二、同方向不同频率两个简谐振动的合成剖析

合集下载

谐振动分析(三)两个同方向同频率简谐运动的合成

谐振动分析(三)两个同方向同频率简谐运动的合成

o
o
A1
A2
A
T
t
A A1 A2
x (A A )cos(t )
1
2
2 1 2k π
3
物理学
第五版
谐运动分析(三)
(2)相位差 (2k 1) π(k 0,1, )
2
1
x
x
A1
2 o
o
Tt
A
A2
A A1 A2
x (A2 A1)cos(t )
2
1
(2k
1)π
4
物理学
第五版
小结
(1)相位差
2
1
2k
π
A A1 A2
谐运动分析(三)
(k 0,1, ) 加强
(2)相位差
2
1
(2k 1) π
(k 0,1, )
A A A
1
2
减弱
(3)一般情况
A1 A2 A A1 A2
5
物理学
第五版
谐运动分析(三)
二 两个相互垂直的同频率的简谐
运动的合成 x A1 cos(t 1)
x 阻尼振动位移时间曲线
A
Ae t
Aet cost
O
T A
t
( 0)
21
物理学
第五版
三种阻尼的比较
谐运动分析(三)
(a)欠阻尼
2 0
2
(b)过阻尼
2 0
2
(c)临界阻尼
2 0
2
x
b
oc
t
a
22
物理学
第五版
谐运动分析(三)
例 有一单摆在空气(室温为 20C)中来 回摆动. 摆线长l 1.0 m,摆锤是半径r 5.0103 m 的铅球.求(1)摆动周期;(2)振幅减小 10%所需的时间;(3)能量减小10%所需 的时间;(4)从以上所得结果说明空气的 粘性对单摆周期、振幅和能量的影响.

第2节_简谐振动的合成

第2节_简谐振动的合成
2
x = ( A1 cosϕ1 + A2 cosϕ2 ) cosωt − ( A1 sinϕ1 + A2 sinϕ2 ) sinωt = A cos ϕ ⋅ cos ωt − A sin ϕ ⋅ sin ωt = A cos(ωt + ϕ ) ∴ x = A cos(ωt + ϕ )
两个同方向、 两个同方向、同频率的简谐振动合成后仍然是一个 简谐振动,且频率不变。 简谐振动,且频率不变。 由
若 A1 = A2 , A = 2A1
= A1 + A2
合振动振幅最大。 合振动振幅最大。
( ) 2.当 ∆ϕ=ϕ2 −ϕ1 = 2k +1 π ( k = 0,±1,±2,⋯) 时, 当
2 2 A = A1 + A2 + 2A1A2 cos( 2 −ϕ1 ) ϕ
A2
=| A1 − A2 |
A
A2 A1
2 2
ϕ 2 − ϕ1 = π / 2
2 2
x y + =1 A1 A2
•当 当
16
A1 = A2 ,
x +y =A
2
为圆方程
2.
∆ϕ = π / 2
y
8
1 2
y
7 6 5
4
7 6 5
4
8
1 2 2 1
x
3
3
4
播 放 动 画
17
3
5 6 7
x
8
4.
3π (ϕ 2 − ϕ1 ) = 2
9
由于余弦函数绝对值的周期为π。 ω 2 − ω1 t ) 的频率的两倍。 所以, 的频率的两倍。 所以,拍频是振动 cos( 2 即拍频为: 即拍频为:

振动的合成——精选推荐

振动的合成——精选推荐

二、振动的合成实际生活中,一个系统往往会同时参与两个或更多的振动。

例如悬挂在颠簸船舱中的钟摆,两列声波同时传入人耳等。

一般的振动合成显然是比较复杂,下面仅讨论几种间单情况的简谐振动合成。

一、同方向同频率简谐振动的合成若两个同方向的简谐振动,频率都是,它们的运动方程分别为因振动是同方向的,所以这两个谐振动在任意时刻的和位移应在同一直线上,且等于这两个振动位移的代数和,即合位移仍为简谐振动二、两个同方向不同频率简谐振动的合成拍如果两个简谐振动的振动方向相同而频率不同,那么合成后的振动仍与原振动方向相同但不再是简谐振动。

现设两简谐振动的振幅都为A,初相位为零,它们的振动方程分别为合成振动方程为若两个分振动的频率都较大且其差很小时,即,合振动可看作为振幅随时间缓慢变化的近似谐振动,振幅随时间变化且具有周期性,表现出振动或强或弱的现象,称拍,变化的频率称拍频,变化的振幅为变化的频率为三、相互垂直的简谐振动的合成李萨如图如果两个简谐振动分别在x轴和y轴上进行,他们的振动方程分别为合成后,可得质点的轨迹为椭圆方程若两分振动有不同的频率,且两频率之比为有理数时,则合成后的质点运动具有稳定、封闭的轨迹。

称其为李萨如图形。

程序编写我们已经在第一讲中体验了matlab的编程,可是你一定会生出这样的问号,辛辛苦苦在命令窗口写的一大堆代码怎么不保留?不用担心,matlab程序和其他编程工具一样,也有专门的文件格式,称m文件,文件名形式为“文件名.m”。

你可以用matlab自带的编辑器来输入你的程序代码,当然你也可以用其它编辑器或最经济的文本编辑器,不过别忘记添加文件名的后缀“.m”。

下面,请跟我一起用m文件编辑器来编写matlab程序。

例题:两个振动方向相同而频率不同的简谐振动方程分别为合成后的方程是请用matlab程序描述合成波和拍频现象。

编程:第一步:点击matlab图标,打开程序窗口。

第二步:选file—new—m-file,打开编辑器。

大学物理学课件-振动的合成与分解

大学物理学课件-振动的合成与分解

大学物理学
章目录
节目录
上一页
下一页
4.2 振动的合成与分解
分析:
A A12 A22 2 A1 A2 cos(2 1 )
(1)若两分振动同相:
2 1 2 k
A A1 A2
k 0,1, 2,
两分振动相互加强
(2)若两分振动反相:
2 1 ( 2 k 1)
×
×



()
()



= ( − )


大学物理学
章目录
节目录
上一页
下一页
4.2 振动的合成与分解
三、两个相互垂直的同频率简谐振动的合成
分振动
x A1 cos( t 1 )
y A2 cos( t 2 )
= 0
= /4
P
.
·
= /2
= 3/4
= 3/2
= 7/4
Q
=
= 5/4
0 时,逆时针方向转动。
0 时,顺时针方向转动。
大学物理学
章目录
节目录
上一页
下一页
四、两个相互垂直不同频率的简谐振动的合成
两振动的频率成整数比
2
1
2
2
A1 A2
A1 A2
(1)2 1 0
x
y 2
(
) 0
A1 A2
y
A2
y
x
A1
x
质点离开平衡位置的位移
S
大学物理学
x2 y2
A12 A2 2 cos( t )

二、同方向不同频率两个简谐振动的合成剖析

二、同方向不同频率两个简谐振动的合成剖析


2 A cos 2 1
2
t
cos 1 2 t 2

移x
合振动 分振动1
振幅周期性变化
分振动2
2 21
oLeabharlann TT23T
2T
2
t
为一复杂振动
着重研究1
,

相近情况
2
——拍现象(Beat)
即 1- 2 << 1 or 2
x 2Acos 2 1 t cos 1 2 t
声音强弱的变化快 6秒中变化了6次,有6 拍
声音强弱的变化慢6秒中变化了3次,有3 拍
x 2Acos 2 1 t cos 1 2 t
2 2
x x x1 x2 x1 x2 o
| 振幅2变化缓慢1 |
2
一个强弱变化所需的时间
A A12 A22 2A1 A2 A1 A2
(2)两个振动反相
x
20 10 (2k 1) , k o,1,2,...
由A A12 A22 2A1 A2 cos(20 10 )
o
A A12 A22 2A1 A2 A1 A2
2010
x20
0
x10

AM
A1
x0
t o .P x
同方向同频率两个简谐振动的合成仍为简谐振动。
讨论两个特例
x
(1)两个振动同相
20 10 2k , k 0,1,2,...
由 A A12 A22 2A1 A2 cos(20 10 ) o
2 2
振幅随时间的变化非常缓慢
x

第二节 两个简谐振动的合成

第二节  两个简谐振动的合成

A12 A22 2A1A2 cos(02 01)
A A12 A22 2A1A2 cos
[注:cos( ) cos cos sin sin ]
A值的讨论,有三种情况:
(1) 2k
cos 1
A A1 A2
A值最大
(2) (2k 1) cos 1
A A1 A2 (3) 为其它值
波器显示屏上出现合成结果的图形,见右图。求x ?
解:
x y
m n
Y方向切点数 X方向切点数
x 3 x y 2 1000
x 1500 Hz
本节小结
同方向
1
2
简谐振动 A A12 A22 2A1A2 cos
同方向 1 2 拍 2 1
垂直方向
x m y n
李萨如图
x y
两个简谐振动的步调比较
同相:若两个简谐振动的频率相同、初相位相同,则两个简谐 振动的位移同时达到最大和最小。
x
1
2
t3
t1
t2
t4
t
0 ,同相
反相:若两个简谐振动的频率相同、初相位相差π,则一个振
动到达最大位移处时,另一个振动到达反向最大位移处。
1
x
t1
t2
t3
t4
t
2
,反相
超前与落后:若两个简谐振动的频率相同,初相位之差为
Y2 B2
1
X 0 t1 0 Y B
t2
2
X A Y 0
X 0 t3 Y B
t4
3 2
X A Y 0
t4 t3
t2
t1 Y超前π/2
右旋振动
t1 t2
t3
t4 Y落后π/2

振动合成与分解

振动合成与分解

从数学上讲 任何形式的周期函数都可通过付里叶级数分解 成一系列不同频率、不同振幅的谐振动之和; 成一系列不同频率、不同振幅的谐振动之和;而非 周期振动可通过傅里叶积分把它展成无数个频率连 续分布的谐振动。 续分布的谐振动。 将任一周期性振动 x(t +T) = x(t) 按付立叶级数展开 a0 ∞ x (t ) = + ∑ (an cos nω t + bn sin nω t ) 2 n=1 2 π 若周期振动的频率为: 若周期振动的频率为:ν ω =2 = πν T 则各分振动的频率为:ν、2ν、3ν、… 则各分振动的频率为: (基频 , 二次谐频 , 三次谐频 , …) ) 由于所包含的频率取分立值,这类频谱称为离散谱。 由于所包含的频率取分立值,这类频谱称为离散谱。
二. 同方向不同频率简谐振动的合成 分振动 合振动
x2 = Acos(ω2t +ϕ2)
x = x + x2 1
1 1 x = 2 A cos [(ω 2 − ω1 )t + (ϕ 2 − ϕ1 )] ⋅ cos [(ω 2 + ω1 )t + (ϕ 2 + ϕ1 )] 2 2
x = Acos(ω t +ϕ1) 1 1
图(a) 中实线所代表的周期性振动可分解为基频 倍频的两个简谐振动的叠加。 和3倍频的两个简谐振动的叠加。 倍频的两个简谐振动的叠加 而图(b)则是一种“方波”振动信号, 而图 则是一种“方波”振动信号,它所包含 则是一种 的简谐振动成分就多了。 的简谐振动成分就多了。 这里用竖直线段在横坐标上的位置代表所包含 简谐振动的频率,竖直线高度代表所对应振幅, 简谐振动的频率,竖直线高度代表所对应振幅,该 称为振动频谱 图(c)称为振动频谱。 称为振动频谱。

两个简谐振动的合成.ppt

两个简谐振动的合成.ppt

D.航空运输
解析:根据所学1872年李鸿章创办轮船招商局,这是洋务
运动中由军工企业转向兼办民用企业、由官办转向官督商
办的第一个企业。具有打破外轮垄断中国航运业的积极意
义,这在一定程度上保护了中国的权利。据此本题选C项。
答案:C
2. 右图是1909年《民呼日报》上登载的 一幅漫画,其要表达的主题是( ) A.帝国主义掠夺中国铁路权益 B.西方国家学习中国文化 C.西方列强掀起瓜分中国狂潮 D.西方八国组成联军侵略中国
2.特点 (1)近代中国交通业逐渐开始近代化的进程,铁路、水运和 航空都获得了一定程度的发展。 (2)近代中国交通业受到西方列强的控制和操纵。 (3)地域之间的发展不平衡。 3.影响 (1)积极影响:促进了经济发展,改变了人们的出行方式, 一定程度上转变了人们的思想观念;加强了中国与世界各地的 联系,丰富了人们的生活。 (2)消极影响:有利于西方列强的政治侵略和经济掠夺。
(2)特点:进程曲折,发展缓慢,直到20世纪30年代情况才发生变 化。
3.交通通讯变化的影响 (1)新式交通促进了经济发展,改变了人们的通讯手段和 ,出行 方式转变了人们的思想观念。
(2)交通近代化使中国同世界的联系大大增强,使异地传输更为便 捷。
(3)促进了中国的经济与社会发展,也使人们的生活 多。姿多彩
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。
3.发展 (1)原因: ①甲午战争以后列强激烈争夺在华铁路的 修。筑权 ②修路成为中国人 救的亡强图烈存愿望。 (2)成果:1909年 京建张成铁通路车;民国以后,各条商路修筑 权收归国有。 4.制约因素 政潮迭起,军阀混战,社会经济凋敝,铁路建设始终未入 正轨。

同方向、不同频率的简谐振动的合成

同方向、不同频率的简谐振动的合成
合振幅 Acos cost Asin sin t
的仍 简然 谐是 振同 动频 。率
Acos(t )
3
式中:
A A12 A22 2A1A2 cos(2 1)
arctg A1 sin1 A2 sin2 A1 cos1 A2 cos2
可见:
2 1 2k
k 0,1,2,
A A1 A2
2Acos (2 1)t cos[ (2 1)t ]
2
2
当1与2 都很大,且相差甚微时,可将
| 2Acos(2 1)t / 2 | 视为振幅变化部分,
合成振动是以 (2 1) / 2 为角频率的谐振动。
其振幅变化的周期是由振幅绝对值变化来决定, 即振动忽强忽弱,所以它是近似的谐振动.
这种合振动忽强忽弱的现象称为拍。 10
arctg A1 sin 1 A2 sin 2
讨论一:
A1 cos1 A2 cos2
2 1 2k k 0,1,2,
A A1 A2 合振幅最大。
当 A1 A2 称为干涉相长。
A A2
A 2A1
A1
6
讨论二:
2 1 (2k 1)
k 0,1,2,
A2
A | A1 A2 |
A
1动、的2相位1 差0在视缓为慢同地频变率化的,合所成以,质不点过运两动个的振轨
道将不断地从下图所示图形依次的循环变化。
当 0 2 1 时是顺时针转;
sin(
20
10 )
x2 A12
y2 A22
2 xy A1 A2
cos
sin2
上式是个椭圆方程,具体形状由
(20 10) 相位差决定。
质点的运动方向与 有关。当 0 时,

5-3 、 5-4 简谐振动的合成

5-3 、 5-4 简谐振动的合成

ϕ
A2
x
O C A1
N −1 ∆ϕ ϕ = 合振动表达式 2 x ( t ) = A cos( ω t + ϕ ) sin(N∆ϕ / 2) N −1 = A0 cos(ω t + ∆ϕ ) sin(∆ϕ / 2) 2
讨论1: 讨论 : 当 δ
= ±2kπ k = 0,1,2,L sin(N∆ϕ / 2) A = lim A0 = NA0 sin(∆ϕ / 2)
四、两个相互垂直的同频率简谐振动的合成
某质点同时参与两个同频率的互相垂直方向的简谐运动
x = A1 cos(ω t + ϕ 1 ) y = A2 cos(ω t + ϕ 2 )
合振动的轨迹方程为
x y 2 xy 2 cos(ϕ 2 − ϕ 1 ) = sin (ϕ 2 − ϕ 1 ) + 2− 2 A1 A2 A1 A2
'
各分振动矢量依次相接, 各分振动矢量依次相接,构 成闭合的正多边形, 成闭合的正多边形,合振动 的振幅为零。 的振幅为零。
三、同方向不同频率的简谐振动的合成
某质点同时参与两个不同频率且在同一条直线上的简谐振动
x1 = A1 cos(ω 1 t + ϕ 1 )
x 2 = A2 cos(ω 2 t + ϕ 2 )
A2 y=− x A1
y
x2 y2 2 xy + 2+ =0 2 A1 A2 A1 A2
x
合振动的轨迹是一条通过原点的直线
讨论3 讨论
∆ϕ = ϕ 2 − ϕ 1 = π / 2 x2 y2 合振动的轨迹是的椭圆 合振动的轨迹是的椭圆 + 2 =1 2 A1 A2 方程, 方程,且顺时针旋转

简谐振动的合成与分解(原创)

简谐振动的合成与分解(原创)
一、两个同方向同频率简谐运动的合成
讨论两个特例
(1)两个振动同相,则A=A1+A2。如图一
(2)两个振动反相,则A=|A1-A2|。如图二
图一
图二
上述结果说明两个振动的相位差对合振动起着重要作用。
二、两个同方向不同频率简谐运动的合成
频率较大而频率之差很小的两个同方向简谐运动的合成,其合振动的振幅时而加强时而减弱的现象叫拍。
简谐振动的合成与分解
学号:2901304019班级:29001020姓名:李晓林
在自然界和工程技术中,我们所遇到的振动大多不是简谐振动,而是复杂的振动,处理这类问题,往往把复杂振动看成由一系列不同性质(频率、方向等)的间谐振动组合而成,也就是把复杂振动分解为一系列不同性质(频率、方向等)的间谐振动。
下图给出了用傅里叶级数合成方波的公式及图像演示。
心得与体会:
用MATHCAD软件画出各种振动的图像过程,过程比较繁琐。进行分析,得出结论,虽然所做的研究比较简单,但在此过程中更好的了解振动的合成。
(3) 时, 。
(4) 为任意值时,合振动的轨迹一般为椭圆。
(5)不同频率垂直方向简谐振动的合成
一般轨迹曲线复杂,且不稳定。
而当两振动的频率成正数比时,合成轨迹稳定,称为李萨如图形。如右图:
四、例子
方波信号的频谱展开。
三角函数展开式:
拓展:傅里叶级数
傅立叶变换是数字信号处理领域一种很重要的算法。要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。

8.5 简谐运动的合成

8.5 简谐运动的合成

ν 2 ν 1
2
t ) cos( 2 π
ν 2 +ν 1
2
t +)
振幅部分 振动频率 振幅
合振动频率
ν = (ν 1 + ν 2 ) 2
A = 2 A1 cos 2π
ν 2 ν 1
2
t
Amax = 2A1
Amin = 0
振幅是随时间变化的, 振幅是随时间变化的,由于振幅的改变也是周期 性的,因此就出现振动忽强忽弱的现象。 性的,因此就出现振动忽强忽弱的现象。
y A2
A2 y= x A1
o
A1
x
x 2 y 2 2 xy + 2 cos( 2 1 ) = sin 2 ( 2 1 ) 2 A1 A2 A1 A2
2) 2 1 = π
3) 2 1 = ± π 2
2 2
A2 y= x A1
o
y
A2
x y + 2 =1 2 A1 A2
π y = A2 cos(ωt + ) 2
合成振动为: 合成振动为: x = x1 + x2 = A1 cos(ω1t + ) + A2 cos(ω 2 t + ) 利用三角函数公式可得
x = 2 A cos(
ω2 ω1
2
t ) cos(
ω2 + ω1
2
t +)
= 2 A cos( 2 π
ν 2 ν 1
2
t ) cos( 2 π
ν 2 +ν 1
两个同方向不同频率简谐运动的合成
频率相近的两个同方向简谐振动的合振动是振幅随 频率相近的两个同方向简谐振动的合振动是振幅随 相近的两个同方向简谐振动的合振动是 时间周期性变化的特殊简谐振动 称为拍振动 的特殊简谐振动, 拍振动。 时间周期性变化的特殊简谐振动,称为拍振动。 单位时间内振动加强或减弱的周期数叫拍频。 单位时间内振动加强或减弱的周期数叫拍频。 拍频 由

5-4 简谐振动的合成 振动的频谱分析

5-4 简谐振动的合成 振动的频谱分析

tan 0

A1 sin 10 A1 cos10

A2 sin 20 A2 cos20
两个同方向同频 率简谐运动合成 后仍为简谐运动
第5章 机械振动
第4节
大学物理学(第4版) 2
讨论 A A12 A22 2A1A2 cos(20 10 )
1)相位差 20 10 2k π (k 0,1, 2, )
波了.
第5章 机械振动
第4节
大学物理学(第4版) 10
*四 两个相互垂直的同频率简谐振动的合成
x A1 cos( t 10 )
y A2 cos( t 20 )
x2 A12

y2 A22

2xy A1 A2
cos(20
10 )

sin2 (20
10 )
振动方向互相垂直的同频谐振的轨迹是一椭圆曲线, 曲线的形状则与两分振动的位相差有很大关系。
➢ 相位差
20 10
1)相位差 2k π (k 0,1, )
A A1 A2
相互加强
2)相位差 (2k 1) π (k 0,1, )
A A1 A2
3)一般情况
相互削弱
A1 A2 A A1 A2
第5章 机械振动
第4节 二 同方向不同频率简谐振动的合成
第4节
大学物理学(第4版) 1
一 同方向同频率简谐振动的合成
x1 A1 cos(t 10 )

x2 A2 cos(t 20 )
A2

A
x x1 x2
x A cos(t 0 )
0
x 20

同方向不同频率的简谐振动的合成

同方向不同频率的简谐振动的合成

同方向不同频率的简谐振动的合成好,今天咱们就来聊聊同方向不同频率的简谐振动合成。

别急,听我慢慢说,保证你一听就明白。

你得知道,简谐振动就像是一个物体在做上下左右那种规律性的摆动,感觉就像小孩子在秋千上摇来荡去那样,一来一回,一直不带停的。

你看过钟摆摆动吧?就那种感觉,越来越平稳,越过越规律,跟着一个固定的节奏跑。

但是,今天我们不光是讲单一的那种振动,我们要聊的可是两种频率不同的振动合成,它们在一起会怎么样呢?想象一下,两个人在同一个舞池跳舞,他们的舞步却不完全一致。

一个跳得慢,一个跳得快,开始的时候,大家还好像能勉强跟上,但过了一会儿,慢的那个开始觉得有点跟不上节奏,快的那个又有点等不及了。

是不是有点儿这种意思?没错,这就像两种不同频率的简谐振动,如果它们方向相同,但频率不同,合成出来的效果就有点复杂了。

你可以这样想:其中一个振动快得像飞一样,另一种则慢得像老牛拉破车,结果它们俩在同一个方向上“跑”来跑去。

它们的振动轨迹会不断交错,甚至会出现“合成振动”的现象,你可以理解成两者互相“纠缠”的结果。

要是它们的频率差别特别大,你会看到,快的那个有时候走得远了,慢的还在原地打转,合成的波形看上去就有点像一张波浪形的图,忽高忽低,像是过山车一样的刺激。

但是,有趣的地方就在这了!你看,两个不同频率的振动合成之后,它们的频率不单单是快的和慢的,而是产生了一种新的频率,这个频率叫做“合成频率”。

它就像是你听到两首歌,分别有各自的节奏,但一旦合并在一起,突然间你听到了一个新的旋律,乍一听挺陌生,但又有点儿奇妙的和谐感。

这个合成频率一般是由两种原始振动的频率差所影响的,也就是说,快的那个和慢的那个在一起后,调皮地产生了一种“中间”频率,所有的节奏似乎变得更有韵律了。

再说到合成的幅度,那更是有趣!幅度就像是你跳舞时的力度和气势。

你跳得越用力,别人就能感受到你那个震撼。

而在这两种不同频率的振动合成中,幅度也不是那么简单的加和,而是依赖于它们之间的相对位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用拍频测速
从运动物体反射回来的波的频率由于多普勒效 应要发生微小的变化,通过测量反射波与入射波 所形成的拍频,可以算出物体的运动速度。这种 方法广泛应用于对卫星、各种交通工具的雷达测 速装置中。
三、两个互相垂直同频率简谐振动的合成
x1 A1 cos(t 10 )
y2 A2 cos(t 20 )
合成振动
T
o
3T 2
2T
t
如果 A1 A2
则 A=0
一般情况 为其他任意值,则:
A1 A2 A ( A1 A2 )
x
T 2
合成振动
3T 2
o
T
2 T

t
上述结果说明两个振动的相位差对合振动起着 重要作用。
例: 两个沿同一直线且具有相同振幅和周期的谐振动 合成后,产生一个具有相同振幅的谐振动,求原来两 个振动的相位差。 A2 A 解: A A A
1 2
A1 A2 A
2 2 1 3
O
A1
例: N个同方向,同频率的谐振动,若它们相位依次 为, 2,…,试求它们的合振幅;并证明当N=2k 时的合振幅为零。
P
解: 合振幅A
N A 2 R si n 2
R

/2
N
Q
由OPa可看出
A0 2 R sin 2
A
A2 A2
20
x2 A2 cos(t 20 )

A
x x1 x2 x A cos(t 0 )
A
2 2 A1 A2 2 A1 A2 cos( 20 10 )
A1
M
A sin 10 A2 sin 20 tg 0 1 A1 cos10 A2 cos 20
20 10
2 A2
2 A1
5 4
与合成相反:一个圆运动或椭圆运动可分解为 相互垂直的两个简谐振动。
6秒中变化了6次,有6 拍
声音强弱的变化慢 6秒中变化了3次,有3 拍
x
2 1 2 A cos t 2
1 2 cos t 2
2 1 | 振幅变化缓慢 | 2

x
x1 x2
x x1 x2
一个强弱变化所需的时间
o
一个拍
t
合振幅变化的频率即拍频 2 1 拍 | || 2 1 | 2
拍现象是一种很重要的物理现象。
手风琴的中音簧:
键盘式手风琴( Accordion) 的两排中音簧的频 率大概相差6到8个赫兹,其作用就是产生“拍” 频。而俄罗斯的“巴扬”---纽扣式手风琴则是单 簧片的,因此没有拍频造成的颤音效果。
振幅周期性变化
分振动2
t
合振动 分振动1
2 21
3T 2
o
T 2
T
2T
t
为一复杂振动
着重研究1 , 2相近情况
即 1- 2 << 1 or 2
——拍现象(Beat)
x
x
o
2 1 2 A cos t 2
1 2 cos t 2
A合
N sin 2 A A0 sin 2
请大家自行练习!
O
b a C A0 B
X
当N=2k 时的合振幅为零。请记住这个结论!
二.同方向不同频率两个简谐振动的合成
同方向同频率两个简谐振动的合成 ------仍为简谐振动
A
A2
2
A
若1= 2 ,则 不变; 若1 2 ,则 变;
振幅随时间的变化非常缓慢
振幅调制因子Amplitude modulation factor
x1
x2
x x1 x2
t
应用cool edit来合成两频率相近的简谐振动
问 题 : 两 差个 频拍 大现 ?象 中 那 个 的
1 2 A cos 2 2
t
声音强弱的变化快
本讲主要内容:
一、同方向同频率两个简谐振动的合成
二、同方向不同频率两个简谐振动的合成
三、个互相垂直同频率简谐振动的合成 四、两个互相垂直不同频率简谐振动的合成 五、谐振分析和频谱 研究方法: 采用振动描述的三种方法来分析简谐 振动的合成。
一、同方向同频率两个简谐振动的合成
x1 A1 cos( t 10 )
消去 t 得到轨道方程 (椭圆方程)
x2 y2 xy 2 2 cos( ) sin (20 10 ) 20 10 2 2 A1 A2 A1 A2 20 10 20 10 0
x A 1 y A2
2 A2
仍为谐振动, 但是振动方向 改变了!
x20
10
0
A1
t o
x0
.P
x10
x
同方向同频率两个简谐振动的合成仍为简谐振动。
讨论两个特例 (1)两个振动同相 20 10 2k , k 0,1,2,... 由 A A12 A22 2 A1 A2 cos( 20 10 )
A
2 A12 A2 2 A1 A2 A1 A2

1
1
x
同方向不同频率两个简谐振动的合成 ------为一复杂运动
设两振动振幅相同,并以它们的初相位都为零时为 计时起点 x A cos t x2 A cos2t 1 1
差频 和频
x x1 x2
位 移 x
1 2 2 1 2 A cos t cos 2 2
x A 1 y A2
y
2 A1
x 质点的轨迹曲线
20 10 2 A1 A2 轨迹为圆
提问:若y方 向振动落后x 方向,则结 果如何?
x2 y2 2 1 2 A1 A2
x
y
注意!
两个互相垂直不同振幅同频率简谐振动的合成 3 0 2 4 4
x
合成振动
o
T 2
T
3T 2
2T
t
(2)两个振动反相 x 20 10 (2k 1) , k o,1,2,...
x2
x1
T 2
由A A12 A22 2 A1 A2 cos( 20 10 )
A A A 2 A1 A2 A1 A2
2 1 2 2
相关文档
最新文档