ⎛⎫++=+-+ ⎪++⎝⎭+ 2111112()()11n n n n =+-+-++21111n n ⎡⎤⎛⎫=+- ⎪⎢⎥+⎝⎭⎣⎦,111111111n n n n =+--=-++;(21111n n =+-+,...+11111111111...122334910=+-++-++-++-11010=-9910=.【点评】本题考查了二次根式的性质与化简,利用完全平方公式得出()22221111111n n n n ⎡⎤⎛⎫++=+- ⎪⎢⎥+⎝⎭+⎣⎦是解题关键.19.定义()f x =(1)f +(3)f …+(21)f k -+…+(999)f 的值.【答案】5.【解析】【分析】将()f x进行分母有理化,分子分母同时乘以可得()f x =2=,进而求得()12f =,()32f =,()5f =()()()()1321999f f f k f ++⋅⋅⋅+-+⋅⋅⋅+5== 【解答】()f x ==2=,()12f ∴=,()32f =,()5f =,…,()999f = ()()()()132199952f f f kf ∴++⋅⋅⋅+-+⋅⋅⋅+==. 【点评】本题以新定义型题形式考查了二次根式的运算,解本题的关键是通过分母有理化将()f x 简化,再代值得到()212f k -=,即可解题.20.阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170—1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果.在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第nn n⎡⎤-⎢⎥⎣⎦表示(其中n≥1),这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数. 【答案】第1个数为1;第2个数为1.【分析】分别把1、2代入式子化简求得答案即可.【解答】当n=1n n ⎡⎤⎥-⎥⎝⎭⎝⎭⎦⎡⎤-⎥⎥⎝⎭⎝⎭⎦=1当n=2122n n⎡⎤⎛⎛-⎥-⎥⎝⎭⎝⎭⎦22⎡⎤⎥-⎥⎝⎭⎝⎭⎦11112222⎛⎫⎛-+-⎪⎪⎭⎝⎭=1。

初中数学 中考复习二次根式专题练习(含答案)

初中数学 中考复习二次根式专题练习(含答案)

二次根式复习一、知识归纳 (一)二次根式定义1注意:(12,(2)被开方数是非负数2、二次根式在实数范围内有意义的条件是 a ≥0 。

(二)二次根式的性质1、二次根式的双重非负性≥0,a ≥0a ≥0)表示非负数a 的算术平方根,≥0,2、)2=a (a ≥0)(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><(三)、最简二次根式和同类二次根式 1、最简二次根式的两个条件:(1)被开方数不含 ;(2)被开方数不含 的因数或因式。

满足:(1)根号内不含有分母,有分母的先通分,再将分母开出来 (2)根号内每个因式或因数的指数都小于根指数2,如果根号内含有因式或因数的指数大于根指数2,就利用,将每个因式或因数的指数都小于根指数2(3)分母内不含有根式,如果分母内含有根号,则利用分母有理化,将根号划去。

(1)判断一个二次根式是否是最简二次根式,要紧扣最简二次根式的特点: ①被开方数不含分母;②被开方数不能含开得尽方的因数或因式.即把每一个因数或因式都写成底数较小、乘方的形式后,因数或因式的指数小于2.③若被开方数是和(或差)的形式,则先把被开放方数写成积的形式,再作判定,若无法写成积(或一个数)的形式,则为最简二次根式.=简二次根式.=,且因式2和22()x y +的指数都是1,是最简二次根式.22a b +无法变成一个数(或因式)式.(2)化简二次根式一般例如为两步:一如果被开方数是分数或分式,利用分母有理化化简;二化去被开方数中的分母之后,再将被开方数分解成几个数相乘的形式或分解因式,然后利用积的算术平方根的性质把能开得尽方的因数或因式开出来.若被开方数中不含分母,则只需第二步.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式.同类二次根式与同类项类似. 对同类二次根式的理解应注意以下几点:(1)判断几个二次根式是否是同类二次根式时,首先将二次根式化为最简二次根式,其次看被开方数是否相同.(2)几个二次根式是否是同类二次根式,只与被开方数和根指数有关,与根号外的系数无关. 将同类二次根式的系数相加减,根指数与被开方数保持不变.(1)二次根式的系数就是这个二次根式根号外的因式(或因数),它包含前面的符号.(2)当二次根式的系数为带分数时,必须将其化为假分数.(3)不是同类二次根式,千万不要合并.(四)二次根式的运算0)=≥,≥0a b=≥,>00)a b≥,≥0a b0)=≥,>00)a b二次根式的加减实质上就是合并同类二次根式.4、二次根式加减的步骤:(1)先将二次根式化成。

二次根式 专题练习(含答案)

二次根式 专题练习(含答案)

二次根式专题练习(含答案)一.选择题(共10小题)1.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③2.已知:m,n是两个连续自然数(m<n),且q=mn.设,则p()A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数3.化简二次根式的结果是()A.B. C.D.4.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于()A.﹣5 B.5 C.﹣9 D.95.若实数a满足方程,则[a]=(),其中[a]表示不超过a的最大整数.A.0 B.1 C.2 D.36.若实数x,y满足x﹣y+1=0且1<y<2,化简得()A.7 B.2x+2y﹣7 C.11 D.9﹣4y7.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.158.下列计算中正确的是()A. B.C.D.9.若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2B.﹣3≤k≤3C.﹣1≤k≤1D.k≥﹣110.已知,,则的值为()A.3 B.4 C.5 D.6二.填空题(共8小题)11.二次根式中字母x的取值范围是.12.若y=++2,则x y=.13.若=3﹣x,则x的取值范围是.14.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b=.15.已知xy=3,那么的值是.16.当﹣4≤x≤1时,不等式始终成立,则满足条件的最小整数m=.17.若a、b、c三个数在数轴上对应点的位置如图所示,化简:=.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).三.解答题(共10小题)19.化简求值:,其中.20.已知:a=,b=.求代数式的值.21.已知:,求的值.22.阅读下面问题:;;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.23.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.24.已知y=+2,求+﹣2的值.25.已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.26.观察下列等式:①==﹣1②==﹣③==﹣…回答下列问题:(1)化简:=;(n为正整数)(2)利用上面所揭示的规律计算:+++…++.27.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.28.阅读下列解题过程:;.请回答下列问题:(1)观察上面的解题过程,请直接写出式子=;(2)利用上面所提供的解法,请化简:的值.参考答案与试题解析一.选择题(共10小题)1.如果ab>0,a+b<0,那么下面各式:①=,②•=1,③÷=﹣b,其中正确的是()A.①②B.②③C.①③D.①②③【分析】由ab>0,a+b<0先求出a<0,b<0,再进行根号内的运算.【解答】解:∵ab>0,a+b<0,∴a<0,b<0①=,被开方数应≥0,a,b不能做被开方数,(故①错误),②•=1,•===1,(故②正确),③÷=﹣b,÷=÷=×=﹣b,(故③正确).故选:B.【点评】本题是考查二次根式的乘除法,解答本题的关键是明确a<0,b<0.2.已知:m,n是两个连续自然数(m<n),且q=mn.设,则p()A.总是奇数B.总是偶数C.有时是奇数,有时是偶数D.有时是有理数,有时是无理数【分析】m、n是两个连续自然数(m<n),则n=m+1,所以q=m(m+1),所以q+n=m(m+1)+m+1=(m+1)2,q﹣m=m(m+1)﹣m=m2,代入计算,再看结果的形式符合偶数还是奇数的形式.【解答】解:m、n是两个连续自然数(m<n),则n=m+1,∵q=mn,∴q=m(m+1),∴q+n=m(m+1)+m+1=(m+1)2,q﹣m=m(m+1)﹣m=m2,∴=m+1+m=2m+1,即p的值总是奇数.故选A.【点评】本题的关键是根据已知条件求出p的值,判断p的值.3.化简二次根式的结果是()A.B. C.D.【分析】根据二次根式找出隐含条件a+2≤0,即a≤﹣2,再化简.【解答】解:若二次根式有意义,则﹣≥0,﹣a﹣2≥0,解得a≤﹣2,∴原式==.故选B.【点评】本题考查了二次根式的化简,注意要化简成最简二次根式,且不改变原式符号.4.已知,,且(7m2﹣14m+a)(3n2﹣6n﹣7)=8,则a的值等于()A.﹣5 B.5 C.﹣9 D.9【分析】观察已知等式可知,两个括号里分别有m2﹣2m,n2﹣2n的结构,可由已知m、n的值移项,平方得出m2﹣2m,n2﹣2n的值,代入已知等式即可.【解答】解:由m=1+得m﹣1=,两边平方,得m2﹣2m+1=2即m2﹣2m=1,同理得n2﹣2n=1.又(7m2﹣14m+a)(3n2﹣6n﹣7)=8,所以(7+a)(3﹣7)=8,解得a=﹣9故选C.【点评】本题考查了二次根式的灵活运用,直接将m、n的值代入,可能使运算复杂,可以先求部分代数式的值.5.若实数a满足方程,则[a]=(),其中[a]表示不超过a的最大整数.A.0 B.1 C.2 D.3【分析】对已知条件变形整理并平方,解方程即可得到a的值,求出后直接选取答案.【解答】解:根据二次根式有意义的条件,可得a≥1.原方程可以变形为:a﹣=,两边同平方得:a2+1﹣﹣2a=a﹣,a2+1﹣2=a.a2﹣a﹣2+1=0,解得=1,∴a2﹣a=1,a=(负值舍去).a≈1.618.所以[a]=1,故选B.【点评】此题首先能够根据二次根式有意义的条件求得a的取值范围,然后通过平方的方法去掉根号.灵活运用了完全平方公式.6.若实数x,y满足x﹣y+1=0且1<y<2,化简得()A.7 B.2x+2y﹣7 C.11 D.9﹣4y【分析】求出y=x+1,根据y的范围求出x的范围是0<x<1,把y=x+1代入得出+2,推出+2,根据二次根式的性质得出|2x+1|+2|x﹣3|,根据x的范围去掉绝对值符号求出即可.【解答】解:∵x﹣y+1=0,∴y=x+1,∵1<y<2,∴1<x+1<2,∴0<x<1,∴,=+2,=+2,=+2,=|2x+1|+2|x﹣3|,=2x+1+2(3﹣x),=7,故选A.【点评】本题考查了完全平方公式,二次根式的性质,绝对值等知识点的应用,主要考查学生综合运用性质进行化简和计算的能力,题目具有一定的代表性,但是一道比较容易出错的题目,有一定的难度.7.已知a﹣b=2+,b﹣c=2﹣,则a2+b2+c2﹣ab﹣bc﹣ac的值为()A.10B.12C.10 D.15【分析】由a﹣b=2+,b﹣c=2﹣可得,a﹣c=4然后整体代入.【解答】解:∵a﹣b=2+,b﹣c=2﹣,∴a﹣c=4,∴原式====15.故选D.【点评】此题的关键是把原式转化为的形式,再整体代入.8.下列计算中正确的是()A. B.C.D.【分析】根据二次根式的性质对各选项分析判断后利用排除法求解.【解答】解:A、+不能进行运算,故本选项错误;B、==×,负数没有算术平方根,故本选项错误;C、x﹣x=(﹣)x,故本选项正确;D、不能进行运算,=a+b,故本选项错误.故选C.【点评】本题考查了二次根式的性质与混合运算,是基础题,比较简单,但容易出错.9.若实数a,b满足+=3,﹣=3k,则k的取值范围是()A.﹣3≤k≤2B.﹣3≤k≤3C.﹣1≤k≤1D.k≥﹣1【分析】依据二次根式有意义的条件即可求得k的范围.【解答】解:若实数a,b满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤≤0 ②①+②可得﹣3≤﹣≤3,又有﹣=3k,即﹣3≤3k≤3,化简可得﹣1≤k≤1.故选C.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.10.已知,,则的值为()A.3 B.4 C.5 D.6【分析】先分母有理化求出a、b的值,再求出a2+b2的值,代入求出即可.【解答】解:∵a===+2,b==﹣2,∴a2+b2=(a﹣b)2+2ab=42+2×(5﹣4)=18,∴==5,故选C.【点评】本题考查了分母有理化,二次根式的化简,关键是求出a、b和a2+b2的值,题目比较好,难度适中.二.填空题(共8小题)11.二次根式中字母x的取值范围是x≥3.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12.若y=++2,则x y=9.【分析】根据二次根式有意义的条件得出x﹣3≥0,3﹣x≥0,求出x,代入求出y即可.【解答】解:y=有意义,必须x﹣3≥0,3﹣x≥0,解得:x=3,代入得:y=0+0+2=2,∴x y=32=9.故答案为:9.【点评】本题主要考查对二次根式有意义的条件的理解和掌握,能求出x y的值是解此题的关键.13.若=3﹣x,则x的取值范围是x≤3.【分析】根据二次根式的性质得出3﹣x≥0,求出即可.【解答】解:∵=3﹣x,∴3﹣x≥0,解得:x≤3,故答案为:x≤3.【点评】本题考查了二次根式的性质的应用,注意:当a≥0时,=a,当a<0时,=﹣a.14.已知a、b为有理数,m、n分别表示的整数部分和小数部分,且amn+bn2=1,则2a+b= 2.5.【分析】只需首先对估算出大小,从而求出其整数部分a,其小数部分用﹣a表示.再分别代入amn+bn2=1进行计算.【解答】解:因为2<<3,所以2<5﹣<3,故m=2,n=5﹣﹣2=3﹣.把m=2,n=3﹣代入amn+bn2=1得,2(3﹣)a+(3﹣)2b=1化简得(6a+16b)﹣(2a+6b)=1,等式两边相对照,因为结果不含,所以6a+16b=1且2a+6b=0,解得a=1.5,b=﹣0.5.所以2a+b=3﹣0.5=2.5.故答案为:2.5.【点评】本题主要考查了无理数大小的估算和二次根式的混合运算.能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键.15.已知xy=3,那么的值是±2.【分析】先化简,再分同正或同负两种情况作答.【解答】解:因为xy=3,所以x、y同号,于是原式=x+y=+,当x>0,y>0时,原式=+=2;当x<0,y<0时,原式=﹣+(﹣)=﹣2.故原式=±2.【点评】此题比较复杂,解答此题时要注意x,y同正或同负两种情况讨论.16.当﹣4≤x≤1时,不等式始终成立,则满足条件的最小整数m=4.【分析】根据x的取值范围确定m的取值范围,然后在其取值范围内求得最小的整数.【解答】解:∵﹣4≤x≤1,∴4+x≥0,1﹣x≥0,∴不等式两边平方得:m2>5+2∵当x=﹣1.5时,最大为2.5,∴m2>10∴满足条件的最小的整数为4.故答案为4.【点评】本题考查了二次根式有意义的条件,关键是确定m的取值范围.17.若a、b、c三个数在数轴上对应点的位置如图所示,化简:=3.【分析】先根据数轴判断出a、b、c的大小及符号,再根据有绝对值的性质及二次根式的定义解答.【解答】解:由数轴上各点的位置可知,a<b<0,c>0,|a|>|b|>c,∴=﹣a;|a﹣b|=b﹣a;|a+b|=﹣(a+b);|﹣3c|=3c;|a+c|=﹣(a+c);故原式====3.故答案是:3.【点评】解答此题的关键是根据数轴上字母的位置判断其大小,再根据绝对值的规律计算.绝对值的规律:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.18.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).【分析】由S n=1++===,求,得出一般规律.【解答】解:∵S n=1++===,∴==1+=1+﹣,∴S=1+1﹣+1+﹣+…+1+﹣=n+1﹣==.故答案为:.【点评】本题考查了二次根式的化简求值.关键是由S n变形,得出一般规律,寻找抵消规律.三.解答题(共10小题)19.化简求值:,其中.【分析】由a=2+,b=2﹣,得到a+b=4,ab=1,且a>0,b>0,再把代数式利用因式分解的方法得到原式=+,约分后得+,接着分母有理化和通分得到原式=,然后根据整体思想进行计算.【解答】解:∵a=2+>0,b=2﹣>0,∴a+b=4,ab=1,∴原式=+=+=+=,当a+b=4,ab=1,原式=×=4.【点评】本题考查了二次根式的化简求值:先把各二次根式化为最简二次根式,再合并同类二次根式,然后把字母的值代入(或整体代入)进行计算.20.已知:a=,b=.求代数式的值.【分析】先求得a+b=10,ab=1,再把求值的式子化为a与b的和与积的形式,将整体代入求值即可.【解答】解:由已知,得a+b=10,ab=1,∴===.【点评】本题关键是先求出a+b、ab的值,再将被开方数变形,整体代值.21.已知:,求的值.【分析】首先化简a=2﹣,然后根据约分的方法和二次根式的性质进行化简,最后代入计算.【解答】解:∵a==2﹣<1,∴原式==a﹣3+=2﹣﹣3+2+=1.【点评】此题中注意:当a<1时,有=1﹣a.22.阅读下面问题:;;.试求:(1)的值;(2)的值;(3)(n为正整数)的值.【分析】观察问题中的三个式子,不难发现规律:用平方差公式完成分母有理化.【解答】解:(1)原式==;(2)原式==;(3)原式==.【点评】要将中的根号去掉,要用平方差公式()()=a﹣b.23.阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.【分析】(1)运用第二种方法求解,(2)先把每一个加数进行分母有理化,再找出规律后面的第二项和前面的第一项抵消,得出答案,【解答】解:(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点评】本题主要考查了分母有理化,解题的关键是找准有理化因式.24.已知y=+2,求+﹣2的值.【分析】由二次根式有意义的条件可知1﹣8x=0,从而可求得x、y的值,然后将x、y的值代入计算即可.【解答】解:由二次根式有意义的条件可知:1﹣8x=0,解得:x=.当x=,y=2时,原式==﹣2=+4﹣2=2.【点评】本题主要考查的是二次根式有意义的条件,掌握二次根式的被开方数大于等于零是解题的关键.25.已知x=,y=,且19x2+123xy+19y2=1985.试求正整数n.【分析】首先化简x与y,可得:x=()2=2n+1﹣2,y=2n+1+2,所以x+y=4n+2,xy=1;将所得结果看作整体代入方程,化简即可求得.【解答】解:化简x与y得:x=,y=,∴x+y=4n+2,xy=1,∴将xy=1代入方程,化简得:x2+y2=98,∴(x+y)2=x2+y2+2xy=98+2×1=100,∴x+y=10.∴4n+2=10,解得n=2.【点评】此题考查了二次根式的分母有理化.解题的关键是整体代入思想的应用.26.观察下列等式:①==﹣1②==﹣③==﹣…回答下列问题:(1)化简:=;(n为正整数)(2)利用上面所揭示的规律计算:+++…++.【分析】(1)根据平方差公式,进行分母有理化,即可解答;(2)根据(1)中的规律化简,即可解答.【解答】解:(1)=;故答案为:.(2)+++…++=…+=﹣1.【点评】本题考查了分母有理化,解决本题的关键是发现分母有理化的规律.27.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得+=m,=,那么便有:==±(a>b).例如:化简.解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即+=7,×=∴===2+.由上述例题的方法化简:.【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【解答】解:根据,可得m=13,n=42,∵6+7=13,6×7=42,∴==.【点评】解题关键是把根号内的式子整理为完全平方的形式.28.阅读下列解题过程:;.请回答下列问题:(1)观察上面的解题过程,请直接写出式子=;(2)利用上面所提供的解法,请化简:的值.【分析】(1)通过观察题目中的解题过程可以看出:相邻的两个数算术平方根的和的倒数等于它们算术平方根的差;(2)根据规律,先化简成二次根式的加减运算,再进行计算就可以了.【解答】解:(1)=;(2)由题意可知:==.【点评】本题考查的是分式的加减运算,同时还考查了根据题目的已知来获取信息的能力,总结规律并运用规律是近年中考的热点之一.。

(完整版)二次根式化简练习题含答案,推荐文档

(完整版)二次根式化简练习题含答案,推荐文档

(-2)2 ab ab 3 3 (x -1)2 ab a 3b 9 + x 2 x - 32512a 3a 2 -1 x 2 - 2x+1 24 32 2 y -3 11 x 3 + 3x 2 x + 3 x 2 - 2xy + y 2 x 2 + 2xy + y 2 (x - 1 )2 +4 x (x + 1 )2- 4 x- a 3- a - a a ab a a - a - a •二次根式化简练习题含答案(培优)(一)判断题:(每小题 1 分,共 5 分)1. =-2 .…………………( )2. -2 的倒数是 +2.() 3. = ( x -1)2.…()4. 、1 、 - 31是同类二次根式.…( )5 , 都不是最简二次根式.( ) 3(二)填空题:(每小题 2 分,共 20 分)16. 当 x时,式子有意义.15 7. 化简- 8÷ = . 8. a -的有理化因式是.9.当 1<x <4 时,|x -4|+ = .10.方程 (x -1)=x +1 的解是 .ab - c 2d 211.已知 a 、b 、c 为正数,d =.1112.13.化简:(7-5 )2000·(-7-5 )2001=.14. 若 x +1 + =0,则(x -1)2+(y +3)2= .15. x ,y 分别为 8-的整数部分和小数部分,则2xy -y 2= .(三)选择题:(每小题 3 分,共 15 分)16.已知 =-x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 17.若 x <y <0,则 + =………………………()(A )2x (B )2y (C )-2x (D )-2y18.若 0<x <1,则 -等于………………………()2 2(A )(B )-(C )-2x(D )2xx x19.化简 a( a <0 ) 得………………………………………………………………()(A ) (B )- (C )- (D ) 20.当 a <0,b <0 时,-a +2 -b 可变形为………………………………………( )(A ) ( + b )2(B ) - (- b )2(C ) (+ - b )2(D ) (- - b )22 ax b 2 10 27 a5325324 - 11 11 -7aa ab -a3 + 2 3 - 2 3 - 2 3 + 223 +7mnab(四)计算题:(每小题6 分,共24 分)21.(-+)(--);22.5-4-2;ab n2 2n23.(a-+m ma b ;m24.(+a)÷(b a +b+-)(a≠b).(五)求值:(每小题7 分,共14 分)x3 -xy225.已知x=,y=,求x4 y + 2x3 y2 +x2 y3的值.x 2x -x2 +a2 1 26.当x=1-六、解答题:(每小题8 分,共16 分)b ab +b5 (-2)2 3 (x -1)2 a 3b 9 + x 2 x a a 2 -1 a 2 -1 a 2 -1 2 c 2d 2ab ab ab 7 28 3 48 28 48 2 2 2 2 2 2 x - 2 + yy x2 111127.计算(2 +1).28.若 x ,y 为实数,且 y = 1- 4x + 4x -1 + 1.求2 - 的值.(一)判断题:(每小题 1 分,共 5 分) 1、【提示】 =|-2|=2.【答案】×. 1 2、【提示】=3 + 2 =-(+2).【答案】×. 3 - 43、【提示】 =|x -1|, ( 数.【答案】×. x -1)2 =x -1(x ≥1).两式相等,必须 x ≥1.但等式左边 x 可取任何4、【提示】1 、- 3化成最简二次根式后再判断.【答案】√. 5、 是最简二次根式.【答案】×.(二)填空题:(每小题 2 分,共 20 分) 6、【提示】 何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0 且 x ≠9. 7、【答案】-2a .【点评】注意除法法则和积的算术平方根性质的运用.8、【提示】(a - )( )=a 2- ( a 2 -1)2 .a + .【答案】a + . 9、【提示】x 2-2x +1=( )2,x -1.当 1<x <4 时,x -4,x -1 是正数还是负数?x -4 是负数,x -1 是正数.【答案】3. 10、【提示】把方程整理成 ax =b 的形式后,a 、b 分别是多少? 11、【提示】 =|cd |=-cd .-1, +1.【答案】x =3+2 . 【答案】 +cd .【点评】∵ ab = ( ab )2 (ab >0),∴ ab -c 2d 2=( + cd ) ( - cd ).12、【提示】2 = ,4 = .1 1 1 【答案】<.【点评】先比较 ,113、【提示】(-7-5 )2001=(-7-5 )2000·()[-7-5 .](7-5 )·(-7-5 )=?[1.]【答案】-7-5 .x + 2 + y y x 3 - 22a x b2y - 3 y - 3 11 11 11 11 x 2 - 2xy + y 2 (x - y )2 (x + y )2 a 2- a 3 - a ⋅ a 2 - a a 2- a - a ab (-a )(-b ) a b 3 15 15 11 11 7 7 n ⋅ m m n a + ab + b - ab a + b 5 5 【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】 x +1 ≥0, ≥0. 当 x +1 + =0 时,x +1=0,y -3=0. 15、【提示】∵ 3< <4,∴<8- <.[4,5].由于 8- 介于 4 与 5之间,则其整数部分 x =?小数部分 y =?[x =4,y =4- ]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题 3 分,共 15 分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴= =|x -y |=y -x .= =|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质 =|a |.18、【提示】(x - 1 )2+4=(x + 1 )2,(x + 1 )2-4=(x - 1)2.又∵ 0<x <1,x x x x1 1 ∴ x + >0,x - <0.【答案】D .xx【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当 0<x <1 1 时 ,x - <0.x19、【提示】 = = · =|a | =-a .【答案】C . 20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a = ( - a )2 ,-b =( - b )2 , = . 【答案】C .【点评】本题考查逆向运用公式( a )2 =a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为 a <0,b <0 时, 、 都没有意义.(四)计算题:(每小题 6 分,共 24 分)21、【提示】将 - 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式=( - )2- ( 2)2 =5-2 +3-2=6-2 . 22、【提示】先分别分母有理化,再合并同类二次根式.【解】原式=5(4 + 11) - 4( 11 + 7 ) - 2(3 - 7 ) =4+ - - -3+ =1. 16 -1111- 79 - 723、【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2ab n - m m 1 )· a 2b 2 = 1- 1 mn ⋅ m + n b 2 mab n ma 2b 2 11 1 a2 - ab +1=-+ = .b 2aba 2b 2a 2b224、【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分.【解】原式= ÷3 m n m nm ⋅m n nx 2 + 2xy + y 2 a a ( a - b ) - b b ( a + b ) - (a + b )(a - b )ab ( a + b )( a - b )a b3 63 - 23 + 23 664 6x2 +a2x2 +a2x2 +a2x2 +a2x2 +a222xx2 +a2 ( x2 +a2 -x)2x -x2 +a2x( x2 +a2 -x) x2 +a253 3 99555ab ( a - b )( a + b )-ab (a +b)4 100= a =a +b=a +ba +b=·=-+.【点评】本题如果先分母有理化,那么计算较烦琐.(五)求值:(每小题7 分,共14 分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.2【解】∵x( +2) =5+2 ,y==( -2)2 =5-2 .∴ x+y=10,x-y=4 6 ,xy=52-(2 )2=1.x3 -xy 2 x(x +y)(x -y) x -y 2=x 4 y + 2x3 y 2 +x 2 y 3x2 y(x +y)2=== 6 .xy(x +y) 1⨯10 5【点评】本题将x、y 化简后,根据解题的需要,先分别求出“x+y”、“x-y”、“xy”.从而使求值的过程更简捷.26、【提示】注意:x2+a2=( x2+a2 )2,∴ x2+a2-x =(-x),x2-x =-x(-x).x 1=x 2 - 2x x 2 +a 2 + ( x 2 +a 2 )2 +x x 2 +a 2 -x 2 ( x2 +a2 )2 -x x2 +2x x 2 +a 2 (1x 2 +a 2 -x)1x x2 +a2 ( x2 +a2 -x)=.当x=1-1-.【点评】本题如果将前两个“分式”分拆成两个“分x式”之差,那么化简会更简便.即原式=-+1=( 1 1 --1 ) 1 1 .六、解答题:(每小题8 分,共16 分)x x27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(2 +1)( 2 -1 + 3 - 2 + 4 - 3 +…+100 - 99 )2 -1 3- 2 4 -3 100 - 99=(2 +1)[(=(2 +1)(=9(2 +1).2 -1)+(--1 ))+(-)+…+(-)]【点评】本题第二个括号内有99 个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.a +bx2 +a2 ( x2 +a2 -x)x x2 +a2 ( x2 +a2 -x)2100x yy xy x y x x y xy⎧x = 128、【提示】要使 y 有意义,必须满足什么条件?⎧[1⎨- 4x ≥ 0 ] 你能求出 x ,y 的值吗?[⎨ 4 ]⎩4x -1 ≥0. ⎧ 1⎪ y = 1 . ⎩ 2 x ≤ ⎧1 - 4x ≥ 0 4 1 1 1 【解】要使 y 有意义,必须[⎨⎩4x - 1 ≥ 0 , 即⎨⎪ 1 x ≥ .∴ x = 4.当 x = 时4 ,y = .2又∵=| + - |-| =- |∵ ⎩ 4 -x = 1 ,y = 1 ,∴x y< . 42 yx∴ 原式= - =2 当 x 1 y 1 + + = , = 时 , 421 原式=2 4 =1 2.【点评】解本题的关键是利用二次根式的意义求出 x 的值,进而求出 y 的值.x y 2 ( y )2 y x x + x + 2 + y y x x - 2 + y y x ( y )2y x x - y xx y“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

专项训练4 常见二次根式化简求值的八种技巧

专项训练4  常见二次根式化简求值的八种技巧

专项训练4常见二次根式化简求值的八种技巧方法总结:在有理数中学习的法则、性质、运算律、公式等在二次根式内仍然适用,运算的最后结果注意要化简到最简形式.在进行化简时,一定要注意所给出的条件或题中的隐含条件,根据题目的特点,选取适当的解题方法.估算法1.估计32×14+18的运算结果应在()A.5到6之间B.6到7之间C.7到8之间D.8到9之间2.若将三个数-3,7,11在数轴上对应的点表示出来,则这三个数中被如图所示的墨汁覆盖的点所表示的数是________.(第2题)公式法3.计算:(5+6)×(52-23).拆项法4.计算:6+43+32(6+3)(3+2).[提示:6+43+32=(6+3)+3(3+2)]5.化简:6+3+2+2 3+22+1.约分法6.计算:2+32+6+10+15.配方法7.化简:23-22+17-12 2.8.化简:10+3+10-310+1.换元法9.化简:2+5-3230-62+43.参考答案1.C 2.7 解析:因为-3<0,2<7<3,3<11<4,所以被墨汁覆盖的点所表示的数为7.3.解:原式=(5+6)×(52-2×6)=(5+6)×[2×(5-6)] =2×(5+6)×(5-6) =2×(25-6)=19 2.4.解:原式=(6+3)+3(3+2)(6+3)(3+2)=6+3(6+3)(3+2)+3(3+2)(6+3)(3+2)=13+2+36+3=3-2+6- 3=6- 2.5.解:设原式=(3+2)(2+1)(3+2)+(2+1)=x , 则1x =13+2+12+1=3-2+2-1=3-1.所以原式=x =13-1=3+12. 6.解:原式=2+32(2+3)+5(2+3) =2+3(2+3)(2+5)=12+5=5-23. 7.解:23-22+17-12 2 =22-2× 2×1+1+9-2×3×2 2+8=2(2-1)2+(3-22)2=22-2+3-22=1.8.解:设原式=x ,则x 2=210+210+1=2, 所以原式=x = 2.9.解:设a =2,b =5,c =3,则原式=a +b -c 2(abc -ac 2+a 2c )=a +b -c 2ac (b -c +a )=12ac =126=612.。

专题训练。二次根式化简求值有技巧(含答案)

专题训练。二次根式化简求值有技巧(含答案)

专题训练。

二次根式化简求值有技巧(含答案)专题训练(一):二次根式化简求值有技巧(含答案)类型之一:利用二次根式的性质a^2=|a|化简对于a^2的化简,不要盲目地写成a,而应先写成绝对值的形式,即|a|,然后再根据a^2的符号进行化简。

即a=|a|=(a>0)时,a;(a<0)时,-a。

1.已知a=2-3,则a^2-2a+1=()A。

1-3 B。

3-1 C。

3-3 D。

3+3解析:a^2-2a+1=(2-3)^2-2(2-3)+1=3-4+1=0,故选D。

2.当a<0且a≠0时,化简:(22a^2-a)÷(a^2-4a+3)=________。

解析:22a^2-a=a(22a-1),a^2-4a+3=(a-1)(a-3),所以原式=-(22a-1)÷(a-1)=-2a+3,答案为3-2a。

3.当a<-8时,化简:|(a+4)^2-4|。

解析:(a+4)^2-4=(a+2)(a+6),所以原式=|a+6|-2,当a<-8时,a+6<0,所以原式=-a-4.4.已知三角形的两边长分别为3和5,第三边长为c,化简:c^2-4c+4.解析:根据勾股定理,c^2=3^2+5^2=34,所以c^2-4c+4=(c-2)^2=32.类型之二:逆用二次根式乘除法法则化简5.当ab<0时,化简a^2b的结果是()A。

-ab B。

a-b C。

-a-b D。

ab解析:当ab<0时,a和b的符号不同,所以a^2b的符号为负数,即-a^2b。

6.化简:(1) (-5)^2×(-3)^2;(2) (-16)×(-49);(3) (-25)÷9a^3.解析:(1) (-5)^2×(-3)^2=225;(2) (-16)×(-49)=784;(3) (-25)÷9a^3=-25÷(3a)^3=-25/27a^3.类型之三:利用隐含条件求值7.已知实数a满足(2016-a)^2+a-2017=a,求a的值。

第7讲解题技巧专题:二次根式中的化简求值(6类热点题型讲练)(解析版)--初中数学北师大版8年级上册

第7讲解题技巧专题:二次根式中的化简求值(6类热点题型讲练)(解析版)--初中数学北师大版8年级上册
7 4 3 18 12
4 3 1. 【点睛】本题主要考查了二次根式的除法,熟练掌握除法法则是解答本题的关键. 4.(2023 春·黑龙江大庆·七年级统考期末)计算: (1) 32 18 1 ;
2
2
(2) 2 3 1 2 3 1 3 1 .
【答案】(1) 3 2 2
(2) 7 2 3 【分析】(1)先化简各二次根式,然后合并同类二次根式即可; (2)先根据平方差和完全平方公式计算,然后合并同类二次根式即可. 【详解】(1)原式 4 2 3 2 2
2 3 3.
【点睛】本题考查了二次根式的运算,涉及到了平方差公式和完全平方差公式,解题关键是牢记公式.
【变式训练】
2
2
1.(2023 春·青海果洛·八年级统考期末)计算: 3 2 3 2 .
【答案】 4 6
【分析】先根据完全平方公式展开,再根据二次根式的加减运算即可.
2
2
【详解】解: 3 2 3 2
3 1
3
2
3
2.
【答案】(1) 3 4 2 (2) 3 2 3
【分析】(1)首先计算零指数幂、开平方,然后计算乘法,最后从左往右依次计算,即可得到答案; (2)利用完全平方公式和平方差公式进行计算,再合并即可得到答案.
【详解】(1)解: 20220 18 4 2 1 2
13 2 2 2 2 2
第 2 章第 07 讲 解题技巧专题:二次根式中的化简求值(6 类热点题型 讲练)
目录 【类型一 利用二次根式的非负性求值】 ..........................................................................................................1 【类型二 利用乘法公式进行计算】 ..................................................................................................................4 【类型三 整体代入求值】 .................................................................................................................................. 6 【类型四 新定义型运算】 .................................................................................................................................. 9 【类型五 二次根式的分母有理化】 ................................................................................................................12 【类型六 复合二次根式的化简】 ....................................................................................................................18

二次根式化简求值的六种技巧

二次根式化简求值的六种技巧

专题训练(一) 二次根式化简求值的六种技巧► 技巧一 利用二次根式的性质a 2=|a |化简 对于a 2的化简,不要盲目地写成a ,而应先写成绝对值的形式,即|a |,然后再根据a 的符号进行化简.即a 2=|a |=⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).1.已知a =2-3,则a 2-2a +1的值为( )A .1- 3 B.3-1C .3- 3 D.3-32.当a <12且a ≠0时,化简:4a 2-4a +12a 2-a=________. 3.当a <-8时,化简:|(a +4)2-4|=________.4.已知三角形两边的长分别为3和5,第三边长为c ,化简:c 2-4c +4-14c 2-4c +16.► 技巧二 逆用二次根式乘除法法则化简5.当ab <0时,化简a 2b 的结果是( )A .-a bB .a -bC .-a -bD .a b6.化简:(1)(-5)2×(-3)2=________;(2)(-16)×(-49)=________;(3) 2.25a 2b =________;(4)-25-9=________;(5)9a 34=________. ► 技巧三 利用隐含条件求值7.已知实数a 满足(2018-a )2+a -2019=a ,则a -12018=________. 8.已知x +y =-10,xy =8,求x y +y x的值.► 技巧四 巧用乘法公式计算9.计算:(1)(-4-15)(4-15);(2)(2 6+3 2)(3 2-2 6);(3)(2 3+6)(2-2);(4)(15+4)2018(15-4)2019.► 技巧五 巧用整体思想进行计算10.已知x =5-2 6,则x 2-10x +1的值为( )A .-30 6B .-18 6-2C .0D .10 611.已知x =12(11+7),y =12(11-7),则x 2-xy +y 2=________.12.已知a =2+3,b =2-3,则(a +2)2(b +2)2=________.► 技巧六 巧用倒数法比较大小13.设a =3-2,b =2-3,c =5-2,则a ,b ,c 的大小关系是() A .a >b >c B .a >c >b C .c >b >a D .b >c >a详解详析1.[解析] B a 2-2a +1=|a -1|.因为a -1=(2-3)-1=1-3<0,所以|a -1|=-(1-3)=3-1.故选B.2.[答案] -1a[解析] 原式=(2a -1)2a (2a -1)=|2a -1|a (2a -1). 当a <12时,2a -1<0,所以|2a -1|=1-2a . 所以原式=1-2a a (2a -1)=-1a . 3.[答案] -a -8[解析] 当a <-8时,a +4<-4<0,a +8<0,∴|a +4|=-(a +4),|a +8|=-(a +8),∴原式=|-(a +4)-4|=|-a -8|=|a +8|=-(a +8)=-a -8.4.[解析] 由三角形三边关系定理可得2<c <8,将这两个二次根式的被开方数分解因式,就可以利用二次根式的性质化简了.解:由三角形三边关系定理,得2<c <8. ∴原式=(c -2)2-(12c -4)2=c -2-(4-12c )=32c -6. 5.[解析] A 由ab <0,可知a ,b 异号且a ≠0,b ≠0.又因为a 2≥0,且a 2b ≥0,所以a <0,b >0.所以原式=-a b .[点评] 逆用二次根式的乘除法法则进行化简时,关键是注意法则成立的条件,还要注意二次根式的总体性质符号,即化简前后符号要一致. 6.[答案] (1)15 (2)28 (3)3a 2 b (4)53(5)3a 2a [解析] (1)原式=(-5)2×(-3)2=5×3=15.(2)原式=16×49=16×49=4×7=28.(3)原式= 2.25×a 2·b =1.5a ·b =3a 2 b . (4)原式=259=259=53. (5)原式=9a 34=3a 2 a . 7.[答案] 2019[解析] 依题意可知a -2019≥0,即a ≥2019.所以(2018-a )2+a -2019=a 可转化为a -2018+a -2019=a ,。

部编数学八年级下册专题2二次根式化简求值技巧(解析版)含答案

部编数学八年级下册专题2二次根式化简求值技巧(解析版)含答案

专题2 二次根式化简求值技巧(解析版)第一部分典例精析+变式训练类型一a|化简典例1(2022春•郯城县期末)化简二次根式―AB C.D.思路引领:根据二次根式有意义的条件以及二次根式的性质与化简进行计算即可.解:由题意可知,x<0,原式=﹣x因此选项A是正确的,应选:A.总结提升:本题考查二次根式的性质与化简,二次根式有意义的条件,掌握二次根式有意义的条件以及化简方法是得出正确答案的前提.变式训练1.已知a=1,求思路引领:先将a的值分母有理化,判断出a﹣1的符号,继而根据二次根式的性质求解可得.解:∵a====2―∴a﹣1=2――1=1―0,∴原式==|a﹣1|=﹣(a﹣1)=―1.总结提升:本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.2.(1)当a<0(2)实数a,b思路引领:(1)直接利用a的取值范围结合二次根式的性质化简得出答案;(2)直接利用a,b的取值范围结合二次根式的性质化简得出答案.解:(1)当a<0a1aa(a1)=―1a;(2)由数轴可得:1<a<2,﹣3<b<﹣2,+=a+2﹣(2﹣b)﹣(a+b)=0.总结提升:此题主要考查了二次根式的性质与化简,正确掌握二次根式的性质是解题关键.类型二含有隐含条件的化简求值典例2(2019春•黄石期中)已知x、y为实数,xy=3,那么+A.B.﹣C.±D.思路引领:根据二次根式有意义条件分析出x与y是同号,然后化简(2,代入xy=3,最后再开方即可.解:根据二次根式有意义的条件可得x与y是同号,所以(2=x2⋅yx+y2⋅xy+2xy=xy+xy+2xy=4xy,∵xy=3,所以4xy=12,即(+2=12.∵x与y是同号,所以原式=±故选:C.总结提升:本题主要考查了二次根式的化简求值,解决这类问题一定要注意二次根式有意义的条件,在此条件下解答不会漏解.变式训练1.(2021春•阳新县月考)已知x+y=﹣6,xy=8,求代数式+思路引领:根据加法法则、乘法法则和已知条件得出x 、y 同号,并且都是负数,化简所求式子,代值即可.解:∵x +y =﹣6,xy =8,∴x 、y 同号,并且都是负数,∴=―=﹣(y x +xy )=―=―(6)22×88=﹣总结提升:本题考查了解二元二次方程组和二次根式的混合运算与求值等知识点,能正确根据二次根式的性质进行化简是解此题的关键.2.(2021春•虎林市校级期末)昨天的数学作业:化简求值.当a =3时,求a +小红的答案是5.小明却认为:原式=a +a +(1―a )=1.即:无论a 取何值,a 1.你认为小明说得对么?为什么?思路引领:根据题意得到1﹣a <0,根据二次根式性质化简,判断即可.解:小明的解答是错误的,理由如下:∵a =3,∴1﹣a =﹣2<0,∴原式=a +a ﹣1=2a ﹣1,当a =3时,原式=2×3﹣1=5,∴小明的解答是错误的.总结提升:=|a |是解题的关键.类型三 利用整体思想进行求值典例3 已知x =5﹣y =3x 2+5xy +3y 2的值.思路引领:先计算出x +y 与xy 的值,再利用完全平方公式得到3x 2+5xy +3y 2=3(x +y )2﹣xy ,然后利用整体代入的方法计算.解:∵x =5﹣y =∴x +y =10,xy =25﹣24=1,∴3x 2+5xy +3y 2=3(x +y )2﹣xy =3×102﹣1=299.总结提升:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.使用整体代入的方法可简化计算.变式训练1.(2020秋•武侯区校级月考)已知x y (1)x 2﹣xy +y 2;(2)y x +xy +2.思路引领:先根据完全平方公式、平方差公式和二次根式的乘除和加减运算得出x 2+y 2和xy 的值,(1)直接代入即可求得;(2)利用异分母分式加减法相加后直接代入即可.解:∵x y =∴xy 32,x ―y =―1,又∵(x ﹣y )2=x 2+y 2﹣2xy ,∴x 2+y 2=(x ―y )2+2xy =1+2×32=4,(1)x 2﹣xy +y 2=x 2+y 2﹣xy =4―32=52.(2)y x +x y +2=y 2x 2xy +2=432+2=83+2=143.总结提升:本题考查完全平方公式,平方差公式,二次根式的加、减、乘运算,分式的加法.能结合二次根式的性质和乘法公式求得x 2+y 2和xy 的值是解题关键.2.(1)已知:x =1,y =1.求2x 2+2y 2﹣xy 的值;(2)已知x ,求x 3x 1x 3的值.思路引领:(1)分母有理化后,代入求解即可;(2)由x 2x =+1,可得2x ﹣1=4x 2﹣4x =4,即x 2﹣x =1,x +1=x 2,利用整体代入的思想解决问题.解:(1)x2―y =2+所以原式=2(2―2+2(2+2﹣(2―(2+=14﹣―1=27;(2)∵x =∴2x +1,∴2x ﹣1=∴4x 2﹣4x =4,即x 2﹣x =1,∴x +1=x 2,∴原式=x 3x 2x 3=x 2(x 1)x 3=x 4x 3=x 总结提升:本题考查二次根式的化简求值,分母有理化等知识,解题的关键是学会用整体代入的思想解决问题,属于中考常考题型.类型四 化简二次根式比较大小典例4(2022秋•修水县期中)阅读下面的材料,解答后面所给出的问题:两个含二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因+11.(1)请你写出两个二次根式,使它们互为有理化因式: .化简一个分母含有二次根式的式子时,可以采用分子、分母同乘分母的有理化因式的方法.例如:3.(2)请仿照上述方法化简:3.(3)比较1与1的大小.思路引领:(1)根据有理化因式的概念写出乘积不含二次根式的两个式子即可;(2)分子,分母同时乘以分母的有理化因式即可;(3)分母有理化后再比较.解:(122互为有理化因式,+22(答案不唯一);(2=(3∴1<1.总结提升:本题考查二次根式的混合运算,解题的关键是掌握二次根式的分母有理化.变式训练1.(2022春•翔安区期末)观察下列一组等式,然后解答后面的问题+1)1)=1,+1,+1…(1)观察上面规律,计算下面的式子1+1+1+⋯+1(2)利用上面的规律思路引领:(1)根据题目中材料,可以先将所求式子分母有理化,再化简即可解答本题;(2―解:(1++⋯+=1)+++⋯+―=―1+―⋯=1=10﹣1=9;(2==1,=∴1>1,――总结提升:本题考查分母有理化、实数大小的比较,解题的关键是明确题意,发现其规律,解答相关问题.第二部分专题提优训练1.(2021春•上城区校级期中)已知a=b=ab的值为 .思路引领:a=b=ab=1即可.解:a=b=∴ab+3﹣2=1.故答案为:1.总结提升:本题考查了二次根式的化简求值,根据二次根式的乘法可得ab的值.2.(2018春•沙坪坝区校级期末)如果一个三角形的三边分别是2,3,m(m为正整数),则|1﹣3m|+3化简求值的所有结果的和是 .思路引领:直接利用三角形三边关系得出m的取值范围,进而化简得出答案.解:∵一个三角形的三边分别是2,3,m(m为正整数),∴1<m<5,|1﹣3m|+3=2m+1﹣(3m﹣1)+3=﹣m+5,当m=2时,﹣m+5=3,当m=3时,﹣m+5=2,当m=4时,﹣m+5=1,故所有结果的和是:1+2+3=6.故答案为:6.总结提升:此题主要考查了三角形三边关系以及二次根式的化简,正确得出m 的取值范围是解题关键.3.(2021春•“>”或“=”或“<”).思路引领:根据分母有理化分别化简,即可得出答案.解:∵14=11+1,∴11,故答案为:<.总结提升:本题考查了分母有理化,实数的比较大小,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.4.(2022春• > 12(填“>”“<”“=”).思路引领:决问题.1>1,>12.故填空结果为:>.总结提升:此题主要考查了实数的大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n 次方的方法等.当分母相同时比较分子的大小即可.5.(2021秋•淮安区校级月考)已知实数a 满足|2020﹣a |a ,那么a ﹣20202+1的值是 .思路引领:根据二次根式有意义的条件得出a ≥2021,根据绝对值的性质把原式变形,代入计算即可.解:由题意得:a ﹣2021≥0,解得:a ≥2021,则a ﹣2020a ,=2020,∴a ﹣2021=20202,∴a ﹣20202=2021,∴原式=2021+1=2022,故答案为:2022.总结提升:本题考查的是二次根式有意义的条件、绝对值的性质,掌握二次根式的被开方数是非负数是解题的关键.6.(2022春•宁武县期末)先化简再求值:当a =9时,求a +甲的解答为:原式=a =a +(1﹣a )=1;乙的解答为:原式a =a +(a ﹣1)=2a ﹣1=17.两种解答中, 的解答是错误的,错误的原因是 .思路引领:利用二次根式的性质化简即可;解:∵a =9,∴1﹣a <0,∴原式=a +a +a ﹣1=2a ﹣1=17.∴甲错误,故答案为甲,没有注意到1﹣a <0.总结提升:本题考查二次根式的性质,解题的关键是熟练掌握基本公式,注意公式的应用条件.7.(2010秋•=5―2;16请回答下列问题:(1)观察上面的解题过程,请直接写出1的结果为 .(2)利用上面所提供的解法,求值:1+1+1+⋯+1 .思路引领:(1)直接利用分母有理化化简得出答案;(2)直接将原式化简,进而计算得出答案.解:(1)1(2)原式=―1+―...―=1.1.总结提升:此题主要考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.8.(2022春•彭州市校级月考)已知x=1,y=1,求值:(1)xy;(2)x2+3xy+y2.思路引领:(1)利用平方差公式进行运算即可;(2)利用完全平方公式及平方差公式进行运算即可.解:(1)xy=11=1 75=1 2;(2)x2+3xy+y2=(x+y)2+xy2+122+122+12=7+12=712.总结提升:本题主要考查二次根式的化简求值,分母有理化,解答的关键是对相应的运算法则的掌握.9.(2022秋•静安区校级期中)先化简,再求值,如果a=2―b=1,求思路引领:直接利用二次根式的性质分母有理化,进而化简二次根式得出答案.解:∵b===2+a=2―∴a ﹣b =2――(2+2―2――0,=总结提升:此题主要考查了二次根式的化简求值,正确化简二次根式是解题关键.10.(2022秋•章丘区校级月考)已知a =,b =1.(1)求ab 的值;(2)求a 2+b 2的值.思路引领:(1)根据平方差公式计算即可;(2)根据二次根式的加法法则求出a +b ,根据完全平方公式把原式变形,代入计算即可.解:(1)∵a +1,b 1,∴ab 1)1)=3﹣1=2;(2)∵a =+1,b =―1,∴a +b 1)+1)=∴a 2+b 2=(a +b )2﹣2ab =(2﹣2×2=8.总结提升:本题考查的是二次根式的化简求值,掌握平方差公式、完全平方公式是解题的关键.11.(2022•南京模拟)计算:(1)已知x =,y =1,试求x 2﹣xy +y 2的值.(2)先化简,再求值:a 21a 2a ÷(2+a 21a),其中a 思路引领:(1)先计算出x ﹣y =2,xy =1,再将所求代数式变形为(x ﹣y )2+xy ,然后整体代入计算即可;(2)先根据分式混合运算法则化简,再把x 值代入化简式计算即可.解:(1)∵x =,y =1,∴x ﹣y =2,xy =1,∴x 2﹣xy +y 2=(x ﹣y )2+xy =22+1=5;(2)a 21a 2a ÷(2+a 21a )=(a 1)(a 1)a (a 1)÷a 22a 1a=(a1)(a1)a(a1)⋅a(a1)2=1a1,当a原式=―1.总结提升:本题考查代数式求值,逆用完全平方公式,分式化简求值,二次根式运算,熟练掌握完全平方公式与分式混合运算法则是解题的关键.12.(2022春•a=思路引领:先分母有理化,再利用二次根式的性质化简得到原式=1)a﹣|a﹣1|,接着利用a=>1去绝对值,合并得到原式+1,然后把a=+1)a+1)a﹣|a﹣1|,∵a1,+1)a﹣(a﹣1)=+1,当a=1=3.总结提升:本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.13.已知a=b=2―c=2,比较a,b,c的大小.思路引领:先求出a0.318,b=2―0.268,c=2≈0.236,再根据实数大小比较的方法进行比较即可求解.解:∵a=≈0.318,b=2―≈0.268,c=2≈0.236,0.318>0.268>0.236,∴a>b>c.总结提升:考查了实数大小比较,关键是求出a,b,c的大小.14.(2022春•金华月考)在一节数学课上,李老师出了这样一道题目:先化简,再求值:|x﹣1|+x=9.小明同学是这样计算的:解:|x﹣1|+=x﹣1+x﹣10=2x﹣11.当x=9时,原式=2×9﹣11=7.小荣同学是这样计算的:解:|x﹣1|+=x﹣1+10﹣x=9.聪明的同学,谁的计算结果是正确的呢?错误的计算错在哪里?思路引领:根据二次根式的性质判断即可.解:小荣的计算结果正确,小明的计算结果错误,错在去掉根号:|x﹣1|+=x﹣1+x﹣10(应为x﹣1+10﹣x).总结提升:本题考查了二次根式的性质与化简,能熟记二次根式的性质是解此题的关键,|a|=a(a≥0)―a(a<0).15.(2021春•五华区期中)阅读下列简化过程:1=1―11(1)请用n(n为正整数)表示化简过程规律.(2)计算1+1+1+⋯⋯1.(3)设a=1,b=1,c=1比较a,b,c的大小关系.思路引领:(1)观察题目可得分母上的数相差1,即可得出结论;(2)利用(1)中的规律先化简,随后进行加减即可;(3)先将a,b,c按照题目中的形式化简,再进行比较即可.解:(1)∵分母上的每个数都含有根号,根号内的数相差为1,分子为1,==(2⋯⋯+⋯⋯=―1+⋯⋯+=1.(3)∵ab=c=∴ab 2c2,∴a <b <c .总结提升:本题考查二次根式的化简,平方差公式,分母有理化,实数的大小比较,涉及的知识点比较多,本题的难点在于通过题干得出计算规律,运用规律即可解决问题.16.(2022春•福清市期中)阅读材料:像=3=7这样,两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因式.在进行二次根式计算时,利用有理化因式,可以化去分母中的根号,即为分母有理化.==3+解答下列问题:(1(2(3)应用:当n ―思路引领:(1)根据有理化因式的定义求解;(2)把分子分母都乘以(3―,然后利用平方差公式和完全平方公式计算;(3)利用分母有理化得1,1,然后比较与1的大小即可.解:(1+(2)原式98﹣(31,=1,++0,总结提升:本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解决问题的关键.也考查了分母有理化.。

二次根式计算专题训练(附答案)

二次根式计算专题训练(附答案)

二次根式计算专题训练一、解答题(共30小题)1.计算:(1)+;(2)(+)+(﹣).2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()-2.(2)﹣4﹣(﹣).(3)(x﹣3)(3﹣x)﹣(x﹣2)2.3.计算化简:(1)++(2)2﹣6+3.4.计算(1)+﹣(2)÷×.5.计算:(1)×+3×2(2)2﹣6+3.6.计算:(1)()2﹣20+|﹣| (2)(﹣)×(3)2﹣3+;(4)(7+4)(2﹣)2+(2+)(2﹣)7.计算(1)•(a≥0)(2)÷(3)+﹣﹣(4)(3+)(﹣)8.计算::(1)+﹣(2)3+(﹣)+÷.9.计算(1)﹣4+÷(2)(1﹣)(1+)+(1+)2.10.计算:(1)﹣4+(2)+2﹣(﹣)(3)(2+)(2﹣);(4)+﹣(﹣1)0.11.计算:(1)(3+﹣4)÷(2)+9﹣2x2•.12.计算:①4+﹣+4;②(7+4)(7﹣4)﹣(3﹣1)2.13.计算题(1)××(2)﹣+2(3)(﹣1﹣)(﹣+1)(4)÷(﹣)(5)÷﹣×+(6).14.已知:a=,b=,求a2+3ab+b2的值.15.已知x,y都是有理数,并且满足,求的值.16.化简:﹣a.17.计算:(1)9+5﹣3;(2)2;(3)()2016(﹣)2015.18.计算:.19.已知y=+﹣4,计算x﹣y2的值.20.已知:a、b、c是△ABC的三边长,化简.21.已知1<x<5,化简:﹣|x﹣5|.22.观察下列等式:①==;②==;③==………回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想= ;(2)计算:(++…+)×()24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果;(2)计算()()= ;(3)请利用上面的规律及解法计算:(+++…+)().25.计算:(1)6﹣2﹣3(2)4+﹣+4.26.计算(1)|﹣2|﹣+2(2)﹣×+.27.计算.28.计算(1)9+7﹣5+2(2)(2﹣1)(2+1)﹣(1﹣2)2.29.计算下列各题.(1)(﹣)×+3(2)﹣×.30.计算(1)9+7﹣5+2(2)(﹣1)(+1)﹣(1﹣2)2《二次根式计算专题训练》参考答案与试题解析一.解答题(共30小题)1.计算:(1)+= 2+5= 7;(2)(+)+(﹣ = 4+2+2﹣= 6+.2.计算:(1)(π﹣3.14)0+|﹣2|﹣+()﹣2 =1+2﹣﹣4+9=12﹣5;(2)﹣4﹣(﹣)= 2﹣4×﹣+2= +(3)(x﹣3)(3﹣x)﹣(x﹣2)2 =﹣x2+6x﹣9﹣(x2﹣4x+4)=﹣2x2+10x﹣133.计算化简:(1)++= 2+3+2= 5+2;(2)2﹣6+3= 2×2﹣6×+3×4= 144.计算(1)+﹣= 2+4﹣2= 6﹣2.(2)÷×= 2÷3×3= 2.5.计算:(1)×+3×2= 7+30= 37(2)2﹣6+3= 4﹣2+12= 146.计算:(1)()2﹣20+|﹣| = 3﹣1+=(2)(﹣)×=(3﹣)×= 24(3)2﹣3+= 4﹣12+5=﹣8+5(4)(7+4)(2﹣)2+(2+)(2﹣)=(2+)2(2﹣)2+(2+)(2﹣) = 1+1 = 27.计算(1)•(a≥0)= = 6a(2)÷= =(3)+﹣﹣= 2+3﹣2﹣4= 2﹣3(4)(3+)(﹣)= 3﹣3+2﹣5=﹣2﹣8.计算:(1)+﹣=+3﹣2=2;(2)3+(﹣)+÷=+﹣2+=.9.计算:(1)﹣4+÷=3﹣2+=3﹣2+2=3;(2)(1﹣)(1+)+(1+)2 =1﹣5+1+2+5 =2+2.10.计算:(1)﹣4+=3﹣2+=2;(2)+2﹣(﹣)=2+2﹣3+=3﹣;(3)(2+)(2﹣)=12﹣6 =6;(4)+﹣(﹣1)0 =+1+3﹣1 =4.11.计算:(1)(3+﹣4)÷=(9+﹣2)÷4 =8÷4=2;(2)+9﹣2x2•=4+3﹣2x2×=7﹣2=5.12.计算:①4+﹣+4=4+3﹣2+4=7+2;②(7+4)(7﹣4)﹣(3﹣1)2 =49﹣48﹣(45+1﹣6) =﹣45+6.13.计算题(1)××===2×3×5 =30;(2)﹣+2=×4﹣2+2×=2﹣2+=;(3)(﹣1﹣)(﹣+1)=﹣(1+)(1﹣)=﹣(1﹣5) =4;(4)÷(﹣)=2÷(﹣)=2÷=12;(5)÷﹣×+=4÷﹣+2=4+;(6)===.14.已知:a=,b=,求a2+3ab+b2的值.解:a==2+,b=2﹣,则a+b=4,ab=1,a2+3ab+b2=(a+b)2+ab =17.15.已知x,y都是有理数,并且满足,求的值.【分析】观察式子,需求出x,y的值,因此,将已知等式变形:,x,y都是有理数,可得,求解并使原式有意义即可.【解答】解:∵,∴.∵x,y都是有理数,∴x2+2y﹣17与y+4也是有理数,∴解得∵有意义的条件是x≥y,∴取x=5,y=﹣4,∴.【点评】此类问题求解,或是转换式子,求出各个未知数的值,然后代入求解.或是将所求式子转化为已知值的式子,然后整体代入求解.16.化简:﹣a.【分析】分别求出=﹣a,=﹣,代入合并即可.【解答】解:原式=﹣a+=(﹣a+1).【点评】本题考查了二次根式性质的应用当a≥0时,=a,当a≤0时,=﹣a.17.计算:(1)9+5﹣3= 9+10﹣12= 7;(2)2= 2×2×2×= ;(3)()2016(﹣)2015.=[(+)(﹣)]2015•(+)=(5﹣6)2015•(+)=﹣(+)=﹣﹣.18.计算:.解:原式=+()2﹣2+1﹣+=3+3﹣2+1﹣2+=4﹣.19.已知y=+﹣4,计算x﹣y2的值.【分析】根据二次根式有意义的条件可得:,解不等式组可得x的值,进而可求出y的值,然后代入x﹣y2求值即可.【解答】解:由题意得:,解得:x=,把x=代入y=+﹣4,得y=﹣4,当x=,y=﹣4时x﹣y2=﹣16=﹣14.20.已知:a、b、c是△ABC的三边长,化简.【解】解:∵a、b、c是△ABC的三边长,∴a+b>c,b+c>a,b+a>c,∴原式=|a+b+c|﹣|b+c﹣a|+|c﹣b﹣a|=a+b+c﹣(b+c﹣a)+(b+a﹣c)=a+b+c﹣b﹣c+a+b+a﹣c=3a+b﹣c.21.已知1<x<5,化简:﹣|x﹣5|.解:∵1<x<5,∴原式=|x﹣1|﹣|x﹣5| =(x﹣1)﹣(5﹣x)= 2x﹣6.22.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;)(2)原式=+++…+=(﹣1).23.观察下面的变形规律:=,=,=,=,…解答下面的问题:(1)若n为正整数,请你猜想= ﹣;(2)计算:(++…+)×()解:原式=[(﹣1)+(﹣)+(﹣)+…+(﹣)](+1)=(﹣1)(+1)=()2﹣12 = 2016﹣1 = 2015.24.阅读下面的材料,并解答后面的问题:==﹣1==﹣;==﹣(1)观察上面的等式,请直接写出(n为正整数)的结果﹣;(2)计算()()= 1 ;(3)请利用上面的规律及解法计算:(+++…+)().=(﹣1+﹣+…+﹣)()=(﹣1)(+1)=2017﹣1 =2016.25.计算:(1)6﹣2﹣3= 6﹣5= 6﹣;(2)4+﹣+4= 4+3﹣2+4= 7+2.26.计算(1)|﹣2|﹣+2= 2﹣﹣2+2= ;(2)﹣×+= ﹣×5+= ﹣1+=﹣.27.计算.=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.28.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(2﹣1)(2+1)﹣(1﹣2)2 = 12﹣1﹣1+4﹣12 = 4﹣2.29.计算下列各题.(1)(﹣)×+3= ﹣+=6﹣6+=6﹣5;(2)﹣×= +1﹣= 2+1﹣2.30.计算(1)9+7﹣5+2= 9+14﹣20+= ;(2)(﹣1)(+1)﹣(1﹣2)2=3﹣1﹣(1+12﹣4)=2﹣13+4=﹣11+4.单纯的课本内容,并不能满足学生的需要,通过补充,达到内容的完善教育之通病是教用脑的人不用手,不教用手的人用脑,所以一无所能。

二次根式专题(含答案详解)

二次根式专题(含答案详解)

数学专题 第六讲:二次根式【基础知识回顾】一、 二次根式式子a ( )叫做二次根式提醒:①次根式a 必须注意a___o 这一条件,其结果也是一个非数即:a ___o ②二次根式a (a ≥o )中,a 可以表示数,也可以是一切符合条件的代数式 二、 二次根式的性质:①(a )2= (a ≥0)③= (a ≥0 ,b ≥0)④= (a ≥0, b ≥0)提醒:二次根式的性质注意其逆用:如比较23和可逆用(a )2=a(a ≥0)将根号外的整数移到根号内再比较被开方数的大小 三、最简二次根式:最简二次根式必须同时满足条件:1、被开方数的因数是 ,因式是整式2、被开方数不含 的因数或因式 四、二次根式的运算:1、二次根式的加减:先将二次根式化简,再将 的二次根式进行合并,合并的方法同合并同类项法则相同2、二次根式的乘除:= (a ≥0 ,b ≥0)(a ≥0,b >0) 3、二次根式的混合运算顺序:先算 再算 最后算提醒:1、二次根式除法运算过程一般情况下是用将分母中的根号化去这一方法进行:如:= = 2、二次根式混合运算过程要特别注意两个乘法公式的运用 3、二次根式运算的结果一定要化成 重点考点例析考点一:二次根式有意义的条件A .x ≠3B .x <3 C .x >3 D .x ≥3(a ≥o )(a <o )思路分析:根据二次根式的意义得出x-3≥0,根据分式得出x-3≠0,即可得出x-3>0,求出即可. 解:要使代数式43x -有意义, 必须x-3>0, 解得:x >3. 故选C .点评:本题考查了二次根式有意义的条件,分式有意义的条件的应用,注意:分式B A中A ≠0,二次根式a 中a ≥0. 对应训练 1.使代数式21xx -有意义的x 的取值范围是( ) A .x≥0 B .x≠12C .x≥0且x≠12 D .一切实数 解:由题意得:2x-1≠0,x≥0,解得:x≥0,且x≠12,故选:C .考点二:二次根式的性质例2 实数a 、b 在轴上的位置如图所示,且|a|>|b|,则化简2||a a b -+的结果为( )A .2a+bB .-2a+bC .bD .2a-b思路分析:现根据数轴可知a <0,b >0,而|a|>|b|,那么可知a+b <0,再结合二次根式的性质、绝对值的计算进行化简计算即可. 解:根据数轴可知,a <0,b >0,原式=-a-[-(a+b )]=-a+a+b=b .故选C .点评:二次根式的化简和性质、实数与数轴,解题的关键是注意开方结果是非负数、以及绝对值结果的非负性. 对应训练2.实数a ,b 在数轴上的位置如图所示,则2()a b a ++的化简结果为 .解:∵由数轴可知:b <0<a ,|b|>|a|, ∴2()a b a ++=|a+b|+a =-a-b+a=-b , 故答案为:-b .考点三:二次根式的混合运算思路分析:利用二次根式的分母有理化以及分数指数幂的性质和负整数指数幂的性质,分别化简,进而利用有理数的混合运算法则计算即可.=3.二次根式的混合运算以及负整数指数幂的性质,将各式进行化简是解题关键. 对应训练=4=+考点四:与二次根式有关的求值问题222)(1)(x x x ++-思路分析:先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可.2(1)1)4x x x+0, 1+, (1)11)44x x x+=考查的是二次根式及分式的化简求值,解答此题的关键是当1,此题难度不大.对应训练A .0B .25C .50D .80分析:根据平方差公式求出1142-642=(114+64)×(114-64)=178×50,再提出50得出50×(178-50)=50×128,分解后开出即可. 解:2221146450-- =2(11464)(11464)50+-- =1785050⨯- =50(17850)⨯- =50128⨯=222582⨯⨯⨯=2×5×8,=80, 故选D .考查了平方差公式,因式分解,二次根式的运算等知识点的应用,解此题的关键是能选择适当的方法进行计算 【聚焦中考】1.下列运算正确的是( )B .A 2(5)5-=- B .21()164--= C .x 6÷x 3=x 2 D .(x 3)2=x 52.计算:182= .0 3.计算:0(3)123-+⨯= .7【备考真题过关】 一、选择题1.要使式子2x -有意义,则x 的取值范围是( D )A .x >0B .x≥-2C .x≥2 D.x≤2 2.计算102÷=( A )A 5B .5C .52D .1023.计算:322-=( )4.已知3()(221)3m =-⨯-,则有( ) A .5<m <6 B .4<m <5 C .-5<m <-4 D .-6<m <-5 解:3()(221)3m =-⨯- 23213=⨯ 2373=⨯ 2728==,∵252836<<,∴5286<<,即5<m <6, 故选A .5.下列计算正确的是( D ) A .x 3+x 3=x 6B .m 2•m 3=m 6C .3223-=D .14772⨯=6.下列等式一定成立的是( B )A .945-=B .5315⨯=C .93=±D .2(9)9--=7.使式子有意义的x 的取值范围是( ) A . x≥﹣1 B . ﹣1≤x≤2C . x≤2D . ﹣1<x <2解:根据题意,得,解得,﹣1≤x≤2; 故选B .8.在下列各式中,二次根式的有理化因式是( )A .B .C .D .解:∵×=a ﹣b ,∴二次根式的有理化因式是:.故选:C .主要考查了二次根式的有理化因式的概念,熟练利用定义得出是解题关键. 9.下列计算错误的是( )A.B.C.D.分析:根据二次根式的乘法对A、B进行判断;根据二次根式的除法对C进行判断;根据二次根式的性质对D进行判断.解:A、=,所以A选项的计算正确;B、与不是同类二次根式,不能合并,所以B选项的计算错误;C、÷===2,所以C选项的计算正确;D、==×=2,所以D选项的计算正确.故选B.10.下列计算正确的是()A.B.C.D.分析:根据同类二次根式才能合并可对A进行判断;根据二次根式的乘法对B进行判断;先把化为最简二次根式,然后进行合并,即可对C进行判断;根据二次根式的除法对D 进行判断.解:A、与不能合并,所以A选项不正确;B、×=,所以B选项不正确;C、﹣=2=,所以C选项正确;D、÷=2÷=2,所以D选项不正确.故选C.11.下列计算或化简正确的是()A.a2+a3=a5B.C.D.分析:A、根据合并同类项的法则计算;B、化简成最简二次根式即可;C、计算的是算术平方根,不是平方根;D、利用分式的性质计算.解:A、a2+a3=a2+a3,此选项错误;B、+3=+,此选项错误;C、=3,此选项错误;D、=,此选项正确.故选D.考查了合并同类项、二次根式的加减法、算术平方根、分式的性质,解题的关键是灵活掌握有关运算法则,并注意区分算术平方根、平方根.12.下列计算正确的是()A.B.C.D.分析:根据二次根式的乘除法则,及二次根式的化简结合选项即可得出答案.解:A、•=1,故本选项正确;B、﹣≠1,故本选项错误;C、=,故本选项错误;D、=2,故本选项错误;故选A.二、填空题解:∵20n=22×5n. ∴整数n 的最小值为5. 故答案是:5.∴222a <-<,即22b <<.故答案为:22b <<.1205的结果是22的结果是2)222+⨯⨯1。

二次根式化简练习题含答案

二次根式化简练习题含答案

二次根式化简练习题含答案二次根式化简练题含答案(培优)一)判断题:(每小题1分,共5分)1.(−2)2ab=-2ab.(正确)2.3-2的倒数是3+2.(错误)3.(x-1)2=(x-1).(错误)4.ab、xb、1/3a3b、-2a/xb是同类二次根式.(正确)5.8x、1/9+ x2都不是最简二次根式.(正确)二)填空题:(每小题2分,共20分)6.当x=0时,式子1/(x-3)有意义.7.化简-15/8÷1025/2712a3= -3a3/205.8.a-a2-1的有理化因式是a/(a+1).9.当1<x<4时,|x-4|+x2-2x+1= (x-3)2.10.方程2(x-1)=x+1的解是x=3.11.已知a、b、c为正数,d为负数,化简(ab-c2d2)/(ab+cd2)2= (ab-cd2)/(ab+cd2)2.12.比较大小:-1/27-1/43<0<-1/27+1/43.13.化简:(7-5√2)2000·(-7-5√2)2001= 1/5.14.若x+1+y-3=0,则(x-1)2+(y+3)2=26.15.x,y分别为8-11的整数部分和小数部分,则2xy-y2=-0.15.三)选择题:(每小题3分,共15分)16.已知x3+3x2=-xx+3,则x≤-3.17.若x<y<√2,则x-2xy+y+x+2xy+y=2y.18.若0<x<1,则(x-√2)2+4-(x+√2)2-4=-2x.19.化简a/(a3-b3)=-1/b.20.当a<1/2,b<1/2时,-a+2ab-b可变形为-(a-b)2.四)计算题:(每小题6分,共24分)21.(5-3+2)(5-3-2)=0.22.5/(4-11)-24/(11-7)=-1/3.23.(a2-1)/(a-1)+(a-1)/(a2-1)=2a/(a-1).24.(a+5)/(4-11)-(11-7)/(24-7)=-a/3b.第一段没有明显的格式错误,但需要改写:给定一个分式 $\frac{m^2n}{a^2b^2}$,将其化简得到$\frac{n}{a+b} \cdot \frac{m}{a-b}$(当 $a \neq b$ 时)或者$\frac{2m}{a+b}$(当 $a=b$ 时)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题训练(一) 二次根式化简求值有技巧(含答案)
► 类型之一 利用二次根式的性质a 2=|a|化简 对于a 2的化简,不要盲目地写成a ,而应先写成绝对值的形式,即|a|,然后再根据a 的符号进行化简.即a 2=|a|=⎩⎪⎨⎪⎧a (a >0),0(a =0),-a (a <0).
1.已知a =2-3,则a 2-2a +1=( )
A .1-3
B .3-1
C .3-3
D .3-3
2.当a <12且a ≠0时,化简:4a 2-4a +12a 2-a
=________. 3.当a <-8时,化简:|(a +4)2-4|.
4.已知三角形的两边长分别为3和5,第三边长为c ,化简:c 2-4c +4-
14c 2-4c +16.
► 类型之二 逆用二次根式乘除法法则化简
5.当ab <0时,化简a 2b 的结果是( )
A .-a b
B .a -b
C .-a -b
D .a b
6.化简:(1)(-5)2×(-3)2; (2)(-16)×(-49);
(3)
2.25a 2b ; (4)-25-9; (5)9a 34
.
► 类型之三 利用隐含条件求值
7.已知实数a 满足(2016-a )2+a -2017=a ,求a -12016
的值.
8.已知x +y =-10,xy =8,求x y +y x 的值.
► 类型之四 巧用乘法公式化简
9.计算:(1)(-4-15)(4-15); (2)(26+32)(32-26);
(3)(23+6)(2-2); (4)(15+4)2016(15-4)2017.
► 类型之五 巧用整体思想进行计算
10.已知x =5-26,则x 2-10x +1的值为( )
A .-30 6
B .-186-2
C .0
D .10 6
11.已知x =12(11+7),y =12(11-7),求x 2-xy +y 2的值.
12.已知x >y 且x +y =6,xy =4,求x +y
x -y 的值.
► 类型之六 巧用倒数法比较大小
13.设a =3-2,b =2-3,c =5-2,则a ,b ,c 的大小关系是(
) A .a >b >c B .a >c >b
C .c >b >a
D .b >c >a _
详解详析
1.[解析] B a 2-2a +1=|a -1|.
因为a -1=(2-3)-1=1-3<0,
所以|a -1|=-(1-3)=3-1.
故选B .
2.[答案] -1a
[解析] 原式=(2a -1)2a (2a -1)=|2a -1|a (2a -1)
. 当a <12
时,2a -1<0,所以|2a -1|=1-2a. 所以原式=1-2a a (2a -1)
=-1a . 3.解:当a <-8时,a +4<-4<0,a +8<0,
∴|a +4|=-(a +4),|a +8|=-(a +8).
∴原式=|-(a +4)-4|=|-a -8|=|a +8|=-(a +8)=-a -8.
4.[解析] 由三角形三边关系定理可得2<c <8,将这两个二次根式的被开方数分解因式,就可以利用二次根式的性质化简了.
解:由三角形三边关系定理,得2<c <8. ∴原式=(c -2)2-(12c -4)2=c -2-(4-12c)=32
c -6. 5.[解析] A 由ab <0,可知a ,b 异号且a ≠0,b ≠0.又因为a 2≥0,且a 2b ≥0,所以a <0,b>0.
所以原式=-a b.
[点评] 逆用二次根式的乘除法法则进行化简时,关键是注意法则成立的条件,还要注意二次根式的总体性质符号,即化简前后符号要一致. 6.解:(1)原式=(-5)2×(-3)2=5×3=15. (2)原式=16×49=16×49=4×7=28.
(3)原式= 2.25×a 2·b =1.5a·b =3a 2
b. (4)原式=259=259=53
. (5)原式=9a 34
=3a 2 a. 7.解:依题意可知a -2017≥0,即a ≥2017.
所以原条件转化为a -2016+a -2017=a ,
即a -2017=2016.
所以a =20162+2017.
所以a -12016=20162+20162016
=2017. [点评] 解决此题的关键是从已知条件中挖掘出隐含条件“a -2017≥0”,这样才能对(2016-a )2进行化简,从而求出a 的值.
8.解:依题意可知x <0,y <0. 所以原式=x 2
xy +y 2xy =-x xy +-y xy =-(x +y )xy
. 因为x +y =-10,xy =8,
所以原式=-(-10)8
=522. [点评] 解决此题的关键是从已知条件中分析出x ,y 的正负性,这样才能对要求的式子
进行化简和求值.如果盲目地化简代入,那么将会得出-522这个错误结果. 解答此题还有一个技巧,那就是对x y +y x
进行变形时,不要按常规化去分母中的根号,而是要根据已知条件的特点对它进行“通分”.
9.解:(1)原式=(-15)2-42=15-16=-1.
(2)原式=(32)2-(26)2=18-24=-6.
(3)原式=3(2+2)(2-2)=3(4-2)=2 3.
(4)原式=(15+4)2016(15-4)2016(15-4)=[(15+4)(15-4)]2016(15-4)
=15-4.
[点评] 利用乘法公式化简时,要善于发现公式,通过符号变形、位置变形、公因式变形、结合变形(添括号)、指数变形等,变出乘法公式,就可以利用公式进行化简与计算,事半功倍.
10.[解析] C 原式=(x -5)2-24.
当x =5-26时,x -5=-26,
∴原式=(-26)2-24=24-24=0.
故选C .
[点评] 解答此题时,先对要求的代数式进行配方,然后视x -5为一个整体代入求值,这比直接代入x 的值进行计算要简单得多. 11.解:因为x +y =11,xy =14
[(11)2-(7)2]=1, 所以x 2-xy +y 2=(x +y)2-3xy =(11)2-3=8.
[点评] 这类问题通常视x +y ,xy 为整体,而不是直接代入x ,y 的值进行计算.
12.解:因为(x -y)2=(x +y)2-4xy =20,且x >y ,
所以x -y =20=25, 所以原式=(x +y )2(x )2-(y )2=x +y +2xy x -y =6+425
= 5. [点评] 此题需先整体求出x -y 的值,然后再整体代入变形后的代数式计算.
13.[解析] A因为(3-2)(3+2)=1,所以a=3-2=
1
3+2
.同理,b=
1
2+3

c=
1
5+2
.当分子相同时,分母大的分式的值反而小,所以a>b>c.故选A.
[点评] 这里(3-2)(3+2)=1,即3-2与3+2互为倒数.因此,比较大小时,可
把3-2转化为
1
3+2
,从而转化为分母大小的比较。

相关文档
最新文档